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Abstract
We study the occurrence of large queue lengths in the GI/GI/d queue with heavy-
tailedWeibull-type service times. Our analysis hinges on a recently developed sample
path large-deviations principle for Lévy processes and random walks, following a
continuous mapping approach. Also, we identify and solve a key variational problem
which provides physical insight into the way a large queue length occurs. In contrast
to the regularly varying case, we observe several subtle features such as a non-trivial
trade-off between the number of big jobs and their sizes and a surprising asymmetric
structure in asymptotic job sizes leading to congestion.

Keywords Multiple-server queue · Queue length asymptotics · Heavy tails · Weibull
service times

Mathematics Subject Classification 60K25 · 68M20

B Bert Zwart
bert.zwart@cwi.nl

Mihail Bazhba
bazhba@cwi.nl

Jose Blanchet
jose.blanchet@stanford.edu

Chang-Han Rhee
chang-han.rhee@northwestern.edu

1 Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2 Management Science and Engineering, Stanford University 475 Via Ortega, Suite 310, Stanford,
CA 94305, USA

3 Industrial Engineering and Management Sciences, Northwestern University, 2145 Sheridan
Road, Evanston, IL 60208, USA

4 Eindhoven University of Technology, Eindhoven, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-019-09640-z&domain=pdf
http://orcid.org/0000-0001-9336-0096


196 Queueing Systems (2019) 93:195–226

1 Introduction

The queue with multiple servers, known as the GI/GI/d queue, is a fundamen-
tal model in queueing theory. Its use in everyday applications such as call centers
and supermarkets is well documented, and, despite being significantly studied over
decades, it continues to pose interesting research challenges. Early work [1,2] focused
on exact analysis of the invariant waiting-time distribution, but finding tractable solu-
tions has turned out to be challenging. This has led to lines of research that focus on
approximations, either considering heavily loaded systems [3,4] or investigating the
frequency of rare events, for example the probability of a long waiting time or large
queue length. For light-tailed service times, such problems have been considered in
[5,6].

The focus on this paper is on rare event analysis of the queue length in the case of
heavy-tailed service times, a topic that is more recent. For a single server, the literature
on this topic is extensive, as there is an explicit connection between waiting times and
first passage times of random walks; a textbook treatment can be found in [7]. Tail
asymptotics for the steady-state queue length have been treated in [8].

The earliest paper on heavy tails in the setting of a queue with multiple servers that
we are aware of is [9], which stated a conjecture regarding the form of the tail of the
waiting time distribution in steady state, assuming that the service-time distribution is
sub-exponential. This has led to follow-upwork on necessary and sufficient conditions
for finite moments of the waiting-time distribution in steady state [10], and on tail
asymptotics [11,12]. Most of the results in the latter two papers focus on the case of
regularly varying service times. An insight is that if the system load ρ is not an integer,
a large waiting time occurs due to the arrival of �d − ρ� big jobs. The case of other
heavy-tailed service times is poorly understood.

In the present paper, we assume that the service-time distribution has a tail of
the form e−L(x)xα

, where α ∈ (0, 1), and L is a slowly varying function (a more
comprehensive definition is given later on). Tail distributions of this form are also
known as semi-exponential. Their analysis poses challenges, as this category of tails
falls in between the Pareto (very heavy tailed) case and the classical light-tailed case.
In particular, in the case of d = 2 and ρ < 1, the results in [11] imply that two big
jobs are necessary to cause a large waiting time when service times have a Weibull
distribution. The arguments in [11] cannot be extended to the case ρ > 1. In the 2009
Erlang centennial conference, Sergey Foss posed the question “how many big service
times are needed to cause a large waiting time to occur, if the system is in steady
state?”. He noted that even a physical or heuristic treatment has been absent.

This has motivated us to investigate a strongly related question; namely, we analyze
the event that the queue length Q(γ n) at a large time γ n exceeds a value n. A key
result that we utilize in our analysis is a powerful upper bound of Gamarnik and Gold-
berg, see [13], for P(Q(t) > x). This upper bound can be combined with a recently
developed large-deviations principle for randomwalks with heavy-tailedWeibull-type
increments, which is another key result that we use. Consequently, we can estimate the
probability of a large queue length of the GI/GI/d queue with heavy-tailed Weibull-
type service times and obtain physical insights into “the most likely way”in which a
large queue length builds up.
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The main result of this paper, given in Theorem 3.1, states the following: If Q (t) is
the queue length at time t (assuming an empty system at time zero) and γ ∈ (0,∞),
then

lim
n→∞

logP(Q(γ n) > n)

L(n)nα
= −c∗, (1.1)

with c∗ the value of the optimization problem

min
x1,...,xd

d∑

i=1

xα
i subject to

sup
s∈[0,γ ]

{
λs −

d∑

i=1

(s − xi )
+
}

≥ 1,

x1, . . . , xd ≥ 0, (1.2)

where λ is the arrival rate and service times are normalized to have unit mean. Note that
this problem is equivalent to an Lα-normminimization problem with α ∈ (0, 1). Such
problems also appear in applications such as compressed sensing and are strongly
NP-hard in general; see [14] and references therein. In our particular case, we can
analyze this problem exactly, and if γ ≥ 1/(λ − 	λ
), the solution takes the simple
form

c∗ = min
l∈{0,...,	λ
}(d − l)

(
1

λ − l

)α

. (1.3)

This simple minimization problem has at most two optimal solutions, which represent
the most likely number of big jumps that are responsible for a large queue length to
occur, and the most likely buildup of the queue length is through a linear path. For
smaller values of γ , asymmetric solutions can occur, leading to a piecewise linear
buildup of the queue length; we refer to Sect. 3 for more details.

Note that the intuition that the solution to (1.2) yields is qualitatively different
from the case in which service times have a power law. In the latter case, the optimal
number of big jobs equals the minimum number of servers that need to be removed
to make the system unstable. In the Weibull-type case, there is a non-trivial trade-off
between the number of big jobs and their size, and this trade-off is captured by (1.2)
and (1.3).

Although we do not make these claims rigorous for γ = ∞ (which requires an
interchange of limits argument beyond the scope of the paper), it makes a clear sug-
gestion of what the tail behavior of the steady-state queue length should be. This can
then be related to the steady-state waiting-time distribution, and the original question
posed by Foss, using distributional Little’s law.

As mentioned before, we obtain (1.1) by utilizing a tail bound for Q(t), which
is derived in [13]. This tail bound is given in terms of functionals of superpositions
of renewal processes. We show that these functionals are (almost) continuous in the
M ′

1 topology (in the sense of being amenable to the use of the extended contraction
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principle). TheM ′
1 introduced in [15] is precisely the topology used in the development

of a recently produced large-deviations principle for random walks with Weibull-type
increments; see [16]. So, our approach here makes the new large-deviations principle
directly applicable.

The paper is organized as follows: Section 2 provides a model description and
some useful tools used in our proofs. Section 3 provides our main result and some
mathematical insights associatedwith it. Lastly, Sect. 4 contains the lemmas and proofs
needed to construct the main result of this paper, Theorem 3.1.

2 Model description and preliminary results

We consider the FCFS GI/GI/d queuing model with d servers in which inter-arrival
times are independent and identically distributed (i.i.d.) random variables (r.v.’s) and
service times are i.i.d. r.v.’s independent of the arrival process. Let A ≥ 0 and S ≥ 0
be a pair of generic inter-arrival time and service time, respectively. We introduce the
following assumptions:

Assumption 2.1 There exists θ+ > 0 such that E(eθ A) < ∞ for every θ ≤ θ+.

Assumption 2.2 P(S ≥ x) = e−L(x)xα
, α ∈ (0, 1), where L(·) is a slowly varying

function at infinity and L(x)xα−1 is eventually non-increasing.

Let Q(t) denote the queue length process at time t in the FCFS GI/GI/d queuing
system with inter-arrival times being i.i.d. copies of A and service times being i.i.d.
copies of S. We assume that Q(0) = 0. Our goal is to identify the limiting behavior
of P(Q(γ n) > n) as n → ∞ in terms of the distributions of A and S. To simplify
the notation, let λ = 1/E[A] and assume without loss of generality that E[S] = 1. To
ensure stability, let λ < d. Let M be the renewal process associated with A. That is,

M(t) = inf{s : A(s) > t},

and A(t) � A1 + A2 + · · · + A	t
, where A1, A2, . . . are i.i.d. copies of A, and

A(0) = 0. Similarly, for each i = 1, . . . , d, let S(i)(t) � S(i)
1 +S(i)

2 +· · ·+S(i)
	t
, where

S(i)
1 , S(i)

1 , . . . are i.i.d. copies of S, and N (i) be the renewal process associated with S.

Let M̄n and N̄
(i)
n be scaled processes ofM and N (i).More precisely, M̄n(t) = M(nt)/n

and N̄ (i)
n (t) = N (i)(nt)/n for t ≥ 0. Our analysis hinges on Corollary 1 of [13], which

for the GI/GI/d queue states

Result 2.1 For all x > 0 and t ≥ 0,

P(Q(t) > x) ≤ P

(
sup

0≤s≤t

{
(M(t) − M(t − s)) −

d∑

i=1

(N (i)(t) − N (i)(t − s))

}
> x

)
.

(2.1)
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Now, from (2.1) we conclude that, for each γ ∈ (0,∞),

P
(
Q(γ n) > n

) ≤ P

(
sup

0≤s≤γ

{
M̄n(γ ) − M̄n(s) −

d∑

i=1

(
N̄ (i)
n (γ ) − N̄ (i)

n (s)
)} ≥ 1

)
.

(2.2)

Though this is only an upper bound, our main result implies that (2.2) is an asymp-
totically tight upper bound as n → ∞. We establish this later on by deriving a lower
bound with the same asymptotic behavior.

In view of the above, a natural way to proceed is to establish large-deviations
principles for M̄n and N̄ (i)

n , i = 1, . . . , d. Before we continue, we start with some
general background on large-deviations theory, based on [17,18]. Let (X, d) be ametric
space and T denote the topology induced by the metric d. Let Xn be a sequence of
X-valued random variables. Let I be a nonnegative lower semi-continuous function
on X and an be a sequence of positive real numbers that tends to infinity as n → ∞.
We say that Xn satisfies a large-deviations principle (LDP) in (X, T ) with speed an
and rate function I if

− inf
x∈A◦ I (x) ≤ lim inf

n→∞
logP(Xn ∈ A)

an
≤ lim sup

n→∞
logP(Xn ∈ A)

an
≤ − inf

x∈A− I (x)

for any measurable set A. Here, A◦ and A− are, respectively, the interior and the
closure of the set A. If the level sets {y : I (y) ≤ a} are compact for each a ∈ R+, we
say that I is a good rate function. By deriving an LDP, one can have an estimation of
the magnitude of probabilities of rare events on an exponential scale: if the upper and
lower bounds of the LDPmatch, then P(Xn ∈ G) ≈ e−an infx∈G I (x). The optimizers of
the infimum typically provide insight into the most likely way a rare event occurs (i.e.,
the conditional distribution given the rare event of interest). For more background, we
refer to [18] and [19].

