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1

Introduction

Over the past few years, the use of sensors has been growing at an unprece-
dented rate, and sensors play an increasingly large role in our daily lives.
Smartphones, for example, contain a wide variety of sensors. The documenta-
tion of Android's api [10] reveals support for sensors measuring acceleration,
temperature, relative humidity, air pressure, degrees of rotation, the geomag-
netic �eld, gravity, illumination, and proximity. Apps use these sensors to,
e.g., detect shaking (shu�e songs), determine rotation of the screen (prevent
recording vertical video), measure a user's level of activity (in a �tness app),
and recognize proximity to an ear (switch o� the touchscreen during a call).

Another interesting application of sensors is in modern washing machines, in
which sensors monitor several aspects of the washing cycle, including water
hardness, the amount of dirt and grease, the type of detergent used (liq-
uid/powder), and the weight of the laundry. These observations are then used
to control the process, allowing the machine to, e.g., add clean water, change
the direction and speed of the spin, and increase the water's temperature. By
controlling these parameters, the washing machine can optimize the length of
washing cycle, minimize energy usage, and prevent damage to components.

The increasing popularity and relevance of sensors is also evident from Gart-
ner's annual `Emerging Technologies Hype Cycle' [12]. This graph, shown in
Figure 1.1, re�ects the level of maturity of a technology during its lifetime (hor-
izontal axis), compared to expectations attached to it by society (vertical axis).
The left side of the graph contains innovative, promising technologies that are
still fairly unknown and have low expectations. The next stage is character-
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Figure 1.1: Gartner's 2015 Hype Cycle of Emerging Technologies [12].

ized by a massive peak of in�ated expectations, while the technology is still
relatively immature. Typically, this is where a technology reaches the status of
`hype'. Inevitably, this leads to some disillusionment when people realize that
expectations about the technology are overrated. Eventually, increased under-
standing, knowledge, and experience drive the technology towards maturity at
a more moderate pace.

Several of the technologies presented in the hype cycle are closely related to
sensors. At the top of the hype cycle is `The Internet of Things' (IoT), a con-
cept referring to a network of physical objects that allow interaction between
the physical world and computer-based systems. `Things' can be, e.g., co�ee
machines, curtains, smart energy meters, security systems, or watches. Sensors
play a central role in IoT, because they are small, energy e�cient, have (wire-
less) connectivity, and still carry su�cient computational resources for basic
applications. This makes them ideal to connect `Things' to `The Internet'.
Moreover, recent technological developments have resulted in cheap and reli-
able sensors, making them cost-e�cient for use in applications, and a driving
factor for IoT. Furthermore, note that the term `IoT Platform' is on the hype
cycle as well. This platform facilitates collecting, analyzing, and integration of
data from `Things'. In Chapter 2 we discuss this technology in more detail in
a sensor-speci�c context.
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Slightly further along in maturity is `Wearables', of which the smart watch is
probably the most well-known example. The typical smart watch contains sev-
eral sensors, such as an accelerometer, a thermometer, an altimeter, a barom-
eter, a compass, gps, and a heart rate sensor. Close integration with smart
phones allows wearers to, e.g., play music, get social media noti�cations, and
track physical activity. The Wearables technology is about to enter the third
phase on the hype cycle (the `through of disillusionment'), so it will be inter-
esting to see how it develops in the near future. Other technologies on the hype
cycle related to sensor technology are `Smart Dust' (millimeter-sized devices
with embedded sensors), `Bioaccoustic sensing' (enables the use of, e.g., your
arm as a touchpad), and `Connected Home' (home automation).

The data-driven technologies `[Citizen] Data Science', `Advanced Analytics
[With Self-Service Delivery]'1, and `Machine Learning' on the hype cycle are
relevant for sensor data as well. Sensors can produce massive amounts of data,
because of the potential high frequency of measurements, and the large number
of relevant phenomena to monitor. For instance, a typical Boeing aircraft
contains 8,000-10,000 sensors that are measuring and reporting every second
[39]. Extrapolate this to 5,000 aircraft demonstrates that Boeing receives over
fourteen terabyte of sensor data each day. Dealing with such large amounts of
data and transforming it to actionable insights is an immense challenge.

1.1 Networks of sensors

The sensors in a smartphone are capable of measuring a large variety of phe-
nomena, both concerning the device itself (e.g., detecting the rotation of the
screen), as well as about the immediate environment (e.g., the ambient tem-
perature). Measuring the temperature in, e.g., an o�ce building with a smart-
phone is, however, unpractical because it requires the phone's owner to contin-
ually walk around the building recording the current temperature. Fortunately,
with modern day technology it is possible to make small `mini-computers' to
which sensors can be attached, yielding devices smaller than a credit card ca-
pable of monitoring of and interaction with the environment. In this thesis we
refer to these devices as sensor nodes. Typically, besides sensors and basic pro-
cessing capabilities, a node is also equipped with a small radio that allows it to

1Citizen Data Science refers to the fact that improved data science tools allow the average

Joe to apply data science, eliminating the need for highly trained data scientists. Advanced

Analytics With Self-Service Delivery means that modern, simple to use Business Intelligence

tools allow people to analyze data without extensive need of IT support.
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Figure 1.2: Floor-plan of a kindergarten, with sensor nodes (triangles) mea-
suring the indoor climate and reporting their measurements to a central node
(inverted triangle).

communicate wirelessly. Hence, sensor nodes can report their measurements
to interested applications, and thus facilitate remote monitoring and control.
Obviously, this is of tremendous practical value when the sensor nodes are
spread over a large geographical area. However, the range of the radio of a
sensor node is usually small in order to save energy, so communicating across
large distances is not possible. As a solution, protocols have been developed
that allow the sensor nodes to jointly form a network, so that data can be
transmitted over long distances in several smaller steps. These networks are
called wireless sensor networks (wsns), and are the topic of the �rst part of
this thesis.

An example deployment of a wsn is in Figure 1.2, showing the �oor-plan of a
kindergarten. This kindergarten is located in a city in The Netherlands, where
directives are in place with respect to the indoor climate. For a kindergarten,
a CO2 level larger than 1,000 parts per million (ppm) is used as an indication
of insu�cient ventilation. High levels of CO2 are associated with fatigue,
headaches, and reduced concentration [11, 43]. The sensor nodes, marked
by triangles, measure CO2, temperature, humidity, and illumination. The
measurements are transmitted wirelessly to a so-called sink node (inverted
triangle), where the data is collected for further processing. After processing,
the administrators of the kindergarten can monitor the current CO2 level using
graphs similar to the one displayed in Figure 1.3. It shows the CO2 levels
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Figure 1.3: CO2 levels in the kindergarten exceeding the recommended level
of 1,000 particles per million on December 4th 2012, and a much healthier
development on the same day in 2014.

on December 4th 2012 (solid line), on December 4th 2014 (dashed), and the
maximum threshold value of 1,000 ppm (dotted). The 2012 line demonstrates
that CO2 levels can exceed the 1,000 ppm threshold, and the 2014 line shows
much healthier levels.

1.2 Challenges

Driven by emerging technologies, applications relying on sensor data will be-
come more prevalent in the near future. However, working with sensors involves
some distinct challenges that have to be dealt with. For instance, sensor mea-
surements are often `noisy' and can include a signi�cant level of uncertainty.
In the kindergarten in Figure 1.2 several sensor nodes were installed upside
down (as compared to the other nodes), because this was more convenient for
the power cable. Afterwards we noticed that the temperature measurements at
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these nodes di�ered by approximately 1.5◦ Celsius from the other nodes. The
manufacturer of the nodes then con�rmed that heat from the sensor node can
warm up the temperature sensor if a node is installed upside down. This illus-
trates how a seemingly small mistake can a�ect sensor measurements, and how
it can contribute to the uncertainty associated with these measurements. Hav-
ing a network of sensor nodes raises additional challenges, especially when the
network is wireless (which is common in practice). The transmission of a packet
from one node to another node can easily fail because of, e.g., closed doors,
people walking by, or interference on the wireless channel. In this section we
discuss the most important challenges in the context of sensors, sensor nodes,
and sensor networks. The challenges below are adapted from [18, 110, 132],
and appear in no particular order.

• Limited resources. Sensor nodes typically have only few resources avail-
able, i.e., little storage capacity, a slow cpu, and a battery with limited
power. Creating applications on such a device often results in a careful
balancing act between satisfying application requirements and managing
resources. For instance, measuring with a sensor and transmitting the
resulting measurement are two of the most power-consuming operations
a node can do. To maximize the life-time of the battery, the frequency
of these operations should be minimized, which can be problematic for
applications relying on frequent measurements.

• Dynamic topology. The topology of a sensor network can be highly dy-
namic, because sensor nodes can be added, removed, moved, run out of
power, or break down. In certain applications, the sensor node might
even be mobile instead of stationary. Additionally, interference on the
wireless channel might cause a sensor node to be temporarily unavailable.

