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A series of separable designs with application to pairwise orthogonal Latin 
*) 

squares 

by 

A. E • BrouweJ::-

ABSTRACT 

We obsE~rve that a partition of PG(2,q2 ) into Baer subplanes gives rise 

to certain separable pairwise balanced block designs (with A.= 1) which in 

turn can be used to get more mutually orthogonal Latin squares of certain 

orders than previously known. As a side result we find an embedding of 

STS(19) in PG(2,11), thus refuting a conjecture of M. Limbos. 

KEY WORDS & PHRASES: mutually orthogonal Latin squares, Baer subplane, 

difference set. 

This r,eport will be submitted for publication elsewhere. 
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It is well known that PG(2,q2) can be partitioned into Baer subplanes 

PG(2,q) (see e.g. ROOM & KIRKPATRICK [6]; for more general results see 
2 ,q2-q+1 

HIRSCHFELD [3]). Let P be the pointset of PG(2,q ), and let P = li=l Pi 

be such a partition. Let X = '~ 1 P .• li= 1 

Each line of PG(2,q2) intersects X in either tor t+q points (for: for 

each line l there is a unique i such that l intersects P. in q+1 points and 
1 

P. with j f i in one point), so that we have a pairwise balanced design with 
J 2 

v = t(q +q+1) points, blocksizes t and t+q and A= 1. Moreover, this design 

is separable in the sense of BOSE, SHRIKHANDE & PARKER [1]: the equiblock 
' 

component consisting of the blocks of size t+q is symmetric: there are exact-

ly v = t(q2+q+1) such blocks, while the equiblock component consisting of 
2 

the blocks of size tis resolvable into q -q+1-t parallel classes, each 

parallel class consisting of the lines intersecting P. (i=t+1, ••• ,q2-q+1) in 
1 

q+1 points. Thus we proved: 

2 THEOREM. Let q be the power of a prime, and O < t < q -q+1. Then there exists 

a pairwise balanced design B[{t,q+t}, 1; t(q2+q+1)] such that it is the 

union of a symmetric 1-(v,q+t,1) design and a resolvable 1-(v,t,1) design. 

As a corollary to (a slight improvement of) theorem 4 in BOSE, 

SHRIKHANDE & PARKER [1] we find the following lower bound for N(n), the 

maximum number of mutually orthogonal Latin squares of order n. 

2 2 
COROLLARY. Let q be a prime power, 0 ~ t ~ q -q+1, n = t(q +q+1)+x. 

Let do= N(x), d1 = N(t), d2 = N(t+1), d3 = N(t+q), d4 = N(t+q+1) (where 

N(O) = N(1) = +oo). 

Let 

and 

0 iff 2 
-q-t, e: 1 = X = q 

e:2 = 0 iff X = 1, 
2 

e:3 = 0 iff X = q , 

e:4 = 0 iff X = t+q+1. 



Then 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

if X = O then N(n) ~ min(d1 ,d3), 

if X = 

if X = 

t+q then N(n) ~ min(d1-e3 ,d3,d4-1), 
2 . . 

q -q+l-t then N(n) ~ min(d0 ,d2-e2 ,d3-1), 

if x = q 2+1 then N(n) ~ min(d0 ,d2-e4 ,d4-1), 

if O < x < q2-i+1-t then N(n) ~ min(d0 ,d1-e1 ,d2-e2 ,d3-1), 

if t+q < x < q +1 then N(n) ~ min(d0 ,d1-e3 ,d2-e4 ,d4-1). 

A few examples where this method produces better results than previously 

known: 

n q t X N(n)~ old lower bound 

189 4 9 0 8 7 

253 4 12 1 12 10 

357 5 11 16 9 7 

912+x 7 16 0,1,9,23,27 15,14,8,14,15 12,10,7,7,7 

1425 7 25 0 24 15 

1509 9 16 53 14 7 

1710 8 23 31 21 8 

2395 7 42 1 42 15 

2862 9 31 41 29 7 

2 

This last example is interesting because 2862 has been for a long time 

the largest n for which N(n) ~ 7 was unknown (see BROUWER [2], STINSON [7]). 