An important factor in establishing an LDP on function spaces is the topology of
the space under consideration. LetD[0, T ] denote the Skorokhod space (i.e., the space
of càdlàg functions from [0, T ] to R). We shall use TM ′

1
to denote the M ′

1 Skorokhod
topology onD[0, T ], which is generated by ametric dM ′

1
defined in terms of the graphs

induced by the elements ofD[0, T ]. The precise definitions of the graph and themetric
are as follows:

Definition 2.1 For ξ ∈ D[0, T ], define the extended completed graph Γ ′(ξ) of ξ as

Γ ′(ξ) � {(u, t) ∈ R × [0, T ] : u ∈ [ξ(t−) ∧ ξ(t), ξ(t−) ∨ ξ(t)]},

where ξ(0−) � 0. Define an order on the graph Γ ′(ξ) by setting (u1, t1) < (u2, t2),
for every (u1, t1), (u2, t2) ∈ Γ ′(ξ), if either

– t1 < t2; or
– t1 = t2 and |ξ(t1−) − u1| < |ξ(t2−) − u2|.
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We call a continuous non-decreasing function (u, t) = (
(u(s), t(s)), s ∈ [0, T ])

from [0, T ] to R × [0, T ] an M ′
1 parametrization of Γ ′(ξ) if Γ ′(ξ) = {(u(s), t(s)) :

s ∈ [0, T ]}. We also just call it a parametrization of ξ .

Definition 2.2 Define the M ′
1 metric on D[0, T ] as follows:

dM ′
1
(ξ, ζ ) � inf

(u,t)∈ΠM ′
1
(ξ)

(v,r)∈ΠM ′
1
(ζ )

{‖u − v‖∞ + ‖t − r‖∞},

where ΠM ′
1
(ξ) is the set of all M ′

1 parametrizations of Γ ′(ξ).

Note that we can alternatively define the M ′
1 metric in such a way that the infimum

in Definition 2.2 is over the parametrizations that are strictly increasing (rather than
merely non-decreasing) without changing the resulting distance. An immediate impli-
cation of such an alternative definition is that a sequence of functions {ξn}n≥1 converges
to ξ in (D[0, T ], TM ′

1
) if and only if there exist parametrizations (u, t) ∈ ΠM ′

1
(ξ) and

(un, tn) ∈ ΠM ′
1
(ξn) for each n ≥ 1 such that

sup
s∈[0,T ]

{|un(s) − u(s)| + |tn(s) − t(s)|} → 0 (2.3)

as n → ∞.
The continuity of certain maps w.r.t. the M ′

1 topology is a key component in our
whole argument. Therefore, we note some important related properties used in our
proofs. We refer to Lemma B.2 in the appendix for proofs of these results.

1. The functional S : D[0, T ] → R, where S(ξ) = supt∈[0,T ] ξ(t), is continuous
w.r.t. the M ′

1 topology at ξ ∈ D[0, T ] such that ξ(0) ≥ 0;
2. the functional E : D[0, T ] → R, where E(ξ) = ξ(T ), is continuous w.r.t. the M ′

1
topology on D[0, T ];

3. the addition map (ξ, ζ ) �→ ξ + ζ is a continuous map w.r.t. the M ′
1 topology if the

functions ξ and ζ do not have jumps of the opposite sign at the same jump times.

Now, we describe a recent result derived in [16] on sample path large deviations for
random walks with heavy-tailed Weibull increments which constitutes an important
cornerstone of our whole argument. We say that ξ ∈ D[0, T ] is a pure jump function
if ξ = ∑∞

i=1 xi1[ui ,T ] for some xi and ui such that xi ∈ R and ui ∈ [0, T ] for
each i , and ui are all distinct. Let D

↑
p[0, T ] be the subspace of D[0, T ] consisting of

non-decreasing pure jump functions that assume nonnegative values at the origin.

Result 2.2 Let Sn, n ≥ 1, be a mean-zero random walk such that E(e−εS1) < ∞
for some ε > 0, P(S1 ≥ x) = e−L(x)xα

for some α ∈ (0, 1), and that L(x)xα−1 is
eventually non-increasing. Then, S̄n satisfies the LDP in (D[0, T ], TM ′

1
) with speed

L(n)nα and good rate function IM ′
1

: D[0, T ] → [0,∞] given by

IM ′
1
(ξ) �

{∑
t∈[0,1] (ξ(t) − ξ(t−))α if ξ ∈ D

↑
p[0, T ],

∞ otherwise.
(2.4)
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Note that M̄n and N̄ (i)
n ’s depend on a random number of A j ’s and S(i)

j ’s and hence

may depend on an arbitrarily large number of A j ’s and S(i)
j ’s. This does not exactly

correspond to the large-deviations frameworkpresented inResult 2.2.To accommodate
such a context, we introduce the followingmaps: Fix γ > 0. For any path ξ , letΨ (ξ)(t)
denote the running supremum of ξ up to time t :

Ψ (ξ)(t) � sup
s∈[0,t]

ξ(s).

For each μ, define a map Φμ : D[0, γ /μ] → D[0, γ ] by

Φμ(ξ)(t) � ϕμ(ξ)(t) ∧ ψμ(ξ)(t),

where

ϕμ(ξ)(t) � inf{s ∈ [0, γ /μ] : ξ(s) > t} and

ψμ(ξ)(t) � 1

μ

(
γ + [t − Ψ (ξ)(γ /μ)

]
+
)
. (2.5)

Here, we denote max{x, 0} by [x]+. In words, between the origin and the supremum
of ξ , Φμ(ξ)(s) is the first passage time of ξ crossing the level s; from there to the final
point γ , Φμ(ξ) increases linearly from γ /μ at rate 1/μ (instead of jumping to ∞ and
staying there). Define Ān ∈ D[0, γ /EA] as Ān(t) � A(nt)/n for t ∈ [0, γ /EA] and
S̄(i)
n ∈ D[0, γ ] as S̄(i)

n (t) � S(i)(nt)/n = 1
n

∑	nt

j=1 S

(i)
j for t ∈ [0, γ ]. In deriving LDPs

for M̄n and N̄
(i)
n , we use the fact thatΦEA( Ān) is a function of { Ān(t) : t ∈ [0, γ /EA]}

(and, hence, the LDP associated with it can be derived from the LDP we have for Ān)
as well as the fact that ΦEA( Ān) is close enough to M̄n that they satisfy the same
LDP. Similarly, we derive the LDP for N̄ (i)

n from the LDP for S̄(i)
n using the fact that

Φ1(S̄
(i)
n ) is close enough to N̄ (i)

n for our purpose.
We now turn to the main result of this paper and discuss its implications.

3 Main result

Recall that Q(t) denotes the queue length of the GI/GI/d queue at time t .

Theorem 3.1 For each γ ∈ (0,∞), it holds that

lim
n→∞

1

L(n)nα
logP (Q (γ n) > n) = −c∗, (3.1)

where c∗ is defined as follows: for γ ≥ 1/λ, c∗ is equal to
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min

{
inf

0<k≤	λ
; γ<1/(λ−k)

{
(d − k) γ α + (1 − γ λ + γ k)α (k − 	λ − 1/γ 
)1−α

}
,

	λ−1/γ 

min
l=0

{
(d − l)

(
1

λ − l

)α}}
, (3.2)

while for γ < 1/λ, c∗ = ∞.

Theorem 3.1 is stated under the assumption that ES = 1 for the sake of simplicity.
Following a completely analogous argument with slightly more involved notation, one
can obtain the following expression for c∗ for the general case where σ = 1/ES �= 1:

min

{
min

0<k≤	λ/σ
; γ<1/(λ−kσ)

{
(d − k) γ α + (1 − γ (λ − kσ))α σ−α

(
k −

⌊
λ/σ − 1

γ σ

⌋)1−α
}

,

⌊
λ/σ− 1

γ σ

⌋

min
l=0

{
(d − l)

(
1

λ − lσ

)α}}
.

The proof of Theorem 3.1 is provided in Sect. 4 by implementing the following strat-
egy:

1. We first prove that Ān and S̄(i)
n , i = 1, . . . , d, satisfy certain LDPs in Proposi-

tion 4.1. The LDPs for the S̄(i)
n are a consequence of Result 2.2, while the LDP for

Ān is deduced by the sample path LDP in [6].
2. We prove that ΦEA(·) and Φ1(·) are essentially continuous maps—see Proposi-

tionB.1 for themore precise statement—and, hence,ΦEA( Ān) andΦ1(S̄
(i)
n ) satisfy

the LDPs deduced by the extended contraction principle (cf. Appendix A).
3. We show that M̄n and N̄ (i)

n are equivalent to ΦEA( Ān) and Φ1(S̄
(i)
n ), respectively,

in terms of their large deviations (Proposition 4.2); so M̄n and N̄ (i)
n satisfy the

same LDPs (Proposition 4.3).
4. By applying the contraction principle to the N̄ (i) with the continuous maps in

AppendixB,we infer the (logarithmic) asymptotic upper bound ofP(Q(γ n) > n),
which can be characterized by the solution of a (non-standard) variational problem.
On the other hand, the lower bound is derived by keeping track of the optimal
solution associatedwith theLDPupper bound. The complete argument is presented
in Proposition 4.4.

5. We solve the variational problem in Proposition 4.5 to explicitly compute its opti-
mal solution. The optimal solution of the variational problem provides the limiting
exponent and information on the trajectory leading to a large queue length.

In the remainder of this section, we further investigate properties of the solution
of the optimization problem that defines c∗. In large-deviations theory, solutions of
such problems are known to provide insights into the most likely way a specific rare
event occurs. Such insights are physical, and more technical work is typically needed
to make such insights rigorous; we refer to Lemma 4.2 of [18] for more background.
The latter lemma can be applied in a relatively straightforward manner to derive a
rigorous statement for the most likely way that the functional in the Gamarnik and
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Goldberg upper bound (cf. Result 2.1) becomes large. The computations below are
mainly intended to provide physical insight and highlight differences from the well-
studied case where the job sizes follow a regularly varying distribution.