• Data redundancy. The data produced by sensor networks usually con-
tains a large amount of redundancy. For instance, the rooms in the
kindergarten in Figure 1.2 are all in the same building and on the same
�oor, and the temperature measurements by the sensor nodes are ex-
pected to be similar. Redundancy can also occur between di�erent types
of measurements: in a closed room full of people, both temperature and
CO2 levels are expected to increase, and thus the two types of measure-
ments are correlated. Applications relying on large amounts of sensor
data might need to reduce redundancy to remain computationally feasi-
ble. At the same time, redundancy in data can also be useful. When a
certain level of redundancy is expected but, upon arrival of the measure-
ments, is not observed, then this absence of redundancy might suggest
that something happened or that there is a problem.
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• Reliability. Measurements by sensors can contain random noise, so that
it is unclear how accurate a measurement is. This is particularly chal-
lenging when monitoring an environment for abnormal events, since an
inaccurate measurement and an abnormal measurement can be di�cult
to distinguish. Also, the wireless channel and the network are susceptible
to reliability issues. The channel might be slower than expected, com-
pletely unavailable in part of the network, and the topology can change.
These issues cause delay or even complete disappearance of measure-
ments, making it challenging for the network to operate reliably.

• Scalability. Sensors are relatively cheap and can be used cost-e�ectively
in large quantities. Consequently, sensor networks can potentially be
quite large, and the network infrastructure should be scalable to such
large sizes.

• Heterogeneous protocols and data formats. Sensor nodes can use a wide
variety of protocols, access mechanisms, and data formats. This hetero-
geneity hampers development of applications, since acquiring sensor data
requires a signi�cant amount of sensor-speci�c work.

1.3 Motivation and structure

Sensors and sensor networks are here to stay. Even though IoT is now at
the peak of in�ated expectations in the hype cycle (see Figure 1.1), sensor-
related technology is clearly useful in many applications. The nearing period of
improved maturity of IoT suggested by the hype cycle will make the challenges
from the previous section increasingly relevant. This raises the need for a
deeper understanding of the challenges, for practical methods to deal with
them, and for innovative solutions. This is the main motivation for the research
in this thesis.

In the following chapters we consider several topics related to the challenges
outlined in the previous section. The thesis consists of seven chapters (includ-
ing this introduction), and is divided in two parts. The �rst part is about sensor
technology, and discusses three di�erent topics in that context. The relation
between the three topics is illustrated in Figure 1.4, and explained in more de-
tail in the paragraphs below. In the second part we deal with Markov Decision
Processes, a popular framework for taking decisions under uncertainty. The
techniques in that part are described in general terms, because the techniques
can also be applied in contexts other than sensor networks. The various chap-
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Sensor applications

Sensor technology

Middleware
component

Chapter 4

Chapter 3

Chapter 2

Figure 1.4: A middleware component forms a bridge between sensor technol-
ogy and sensor applications. The �gure also illustrates how the three sensor-
related chapters in Part I relate: Chapter 2 is about middleware components,
Chapter 3 discusses dimensionality reduction techniques (a potential service of-
fered by a middleware component for applications), and Chapter 4 deals with
throughput of a sensor network (the left-most example of a sensor technology).

ters in this thesis can be read independently of each other and in arbitrary
order, with the exception of Chapter 7, which extends Chapter 6.

We start Part I with a discussion about middleware components for sensor
networks in Chapter 2. These components are closely related to the `IoT Plat-
form' mentioned in the hype cycle in Figure 1.1. The middleware component
forms a natural bridge between sensor technology and applications using sen-
sor data. Figure 1.4 illustrates this scenario, with a sensor network and two
standalone sensors (for sound and temperature) at the bottom of the �gure
providing measurements to the middleware component. The top of the �gure
shows three applications relying on sensor data: a chart, an alarm application,
and a mobile app. The middleware component is in the center, and decouples
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the sensor applications from the sensor technology. In the scienti�c literature,
a wide variety of such middleware components exists and in Chapter 2 we re-
view these components with an often-used categorization. Then we describe
that, recently, a new category of middleware components has emerged and we
introduce the name `centralized' for this category. We describe the general
architectural form of a centralized middleware component, review four well-
known components in the new category, and discuss their relevance for use in
sensor networks.

Next, in Chapter 3 we consider dimensionality reduction techniques, which
aim at removing redundancy from data by �nding a short insightful summary.
These techniques can be applied to sensor data as well, allowing applications
to work with only a small part of the sensor data instead of the full range
of measurements. Dimensionality reduction can, e.g., be a service provided
by a centralized middleware platform (illustrated in Figure 1.4). The sum-
mary resulting from dimensionality reduction is designed to retain the most
important part of the information from the original data, but inevitably some
information is lost. For certain applications this loss might be unacceptable.
For instance, an alarm application watching for abnormal sensor measurements
(`outliers') can only use the summarized data if outliers among the sensor data
are mapped to outliers among the summarized data by the reduction technique.
If the reduction technique does not preserve outliers, the alarm application will
miss measurements worthy of an alarm when using the summarized data. In
Chapter 3 we discuss three popular dimensionality reduction techniques, and
experimentally determine how well they preserve outliers. The experiments
identify one of the techniques as best able to preserve outliers, and we discuss
the intuitions behind this result.

In Chapter 4 we consider the saturation throughput, an important performance
indicator of a sensor network (the left-most sensor technology in Figure 1.4).
This property re�ects at what speed the network is able to process measure-
ments by sensors when a large number of these measurements is o�ered. We
develop a model for analyzing the saturation throughput of the ieee 802.15.4
mac protocol, which is the de-facto standard for wsns and ensures fair access
to the channel. To this end, we introduce the concept of a natural layer, which
re�ects the time that a sensor node typically has to wait (as prescribed by the
ieee 802.15.4 mac protocol) prior to sending a packet. The model is simple
and provides insight in how the throughput depends on the protocol param-
eters and the number of nodes in the network. Validation experiments with
simulations demonstrate that the model is highly accurate for a wide range of
parameter settings of the mac protocol, and for both large and small networks.
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The �rst chapter in Part II, Chapter 5, deals with the control of a queueing
system with aging state information. The controller of the system has to
provide incoming queries with a response. The response can either be a fresh
value obtained from a queueing system, or an older value that was cached by
the controller. Both choices are imperfect: the �rst causes a delay because
it takes time to generate a fresh response, and the second returns an aged
value that is potentially too old for use. Hence, the controller faces a trade-o�
between response times and data freshness. In practice, a threshold policy is
often used to take decisions, where a fresh value is generated when the age of
the cached response exceeds a given threshold. Unfortunately, this policy is
not always optimal, particularly when the queueing system is heavily loaded,
and requesting a fresh response is expensive. In Chapter 5 we demonstrate
how such a threshold policy can be improved by taking the load of the system
into account. We model the system as a Markov Decision Process, which turns
out to be complex. We simplify the model to circumvent these complexities,
and then construct a control policy. This policy is demonstrated to have near-
optimal performance and achieves lower costs than the threshold policy.

Chapter 6 introduces a novel method for discovery of relative value functions
for Markov Decision Processes. This method, which we call Value Function
Discovery (vfd), is based on ideas from the Evolutionary Algorithm �eld.
vfd's key feature is that it discovers descriptions of relative value functions
that are algebraic in nature. In particular, the descriptions include the model
parameters of the mdp. The algebraic expression of the relative value function
discovered by vfd can be used in several scenarios, e.g., conversion to a policy
(with one-step policy improvement) or control of systems with time-varying
parameters. In Chapter 6, we give a detailed description of vfd and illustrate
its application on an example mdp. For this mdp we let vfd discover an
algebraic description of a relative value function that closely resembles the
relative value function corresponding to the optimal policy. The discovered
relative value function is then used to obtain a policy, which we compare
numerically to the optimal policy of the mdp. The resulting policy has excellent
performance on a wide range of model parameters.

We continue work on vfd in Chapter 7, where we demonstrate how addi-
tional information about the structure of an mdp can be included in vfd.
For this we use the same mdp as in Chapter 6, and include prior knowledge
that the optimal policy is of threshold type. We let vfd learn an expression
for this threshold in terms of the model parameters, and numerically inspect
its performance. We demonstrate that this alternative use of vfd also yields
near-optimal policies, illustrating that vfd is not restricted to learning relative
value functions and can be applied more generally.
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An Overview of Centralized
Middleware Components for

Sensor Networks

As described in the previous chapter, sensors are an emerging technology and
will play a large role in our daily lives in the near future. In particular, the pop-
ularity of IoT is a driving factor for sensor-related applications. As discussed
in Section 1.2, these applications will encounter several challenges that are typ-
ical for dealing with sensors, sensor nodes, and sensor networks. In traditional
it systems, a middleware component is often used to help applications deal
with these challenges. The component forms a bridge between applications
and sensor technology, and facilitates simpler application development.

The scienti�c literature contains a wide variety of such middleware components,
based on ideas from, e.g., database technology, and on aspects of quality of
service. Recently, much attention in literature is aimed at a special class of
components that consider sensor networks that have no capacity to run part of
the middleware component on the sensor nodes. In this chapter we introduce
the term `centralized' for these components, and illustrate their relevance using
a literature review of existing middleware components. After a close look
at non-centralized components, we describe the general architectural setup
of a centralized component, and discuss four well-known examples of such a
component. Finally, we identify directions for further research that will impact
centralized components in the near future.

This chapter is based on the results presented in [3].
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2.1 Introduction

Figure 2.1 illustrates the role of a middleware component in the context of
sensors and of applications based on their data. On the left, sensors are used
to, e.g., monitor the indoor climate of a house and detect smoke in an o�ce
building. The sensors report to the middleware component, and this compo-
nent makes the data available to applications. The �re department can use this
data to receive alarms related to the detection of smoke in the o�ce building.
Also, the owner of the house can inspect a graph of the current CO2 levels, for
which the data is obtained from the middleware component.