A recent theorem of Wojtas showed N(2862) ~ 7, but here we find N(2862Y 2: 29~ 

[I can prove now N(n) ~ 7 for n > 780.] Especially for somewhat larger n 

this method is successful; for instance with q = 9 and t = 31 we find 

thirteen improvements in the range 2862 ~ n ~ 2902. 

Using Singer difference sets we find a few other subsets X of a projec

tive plane such that the cardinality of the intersection of X with a line 
2 

takes only a few vaiues. Let v = q +q+l, q a prime power and D a difference 

set (mod v) for PG(2,q). Let u be a proper divisor of v. If PG(2,q) has 

points 0,1, ••• ,v-1 then let X have points O,m,2m, ••• ,v-m, where v = mu, so 

that lxl = u. Clearly X together with the intersections l n X of the lines 
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with X gives us a pairwise balanced design with u points and v blocks (pos

sibly of size 0 or 1); for each i, 0 ~ i < m we find u blocks of size 

k. = Ix n (D-i) I, so that no more than m distinct block sizes occur. 
l. 

As an example let us take q = 11, v = 133, u = 19, m = 7. A difference 

set is 

D = {0,1,3,12,20,34,38,81,88,94,104,109}. 

Looking at D -(mod 7) we find k0 = k 1 = kS = 1, k 2 = 0, k 3 = k4 = k6 = 3, so 

that we get a Steiner triple system STS(19) on X. 

(This result may be of independent interest; no STS{13) is embeddable in a 

projective plane (KELLY & NWAMKPA [4]), and of the 80 different STS(1S) only 

one (namely PG(3,2)) is embeddable (MONIQUE LIMBOS [SJ). In fact Limbos 

went so far as to conjecture that STS(v) is never embeddable in a projective 

plane unless it is a projective space PG(d,2) or an affine space AG(d,3). 

This system provides a counterexample.) 

Since for my application I want all k. to be (relatively large) prime 
l. 1 

powers it seems that my chances are best when m = 3, u = 3 v. (Now q = 1 

(mod 3) .) 

1 2 
PROPOSITION. Let q = 1 (mod 3) be a prime power. Let u = 3 (q +q+1). Then 

there exist.s a separable pairwise balanced design B[{k0 ,k1 ,k2},1; u], em

beddable in PG(2,q), and such that it is the union of three symmetric 

1-(u,k.,1) designs (i = 0,1,2). 
l. 

k0 ,k1 and k2 are the (unique) solution of 

= q+1 

q+u. 

When q is a square we have 

1 - ,..,. 
kO = 3 (q+1+2vq), 

k 1 = k2 = ½<q+~+v'q) 



where the sign is determined by the requirement k. E lN • 
l. 
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PROOF. Let 8(x) = ld xd be the Hall-polynomial of D. The fact that Dis a 
ED 

-1 v-1 v 
difference set is expressed by 8(x) • 8(x ) = q + (1+x+ ... +x ) (mod x -1). 

3 -1 2 3 
Reducing mod x -1 we find 8 (x) .8 (x ) = q + u(1+x+x ) (mod x -1). Writing 

8(x) = k 0 + k 1x + k 2x 2 (mod x 3-1) yields the equations for ki. (A solution 

is found by factoring q = 8(s) .8(s) in ~(s), wheres is a primitive cube 

root of unity.) D 

Interesting designs found in this way are for instance 

B[{3,4},1;19] (q 7, k0,k1 ,k2 = 1,3,4), 

B[{3,5},1;79] (q 23, m = 7, intersections 0,3,5) I 

B[{5,6},1;151] (q = 32, m = 7, intersections 0,5,6) I 

B[{4,7,9},1;127] (q = 19) I 

B[{9,13,16},1;469] (q = 3 7) . 

From the existence of this last design it follows that N(469) ~ 8. 

Note that when q is a square the set Xis a union of Baer subplanes 

iff ~(q-/q+1) is an integer. So for q = 16 we find !xi = 91, k 0 = 3, 

k 1 = k 2 = 7, not the union of PG(2,4) 's, but in PG(2,25) we have !xi = 217, 

k0 = 12; k 1 = k 2 = 7, the union of seven PG(2,5) 's. 
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