We consider two different cases based on the value of γ . If γ < 1/λ, no finite
number of large jobs suffice, and we conjecture that the large-deviations behavior is
driven by a combination of light-tailed and heavy-tailed phenomena inwhich the light-
tailed dynamics involve pushing the arrival rate by exponential tilting to the critical
value 1/γ , followed by the heavy-tailed contribution evaluated as we explain in the
following development. If γ > 1/λ, we observe the following features that come in
contrast to the case of regularly varying service-time tails:

1. The large-deviations behavior may not be driven by the smallest number of jumps
which drives the queueing system to instability (i.e., �d − λ�). In other words, in
the Weibull setting, it might be more efficient to block more servers.

2. It is not necessary that the servers are blocked by the same amount, i.e., asymmetry
in job sizes may be the most probable scenario in certain cases.

To illustrate the first point, assume γ > 1/ (λ − 	λ
), inwhich case 	λ
 ≤ 	λ − 1/γ 
 .

In that particular case, the first infimum in (3.2) is over an empty set and we interpret
it as ∞. So the optimal solution of c∗ reduces to

	λ

min
l=0

{
(d − l)

(
1

λ − l

)α}
.

Let l∗ denote the index associated with the optimal value of the expression above.
Intuitively, d − l∗ represents the optimal number of blocked servers so that the queue
gets congested. Observe that d−	λ
 = �d − λ� corresponds to the number of servers
blocked in the regularly varying case. Note that if we examine

f (t) = (d − t) (λ − t)−α ,

for t ∈ [0, 	λ
], then the derivative ḟ (·) is equal to ḟ (t) = α (d − t) (λ − t)−α−1 −
(λ − t)−α . Hence,

ḟ (t) < 0 ⇐⇒ t <
(λ − αd)

(1 − α)
,

and

ḟ (t) > 0 ⇐⇒ t >
(λ − αd)

(1 − α)
,

with ḟ (t) = 0 if and only if t = (λ − αd) / (1 − α). This observation allows us to
conclude that whenever γ > 1/ (λ − 	λ
) we can distinguish two cases. The first one
occurs if

	λ
 ≤ (λ − αd)

(1 − α)
,
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inwhich case l∗ = 	λ
. This case is qualitatively consistentwith theway inwhich large
deviations occur in the regularly varying case. On the other hand, if 	λ
 >

(λ−αd)
(1−α)

,

then we must have that

l∗ =
⌊

(λ − αd)

(1 − α)

⌋
or l∗ =

⌈
(λ − αd)

(1 − α)

⌉
.

This case is the one highlighted in Feature 1 in which wemay obtain d−l∗ > �d − λ�
and thus more servers are blocked compared to the large-deviations behavior observed
in the regularly varying case. However, the blocked servers are symmetric in the sense
that they are treated in exactly the same way.

In contrast, the second feature indicates that the typical trajectory leading to con-
gestion may be obtained by blocking not only a specific amount to drive the system
to instability, but also by blocking the corresponding servers by different loads in the
large-deviations scaling. To appreciate this, we must assume that

1/λ < γ ≤ 1/ (λ − 	λ
) .

In this case, the contribution of the infimum in (3.2) becomes relevant. To illustrate that
we can obtain solutions with the second feature, consider the case d = 2, 1 < λ < 2,
and

1/λ < γ < 1/(λ − 1).

Choose γ = 1/(λ − 1) − δ and λ = 2 − δ3 for δ > 0 sufficiently small. We derive

γ α + (1 − γ (λ − 1))α = 1 − δα + δα + o
(
δ2
)

≤ 21−α,

concluding that

γ α + (1 − γ (λ − 1))α < 2

(
1

λ

)α

.

More explicitly, consider the case d = 2, λ = 1.49, α = 0.1 and γ = 1
λ−1 − 0.1. For

these values, γ α
1 + (1 − γ1 (λ − 1))α < 2

( 1
λ

)α
, and the most likely scenario leading

to a large queue length is two big jobs arriving at the beginning and blocking both
servers with different loads. On the other hand, if γ = 1

λ−1 , the most likely scenario
is a single big job blocking one server. These two scenarios are illustrated in Fig. 1.

We conclude this section by presenting a future research direction. We provide
asymptotics only for the transient model of the queue length process Q. For a queue in
steady state, more work is needed to overcome the technicalities arising with the large-
deviations framework. Specifically, one has to prove that the interchange of limits as
γ and n tend to infinity,

lim
γ→∞ lim

n→∞
1

L(n)nα
logP(Q(γ n) > n) = lim

n→∞
1

L(n)nα
lim

γ→∞ logP(Q(γ n) > n),
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t

Q(t)

1

0 γ2γ1

Fig. 1 Most likely path for the queue buildup up to times γ1 = 1
λ−1 −0.1 and γ2 = 1

λ−1 when the number

of servers is d = 2, the arrival rate is λ = 1.49, and the Weibull shape parameter of the service time is
α = 0.1

is valid. We conjecture that the optimal value, similar to (3.2), of the variational
problem associated with the steady-state model will consist solely of the term

min	λ

l=0

{
(d − l)

(
1

λ−l

)α}
, obtained by taking γ = ∞ in (1.2).

4 Proof of Theorem 3.1

We follow the general strategy outlined in the previous section. The first step consists
of deriving the LDPs for Ān, S̄

(i)
n which subsequently provide us with the LDPs for M̄n

and N̄ (i)
n . Let D↑

p[0, γ /μ] be the subspace of D[0, γ /μ] consisting of non-decreasing
pure jump functions that assume nonnegative values at the origin, and define ζμ ∈
D[0, γ /μ] by ζμ(t) � μt . Let Dμ[0, γ /μ] � ζμ + D

↑
p[0, γ /μ] be the subspace of

non-decreasing piecewise linear functions that have slope μ and assume nonnegative
values at the origin.

4.1 Sample path large deviations for the components of the queue length upper
bound

Recall that Ān(t) = 1
n

∑	nt

j=1 A j and S̄(i)

n (t) = 1
n

∑	nt

j=1 S

(i)
j .

Proposition 4.1 Ān satisfies the LDP on
(
D[0, γ /EA], dM ′

1

)
with speed L(n)nα and

good rate function

I0(ξ) =
{
0 if ξ = ζEA,

∞ otherwise,
(4.1)
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and S̄(i)
n satisfies theLDPon

(
D[0, γ ], dM ′

1

)
with speed L(n)nα andgood rate function

Ii (ξ) =
{∑

t∈[0,γ ](ξ(t) − ξ(t−))α if ξ ∈ D
1[0, γ ],

∞ otherwise.

Proof In view of Lemma 3.2 of [6], it is easy to deduce that 1
n

∑	nt

j=1

(
A j − EA

)
sat-

isfies the LDP on (D[0, γ /EA], dM ′
1
) with speed L(n)nα and with good rate function

IA(ξ) =
{
0 if ξ = 0,

∞ otherwise.

On the other hand, due to Result 2.2, 1
n

∑	nt

j=1

(
S(i)
j − 1

)
satisfies the LDP on

(D[0, γ ], dM ′
1
) with good rate function

IS(i) (ξ ) =
{∑

t∈[0,γ ](ξ(t) − ξ(t−))α if ξ ∈ D
↑
p[0, γ ],

∞ otherwise.
(4.2)

Clearly, 1
n

∑	nt

j=1 A j − t · EA and 1

n

∑	nt

j=1 S

(i)
j − t are exponentially equivalent

to 1
n

∑	nt

j=1(A j − EA) and 1

n

∑	nt

j=1

(
S(i)
j − 1

)
, respectively. (For the definition of

exponential equivalence, we refer to Definition A.1 in Appendix A.) Therefore,
1
n

∑	nt

j=1 A j − t ·EA and 1

n

∑	nt

j=1 S

(i)
j − t satisfy the LDPs with the good rate functions

IA and IS(i) , respectively.
Now, consider the map ϒμ : (D[0, γ /μ], TM ′

1

) → (
D[0, γ /μ], TM ′

1

)
, where

ϒμ(ξ) � ξ + ζμ. Let I0(ζ ) � inf{IA(ξ) : ξ ∈ D[0, γ /EA], ζ = ϒEA(ξ)}. From the
form of IA, it is easy to see that I0 coincides with the right-hand-side of (4.1). Since
this map is continuous (Lemma B.1), the contraction principle (Result A.1) applies
showing that Ān = ϒEA

( 1
n

∑	nt

j=1 A j − t ·EA

)
satisfies the desired LDPwith the good

rate function I0. We next consider S̄(i)
n . Let Ii (ζ ) � inf{IS(i) (ξ ) : ξ ∈ D[0, γ ], ζ =

ϒ1(ξ)}. Note that IS(i) (ξ ) = ∞ whenever ξ /∈ D
↑
p, and ξ ∈ D

↑
p if and only if

ζ = ϒ1(ξ) belongs to D1[0, γ ]. Again, it is easy to check that Ii coincides with the
right-hand-side of (4.2). We apply the contraction principle once more to conclude
that S̄(i)

n = ϒ1
( 1
n

∑	nt

j=1 S

(i)
j − t

)
satisfies the desired LDP with good rate function Ii .

��
To carry out the second step of our approach, we next prove that ΦEA( Ān) and

Φ1(S̄
(i)
n ) satisfy the same LDPs as M̄n and N̄ (i)

n for each i = 1, . . . , d, respectively.
To show this, we next prove that ΦEA( Ān) and Φ1(S̄

(i)
n ) are exponentially equivalent

to M̄n and N̄ (i)
n for each i = 1, . . . , d, respectively.

Proposition 4.2 M̄n and ΦEA( Ān) are exponentially equivalent in
(
D[0, γ ], TM ′

1

)
.

N̄ (i)
n and Φ1(S̄

(i)
n ) are exponentially equivalent in

(
D[0, γ ], TM ′

1

)
for each i =

1, . . . , d.
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Proof We first claim that dM ′
1
(N̄ (i)

n , Φ1(S̄
(i)
n )) ≥ ε implies either

γ − Ψ (S̄(i)
n )(γ ) ≥ 1

2
ε or N̄ (i)

n (γ ) − γ ≥ ε/2.