Sensor data

Middleware
component

Applications

Figure 2.1: Illustration of how a sensor middleware component forms a nat-
ural bridge between sensors (on the left) and applications (on the right).

The middleware component forms a bridge between the sensor technology and
the applications relying on sensor data. Because of this central role, the mid-
dleware component is in an ideal position to shield applications from some of
the sensor-related challenges listed in Section 1.2. For instance, sensor nodes
have limited resources and are often battery-powered. Excessive communica-
tion with a sensor node can quickly deplete the battery and render the node
useless. A middleware component can avoid this by, e.g., providing a caching
mechanism and using this to manage communication with the sensor node.
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Figure 2.1 suggests that the middleware component is separated from the sen-
sors. In this chapter we focus on components that adhere to this separa-
tion, and we introduce the term `centralized middleware component' for them.
There are, however, other approaches as well, where middleware components
extend into a network of sensors and add additional intelligence to the network.
These `non-centralized' components typically require above-average computa-
tional resources, and are motivated by rapid technological developments in
recent years. Despite these developments, many current sensor nodes are still
simple and limited devices, and research on middleware components has slowly
shifted to centralized components. Motivated by this, we review centralized
middleware components for sensor networks available in the scienti�c literature
in this chapter.

The remainder of the chapter is structured as follows. We start with a review
of non-centralized middleware components in the scienti�c literature in Sec-
tion 2.2. Then, Section 2.3 discusses the increased popularity of centralized
components in recent years, and illustrates their architectural setup with a
high-level outline. Following this, in Section 2.3.1, is a description of a lead-
ing web-standard for modeling sensors and, in Section 2.3.2, an overview of
the most well-known centralized middleware components. Finally, we iden-
tify directions for future research in Section 2.4, and conclude the chapter in
Section 2.5.

2.2 Non-centralized middleware components

Middleware components for sensor networks have received abundant attention
in the scienti�c literature. In this section, we give an overview of the available
non-centralized sensor middleware components in the literature, with an often-
used categorization as a guideline. For a more in-depth review we refer to, e.g.,
the surveys [110, 158], or to the specialized surveys [109] (on service-oriented
middleware components) and [147] (on programming sensor networks). The
following categorization, adapted from [21, 60, 61, 66, 104], is often used in the
literature:

• Database-inspired components,
• Virtual Machine-motivated components,
• Agent-based components,
• Application-driven components,
• Message-oriented components.
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Below, we describe each category, illustrate the architectural similarities within
a category, and list several middleware components contained in each category.
Table 2.1 contains the middleware components per category.

Database-inspired components. This subclass of middleware components
views the sensor network as a distributed database and adapts existing query-
ing techniques to the sensor network. Figure 2.2 illustrates a simple network
with three sensor nodes, and a laptop interested in collecting data from these
nodes. Each node typically has a local database (db) and a query engine for
dealing with queries. Together, the storage and query processing facilities form
the middleware component. As an example, suppose that the laptop issues a
query to the network, requesting all measurements from nodes 2 and 3 at in-
tervals of 1 second for the next 10 seconds. In sql-like notation, this request
is stated as SELECT * FROM sensors WHERE id IN (2,3) SAMPLE RATE
1s FOR 10s. The laptop passes this query to node 1, which in turn forwards
it to nodes 2 and 3. There, the query is executed and the results are returned.

This example illustrates three important aspects of middleware components in
this category. Firstly, issued queries should be routed to the correct nodes and
thus the middleware component should maintain some structured representa-
tion of the network. Secondly, the component needs a sensor-speci�c query
language, which usually is adapted from the sql language used to query con-
ventional databases. In the query above, the keywords �SAMPLE RATE� and
�FOR� are examples of keywords that have been added to the traditional sql
syntax. Thirdly, in conventional database systems the results of the queries
are always immediately returned after it has been processed. In the context
of sensor networks, however, queries can run and produce output continu-
ously, resulting in a stream of data. Middleware components in this category
include TinyDB [98], IRISNet [55], SINA [138], Cougar [160], DSWare

[92], SNEE [50], and KSPOT [20].

Virtual Machine-inspired components. A Virtual Machine (vm) is a
platform-independent programming environment that hides details of the un-
derlying operating system and hardware. Software developers can thus write
programs in one language, and deploy it to any device running a virtual ma-
chine. Since sensor nodes are based on a wide variety of software and hardware,
using a virtual machine is also appropriate for sensor networks. When each
sensor node runs a virtual machine, creating reusable programs for sensor net-
works becomes considerably easier. Figure 2.3 illustrates the setup of a typical
vm-motivated component, containing a simple sensor network of three nodes
with each of them running a virtual machine. The application on the laptop
sends a program into the sensor network, where it arrives at node 1. There, it
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Query

Node 1

Query
enginedb

Node 2

Query
enginedb

Node 3

Query
enginedb

Figure 2.2: Simple sensor network where the nodes are viewed as parts of
a distributed database. Each node comprises of a local database and query
engine. The engine interprets and forwards queries through the network to the
correct nodes, and executes them to retrieve data from its local database.

Node 1
vm

Node 2
vm

Node 3
vm

Figure 2.3: vm-based components deploy a Virtual Machine on each node,
and thus provide an execution environment for small pieces of code. In this
example, a program is split into three parts and forwarded to the appropriate
node. There, the program is executed until it is �nished.
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is split into three parts and forwarded to the correct nodes. Each node then
executes the part it receives, until the program ends. Applications for sen-
sor networks typically use data from multiple sensor nodes, so a key feature
of vm-motivated middleware components is that it facilitates the splitting of
programs. Additionally, it sends the parts of the program to the correct sensor
nodes, so the middleware component also needs to maintain a structured view
of the network. Finally, the middleware component must manage software up-
dates across the sensor network. Maté [90], MUSE [134], and Magnet [94]
are components in this category.

Agent-based components. Agents are small pieces of software that work
together to achieve a prede�ned goal. Unlike conventional computer programs,
agents are not activated by external commands but act autonomously based
on a set of rules and on information from their environment. Additionally,
agents are mobile and capable of moving from one environment to another.
The principles of agent-based systems have also been applied in the context of
sensor networks. To facilitate the execution and migration of agents in sensor
networks, middleware components in this category typically equip each node
in the network with a special execution environment (ee). This is illustrated
in Figure 2.4, which represents a sensor network with three nodes and two
agents, one at the second sensor node, and one en-route from node 1 to node
3. As with the vm-oriented components, agent-based middleware components
need a structured view of the network, require special skills from the software
developers, and must facilitate the distribution of software updates. Well-
known agent-based approaches are Impala [95], Agilla [49], SWAP [112],
and MAPS [17].

Application-driven components. Whereas the middleware components in
the previous categories were grouped by an architectural similarity, the com-
ponents in this category have a common goal: optimizing Quality of Service
(QoS). QoS aspects are typically application-speci�c, so this category is named
`application-driven'. An example of an application-driven middleware compo-
nent is MiLAN (Middleware Linking Applications and Networks) [65], which
considers both the QoS requirements of an application and the QoS capabili-
ties of the available sensor nodes. These requirements and capabilities are then
matched to select the sensor nodes involved in the application. In MiLAN,
the QoS levels re�ect uncertainty in sensor measurements, i.e., if faced with a
choice between using a sensor node with level 0.7 and a node with level 0.8, the
latter is preferred due to its higher reliability. Besides MiLAN, MidFusion

[19] and the Adaptive Middleware Component (AMC) from [72] also belong
to this category.
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Figure 2.4: Agent-based middleware components equip each sensor node
with an execution environment (ee) allowing agents to, e.g., migrate to other
sensors.

Message-oriented components. In sensor networks, measurements often
occur as a result of events that happen in the monitored environment. For
instance, a high temperature measurement might trigger the transmission of
that measurement to all interested applications. In traditional it-systems, the
Publish/Subscribe mechanism is often used to provide such event-driven com-
munication, and it has also been applied in the context of sensor networks. In
the Publish/Subscribe mechanism each sensor node broadcasts a standardized
description of its capabilities across the network to interested applications. If
an application is interested in the measurements of a sensor, it noti�es the cor-
responding sensor node that it wants to subscribe to the sensor's events. When
a sensor node detects an event, the resulting measurement is forwarded (`pub-
lished') across the network to all subscribing applications. This mechanism
ensures that subscribers are noti�ed when an event occurs.

We use Mires from [145] as an example of a middleware component in this
category, with Figure 2.5 illustrating the architecture of one single sensor node
as used by Mires. At the bottom are the hardware components of the node,
such as the sensors (measuring, e.g., temperature), the cpu, and the radio.
When a new temperature measurement is done, the operating system reports
it to the Publish/Subscribe Service. This service is at the heart of Mires,
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Figure 2.5: Architecture of one Mires node, adapted from [145].

and provides communications between the service on the sensor node, and
also to services on other nodes in the network. The measured temperature
value can, e.g., be handed o� to the (local) Aggregation Service, or it might be
routed (via the Routing Service) to other sensor nodes. The Publish/Subscribe
mechanism is �exible, so multiple services might be noti�ed simultaneously
of a new temperature value as well. Applications are built using Mires by
identifying what services are required from which node, and then subscribing
to those services.

