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A series of separable designs with application to pairwise orthogonal Latin

*)
squares

by

A.E. Brouwer

ABSTRACT

We observe that a partition of PG(2,q2) into Baer subplanes gives rise
to certain separable pairwise balanced block designs (with A = 1) which in

turn can be used to get more mutually orthogonal Latin squares of certain

orders than previously known. As a side result we find an embedding of

STS(19) in PG(2,11), thus refuting a conjecture of M. Limbos,
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It is well known that PG(2,q ) can be partitioned into Baer subplanes
PG(2,q) (see e.g. ROOM & KIRKPATRICK [6]; for more general results see
—q+1

P

HIRSCHFELD [3]). Let P be the pointset of PG(2,q°), and let P = Zq :

be such a partition. Let X = zt_l i

Each line of PG(2,q ) intersects X in either t or t+q points (for: for
each line £ there is a unique i such that £ intersects P, in g+l points and
PJ with j # i in one point), so that we have a pairwise balanced design w1th
v = t(q +g+1) points, blocksizes t and t+q and A = 1. Moreover, this design
is separable in the sense of BOSE, SHRIKHANDE & PARKER [1]: the equiblock
component conéisting of the blocks of size t+g is symmetric: there are exact-
ly v = t(q2+q+1) such blocks, while the equiblock component consisting of
the blocks of size t is resolvable into qz—q+1—t parallel classes, each
parallel class consisting of the lines intersecting Pi (i=t+1,...,q2—q+1) in

g+l points. Thus we proved:

THEOREM. Let q be the power of a prime, and 0 < t < qz—q+1. Then there exists
a pairwise balanced design B[{t,g+t}, 1; t(q2+q+1)] such that it is the

union of a symmetric 1-(v,q+t,1) design and a resolvable 1-(v,t,1) design.

As a corollary to (a slight improvement of) theorem 4 in BOSE,
SHRIKHANDE & PARKER [1] we find the following lower bound for N(n), the

maximum number of mutually orthogonal Latin squares of order n.

COROLLARY. Let q be a prime power, 0 < t < q2—q+1, n = t(q2+q+1)+x.

Let 4. = N(x), d, = N(t), d, = N(t+1), d, = N(t+q), d, = N(t+g+l) (where

0 1 2 3 4

N(O) = N(1) = +4»).
Let

81152163134 € {011}1
and

. 2

81 =0 iff x = q -g-t,

€. =0 iff x=1,

2 2

€3 = 0 iff x=q ,

84 =0 1iff x = t+qg+l.



Then

(i) if x = 0 then N(n) 2 min(d1,d3),
(id) If x = t+g thenAN(n) 2 min(d1—€3,d3,d4—1),

(iii) if x = q2—q+1—t then N(n) 2 min(do'd2_€2’d3-
(iv) 1if x = q2+1 then N(n) 2 min(do,d2-€4,d4—1),
(v) if 0 < x < q2—q+1—t then N(n) 2 min(do,d

D,

—El,d2—€2,d3—1),

1
d.-1).

. 2 .
(vi) if t+g < x < g +1 then N(n) 2 m1n(do,d1—63,d2—e4, 4

A few examples where this method produces better results than previously

known:

n q t X N(n) = old lower bound
189 4 9 0 8 7

253 4 12 1 12 10
357 5 11 16 9 7
9124x 7 16 0,1,9,23,27 15,14,8,14,15 12,10,7,7,7
1425 7 25 0 24 15
1509 9 16 53 14 7
1710 8 23 31 21 ‘ 8
2395 7 42 1 42 15
2862 9 31 41 29 7

This last example is interesting because 2862 has been for a long time
the largest n for which N(n) = 7 was unknown (see BROUWER [2], STINSON [7]).
A recent theorem of Wojtas showed N(2862) = 7, but here we find N(2862) 2'29!
[I can prove now N(n) 2 7 for n > 780.] Especially for somewhat larger n
this method is successful; for instance with g = 9 and t = 31 we find

thirteen improvements in the range 2862 < n < 2902.

Using Singer difference sets we find a few other subsets X of a projec-
tive plane such that the cardinality of the intersection of X with a line
takes only a few values. Let v = q2+q+1, q a prime power and D a difference
set (mod v) for PG(2,q). Let u be a proper divisor of v. If PG(2,q) has
points 0,1,...,v-1 then let X have points O,m,2m,...,v-m, where v = mu, so

that |X| = u. Clearly X together with the intersections £ n X of the lines



with X gives us a pairwise balanced design with u points and v blocks (pos-
sibly of size 0 or 1); for each i, 0 £ i < m we find u blocks of size

ki = |X n (D-i)|, so that no more than m distinct block sizes occur.

As an example let us take g = 11, v = 133, u =19, n

I

7. A difference

set is

p = {0,1,3,12,20,34,38,81,88,94,104,109}.

Looking at D ‘(mod 7) we find k0 = k1 = k5 =1, k2

that we get a Steiner triple system STS(19) on X.

= 0, k3 = k4 = k6 = 3, so
(This result may be of independent interest; no STS(13) is embeddable in a
projective plane (KELLY & NWAMKPA [4]), and of the 80 different STS(15) only
one (namely PG(3,2)) is embeddable (MONIQUE LIMBOS [5]). In fact Limbos
went so far as to conjecture that STS(v) is never embeddable in a projective
plane unless it is a projective space PG(d,2) or an affine space AG(4,3).

This system provides a counterexample.)

Since for my application I want all ki to be (relatively large) prime
powers it seems that my chances are best when m = 3, u = 1 V. (Now g = 1

3
(mod 3).)

, 1
PROPOSITION. Let g = 1 (mod 3) be a prime power. Let u §(q2+q+1). Then

there exists a separable pairwise balanced design B[{ko,k ,k2},1; ul, em-

1
beddable in PG(2,q), and such that it is the union of three symmetric

1—(u,ki,1) designs (i = 0,1,2).

k k

0¥y and k2 are the (unique) solution of

+ + +
kO k k2 g+l

1

2 2 2
ko + k] + k= qtu.

When q is a square we have

(g+1+2Yq) ,

¢

(q+1+/q)

o
N Wl

Wi+

1 2



where the sign is determined by the requirement ki € N.

xg be the Hall-polynomial of D. The fact that D is a
v-1

PROOF. Let 6(x) = ZdeD

difference set is expressed by 0(x) - e(x_l) =49 + (I+x+...4x ) (mod xv—l).
Reducing mod x3—1 we find e(x).e(x_l) =g+ u(1+x+x2) (mod x3—1). Writing
f(x) = ko + k1x + k2x2 (mod x3—1) yields the equations for ki' (A solution
is found by factoring g = 6(z).6(z) in Q(r), where r is a primitive cube

root of unity.) [

Interesting designs found in this way are for instance

B[{3,4},1;19] (g =‘7, ko,kl,k2 =1,3,4),
B[{3,5},1;79] (g =23, m= 7, intersections 0,3,5),
BL{5,6},1;151] (g =32, m = 7, intersections 0,5,6),
B[{4,7,9},1;127] = (g = 19),

B[{9,13,16},1;469] (g = 37).

From the existence of this last design it follows that N(469) = 8.

Note that when g is a square the set X is a union of Baer subplanes
1
iff §(q—/q+1) is an integer. So for q = 16 we find |X| = 91, kg =3, -
k1 = k2 = 7, not the union of PG(2,4)'s, but in PG(2,25) we have |X| = 217,

ko =12, k1 = k2 = 7, the union of seven PG(2,5)'s.
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