To see this, suppose otherwise. That is,

γ − Ψ (S̄(i)
n )(γ ) <

1

2
ε and N̄ (i)

n (γ ) − γ < ε/2. (4.3)

By the construction of S̄(i)
n and N̄ (i)

n , we see that N̄ (i)
n (·) is non-decreasing and

N̄ (i)
n (t) ≥ γ for t ≥ Ψ (S̄(i)

n )(γ ). Therefore, the second condition of (4.3) implies

sup
t∈[Ψ (S̄(i)

n )(γ ), γ ]
|N̄ (i)

n (t) − γ | < ε/2.

On the other hand, since the slope ofΦ1(S̄
(i)
n ) is 1 on [Ψ (S̄(i)

n )(γ ), γ ], the first condition
of (4.3) implies that

sup
t∈[Ψ (S̄(i)

n )(γ ), γ ]
|Φ1(S̄

(i)
n )(t) − γ | < ε/2,

and hence,

sup
t∈[Ψ (S̄(i)

n )(γ ), γ ]
|Φ1(S̄

(i)
n )(t) − N̄ (i)

n (t)| < ε. (4.4)

Note also that, by the construction of Φ1, N̄ (i)
n (·) and Φ1(S̄

(i)
n )(·) coincide on

[0, Ψ (S̄(i)
n )(γ )). From this, along with (4.4), we see that

sup
t∈[0,γ ]

|Φ1(S̄
(i)
n )(t) − N̄ (i)

n (t)| < ε,

which implies that dM ′
1
(Φ1(S̄

(i)
n ), N̄ (i)

n ) < ε. The claim is proved. Therefore,

lim sup
n→∞

logP
(
dM ′

1
(N̄ (i)

n , Φ1(S̄
(i)
n )) ≥ ε

)

L(n)nα

≤ lim sup
n→∞

log
{
P
(
γ − Ψ (S̄(i)

n )(γ ) ≥ ε/2
)

+ P
(
N̄ (i)
n (γ ) − γ ≥ ε/2

)}

L(n)nα

≤ lim sup
n→∞

logP
(
γ − Ψ (S̄(i)

n )(γ ) ≥ ε/2
)

L(n)nα
∨ lim sup

n→∞

logP
(
N̄ (i)
n (γ ) ≥ γ + ε/2

)

L(n)nα
,
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and we are done for the exponential equivalence between N̄ (i)
n and Φ1(S̄

(i)
n ) if we

prove that

lim sup
n→∞

logP
(
γ − Ψ (S̄(i)

n )(γ ) ≥ ε/2
)

L(n)nα
= −∞ (4.5)

and

lim sup
n→∞

logP
(
N̄ (i)
n (γ ) − γ ≥ ε/2

)

L(n)nα
= −∞. (4.6)

For (4.5), note that Ψ (S̄(i)
n )(γ ) ≤ γ − ε/2 implies that S̄(i)

n (γ ) ≤ γ − ε/2, and hence,

lim sup
n→∞

logP
(
γ − Ψ (S̄(i)

n )(γ ) ≥ ε/2
)

L(n)nα
≤ lim sup

n→∞

logP
(
S̄(i)
n (γ ) ≤ γ − ε/2

)

L(n)nα

≤ − inf
ξ(γ )≤γ−ε/2

I0(ξ) ≤ −∞,

where the second inequality is due to the LDP upper bound for S̄(i)
n in Proposition 4.1

and the continuity of the map ξ �→ ξ(γ ) as a functional from (D[0, γ ], dM ′
1
) toR. For

(4.6), note that N̄ (i)
n (γ ) − γ ≥ ε/2 implies S̄(i)

n (γ + ε/2) ≤ γ . Considering the LDP
for S̄(i)

n onD[0, γ +ε/2], we arrive at the same conclusion. This concludes the proof of
the exponential equivalence between M̄n and Φ1(S̄

(i)
n ). The exponential equivalence

between M̄n and ΦEA( Ān) is essentially identical and, hence omitted. ��

Due to the continuity of Φμ over the effective domain of the rate functions Ii , i =
1, . . . , d—seePropositionB.1—wecan appeal to the extended contraction principle—
see Remark 1—to establish LDPs for ΦEA( Ān) and Φ1(S̄

(i)
n ) for each i = 1, . . . , d.

Our next proposition, which constitutes the third step of our strategy, characterizes the
LDPs satisfied byΦEA( Ān) andΦ1(S̄

(i)
n )—and, hence, by M̄n and N̄

(i)
n as well. Define

Č
μ[0, γ ] � {ζ ∈ C[0, γ ] : ζ = ϕμ(ξ) for some ξ ∈ D

μ[0, γ /μ]}, where C[0, γ ] is
the subspace of D[0, γ ] consisting of continuous paths, and τs(ξ) = max

{
0, sup{t ∈

[0, γ ] : ξ(t) = s} − inf{t ∈ [0, γ ] : ξ(t) = s}
}
.

Proposition 4.3 ΦEA( Ān) and M̄n satisfy the LDP with speed L(n)nα and good rate
function

I ′
0(ξ) �

{
0 if ξ = ζ1/EA,

∞ otherwise,
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and, for i = 1, . . . , d, Φ1(S̄
(i)
n ) and N̄ (i)

n satisfy the LDP with speed L(n)nα and good
rate function

I ′
i (ξ) �

{∑
s∈[0,γ ] τs(ξ)α if ξ ∈ Č

1[0, γ ],
∞ otherwise.

Proof Let Î ′
0(ζ ) � inf{I0(ξ) : ξ ∈ D[0, γ /EA], ζ = ΦEA(ξ)} and Î ′

i (ζ ) �
inf{Ii (ξ) : ξ ∈ D[0, γ ], ζ = Φ1(ξ)} for i = 1, . . . , d. Recall that in Proposi-
tion 4.1 we established the LDP for Ān and S̄(i)

n for each i = 1, . . . , d. Note that if
ξ ∈ DΦEA � {ξ ∈ D[0, γ /EA] : ΦEA(ξ)(γ ) − ΦEA(ξ)(γ−) > 0}, then there has
to be s, t such that 0 ≤ s < t < γ/EA and Ψ (ξ)(s) = γ . For such ξ , I0(ξ) = ∞.
From this, along with Proposition B.1, we see that ΦEA is continuous on the effec-
tive domain of I0. Therefore, the extended contraction principle (see Remark 1 after
Result A.1) applies, establishing the LDP forΦEA( Ān)with rate function Î ′

0. The LDP

for Φ1(S̄
(i)
n ) with rate function Î ′

i follows from the same argument. Due to the expo-

nential equivalence derived in Proposition 4.2, M̄n and N̄ (i)
n satisfy the same LDP as

ΦEA( Ān) and Φ1(S̄
(i)
n ). Therefore, we are done once we prove that the rate functions

Î ′
i deduced from the extended contraction principle satisfy I ′

i = Î ′
i for i = 0, . . . , d.

Starting with i = 0, note that I0(ξ) = ∞ if ξ �= ζEA, and hence,

Î ′
0(ζ ) = inf{I0(ξ) : ξ ∈ D[0, γ /EA], ζ = ΦEA(ξ)} =

{
0 if ζ = ΦEA(ζEA),

∞ otherwise,

(4.7)

where it is straightforward to check that ΦEA(ζEA) = ζ1/EA. Therefore, I ′
0 = Î ′

0.

Turning to i = 1, . . . , d, note first that since Ii (ξ) = ∞ for any ξ /∈ D
1[0, γ ],

Î ′
i (ζ ) = inf{Ii (ξ) : ξ ∈ D1[0, γ ], ζ = Φ1(ξ)}.

Note also thatΦ1 can be simplified onD1[0, γ ]: it is easy to check that if ξ ∈ D
1[0, γ ],

ψ1(ξ)(t) = γ and ϕ1(ξ)(t) ≤ γ for t ∈ [0, γ ]. Therefore,Φ1(ξ) = ϕ1(ξ), and hence,

Î ′
i (ζ ) = inf{Ii (ξ) : ξ ∈ D1[0, γ ], ζ = ϕ1(ξ)}.

Now, if we define �1 : D[0, γ ] → D[0, γ ] by

�1(ξ)(t) �
{

ξ(t) t ∈ [0, ϕ1(ξ)(γ ))

γ + (t − ϕ1(ξ)(γ )) t ∈ [ϕ1(ξ)(γ ), γ ] ,

then it is straightforward to check that Ii (ξ) ≥ Ii (�1(ξ)) andϕ1(ξ) = ϕ1(�1(ξ))when-
ever ξ ∈ D

1[0, γ ]. Moreover, �1(D1[0, γ ]) ⊆ D
1[0, γ ]. From these observations, we

see that

Î ′
i (ζ ) = inf{Ii (ξ) : ξ ∈ �1(D

1[0, γ ]), ζ = ϕ1(ξ)}. (4.8)
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Note that ξ ∈ �1(D
1[0, γ ]) and ζ = ϕ1(ξ) implies that ζ ∈ Č

1[0, γ ]. Therefore, in
the case ζ /∈ Č

1[0, γ ], no ξ ∈ D[0, γ ] satisfies the two conditions simultaneously,
and hence,

Î ′
i (ζ ) = inf ∅ = ∞ = I ′

i (ζ ). (4.9)

Nowweprove that Î ′
i (ζ ) = I ′

i (ζ ) for ζ ∈ Č
1[0, γ ].We claim that, if ξ ∈ �1(D

1[0, γ ]),

τs(ϕ1(ξ)) = ξ(s) − ξ(s−)

for all s ∈ [0, γ ]. The proof of this claim is provided at the end of the proof of the
current proposition. Using this claim,

Îi (ζ ) = inf
{∑

s∈[0,γ ](ξ(s) − ξ(s−))α : ξ ∈ �1(D
1[0, γ ]), ζ = ϕ1(ξ)

}

= inf
{∑

s∈[0,γ ]τs(ϕ1(ξ))α : ξ ∈ �1(D
1[0, γ ]), ζ = ϕ1(ξ)

}

= inf
{∑

s∈[0,γ ]τs(ζ )α : ξ ∈ �1(D
1[0, γ ]), ζ = ϕ1(ξ)

}
.