The event-based nature of many sensor networks makes the Publish/Subscribe
mechanism a useful tool for middleware components in this category. The
mechanism fully decouples applications and sensor nodes, so that adding or
removing applications and/or sensor nodes does not require global changes
to the middleware component. Also, the Publish/Subscribe mechanism hides
vendor and hardware speci�c details about sensor nodes from applications.
Thereby, developing applications in networks with heterogeneous sensor nodes
becomes more convenient. Components AWARE [119], WMOS [162], and
TinyMQ [140] also belong to this category.

2.3 Centralized middleware components

Most of the middleware components in the categories from the previous sec-
tions have not been widely adopted in practice. One of the reasons for this
is that the middleware components were motivated by increased technological
possibilities of sensor nodes (e.g., more memory, larger storage capacity, and
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better processors), but many of the sensor nodes used in practice today are still
resource-limited devices with no possibilities to run, e.g., a virtual machine.
A second reason is that industry standards have received little attention in
the scienti�c literature for sensor middleware components (e.g., Zigbee [166]).
As the authors of [113] put it: Academic WSN research and ZigBee appear to
intersect only seldom, if at all. [. . . ] This progressively caused industry to lose
interest in academic wsn research, as compliance with standards [. . . ] is key
to industry applications. Finally, one can question whether a sensor middle-
ware component should extend into the sensor network. If it does, then the

Components Timeframe Reference Website

Database-inspired
SINA 2001 [138] -
Cougar 2000-2005 [160] [40]
IRISNet 2002-2005 [55] [73]
TinyDB 2002-2005 [98] [151]
DSWare 2004 [92] -
KSPOT 2007-2011 [20] [82]
SNEE 2008-2009 [50] [144]

Virtual Machine-motivated
Maté 2002-2005 [90] [106]
Magnet 2001-2005 [94] [99]
MUSE 2005 [134] -

Agent-based
Impala 2002-2004 [95] -
Agilla 2004-2007 [49] [15]
SWAP 2006 [112] -
MAPS 2009-now [17] [101]

Application-driven
MiLAN 2002-2004 [65] -
AMC 2004 [72] -
MidFusion 2008 [19] -

Message-oriented
Mires 2005 [145] -
AWARE 2006-2009 [119] [22]
WMOS 2011 [162] -
TinyMQ 2011 [140] -

Table 2.1: Overview of the middleware components per category. Each com-
ponent has a reference to a paper describing the architecture, and a link to a
website (if one exists).
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middleware component is faced with typical network-issues such as routing,
and perhaps the responsibility for this should be assigned to the network, not
to the middleware component.

In recent years the scienti�c community has picked up on these concerns and
included a new category of middleware components. Components in this cat-
egory are separated from sensor technology and thus make no requirements
in terms of, e.g., resources and access protocols. We call such components
`centralized middleware components'. Figure 2.6 illustrates the role of a cen-
tralized middleware component schematically. It contains two sensor networks
that are connected to a middleware component (at the bottom), and two ap-
plications that rely on sensor data (at the top). The middleware component
forms a bridge between sensor technology and applications relying on sensor
data, hence the term `centralized'.

In the remainder of this section we describe several examples of centralized
middleware components from the scienti�c literature, and discuss their advan-
tages and disadvantages. Before that, in the next section, we describe the
leading industry standard for sensor modeling, as this is included in many of
the middleware components.

Smoke
detection

Indoor climate
monitoring

Centralized middleware component

Figure 2.6: Position of the centralized middleware component with respect
to sensor technology (at the bottom) and sensor applications (at the top).



2.3 Centralized middleware components 25

2.3.1 Sensor Web Enablement initiative

Several years ago an international group of companies, government agencies
and universities from the OpenGeospatial Consortium (ogc) [121] started the
Sensor Web Enablement (swe) initiative. This initiative aims to support the
discovery and exchange of sensor information, as well as the tasking of sensor
systems. It consists of standards covering the topics of modelling sensors and
observations, and of interfaces for communicating with sensor nodes. The
standards and interfaces in swe are de�ned as web services, and include the
following speci�cations:

• Observations and Measurements: a scheme for describing sensor obser-
vations and measurements.
• Sensor Model Language: an interface for describing sensor systems and
their capabilities.
• Sensor Observation Service (sos): a web service to obtain observations
and sensor and platform descriptions from one or more sensor nodes.
• Sensor Planning Service (sps): provides users with a standard interface
for setting their own data collection requests.
• Sensor Alert Service (sas): de�nes an interface for publishing and sub-
scribing to sensor alerts.
• Web Noti�cation Service (wns): handles the asynchronous message de-
livery to the subscribers of the sas and sps.

Despite swe's popularity, several drawbacks of standards have been identi�ed
in the scienti�c literature (from [23, 112]):

• There is no explicit ontological structure in the swe framework.
• Security and privacy issues are not addressed.
• Conversion from a network-speci�c format to swe standards requires
detailed knowledge of both formats. Typically, o� the shelf sensor nodes
do not provide their data in swe form. We return to this drawback in
Section 2.4.
• There are no guidelines for the communication between services.
• Services are passive, so for example, a user can contact the SOS, but not
vice versa.

We illustrate the swe speci�cations with a use-case from the SensorSA mid-
dleware component [30], one of the components we describe in the following
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SensorSA
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Figure 2.7: Abstract view of an application for monitoring the quality of
seawater using the SensorSA architecture, adapted from [30].

section. In this case study, a decision support system for marine risk manage-
ment is created using SensorSA. The system monitors the quality of seawater
in areas where people often swim, and also predicts this quality for the near
future. Authorities use this information to close beaches with a high risk of
contamination, thereby preventing sickness due to microbial pollution.

An abstract view of the application is depicted in Figure 2.7. At the top, his-
torical and online sensor data is imported into SensorSA and used to update
forecasting models. Importing is done using the Sensor Observation Service,
which provides methods for requesting, �ltering, and retrieving sensor data
and information. The forecasting in this application is done by a (application-
speci�c) modelling service, which generates an alarm when a prediction in-
dicates bad water quality. This alarm is passed to the Alerting Service, an
instance of the Sensor Alert Service. This service uses the Publish/Subscribe
mechanism (which we saw earlier in Section 2.2 when discussing Mires) to
notify applications of alarms. Sending the alarm is done using Web Noti�ca-
tion Service, which provides the ability to send an alarm as, e.g., an e-mail or
a text message.
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2.3.2 Overview of components

In this section we describe four centralized middleware components from the
scienti�c literature. First, we describe SensorSA, because it is a good illus-
tration of the swe standards, and because of its clear documentation. Then we
discuss SenseWeb, to demonstrate that non-swe web services can also play
a valuable role. Next, we present pulsenet, the most complete centralized
middleware component available, featuring both swe-based interfaces as well
as various other industry standards for dealing with sensor data. Finally, we
describe the middleware component lsm that utilizes the streaming nature of
sensor data (one of the future research directions we identify in Section 2.4),
and provides a way of publishing data without using web services. The four
components are summarized in Table 2.2.

SensorSA

SensorSA (Sensor Service Architecture) is a middleware component devel-
oped in the sany (Sensors Anywhere) project. SensorSA aims to improve
the interoperability of in-situ sensors and sensor networks, allowing quick and
cost-e�cient reuse of data and services from currently incompatible sources[. . . ]
[30]. Its central role is illustrated in Figure 2.8, with in-situ sensors at the bot-
tom, users at the top, and SensorSA in the middle.

SensorSA

Figure 2.8: Illustration of the role of SensorSA, a centralized middleware
component (adapted from [30]).
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Its use of open standards from swe makes SensorSA an interesting compo-
nent for companies seeking to include sensor data into their it infrastructure.
Several use cases are discussed in [30] and illustrate the use of swe in prac-
tice. Additionally, SensorSA uses several non-swe interfaces from ogc for,
e.g., visualization. SensorSA also serves as an example of how a centralized
approach simpli�es security issues. Since the middleware component is not
responsible for security on the sensor network (this network is considered to
be owned and managed by a third party), it only needs to secure its own ser-
vices. For this, SensorSA relies on well-known security mechanisms for access
control to service networks [30, Chap. 5]. SensorSA contains several data
fusion algorithms for analysis along both the time-dimension and the space-
dimension of sensor data. Together with a time series toolbox for analyzing
streaming sensor data, SensorSA thus addresses two �elds that we recognize
as important future research directions in Section 2.4.

Despite the steps forward provided by SensorSA, several of the drawbacks
to swe remain: there is no ontological structure, and services still seem to
be passive. Moreover, there is no implementation of SensorSA available
for download, so a quick experiment with SensorSA on an existing sensor
network is not possible.