Note also that ζ ∈ Č
1[0, γ ] implies the existence of ξ such that ζ = ϕ1(ξ) and ξ ∈

�1(D
1[0, γ ]). To seewhy, note that there exists ξ ′ ∈ D

1[0, γ ] such that ζ = ϕ1(ξ
′) due

to the definition of Č1[0, γ ]. Let ξ � �1(ξ
′). Then, ζ = ϕ1(ξ) and ξ ∈ �1(D

1[0, γ ]).
From this observation, we see that

{∑
s∈[0,γ ]τs(ζ )α : ξ ∈ �1(D

1[0, γ ]), ζ = ϕ1(ξ)
}

=
{∑

s∈[0,γ ]τs(ζ )α
}

,

and hence,

Îi (ζ ) =
∑

s∈[0,γ ]
τs(ζ )α = I ′

i (ζ ) (4.10)

for ζ ∈ Č
1[0, γ ]. From (4.9) and (4.10), we conclude that I ′

i = Îi for i = 1, . . . , d.
All that remains is to prove that τs(ϕ1(ξ)) = ξ(s) − ξ(s−) for all s ∈ [0, γ ]. We

consider the cases s > ϕ1(ξ)(γ ) and s ≤ ϕ1(ξ)(γ ) separately. First, suppose that
s > ϕ1(ξ)(γ ). Since ϕ1(ξ) is non-decreasing, this means that ϕ1(ξ)(t) < s for all
t ∈ [0, γ ], and hence {t ∈ [0, γ ] : ϕ1(t) = s} = ∅. Therefore,

τs(ϕ1(ξ)) = 0 ∨ ( sup{t ∈ [0, γ ] : ϕ1(t) = s}
− inf{t ∈ [0, γ ] : ϕ1(t) = s}) = 0 ∨ (−∞ − ∞) = 0.

On the other hand, since ξ is continuous on [ϕ1(ξ)(γ ), γ ] by its construction,

ξ(s) − ξ(s−) = 0.
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Therefore,

τs(ϕ1(ξ)) = 0 = ξ(s) − ξ(s−)

for s > ϕ1(ξ)(γ ).
Now we turn to the case s ≤ ϕ1(ξ)(γ ). Since ϕ1(ξ) is continuous, this implies that

there exists u ∈ [0, γ ] such that ϕ1(ξ)(u) = s. From the definition of ϕ1(ξ)(u), it is
straightforward to check that

u ∈ [ξ(s−), ξ(s)] ⇐⇒ s = ϕ1(ξ)(u). (4.11)

Note that [ξ(s−), ξ(s)] ⊆ [0, γ ] for s ≤ ϕ1(ξ)(γ ) due to the construction of ξ .
Therefore, the above equivalence (4.11) implies that [ξ(s−), ξ(s)] = {u ∈ [0, γ ] :
ϕ1(ξ)(u) = s}, which in turn implies that ξ(s−) = inf{u ∈ [0, γ ] : ϕ1(ξ)(u) = s}
and ξ(s) = sup{u ∈ [0, γ ] : ϕ1(ξ)(u) = s}. We conclude that

τs(ϕ1(ξ)) = ξ(s) − ξ(s−)

for s ≤ ϕ1(ξ)(γ ). ��

4.2 Large deviations for the queue length

Now we are ready to follow step 4) of our outlined strategy and characterize the log

asymptotics of P
(
Q(γ n) > n

)
. Recall that τs(ξ) � max

{
0, sup{t ∈ [0, γ ] : ξ(t) =

s} − inf{t ∈ [0, γ ] : ξ(t) = s}
}
.

Proposition 4.4

lim
n→∞

1

L(n)nα
logP

(
Q(γ n) > n

) = −c∗,

where c∗ is the solution of the following variational problem:

inf
ξ1,...,ξd

d∑

i=1

∑

s∈[0,γ ]
τs(ξi )

α

subject to sup
0≤s≤γ

( s

EA
−

d∑

i=1

ξi (s)
)

≥ 1;

ξi ∈ Č
1[0, γ ] for i = 1, . . . , d. (4.12)
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Proof From Corollary 1 of [13], for any ε > 0,

P
(
Q(γ n) > n

)

≤ P

(
sup

0≤s≤γ

{
M̄n(γ ) − M̄n(s) −

d∑

i=1

(
N̄ (i)
n (γ ) − N̄ (i)

n (s)
)} ≥ 1

)

≤ P

(
sup

0≤s≤γ

{
M̄n(γ ) − M̄n(s) − γ − s

EA

}

+ sup
0≤s≤γ

{γ − s

EA
−

d∑

i=1

(
N̄ (i)
n (γ ) − N̄ (i)

n (s)
)} ≥ 1

)

≤ P
(
M̄n(γ ) − γ

EA
≥ ε
)

︸ ︷︷ ︸
(I)

+ P
(

− inf
0≤s≤γ

(
M̄n(s) − s

EA

)
≥ ε

)

︸ ︷︷ ︸
(II)

+ P

(
sup

0≤s≤γ

{γ − s

EA
−

d∑

i=1

(
N̄ (i)
n (γ ) − N̄ (i)

n (s)
)} ≥ 1 − 2ε

)

︸ ︷︷ ︸
(III)

.

By the LDP for M̄n (Proposition 4.3), it is straightforward to deduce that

lim sup
n→∞

1

L(n)nα
logP

(
M̄n(γ ) − γ

EA
≥ ε
)

= −∞

and

lim sup
n→∞

1

L(n)nα
logP

(
− inf

0≤s≤γ

(
M̄n(s) − s

EA

)
≥ ε

)
= −∞.

Therefore, by the principle of the maximum term,

lim sup
n→∞

logP (Q(γ n) > n)

L(n)nα

≤ max

{
lim sup
n→∞

log (I)

L(n)nα
, lim sup

n→∞
log (II)

L(n)nα
, lim sup

n→∞
log (III)

L(n)nα

}

= lim sup
n→∞

logP
(
sup0≤s≤γ

{
γ−s
EA −∑d

i=1

(
N̄ (i)
n (γ ) − N̄ (i)

n (s)
)} ≥ 1 − 2ε

)

L(n)nα
.
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To bound the limit supremum in the equality above, we derive an LDP for

γ

EA
−

d∑

i=1

N̄ (i)
n (γ ) + sup

0≤s≤γ

( d∑

i=1

N̄ (i)
n (s) − s

EA

)
.

Due to Proposition 4.3 and Theorem 4.14 of [18], (N̄ (1)
n , . . . , N̄ (d)

n ) satisfy the LDP
in
∏d

i=1 D[0, γ ] (w.r.t. the d-fold product topology of TM ′
1
) with speed L(n)nα and

rate function

I ′(ξ1, . . . , ξd) �
d∑

i=1

I ′
i (ξi ).

Let D↑[0, γ ] denote the subspace of D[0, γ ] consisting of non-decreasing functions.
Since N̄ (i)

n ∈ D
↑[0, γ ]with probability 1 for each i = 1, . . . , d, we can apply Lemma

4.1.5 (b) of [17] to deduce the same LDP for (N̄ (i)
n , . . . , N̄ (d)

n ) in
∏d

i=1 D
↑[0, γ ]. We

define f1 :∏d
i=1 D

↑[0, γ ] → D[0, γ ] as

f1(ξ1, . . . , ξd) �
d∑

i=1

ξi − ζ1/EA.

Note that f1 is continuous since all the jumps are in one direction in its domain. Since
the supremum functional f2 : ξ �→ sup0≤s≤γ ξ(s) is continuous in the range of f1—
see Lemma (B.2)— f2 ◦ f1 is a continuous map as well. The functional f3 : ξ �→ ξ(γ )

is also continuous w.r.t. the M ′
1 topology on D[0, γ ] due to Lemma B.2. Therefore,

the continuous map f :∏d
i=1 D

↑[0, γ ] → R, where

f (ξ1, . . . , ξd) � γ

EA
−

d∑

i=1

f3(ξi ) + f2 ◦ f1(ξ1, . . . , ξd),

is continuous and, hence, we can apply the contraction principle with f to establish the

LDP for f (N̄ (1)
n , . . . , N̄ (d)

n ) = γ
EA−∑d

i=1 N̄
(i)
n (γ )+sup0≤s≤γ

(∑d
i=1 N̄

(i)
n (s)− s

EA

)
.

The LDP is controlled by the good rate function

I ′′(x) � inf

{
I ′(ξ1, . . . , ξd) : γ

EA
−

d∑

i=1

ξi (γ ) + sup
0≤s≤γ

( d∑

i=1

ξi (s) − s

EA

)
= x

}
.

Note that since I ′(ξ) = ∞ for ξ /∈ Č
1[0, γ ], and ξ(·) ∈ Č

1[0, γ ] if and only if
ξ(γ ) − ξ(γ − ·) ∈ Č

1[0, γ ],

123



214 Queueing Systems (2019) 93:195–226

I ′′(x) = inf

{
I ′(ξ1, . . . , ξd) : γ

EA
−

d∑

i=1

ξi (γ )

+ sup
0≤s≤γ

( d∑

i=1

ξi (s) − s

EA

)
= x, ξi ∈ Č

1[0, γ ]
}

= inf

{
I ′(ξ1, . . . , ξd) : sup

0≤s≤γ

{γ − s

EA

−
d∑

i=1

(
ξi (γ ) − ξi (s)

)} = x, ξi ∈ Č
1[0, γ ]

}

= inf

{
I ′(ξ1, . . . , ξd) : sup

0≤s≤γ

{ s

EA

−
d∑

i=1

(
ξi (γ ) − ξi (γ − s)

)} = x, ξi ∈ Č
1[0, γ ]

}

= inf

{
I ′(ξ1, . . . , ξd) : sup

0≤s≤γ

{ s

EA

−
d∑

i=1

(
ξi (s)

)} = x, ξi ∈ Č
1[0, γ ]

}
.

Therefore,

lim sup
n→∞

logP(Q(γ n) > n)

L(n)nα
≤ lim sup

n→∞
logP

(
f (N̄ (1)

n , . . . N̄ (d)
n ) ≥ 1 − 2ε

)

L(n)nα

≤ − inf
x∈[1−2ε,∞)

I ′′(x)

= − inf

⎧
⎨

⎩

d∑

i=1

∑

s∈[0,γ ]
τs(ξi )

α : sup
0≤s≤γ

( s

EA
−

d∑

i=1

ξi (s)
)
≥1 − 2ε, ξi ∈ Č

1[0, γ ]
⎫
⎬

⎭ .

Taking ε → 0, we see that −c∗ is the upper bound for the left-hand side.
We move on to the matching lower bound in the case γ > 1/λ. Considering the

obvious coupling between Q and (M, N (1), · · · , N (d)), one can see that M(s) −∑d
i=1 N

(i)(s) can be interpreted as (a lower bound of) the length of an imaginary
queue at time s where the servers can start working on the jobs that have not arrived
yet. Therefore, P(Q((a+ s)n) > n) ≥ P(Q((a+ s)n) > n|Q(a) = 0) ≥ P(M̄n(s)−∑d

i=1 N̄
(i)
n (s) > 1) for any a ≥ 0. Let s∗ be the level crossing time of the optimal

solution of (4.12). Then, for any ε > 0,
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P(Q(γ n) > n) ≥ P
(
M̄n(s

∗) −
d∑

i=1

N̄ (i)
n (s∗) > 1

)

≥ P
(
M̄n(s

∗) − s∗/EA > −ε and s∗/EA −
d∑

i=1

N̄ (i)
n (s∗) > 1 + ε

)

≥ P
(
s∗/EA −

d∑

i=1

N̄ (i)
n (s∗) > 1 + ε

)
− P

(
M̄n(s

∗) − s∗/EA ≤ −ε
)
.

(4.13)
Due to Proposition 4.3,

lim sup
n→∞

1

L(n)nα
logP(M̄n(s

∗) − s∗/EA ≤ −ε) = −∞,

and hence, due to (4.13), it is straightforward to deduce that

lim inf
n→∞

logP(Q(γ n) > n)

L(n)nα
≥ lim inf

n→∞
logP(s∗/EA −∑d

i=1 N̄
(i)
n (s∗) > 1 + ε)

L(n)nα

≥ − inf
(ξ1,...,ξd )∈A◦ I

′(ξ1, . . . , ξd),

where A = {(ξ1, . . . , ξd) : s∗/EA −∑d
i=1 ξi (s∗) > 1 + ε}. Note that the optimizer

(ξ∗
1 , . . . , ξ∗

d ) of (4.12) satisfies s∗/EA − ∑d
i=1 ξ∗

i (s∗) ≥ 1. Consider (ξ ′
1, . . . , ξ

′
d)

obtained by increasing one of the job sizes of (ξ∗
1 , . . . , ξ∗

d ) by δ > 0. One can always
find a small enough such δ since γ > 1/λ. Note that there exists ε > 0 such that
s′/EA −∑d

i=1 ξ ′(s′) > 1 + ε. Therefore,

lim inf
n→∞

logP(Q(γ n) > n)

L(n)nα
≥ −I ′(ξ ′

1, . . . , ξ
′
d) ≥ −c∗ − δα,

where the second inequality is from the subadditivity of x �→ xα . Since δ can be
chosen arbitrarily small, letting δ → 0, we arrive at the matching lower bound. ��

4.3 Explicit solution of the variational problem associated with the queue length

We now simplify the expression of c∗ given in Proposition 4.4.

Proposition 4.5 If γ < 1/λ, c∗ = ∞. If γ ≥ 1/λ, c∗ can be computed via

min
x1,...,xd

d∑

i=1

xα
i

subject to sup
s∈[0,γ ]

{
λs −

d∑

i=1

(s − xi )
+
}

≥ 1,
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x1, . . . , xd ≥ 0, (4.14)

which in turn equals

min

{
inf

0<k≤	λ
:γ<1/(λ−k)

{
(d − k) γ α + (1 − γ λ + γ k)α (k − 	λ − 1/γ 
)1−α

}
,

	λ−1/γ 

min
l=0

{
(d − l)

(
1

λ − l

)α}}
. (4.15)

Proof Recall that D1[0, γ ] is the subspace of the Skorokhod space and consists of
non-decreasing piecewise linear functions with slope 1 almost everywhere over the
time horizon [0, γ ] and nonnegative values at the origin. Recall ϕ1(·) defined in (2.5)
as well. From these definitions, it is easy to see that Proposition 4.4 implies that the
constant c∗ is equal to

inf
ζ1,...,ζd

d∑

i=1

∑

s∈[0,γ ]
τs (ζi )

α

subject to sup
0≤s≤γ

(
λs −

d∑

i=1

ζi (s)
)

≥ 1,

ζi = ϕ1 (ξi ) , ξi ∈ D
1[0, γ ] for i = 1, . . . , d. (4.16)

Note that this is an infinite-dimensional (functional) optimization problem.We reduce
this optimization problem to a more standard problem in two main steps:

1. We first show that it suffices to optimize over ξi of the form ξi (t) = t + x0 for
some x0 ≥ 0.

2. Next, we reduce the infinite-dimensional problem over the previously mentioned
set into a finite-dimensional optimization problem where the aim is to minimize a
concave function over a compact polyhedral set. This allows us to invoke Corol-
lary 32.3.1 of [20], which enables us to calculate the optimal solution by finding
the extreme points of the feasible region.

Step 1 Suppose that (ζ1, . . . , ζd) is an optimal solution associated with (4.16) and
recall that ζi = ϕ1(ξi ). We now claim that the corresponding functions ξ1, . . . , ξd
have at most one jump. We prove this by contradiction. Assume that at least one of
the ξi exhibits two jumps at times u0 and u1 of size x0 and x1, respectively, with
0 ≤ u0 < u1 ≤ γ . Let

ξ̄i (·) = ξi (·) − x1I[u1,γ ] (·) + x1I[u0,γ ] (·) .

Intuitively, we constructed a new path, ξ̄i (·) by merging the two jumps into a big jump
at time u0. Since x0, x1 are nonnegative, then we have that
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t

ξ

0 u0 u1

x0

x1

t

ξ̄

0 u0

x0 + x1

Fig. 2 The two figures above depict the graphs of two jump functions, ξ and ξ̄ . By merging the two jumps
of ξ into one big jump, at time u0, the resulting step function ξ̄ is bigger than or equal to ξ

ξ̄i (t) ≥ ξi (t) , ∀t > 0.

Figure 2 illustrates this.
Now, let ζ̄i = ϕ1

(
ξ̄i
)
. From the definition of ϕ1, we obviously have that

ζ̄i (s) ≤ ζi (s) for s ∈ [0, γ ]. (4.17)

Therefore, due to (4.17), (ζ1, . . . , ζi−1, ζ̄i , ζi+1, . . . , ζd) is also a feasible solution for
(4.16). Moreover, by the following observation:

∑

s∈[0,γ ]
τs
(
ζ̄i
)α =

∑

s∈[0,γ ]
τs (ζi )

α + (x0 + x1)
α − xα

0 − xα
1 ,

along with the fact that (x0 + x1)α < xα
0 + xα

1 ,we deduce that (ζ1, . . . , ζi−1, ζ̄i , ζi+1,

. . . , ζd) strictly improves the value of the objective function in (4.16). That is,
(ζ1, . . . , ζd) cannot be an optimal solution. The argument can be iterated when ξi
exhibits more than two jumps.

In conclusion, we proceed assuming that every ξi (·) has a single jump of size xi > 0
at some time ui ∈ [0, γ ], and hence we can use the following representation (Fig. 3):

ζi (s) = min (s, ui ) + (s − xi − ui )
+ , for i = 1, . . . , d. (4.18)

To complete the first step of our construction, we show that, without loss of gen-
erality, jumps can be assumed to occur at time 0. Suppose that ui > 0 for some
i ∈ {1, . . . , d}. Define

ξ ′
i (s) = ξi (s) − xi I[ui ,γ ] (s) + xi I[0,γ ] (s) .

We constructed a new path ξ ′ by moving a jump time to 0. Again, it is easy to verify
that ξ ′(s) ≥ ξ(s) for all s ∈ [0, γ ], and if we let ζ ′

i = ϕ1
(
ξ ′
i

)
, then ζ ′

i (s) ≤ ζi (s) for
all s ∈ [0, γ ]. Consequently, we preserve feasibilitywithout increasing the value of the
objective function in (4.16). Therefore, w.l.o.g. we can assume that ξi that correspond
to the optimal solution of (4.16) are those paths that have at most one discontinuity at
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t

ξi

0 γ

γ

xi

ui

ui

ui + xi

t

ζi

0 ui

ui

ui + xi γ

γ

Fig. 3 The pictures above depict the graph of a function ξi in D
1[0, γ ] and the graph of the function

ζi = ϕ1(ξi ). The function ξi has one jump of size xi and this translates to a flat line under the transformation
ϕ1. In conclusion, we infer that ζi has the representation ζi (s) = min (s, ui ) + (s − xi − ui )

+

time zero and then they linearly increase with slope 1. That is, the solution (ζ1, . . . , ζd)

takes the following form: for each i = 1, . . . , d,

ζi (s) = (s − xi )
+ for some xi ≥ 0. (4.19)

Step 2 Thanks to the reduction in (4.19), we see that for each i = 1, . . . , d we have
that τ0(ζi ) = xi , while τs(ζi ) = 0 for every s > 0. Thus, we see that (4.12) takes the
form

min
x1,...,xd

d∑

i=1

xα
i

subject to sup
s∈[0,γ ]

{
λs −

d∑

i=1

(s − xi )
+
}

≥ 1,

x1, . . . , xd ∈ [0, γ ]. (4.20)

We continue simplifying the optimization problem in (4.20), reducing it to a poly-
hedral optimization problem. Let x = (x1, . . . , xd) be an optimal solution so that
its coordinates are sorted in increasing order: 0 ≤ x1 ≤ · · · ≤ xd ≤ γ . Note that
the supremum of l(s; x) � λs −∑d

i=1(s − xi )+ over s ∈ [0, γ ] cannot be obtained
strictly before xd , since in such a case, a sufficiently small perturbation of xd to its
left leads to a strictly smaller value of the objective function without changing the
supremum of l(s; x), which is a contradiction to the assumption that x is an optimal
solution. On the other hand, from the stability assumption λ < d, the slope of l(s; x) is
negative after xd , and hence its supremum cannot be obtained strictly after xd . There-
fore, the supremum of l(s; x) has to be attained at s = xd . Now, set a1 = x1 and
ai = xi − xi−1 for i = 2, . . . , d. Then, xi = a1 + . . . + ai for i = 1, . . . , d, and
l(xd; x) = λ (a1 + · · · + ad) −∑d

i=1(a1 + · · · + ad −∑i
j=1 a j ), and hence (4.20) is

equivalent to
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min
a1,...,ad

d∑

i=1

⎛

⎝
i∑

j=1

a j

⎞

⎠
α

subject to λ (a1 + · · · + ad) −
d∑

i=1

(a1 + · · · + ad −
i∑

j=1

a j ) ≥ 1,

a1 + · · · + ad ≤ γ , a1, . . . , ad ≥ 0,

and by simplifying the constraints we arrive at

min
a1,...,ad

d∑

i=1

⎛

⎝
i∑

j=1

a j

⎞

⎠
α

subject to λa1 + (λ − 1) a2 + · · · + (λ − d + 1) ad ≥ 1,

a1 + · · · + ad ≤ γ , a1, . . . , ad ≥ 0.