SenseWeb

SenseWeb is a sensor middleware component from Microsoft Research, de-
signed to let multiple concurrent applications share sensing resources contributed
by several entities in a �exible but uniform manner [76]. The key elements of
SenseWeb are illustrated in Figure 2.9, and strongly resemble the high-level
description of a centralized middleware component from Figure 2.6. The pri-
mary building block is the Coordinator, which collects data via the Sense gate-
way and publishes this data to Applications and Transformers. Sensor nodes
can be addressed through the Sense gateway, which provides a uniform interface
for the rest of Senseweb, hiding any vendor-speci�c aspects. Transformers
are components that process sensor data into other formats, for instance by
calculating averages, or by creating �gurative representations of data. In this
way, transformers provide low-level elements that can be easily included in
applications. The Coordinator consists of two separate modules, the SenseDB
and the Tasking Module. SenseDB provides load-balancing facilities by ana-
lyzing requests for data to �nd overlap in their desired responses, and by using
a cache for sensor data. Additionally, it is responsible for keeping track of the
various sensors attached to the coordinator, and of their descriptions and ca-
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Figure 2.9: Overview of SenseWeb, illustrating how the coordinator miti-
gates between applications and sensor nodes (adapted from [76]).

pabilities. The Tasking Module determines which sensors are most suitable for
answering a query, taking into account, e.g., bandwidth, availability, and power
levels. Thus, these two models together provide an intelligent mechanism for
load balancing, which is the key distinguishing feature of SenseWeb.

pulsenet

pulsenet is a sensor web component developed at the Northrop Grumman
Corporation, with the objective to provide a standards-based framework for
the discovery, access, use and control of heterogeneous sensors, their meta-
data, and their observation data [46]. It is based on the standards provided by
swe, supplemented by a wide variety of non-swe standards for, e.g., describ-
ing public safety alerts, detailing military events, and visualization. Sensor
networks are connected to pulsenet via plugins, which hide vendor-speci�c
interfaces and perform the translation to and from the swe standards. From
a practical point of view, pulsenet has been tried and tested extensively. It is
used, for instance, in the Defense and Intelligence domain, which contains sen-
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sors and platforms with many modalities, levels of complexity, data formats,
and privacy issues. Other domains include the Ocean Science community, and
Air Quality applications. This emphasizes the practical relevance of pulsenet,
and of centralized middleware components in general.

The authors of [46] also provide a list of best practices when dealing with swe.
These can be summarized as:

• Apply the swe standard only when needed. Using swe for data publish-
ing typically means sacri�cing some performance, due to swe's complex-
ities. So apply swe only when a device has su�cient capacity to run
web services and parse xml. Otherwise, consider using more low-level
standards.
• Keep it simple. swe is a large and �exible standard, o�ering both sim-
ple and complex data structures. Use the complex structures only if
necessary to keep swe overhead as low as possible.
• Use [. . . ] the swe compliance tests. Ogc o�ers a compliance engine
that allows third parties to test their implementations of swe standards.
Passing the compliance test adds signi�cant value to a swe-enabled mid-
dleware component.
• Avoid reinventing the wheel. Several open source implementations for
swe web services are available, and using them is advisable considering
development time and software quality.

Unfortunately, the source code for pulsenet is unavailable from the corre-
sponding website, so real-life experimentation with pulsenet is not possible.
Also, we could not �nd a more detailed description of the pulsenet architec-
ture than the one in [46].

lsm

lsm (Linked Stream Middleware) [87, 88] is a middleware component from the
�eld of Linked Stream Data. It aims to simplify the integration of sensor data
with data from other sources by providing semantic descriptions for sensor
measurements and sensor data streams. As the name suggests, Linked Stream
Data has two main properties: the data has mutual relationships (i.e., it is
linked), and it is available via streams. The links are visible in Figure 2.10 in
the Linked Data layer, and together form a complex structure of current and
historical information. The data (both static and streaming) is collected in the
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Figure 2.10: Overview of the elements of lsm, adapted from [87].

Data Acquisition layer, and transformed to a Linked Data format via `Wrap-
pers' (which are similar to, e.g., the plugins in pulsenet). Access to the data
for applications is provided by a query processor, using a query language for
streaming data: cqels. This query language is not a standard, but developed
by lsm's author in [86].

A nice feature of lsm is that it uses w3c's Semantic Sensor Network ontology
[38], which also yields the relationships between data points (for instance, they
can be linked via their `location' property). By using an ontology, standard
query options become available via sparql [128]. The query language cqels is
based on sparql and enables the expressiveness of an ontology for streaming
data. A working demo of lsm is available online at http://lsm.deri.ie/.
Although the concept of Linked Stream Data is promising, it is relatively new
in the context of sensor networks, and therefore untested in practice. More
research and experiments are necessary to demonstrate if, e.g., the cqels

query language is applicable in a broad range of applications.
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Component Timeframe Reference Website

SensorSA 2006-2010 [30] -
SenseWeb 2006-2010 [76] [135]
pulsenet 2009 [46] [129]
lsm 2011-2012 [87, 88] [96]

Table 2.2: Overview of four centralized middleware components described in
this chapter.

2.4 Directions for future research

Centralized middleware components form a bridge between sensor technology
and applications relying on sensor data. Since sensor technology is based on
a wide variety of standards and protocols, a centralized middleware compo-
nent should support many di�erent technologies. The components discussed
in Section 2.3 recognize this need, and provide gateways (SenseWeb), plugins
(SensorSA, pulsenet), or wrappers (lsm) for implementing support for var-
ious technologies. Similarly, interaction with applications occurs via various
di�erent (web-)interfaces, and middleware components should support these
as well. The paper describing pulsenet [46] nicely illustrates the diversity in
web interfaces. From the point of view of the centralized middleware com-
ponent, the large diversity of technologies can be seen as a nuisance, since it
causes a lot of extra work. But support for many di�erent technologies makes
it considerably easier to develop sensor-driven applications, and is essential for
the continued growth of, e.g., The Internet of Things.

A next step for centralized middleware component research concerns the `clas-
sic' issues of Quality of Service, privacy, and security. Much research on these
topics already exists (see, e.g., [36], [105], and [133, 165], respectively), but has
been hampered by a lack of clear de�nitions in the context of sensor networks.
As applications relying on sensors and sensor networks become ubiquitous,
research on Quality of Service, privacy, and security will most likely regain
momentum.

A third promising research direction is formed by semantic speci�cations of
sensors. Giving a semantic description of a sensor makes it clear what type
a sensor is (e.g., a 'Temperature' sensor), what units its measurements are
in (e.g., `Degrees Celsius'), and how these measurements were obtained (e.g.,
`Average of 10 measurements in the last 1 second'). Such properties of sensors
become particularly important once sensor data is used by third party applica-
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tions, because they must understand exactly what the o�ered data represents.
A good overview of this topic is presented in [37, 38].

Furthermore, as evidenced by lsm, techniques from the `Data Streams' domain
will become more popular. A large body of literature is available (see, e.g.,
[14, 51]) and is ready to be applied. Of particular interest are applications that
combine streaming sensor measurements with static data from other sources,
because centralized middleware components are in a unique position to collect
and process both types of data.

We foresee that applications will increasingly combine sensor data with other
sources of data, driven by newly available sensor data from middleware compo-
nents. For instance, information from CO2 and temperature sensor nodes in a
building can be combined with data from security systems to verify alarms. If
a security system gives an alarm that a burglary is in progress, an unexpected
change in CO2 and temperature measurements might con�rm that something
irregular is happening. This is an example of a process known as `Data Fusion',
and we think that techniques from this domain can boost the development of a
new generation of innovative and intelligent sensor-related applications. Inter-
ested readers are referred to [77], which contains a review of the state-of-the-art
in this domain.

2.5 Conclusion

This chapter reviewed middleware components for sensor networks in the lit-
erature using a well-known categorization. Then, we described that recently, a
new category of sensor network middleware components has emerged. These
components do not run part of the middleware component on the sensor nodes,
contrary to many existing components. We introduced the term `centralized
middleware component' for this new type of component and discussed four
examples of this type. Finally, we discussed directions for future research.
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3

Outlier Preservation by
Dimensionality Reduction

Techniques

In the previous chapter we discussed how middleware components bridge the
gap between sensor networks and applications that rely on the data produced
by these networks. With sensors playing an increasing role in technologies and
in our lives, applications can choose many types and sources of data that are
available at middleware platforms. How can all this information be transformed
into actionable insight? Providing a short insightful summary that helps users
identify events and take appropriate action is essential. Inevitably though,
some information is always lost when providing a summary, so the technique
used to create it should be chosen carefully. In this chapter we focus our
attention on Dimensionality Reduction (dr), a family of techniques often used
for creating short summaries. We study the e�ect of such techniques on outliers
� measurements in the data that do not conform to regular patterns. We
demonstrate that dimensionality reduction can indeed have a large impact on
outliers. To that end we apply three dimensionality reduction techniques to
three real-world data sets, and inspect how well they preserve outliers. We use
several performance measures to demonstrate how well these techniques are
capable of preserving outliers, and we discuss the results.

This chapter is based on the results presented in [4].



36 Outlier Preservation by Dimensionality Reduction

3.1 Introduction

Recent technological developments have resulted in a broad range of cheap
and powerful sensor nodes, enabling companies to use sensor networks in a
cost-e�ective way. Sensor networks will increasingly become part of our daily
life � envision, e.g., a house with sensors related to smoke detection, light-
ing control, motion detection, environmental information, security issues, and
structural monitoring. Combining all this information to actionable insights
is a challenging problem. For instance, in the event of a burglary in a house,
the sensors involved in motion detection, environmental monitoring, and se-
curity all yield useful information. Providing a short insightful summary that
helps users identify the event and take appropriate action is essential. Dimen-
sionality reduction is a family of techniques aimed at reducing the number of
variables (dimensions) in the data and thus at making the data set smaller. In
essence, it helps identify what is important, and what is not.

Dimensionality reduction often results in some loss of information, and appli-
cations might be a�ected by this loss. For instance, the burglary mentioned
before is a (hopefully) rare event that is di�erent from normal patterns in
the sensor data (i.e., a so-called outlier). Unfortunately, dr-methods often
lose outliers among the regular sensor data. Figure 3.1 illustrates this situa-
tion using a two-dimensional data set with an outlier near the top-left corner.
When dimensionality is reduced by projecting all points onto a line, the outlier
is mapped into the center of the reduced data set (the middle arrow in Fig-
ure 3.1), and is thus no longer an outlier. So dimensionality reduction might
lose outliers among regular points, causing problems for applications relying
on the detection of outliers.