Recall 0 < λ < d, and let m be any of the integers in the set {1, . . . , d − 1}. If
(λ − m) < 0, we deduce that am+1 = 0. If this was not the case, we could construct a
feasible solutionwhich reduces the value of the objective function and also satisfies the
previously mentioned conditions. That is, the variational problem has an even simpler
representation than the one above:

min
a1,...,ad

	λ
∑

i=1

⎛

⎝
i∑

j=1

a j

⎞

⎠
α

+ (d − 	λ
)
⎛

⎝
	λ
+1∑

j=1

a j

⎞

⎠
α

(4.21)

subject to λa1 + (λ − 1) a2 + · · · + (λ − 	λ
) a	λ
+1 = 1, (4.22)

a1 + · · · + a	λ
+1 ≤ γ , (4.23)

a1, . . . , a	λ
+1 ≥ 0 . (4.24)

Recall that c∗ = ∞ if γ < 1/λ. Assuming γ > 1/λ, we recover the optimal
solution by evaluating the extreme points associated with the polyhedron described by
the constraints (4.22), (4.23), and (4.24). The objective function in (4.21) is concave
and lower bounded inside the feasible region. In addition, the feasible region is a
compact polyhedron. Therefore, the optimizer is achieved at some extreme point in
the feasible region (see Corollary 32.3.1 [20]).

Dependingon thevalueofγ ,we indicate how to compute the basic feasible solutions
related to (4.21). Firstly, we treat the case γ > 1/(λ − 	λ
), where λ is not an integer.
After that, we treat the general case γ > 1/λ. Given that λ > 	λ
, observe that if
γ ≥ 1/(λ−	λ
), then any solution satisfying (4.22) and (4.24) automatically satisfies
(4.23). That is, we can ignore the constraint (4.23) by assuming that γ ≥ 1/(λ−	λ
).
Consequently, we only need to characterize the extreme points of (4.22), (4.24). Let
ǎi = 1/(λ− i + 1) for i = 1, . . . , 	λ
+ 1. Let x̌i denote the vector of the i th extreme
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point. That is, x̌i = (0, . . . , ǎi , . . . , 0). Calculating the value of the objective function
over all extreme points, assuming that γ ≥ 1/ (λ − 	λ
), we get

min
{
dǎα

1 , (d − 1) ǎα
2 , . . . , (d − 	λ
) ǎα	λ
+1

}
= 	λ
+1

min
i=1

{
(d − i + 1)

(
1

λ − i + 1

)α}
.

(4.25)

Next, we consider the general case γ > 1/λ. We show that additional extreme
points arise by considering the inclusion of (4.23) and this might potentially give rise
to solutions in which large service requirements are not equal across all the servers.
Note that if λ = 	λ
, we must have that a	λ
+1 = 0. To see this, suppose that is not
the case. Then, a feasible solution would be of the form v = (a1, . . . , ai , . . . , a	λ
+1).
By setting a	λ
+1 = 0, we construct another solution, v′ = (a1, . . . , ai , . . . , a	λ
, 0).
Observe that v′ is a feasible solution and it reduces the value of the objective function
(4.21) in comparison with v. Our subsequent analysis also includes the case λ = 	λ
.

We identify the extreme points of (4.22), (4.23), (4.24). For that, we introduce the
slack variable a0 ≥ 0.

λa1 + (λ − 1) a2 + · · · + (λ − 	λ
) a	λ
+1 = 1 , (4.26)

a0 + a1 + · · · + a	λ
+1 = γ , (4.27)

a0, a1, . . . , a	λ
+1 ≥ 0 . (4.28)

From elementary results in polyhedral combinatorics, we know that extreme points
correspond to basic feasible solutions. By choosing ai+1 = 1/(λ − i) and a0 =
γ −ai+1, we recover basic solutions which correspond to the extreme points identified
by the equations above. Recall if λ = 	λ
 we must have that a	λ
+1 = 0. That is,
we can safely assume that λ − i > 0. We observe that γ ≥ 1/(λ − i) implies that
ai+1 = 1/(λ − i) and a j = 0 for j �= i + 1 which is a basic feasible solution for
(4.26). Additional basic solutions are obtained by solving

1 = (λ − k) ak+1 + (λ − l) al+1,

γ = ak+1 + al+1.

Suppose that 0 ≤ l < k < λ. This system of equations always has a unique solution
because the equations are linearly independent, and hence

λγ − 1 = kak+1 + lal+1.

Therefore, the solution (āk+1, āl+1) is given by

(k − l) āk+1 = (λ − l) γ − 1,

(k − l) āl+1 = 1 − γ (λ − k) .

If we want (āk+1, āl+1) to be both basic and feasible, we must have that 1/ (λ − l) ≤
γ ≤ 1/ (λ − k). Now,we calculate the value of the objective function for ak+1 = āk+1,
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al+1 = āl+1 , and ai+1 = 0 for i /∈ {k, l}. That is,
	λ
∑

i=1

⎛

⎝
i∑

j=1

a j

⎞

⎠
α

+ (d − 	λ
)
⎛

⎝
	λ
+1∑

j=1

a j

⎞

⎠
α

= āα
l+1 (k − l) + (	λ
 − k) (āk+1 + āl+1)

α + (d − 	λ
) (āk+1 + āl+1)
α

= āα
l+1 (k − l) + (d − k) (āk+1 + āl+1)

α . (4.29)

Recall 1/ (λ − l) ≤ γ ≤ 1/ (λ − k). As we mentioned before, if γ = 1/ (λ − k),
then we have that ak+1 = 1/ (λ − k) and ai = 0 for i �= k + 1 which is a feasible
extreme point. Furthermore, we see that under this particular solution the objective
function has a smaller value than the solution involving āk+1 and āl+1. To illustrate
this, observe that

āα
l+1 (k − l) + (d − k) (āk+1 + āl+1)

α > (d − k) aα
k+1.

Therefore, (āk+1 and āl+1) would be an optimal solution under the condition
1/ (λ − l) ≤ γ < 1/ (λ − k). Due to (4.25) and (4.29), we conclude that the optimal
value of the variational problem (4.16) is given by

min

{
min

0<k≤	λ
; γ<1/(λ−k)

{
(d − k) γ α + (1 − γ (λ − k))α min

0≤l<	λ
; 1/(λ−l)≤γ

(
1

k − l

)α

(k − l)

}
,

	λ
∧	λ−1/γ 

min
l=0

{
(d − l)

(
1

λ − l

)α}}
.

By simplifying the expression above, we arrive at (4.15). ��
List of symbols

D[0, T ] The Skorokhod space–space of càdlàg functions—over the domain
[0, T ]

D↑[0, T ] The subspace of D[0, T ] consisting of non-decreasing functions that
assume nonnegative values at the origin

D
↑
p[0, T ] The subspace of D[0, T ] consisting of non-decreasing pure jump func-

tions that assume nonnegative values at the origin
Dμ[0, T ] The subspace of D[0, T ] consisting of non-decreasing piecewise linear

functions with slopeμ almost everywhere and nonnegative values at the
origin.

Čμ[0, T ] The subspace of D[0, T ] consisting of continuous functions which are
piecewise linear with slope 0 or 1/μ

TM ′
1

The M ′
1 topology

dM ′
1

The M ′
1 metric

Q(t) The queue length at time t
d The number of servers of the multiple-server queue
λ The arrival rate associated with the multiple-server queue
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A: Some large-deviations theory results

In this appendix, we include some important results and concepts widely used in
the field of large deviations as well as in this paper. We have already mentioned the
conditions under which a stochastic process Y satisfies a large-deviations principle.
Let f be a map between two topological spaces. The following result, Theorem 4.2.1
in [17], formulates the conditions so that the transformation f (Y ) satisfies an LDP
also.

Result A.1 (Contraction principle) Let X and Y be Hausdorff topological spaces and
f : X → Y a continuous function. Consider a good rate function I : X → [0,∞].
(a) For each y ∈ Y , define

I ′(y) � inf{I (x) : x ∈ X , y = f (x)}.

Then, I ′ is a good rate function on Y , where as usual the infimum over the empty
set is taken as ∞.

(b) If I controls the LDP associated with a family of probability measures με on X ,
then I ′ controls the LDP for the family of probability measures {με ◦ f −1} on Y .

Remark 1 The theorem above holds under the weaker condition that f is continuous
over the effective domain of the rate function I—i.e., on {x ∈ X : I (x) < ∞}. This
particular extension of the contraction principle is called the extended contraction
principle (p.367 of [15]; Theorem 2.1 of [6]).

Now, we review the notion of exponential equivalence. We start with the definition.

Definition A.1 Let (Y, d) be a metric space. The probability measures {με} and {μ̃ε}
are called exponentially equivalent if there exist probability measures {(Ω,Bε, Pε)}
and two families of Y-valued random variables {Zε} and {Z̃ε} with joint laws Pε and
marginals {με} and {μ̃ε}, respectively, such that the following condition is satisfied:
For each δ > 0, the set {ω : d(Z̃ε, Zε) > δ} is Bε measurable, and

lim sup
ε→0

ε logP
(
d(Z̃ε, Zε) > δ

) = −∞.

Intuitively, two random variables are exponentially equivalent if their distance is
asymptotically negligible.
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B: Continuity of some useful functionals in theM′
1 topology

In the next proposition, we prove that the map Φμ is sufficiently continuous for
the application of extended contraction principle. Define DΦμ � {ξ ∈ D[0, γ /μ] :
Φμ(ξ)(γ ) − Φμ(ξ)(γ−) > 0 and ξ(0) ≥ 0}.
Proposition B.1 For each μ ∈ R, Φμ : D[0, γ /μ] → D[0, γ ] is continuous on Dc

Φμ

w.r.t. the M ′
1 topology.

Proof Note that Φμ = Φμ ◦ Ψ and Ψ is continuous, so we only need to check
the continuity of Φμ over the range of Ψ , in particular non-decreasing functions.
Let ξ be a non-decreasing function in D[0, γ /μ]. We consider two cases separately:
Φμ(ξ)(γ ) > γ/μ and Φμ(ξ)(γ ) ≤ γ /μ.