A solution to this problem is to identify outliers prior to applying dr. This is,
however, not always computationally feasible due to the high dimensionality
of the data, particularly when an outlier involves multiple dimensions. The
point in the top-left corner of Figure 3.1 is an example of such an outlier: it
is not an outlier in either the x- or y-dimension, but clearly is an outlier in
the (x, y)-plane. In such a computationally challenging situation, it might be
more e�cient to apply dr �rst, followed by the detection of outliers.

Motivated by this, in this chapter we experimentally determine how well dr-
techniques preserve outliers. To this end, we describe three well-known dr-
techniques that are relevant for a broad audience, and apply them to several
real-world data sets from a sensor-related context. For each dr-technique we
capture its capability to preserve outliers in three performance measures, and
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Figure 3.1: A two-dimensional data set reduced to one dimension, with an
outlier (middle arrow) mapped to the center of the reduced data set.

compare the results. From the three techniques we identify the one with the
best performance, and discuss the intuitions behind the scores.

A large body of literature exists on dimensionality reduction, and an overview
of techniques from this �eld can be obtained from [33, 48, 59, 78, 120, 157].
dr-techniques are typically used for visualization [91, 152], as a preprocess-
ing step for further analysis [52, 131, 153], and for increasing computational
e�ciency [42, 62]. Outlier detection is a popular research topic as well, and
is comprehensively reviewed in survey papers [16, 70, 97, 163, 164]. Certain
speci�c topics, such as intrusion detection [56] and fraud detection [26, 124],
are closely related to outlier detection. In [114] the authors consider Kohonen's
Self-Organizing Maps (som, [79]) and how this dr-technique can be used to
identify outliers. [64] illustrates the e�ect of outlier-removal on Isomap [150],
another dr-technique. [34] looks at local dr, where reduction is applied to
previously identi�ed clusters. Outlier detection occurs as part of the cluster-
identi�cation phase.
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These papers do not, however, look at outlier preservation by dr-techniques,
as discussed in this chapter. In [45], the authors compare multiple outlier
detection methods on various data sets, including one data set with its dimen-
sionality reduced. As in this chapter, their analysis also suggests that outlier
detection is a�ected by dimensionality reduction, although they only use one
dr-method and one performance measure. In [115], a setup is used that is
close to our approach: four dr-methods are applied to three data sets, and
the performance (using one score measure) is inspected for two outlier detec-
tion methods. However, the dr-methods in [115] are selected from the feature
extraction domain, and are not well-known in the dr-community.

The structure of this chapter is as follows: Section 3.2 describes the dr-
techniques, Section 3.3 contains the outlier detection method as well as the
performance measures. Then, in Section 3.4 we describe the data sets that
we use in the experiments. Section 3.5 demonstrates the output of the exper-
iments and discusses the results, followed by conclusions, recommendations,
and ideas for further research in Section 3.6.

3.2 Dimensionality reduction techniques

Denote by n the number of measurements and by d the number of sensors
producing the measurements. The number of sensors is known as the dimen-
sion of the data, and dr-techniques aim to lower this dimension to a smaller
value. More formally, if the measurements are vectors x1, . . . ,xn ∈ Rd, then
dr-techniques try to �nd points y1, . . . ,yn ∈ Rd′ with d′ < d. This section de-
scribes three well-known and often used dr-techniques: Principal Component
Analysis (pca), Multidimensional Scaling (mds), and t-Stochastic Neighbour-
hood Embedding (t-sne).

3.2.1 Principal Component Analysis

Principal Component Analysis was initially proposed in [122]. It �nds a low-
dimensional representation of the data with minimal loss of variation of the
data set. Suppose that we have n data points x1, . . . ,xn ∈ Rd (corresponding
to n measurements from each of d sensors in this chapter), and that they are
placed in the n × d matrix X. We denote the d × d correlation matrix of X
by C, its eigenvalues by λ1, . . . , λd, and its eigenvectors by u1, . . . ,ud ∈ Rd.
Typically, the eigenvalues are ordered s.t. λ1 ≥ λ2 ≥ . . . ≥ λd, and the
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eigenvectors are orthogonal to each other. The eigenvalues re�ect the amount
of variance in the data set explained by the corresponding eigenvectors. To be
precise, the �rst d′ eigenvalues explain a fraction

(∑d′

k=1 λk
)
/
(∑d

k=1 λk
)
of the

variance.

pca achieves dimensionality reduction by omitting eigenvectors ud′+1, . . .ud,
with d′ the smallest integer such that the fraction of explained variance exceeds
a threshold τ ∈ [0, 1]. This threshold is a parameter of pca. Summarized, the
process works as follows:

1. Construct the data matrix X.
2. Compute the correlation matrix C.
3. Find the n eigenvalues λk and eigenvectors uk of C.
4. Determine d′ such that

(∑d′

k=1 λk
)
/
(∑d

k=1 λk
)
< τ .

5. Construct matrix Û = [u1 . . .ud′ ].
6. Reduce dimension by computing X̂ = XÛT .

The n × d′ matrix X̂ matrix contains n data points x̂1, . . . , x̂n ∈ Rd′ that
form the reduced data set. The vectors uk (1 ≤ k ≤ d) vectors are called the
Principal Components, and give pca its name. A more detailed description
and examples of pca can be found in, for instance, [63, 74, 84, 149].

3.2.2 Multidimensional Scaling

Multidimensional Scaling is the name of a family of dimensionality reduction
techniques that preserve distances in the data set. The classical version of
mds �nds points y1, . . . ,yn ∈ Rd′ in a low-dimensional space that minimize

min
y1,...,yn

n∑
i=1

n∑
j=1

(||xi − xj || − ||yi − yj ||)2 . (3.1)

Here x1, . . . ,xn ∈ Rd are the high-dimensional points, and ||·|| is the Euclidean
distance in the respective space. The classical version of mds is equivalent to
pca, see for instance [54]. Other members of the mds family use a di�erent
distance measure or a di�erent quantity to optimize than Eq. (3.1). We use a
version of mds with the so-called squared stress criterion

min
y1,...,yn

∑n
i=1

∑n
j=1

(
||xi − xj ||2 − ||yi − yj ||2

)2∑n
i=1

∑n
j=1 ||xi − xj ||4

. (3.2)
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For the distance measure ||xi − xj || we do not use the Euclidean distance
measure as in the classical version of mds. To see why, note that mds with
the Euclidean distance is sensitive to natural variations in the data. Consider,
for instance, a data set consisting of two columns, one with values uniformly
drawn from the interval [1000, 2000] and one with values drawn from [0, 1].
Clearly, all values in the �rst column are several orders of magnitude larger
than those in the second column. When minimizing the quantity in Eq. (3.1)
the procedure focuses on the elements of the �rst column, since that brings it
closest to the minimum. In essence, the second column is ignored and mds is
biased towards the �rst column.

To overcome this problem, the Euclidean distance is typically replaced by the
Mahalanobis distance [100]:

||xi − xj ||M =

√
(xi − xj)Σ−1(xi − xj)

T , (3.3)

where Σ is the covariance matrix. By including the covariance matrix in the
distance measure, the natural variations in the data are removed and thus mds
is unbiased with respect to dimensions. Eq. (3.1) then becomes

min
y1,...,yn

∑n
i=1

∑n
j=1

(
||xi − xj ||2M − ||yi − yj ||2

)2∑n
i=1

∑n
j=1 ||xi − xj ||4M

. (3.4)

Note that the Mahalanobis distance is only used for the high-dimension points
xi, because the low-dimensional points yi are found by the minimization.

3.2.3 t-Stochastic Neighbourhood Embedding

Stochastic Neighbourhood Embedding

t-Stochastic Neighbourhood Embedding is a variation on Stochastic Neighbour-
hood Embedding (sne), �rst proposed in [68]. sne presents the novel idea of
de�ning a probability that two points are neighbours. If the distance between
two points is small, sne assigns a high `probability of being a neighbour' to
this pair. Similarly, points that are far apart are assigned a low `probability of
being a neighbour'. sne reduces dimensionality by looking for low-dimensional
points that preserve the assigned probabilities.

In sne, the probability assigned to two points xi and xj is

pi|j =
e−||xi−xj ||2M/2σ2

i∑n
k=1,k 6=i e

−||xi−xk||2M/2σ2
i

. (3.5)
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The parameter σi is set by hand or determined with a special search algorithm.
Note how we again employ the Mahalanobis distance from Eq. (3.3) for the
high-dimensional points in Eq. (3.5). Also, observe that points that are close
together result in a large value for pi|j , and that points that are far away from
each other yield a low value for pi|j .