We start with the case Φμ(ξ)(γ ) > γ/μ. Pick ε > 0 such that Φμ(ξ)(γ ) >

γ/μ + 2ε and ξ(γ /μ) + 2ε < γ . For such an ε, it is straightforward to check
that dM ′

1
(ζ, ξ) < ε implies Φμ(ζ )(γ ) > γ/μ and ζ never exceeds γ on [0, γ /μ].

Therefore, the parametrizations ofΦμ(ξ) andΦμ(ζ ) consist of the parametrizations—
with the roles of space and time interchanged—of the original ξ and ζ concatenated
with the linear part coming from ψμ. More specifically, suppose that (x, t) ∈ Γ (ξ)

and (y, r) ∈ Γ (ζ ) are parametrizations of ξ and ζ . Since ξ is non-decreasing, if we
define on s ∈ [0, T ]

x ′(s) �
{
t(2s) if s ≤ T /2
1
μ

(
t ′(s) − Ψ (ξ)(γ /μ) + γ

)
if s > T /2

,

t ′(s) �
{
x(2s) if s ≤ T /2(
γ − Ψ (ξ)(γ /μ)

)
(2s/T − 1) + Ψ (ξ)(γ /μ) if s > T /2

,

y′(s) �
{
r(2s) if s ≤ T /2
1
μ

(
r ′(s) − Ψ (ζ )(γ /μ) + γ

)
if s > T /2

,

r ′(s) �
{
y(2s) if s ≤ 1/2(
γ − Ψ (ζ )(γ /μ)

)
(2s/T − 1) + Ψ (ζ )(γ /μ) if s > 1/2

,

then (x ′, t ′) ∈ Γ (Φμ(ξ)), (y′, r ′) ∈ Γ (Φμ(ζ )). Noting that

‖x ′ − y′‖∞ + ‖t ′ − r ′‖∞
= sup

s∈[0,1/2]
|t(2s) − r(2s)| ∨ sup

s∈(1/2,1]
|x ′(s) − y′(s)|

+ sup
s∈[0,1/2]

|x(2s) − y(2s)| ∨ sup
s∈(1/2,1]

|t ′(s) − r ′(s)|

= ‖t − r‖∞ ∨ μ−1|Ψ (ζ )(γ ) − Ψ (ξ)(γ )|
+ ‖x − y‖∞ ∨ |Ψ (ζ )(γ ) − Ψ (ξ)(γ )|

≤ μ−1‖t − r‖∞ ∨ ‖x − y‖∞ + ‖x − y‖∞
≤ (1 + μ−1)(‖x − y‖∞ + ‖t − r‖∞),
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and taking the infimum over all possible parametrizations, we conclude that
dM ′

1
(Φμ(ξ),Φμ(ζ )) ≤ (1 + μ−1)dM ′

1
(ξ, ζ ) ≤ (1 + μ−1)ε, and hence Φμ is con-

tinuous at ξ .
Turning to the case Φμ(ξ)(γ ) ≤ γ /μ, let ε > 0 be given. Due to the assumption

that Φμ(ξ) is continuous at γ , there has to be a δ > 0 such that ϕμ(ξ)(γ ) + ε <

ϕμ(ξ)(γ − δ) ≤ ϕμ(ξ)(γ + δ) ≤ ϕμ(ξ)(γ ) + ε. We prove that if dM ′
1
(ξ, ζ ) < δ ∧ ε,

then dM ′
1
(Φμ(ξ),Φμ(ζ )) ≤ 8ε. Since the case where Φμ(ζ )(γ ) ≥ γ /μ is similar to

the above argument,we focus on the caseΦμ(ζ )(γ ) < γ/μ; that is, ζ also crosses level
γ beforeγ /μ. Let (x, t) ∈ Γ (ξ) and (y, r) ∈ Γ (ζ )be such that‖x−y‖∞+‖t−r‖∞ <

δ. Let sx � inf{s ≥ 0 : x(s) > γ } and sy � inf{s ≥ 0 : y(s) > γ }. Then, it
is straightforward to check t(sx ) = ϕμ(ξ)(γ ) and r(sy) = ϕμ(ζ )(γ ). Of course,
x(sx ) = γ and y(sy) = γ . If we set x ′(s) � t(s ∧ sx ), t ′(s) � x(s ∧ sx ), and
y′(s) � r(s ∧ sy), r ′(s) � y(s ∧ sy), then

‖x ′ − y′‖∞ ≤ ‖t − r‖∞ + sup
s∈[sx∧sy ,sx∨sy ]

{|t(sx ) − r(s)| ∨ |t(s) − r(sy)|
}

≤ ‖t − r‖∞
+ sup

s∈[sx∧sy ,sx∨sy ]
{(|t(sx ) − t(s)| + |t(s) − r(s)|) ∨ (|t(s) − t(sy)|

+ |t(sy) − r(sy)|
)}

≤ ‖t − r‖∞
+ (|t(sx ) − t(sy)| + ‖t − r‖∞

) ∨ (|t(sy) − t(sx )| + ‖t − r‖∞
)

≤ 2‖t − r‖∞ + 2|t(sx ) − t(sy)|.

Now we argue that t(sx ) − ε ≤ t(sy) ≤ t(sx ) + ε. To see this, note first that x(sy) <

x(sx ) + δ = γ + δ, and hence,

t(sy) ≤ ϕμ(ξ)(x(sy)) ≤ ϕμ(ξ)(γ + δ) ≤ ϕμ(ξ)(γ ) + ε = t(sx ) + ε.

On the other hand,

t(sx ) − ε = ϕμ(ξ)(γ ) − ε ≤ ϕμ(γ − δ) ≤ t(sy),

where the last inequality is from ξ(t(sy)) ≥ x(sy) > x(sx ) − δ = γ − δ and the
definition of ϕμ. Therefore, ‖x ′ − y′‖∞ ≤ 2δ + 2ε < 4ε. Now we are left with
showing that ‖t ′ − r ′‖∞ can be bounded in terms of ε.

‖t ′ − r ′‖∞ ≤ ‖x − y‖∞ + sup
s∈[sx∧sy ,sx∨sy ]

{|x(sx ) − y(s)| ∨ |x(s) − y(sy)|}

≤ ‖x − y‖∞ + sup
s∈[sx∧sy ,sx∨sy ]

{(|x(sx ) − x(s)|

+ |x(s) − y(s)|) ∨ (|x(s) − x(sy)| + |x(sy) − y(sy)|
)}

≤ ‖x − y‖∞
+ (|t(sx ) − t(sy)| + ‖x − y‖∞

) ∨ (|x(sx ) − x(sy)| + ‖x − y‖∞
)
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≤ 2‖x − y‖∞ + 2|x(sx ) − x(sy)|
= 2‖x − y‖∞ + 2|y(sy) − x(sy)| ≤ 4‖x − y‖∞ < 4ε.

Therefore, dM ′
1

(
Φμ(ξ),Φμ(ζ )

) ≤ ‖x ′ − y′‖∞ + ‖t ′ − r ′‖∞ < 8ε. ��

Lemma B.1 The map ϒμ : D[0, γ /μ] → D[0, γ /μ], where ϒμ(ξ) � ξ + ζμ, is
continuous w.r.t. the M ′

1 topology on D[0, γ /μ].
Proof Suppose that ξn → ξ in D[0, γ /μ] w.r.t. the M ′

1 topology. As a result, there
exist parametrizations (un(s), tn(s)) of ξn and (u(s), t(s)) of ξ such that

sup
s≤γ /μ

{|un(s) − u(s)| + |tn(s) − t(s)|} → 0 as n → ∞.

This implies that max{sups≤γ /μ |un(s)−u(s)|, sups≤γ /μ |tn(s)− t(s)|} → 0 as n →
∞. Observe that if (u(s), t(s)) is a parametrization for ξ , then (u(s) + μ · t(s), t(s))
is a parametrization for ϒμ(ξ). Consequently,

sup
s≤γ /μ

{|un(s) + μ · tn(s) − u(s) − μ · t(s)| + |tn(s) − t(s)|}

≤ sup
s≤γ /μ

{|un(s) − u(s)|} + sup
s≤γ /μ

{(μ + 1)|tn(s) − t(s)|} → 0.

Thus, ϒμ(ξn) → ϒμ(ξ) in the M ′
1 topology, proving that the map is continuous. ��

The next lemma provides the continuity of two functionals used in our large-
deviation analysis.

Lemma B.2 For any T > 0,

(i) The functional E : D[0, T ] → R, where E(ξ) = ξ(T ), is continuous w.r.t. the
M ′

1 topology on D[0, T ].
(ii) The functional S : D[0, T ] → R, where S(ξ) = supt∈[0,T ] ξ(t), is continuous

w.r.t. the M ′
1 topology on ξ ∈ D[0, T ] such that ξ(0) ≥ 0.

Proof Consider a sequence ξn such that dM ′
1
(ξn, ξ) → 0. From (2.3), there exists

a parametrization (u(s), t(s)) of the completed graph of ξ and a parametrization
(un(s), tn(s)) of the completed graph of ξn such that

sup
s∈[0,T ]

{|un(s) − u(s)| + |tn(s) − t(s)|} → 0, as n → ∞. (B. 1)

For i), note that |un(T )−u(T )| ≤ sups∈[0,T ] |un(s)−u(s)| → 0,while ξn(T ) = un(T )

and ξ(T ) = u(T ). Therefore, |E(ξ) − E(ξn)| = |ξn(T ) − ξ(T )| → 0 as n → ∞.
Therefore, E is a continuous functional. For ii), suppose that ξ(0) ≥ 0. For any
ε > 0, there exists N such that ξn(0) ≥ −ε for n > N . Now, from the defini-
tion of parametrization and the nonnegativity of ξ(0), we see that sups∈[0,T ] u(s) =
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sups∈[0,T ] ξ(s). Similarly, we can show that | sups∈[0,T ] un(s)− sups∈[0,T ] ξn(s)| < ε.
Therefore,

lim sup
n→∞

∣∣∣ sup
s∈[0,T ]

ξn(s) − sup
s∈[0,T ]

ξ(s)
∣∣∣

≤ lim sup
n→∞

∣∣∣ sup
s∈[0,T ]

un(s)− sup
s∈[0,T ]

u(s)
∣∣∣+ ε ≤ lim sup

n→∞
sup

s∈[0,T ]

∣∣∣un(s) − u(s)
∣∣∣+ε = ε.

Since ε was arbitrary, this proves the continuity of S at ξ .
��
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