In low-dimensional space, probabilities similar to those in Eq. (3.5) are de�ned
as

qi|j =
e−||yi−yj ||2∑n

k=1,k 6=i e
−||yi−yk||2

. (3.6)

The parameter σi is not necessary here, because it would only lead to a rescaling
of the resulting low-dimensional points yi. The yi are then found by minimizing
the Kullback-Leibler divergence of these two probability distributions

min
y1,...,yn

n∑
i=1

n∑
j=1

pi|j log
pi|j

qi|j
. (3.7)

Minimization of Eq. (3.7) can be done with, e.g., the gradient descent algo-
rithm, or the scaled conjugate gradients procedure.

t-sne

In [156] the authors propose t-sne, which di�ers from sne in two aspects.
First, note that the probabilities in Eq. (3.5) are not necessarily symmetric,
i.e., pi|j and pj|i do not need to be equal. This complicates minimization of
Eq. (3.7), because it has twice as many variables as in the symmetric case. In
t-sne, the pi|j in Eq. (3.7) are replaced by pij :

pij =
pi|j + pj|i

2n
,

with pi|j still computed from Eq. (3.5). Note that pij is symmetric in i and j,
and thus reduces the number of variables in the minimization of the Kullback-
Leibler divergence by a factor two. Additionally, this change ensures that∑n

j=1 pij > 1/(2n) so that each point (including outliers) has a signi�cant
contribution to the cost function.

The second change proposed for t-sne concerns the qij . Instead of using
Gaussian-style probabilities as in Eq. (3.6), t-sne uses probabilities inspired
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by the Student t-distribution (with one degree of freedom):

qij =
(1 + ||yi − yj ||2)−1∑n

k=1,k 6=i(1 + ||yi − yk||2)−1
.

This distribution has heavier tails than the Gaussian used by sne, so it maps
nearby high-dimensional points less nearby in low-dimensional space than sne.
A justi�cation for this approach comes from the so-called Crowding problem:
there is much more room in high-dimensional space for points, so in a low-
dimensional representation data points tend to be `squeezed' together. By
using the Student t-distribution, these crowded points are placed just a bit
further apart.

Low-dimensional points are still found by optimizing the Kullback-Leibler di-
vergence from Eq. (3.7), but with pi|j replaced by pij and qi|j by qij :

min
y1,...,yn

n∑
i=1

n∑
j=1

pij log
pij
qij
. (3.8)

3.3 Experimental setup

We adopt the following experimental setup when investigating dimensionality
reduction for outlier preservation:

1. Normalize each data set such that it has zero mean and unit variance.
This is a common preprocessing step for experimental data.

2. Find outliers in the high-dimensional (centered and scaled) data set.
3. Reduce the data set to two dimensions.
4. Again look for outliers, this time in the low-dimensional data.
5. Compute a score re�ecting the performance of each dr-method on the

data set.

We apply this setup to the dr-techniques from Section 3.2 and to a num-
ber of real-world data sets, described later in Section 3.4. Prior to that, the
sections below describe the technique that we use for outlier detection, and
three performance measures that we use to assess how well outliers are pre-
served. For the dr-techniques we used Matlab implementations available in
the Dimensionality Reduction Toolbox [155].
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Algorithm 3.1 Peeling

1. Calculate the convex hull around all the points in the data set.
2. Find the point on the hull with the largest (Mahalanobis) distance

to all other points in the data set.
3. Remember the outlier and remove it from the data set.
4. Calculate the new convex hull, and check if the stop criterion

is reached. If so, stop, otherwise continue with step 2.

3.3.1 Onion peeling

The idea of Onion Peeling, or Peeling in short, is to construct a convex hull
around all the points in the data set and then �nd the points that are on
the convex hull. These points form the �rst `peel' and are removed from the
data set. Repeating the process gives more peels, each containing a number
of points. This technique can be utilized for �nding outliers, if we consider
a point in the data set to be an outlier if they have a large distance to the
other points in the data set. With this intuitive interpretation of an outlier,
the largest outlier in the data set is on the �rst peel. By inspecting the total
distance of each point on the hull to all other points in the data set, we can
�nd the one with the largest total distance. Removing this point from the data
set and repeating the process gives new outliers. The decrease in volume of
the convex hull after removing an outlier is used as a stop criterion. Once the
volume decreases by a fraction less than α (0 ≤ α ≤ 1), we stop looking for
outliers. In our experiments we set α = 0.005. Although with this procedure
there is no guarantee that all outliers are found, it is su�cient for the data sets
in this chapter. Peeling is outlined in Algorithm 3.1.

3.3.2 Measuring performance

After running the experiment for one data set and one dr-method, we need
to quantify the performance of this method with respect to the preservation of
outliers. In order to do so, we assign each point to one of four groups:

• True Positive (tp). The point is an outlier both before and after dr.
• False Positive (fp). The point is not an outlier before dr, but is one after.
• False Negative (fn). The point is an outlier before dr, but not after.
• True Negative (tn). The point is not an outlier before dr, nor after.
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Outlier
before dr?

Yes No

After dr?
Yes tp fp

No fn tn

Figure 3.2: Confusion matrix indicating what happened to outliers after dr.

We can summarize these quantities in a confusion matrix, as demonstrated in
Figure 3.2. In an ideal scenario the confusion matrix would be diagonal (i.e.,
0 fps and fns), indicating that all outliers and non-outliers were correctly
retained by the dr-methods. However, in practice the matrix often contains
some fps and fns, and the performance of a dr-method is judged by all four
quantities. Confusion matrices are used in several research communities to
assess the performance of, e.g., binary classi�ers and statistical tests. Often a
single number is needed to capture performance, which subsequently results in
a combination of the four quantities in the table. Several such combinations
exist and are used in various �elds of research (see the overview in [127] for
more information).

We describe three performance measures that are often used in the litera-
ture, but before we do so we highlight one complicating aspect of our problem
scenario. Most practical data sets have a signi�cantly larger number of non-
outliers than outliers, so in the confusion matrix the tn is usually the largest
number. As an example of a performance measure that is a�ected by this, we
look at accuracy, de�ned as

accuracy =
tp+ tn

tp+ fp+ fn+ tn
.

Since tn is the dominating number in this expression, accuracy is always close
to 1, making it di�cult to identify small di�erences in performance. The three
performance measures described below are selected because they are capable
of handling this issue.
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F1-score

The F1-score is a combination of recall and precision:

• Recall: the fraction of high-dimensional outliers that is retained by the
dr-method (i.e., tp/(tp+ fn)), which is maximized when fn equals 0.
• Precision: the fraction of low-dimensional outliers that were also high-
dimensional outliers (i.e., tp/(tp + fp)), which is maximized when fp

equals 0.

The F1-score takes the harmonic mean of precision and recall, resulting in a
number between 0 (when tp=0) and 1 (when fp=fn=0):

F1 = 2 · precision · recall
precision + recall

= 2 · tp/(tp+ fp) · tp/(tp+ fn)

tp/(tp+ fp) + tp/(tp+ fn)

=
2tp

(2tp+ fn+ fp)
. (3.9)

If tp + fn = 0 or tp + fp = 0 then the F1-score is de�ned as 0. Note
that the element tn of the confusion table does not a�ect the score, and it is
therefore not a�ected by the sparsity of outliers. The F1-score is used in, e.g.,
Information Retrieval [32, 103] and Machine Learning [45, 136, 154].

Matthews correlation

The Matthews Correlation [107] computes a correlation coe�cient between the
class labels (i.e., outlier or non-outlier) in high and low dimension of each point
in the data sets. It results in a number between −1 (perfect anti-correlation)
and 1 (perfect correlation), with 0 indicating the absence of correlation. Below
we derive an expression for the Matthews Correlation in terms of the elements
of the confusion matrix. Denote the class labels in low-dimensional space by
l1 · · · ln and those in high-dimensional space by h1 · · ·hn, i.e.,

hi =

{
1 if point i is an outlier in high dimension,
0 otherwise,

and

li =

{
1 if point i is an outlier in low dimension,
0 otherwise.
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Here, n is still the total number of points in the data set. The Matthews
correlation can be interpreted as a measure of how well outliers are preserved.
It is denoted by ρ, and computed from

ρ =
1

n− 1

∑n
i=1(li − l̄)(hi − h̄)

σlσh
, (3.10)

where

l̄ =
1

n

n∑
i=1

li =
tp+ fp

n
, h̄ =

1

n

n∑
i=1

hi =
tp+ fn

n
, (3.11)

using notation from the confusion matrix. The σl is the standard deviation of
the li, i.e.,

σl =

√√√√ 1

n− 1

n∑
i=1

(li − l̄)2 =

√√√√ 1

n− 1

n∑
i=1

(l2i − 2li l̄ + l̄2)

=

√√√√ 1

n− 1

n∑
i=1

(li − 2li l̄ + l̄2) =

√
nl̄ − 2nl̄2 + nl̄2

n− 1

=

√
n

n− 1

√
l̄(1− l̄).

Similarly, the standard deviation of the hi becomes σh =
√

n
n−1

√
h̄(1− h̄).

Substituting these quantities into Eq. (3.10) yields

ρ =

∑n
i=1(li − l̄)(hi − h̄)

σlσh
=

∑n
i=1(li − l̄)(hi − h̄)

n
√
l̄h̄
(
1− l̄

)(
1− h̄

)
=

∑n
i=1(lihi − l̄hi − lih̄+ l̄h̄)

n
√
l̄h̄
(
1− l̄

)(
1− h̄

) =

∑n
i=1(lihi)− nl̄h̄− nl̄h̄+ nl̄h̄

n
√
l̄h̄
(
1− l̄

)(
1− h̄

)
=

∑n
i=1(lihi)− nl̄h̄

n
√
l̄h̄
(
1− l̄

)(
1− h̄

) .
Using

∑n
i=1(lihi) = tp and Eq. (3.11), some algebra yields

ρ =
tp · tn− fp · fn√

(tp+ fn)(tp+ fp)(tn+ fp)(tn+ fn)
. (3.12)

If any of tp + fn,tp + fp,tn + fp, or tn + fn are 0, then ρ is de�ned as
0. Note that, since ρ is a correlation, it is not a�ected by the large number
of non-outliers. The Matthews Correlation is often used in Bioinformatics to
assess the performance of classi�ers, see, e.g., [75, 111, 139].
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Relative information score

The Relative Information score was proposed in [80] and relies on ideas from
the Information Theory �eld. In this section we derive an expression for the
Relative Information score based on the confusion matrix. Suppose we consider
one particular point, then a priori we can compute the probability that it is
an outlier from the confusion matrix

P(outlier in high dimension) =
tp+ fn

n
.

After dr, we can compute this same probability for the same point as

P(outlier in low dimension | outlier in high dimension) =
tp

tp+ fn
.

The authors of [80] argue that any well-performing classi�er (dr-method)
should at least result in a confusion table with tp

tp+fn
> tp+fn

n , otherwise
it has lost information from the original data. This forms the basis for their
Relative Information score.

We introduce some notation and denote by P(Ci = c) the probability that
point i in the data set has class c, with c = 1 indicating that it is an outlier in
high dimension, and c = 0 that it is a non-outlier. From the confusion matrix,
we know that

P(Ci = 1) =
tp+ fn

n
, (3.13)

P(Ci = 0) =
fp+ tn

n
. (3.14)

After dr each point is again an outlier or non-outlier, but this time in low
dimension. We denote the probability that point i in low dimension has class
c, given that it also had class c in high dimension, by P(C ′i = c|Ci = c). From
the confusion matrix, we �nd that

P(C ′i = 1|Ci = 1) =
tp

tp+ fn
, (3.15)

P(C ′i = 0|Ci = 0) =
tn

fp+ tn
. (3.16)

In [80], the amount of information (as de�ned by [137]) necessary to correctly
classify point i is measured as

− log2(P(C ′i = c|Ci = c)).
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A dr-method that satis�es P(C ′i = c|Ci = c) > P(Ci = c) for point i then gets
a positive score on point i of

log2

(
P(C ′i = c|Ci = c)

)
− log2

(
P(Ci = c)

)
.

If P(C ′i = c|Ci = c) < P(Ci = c) the score is

log2

(
1− P(Ci = c)

)
− log2

(
1− P(C ′i = c|Ci = c)

)
,

which is negative. When P(C ′i = c|Ci = c) = P(Ci = c) the score is de�ned as
0. The total score I of a dr-method is then

I =

n∑
i=1

[
1{P(C′i=c|Ci=c)>P(Ci=c)} · log2

P(C ′i = c|Ci = c)

P(Ci = c)

+1{P(C′i=c|Ci=c)<P(Ci=c)} · log2

1− P(Ci = c)

1− P(C ′i = c|Ci = c)

]
.

Here, we used the equality log2 x−log2 y = log2(x/y) for compactness. Usually,
when comparing classi�ers, I is reported relative to the expected information
E needed to correctly classify each point:

E = −
n∑
i=1

P(C ′i = c|Ci = c) · log2(P(C ′i = c|Ci = c)). (3.17)

The Relative Information score Ir is then

Ir =
I

E
· 100%. (3.18)

Note that Ir can become negative because I can also be negative. Inserting
Eqs. (3.13)-(3.16) into Eq. (3.17) and Eq. (3.18) yields an expression in terms
of the elements of the confusion matrix.

3.4 Data sets

In the previous sections we described the setup of our experiments, the dr-
techniques, and how we measure their performance. The experiments use three
real-world data sets which we describe below.

Radiant light energy measurements. The measurements in this data set
are from sensor nodes deployed in several o�ce buildings in New York City, as
part of Columbia University's EnHANTs project. Each node has one sensor
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Figure 3.3: Boxplots of the sensors in the �Radiant light energy� data set.

measuring irradiance (radiant light energy), and this data set contains values
measured during about one year. Figure 3.3 shows boxplots of each of the six
sensors in this data set, with the measurements centered and scaled as discussed
in Section 3.3. Each boxplot re�ects the distribution of the 500 measurements
by one sensor, and highlights possible outliers. Each sensor contains 40-60
possible outliers, except for the second sensor which has just one. The Peeling
algorithm from Section 3.3.1 selects which of these points we use as outliers
in our experiments. Note also that the median of each sensor's values (except
sensor 4) is close to the .25 quantile, indicating that those distributions are
skewed towards the smaller values.

More detailed information on the data set can be found in [57], or from the
crawdad website [58] where the data is available for downloading. For compu-
tational reasons, we do not use all the data for the experiments in this chapter,
but select 500 random measurements from each of the six sensors.

Signal strength data. This data originates from a wireless sensor network
deployed in a library building, where sensors measure radio frequency energy
level (rssi) on all 802.15.4 channels in the 2.4 GHz band [116, 117]. In essence,
rssi is an indication of the power level of a signal received by the antenna on
the sensor node. The building has several collocated wifi networks in normal
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Figure 3.4: Boxplots of the seven sensors in the �Signal strength� data set.

operation that cause interference, so the sensor network is used to monitor
the signal strengths on one location in this wifi network. The sensor network
consists of sixteen sensor nodes (each monitoring a single wifi channel) of
which we used only seven for computational reasons [25].

Again, we took 500 randomly selected measurements of each node to form this
data set. The boxplots of the sensor values in this data set are in Figure 3.4.
In contrast to the �Radiant light energy� data set, the measurements of the
sensors in the �Signal strength� data set contain fewer possible outliers and are
more evenly distributed. All possible outliers are positive values, corresponding
to a strong incoming wifi signal.

Decibel levels. This (proprietary) data set consists of �ve sensor nodes de-
ployed in a kindergarten, one in each room of a single-story building, that
are used to monitor the indoor climate. Among other parameters, the nodes
measure decibel levels, and report these regularly to a central base station.
We took 500 measurements from each decibel sensor on a day in May 2011
and included them in this data set. Figure 3.5 demonstrates that most sensors
have fairly evenly distributed values, with several outliers on both sides of the
median. However, kindergartens tend to be noisy rather than quiet, so most
outliers are on the positive side of the median.



3.5 Results and discussion 51

−2

0

2

4

6

1 2 3 4 5
Sensor number

Boxplots of data set "Decibel levels"

C
en

te
re

d 
an

d 
sc

al
ed

 m
ea

su
re

m
en

ts

Figure 3.5: Boxplots of the �ve sensors in the �Decibel levels� data set.

3.5 Results and discussion

We apply the experimental setup of Section 3.3 to the dr-techniques of Sec-
tion 3.2 and summarize the results in Table 3.1. This table contains the F1-
score, Matthews Correlation, and Relative Information score for each com-
bination of dr-technique and data set, where a high score implies that the
technique preserves outliers well on that data set. Since mds and t-sne rely on
a random initialization, we repeated the computation of scores 25 times, and
reported the average and standard deviation of the results in Table 3.1. For
the F1-scores, mds achieves the best results, with values more than twice as
large as those of pca on the �rst and third data set. The scores of t-sne are
low, and suggest that it does not preserve outliers well. With the Matthews
Correlation and Relative Information score we see similar results: mds consis-
tently attains high scores, pca performs reasonably well on the �rst and third
data set, and t-sne has overall low scores.

We can visually inspect what happens to outliers after applying the three
dr-methods. In Figures 3.6-3.8 we plot the low-dimensional version of the
second data set �Signal Strength� (in circles), with outliers in the original
high-dimensional data set marked by a triangle. Figure 3.6 demonstrates that



52 Outlier Preservation by Dimensionality Reduction

dr-technique Light Signal Decibel

F1-score Avg(std) Avg(std) Avg(std)
pca 0.3333 (0.0000) 0.0000 (0.0000) 0.3529 (0.0000)
mds 0.8316 (0.1076) 0.8705 (0.0828) 0.7212 (0.0739)
t-sne 0.1067 (0.1587) 0.0073 (0.0364) 0.0352 (0.0718)

Matthews corr.
pca 0.3302 (0.0000) -0.0149 (0.0000) 0.3477 (0.0000)
mds 0.8439 (0.0907) 0.8767 (0.0754) 0.7374 (0.0617)
t-sne 0.1389 (0.2146) 0.0033 (0.0472) 0.0497 (0.1170)

Rel. Inf. score

pca 0.7261 (0.0000) -0.1295 (0.0000) 0.6398 (0.0000)
mds 1.0197 (0.0465) 0.9118 (0.0299) 0.8409 (0.0238)
t-sne 0.2583 (0.4720) 0.0020 (0.1364) 0.1228 (0.3021)

Table 3.1: F1-score (∈ [0, 1]), Matthews Correlation (∈ [−1, 1]), and Relative
Information Score (∈ (−∞,∞)) of each combination of dr-technique and data
set. The reported values are the mean and standard deviation of 25 runs.
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Figure 3.6: Data set �Signal strength� after dimensionality reduction with
pca (circles). The triangles mark the outliers that were found in the original
high-dimensional data set.
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most of the outliers are mapped to the interior of the reduced data set by pca.
In contrast, the low-dimensional data set in Figure 3.7 created by mds has all
high-dimensional outliers close to the boundary. Lastly, t-sne also maps most
outliers to the interior of the low-dimensional data set (shown in Figure 3.8),
which illustrates its low scores.

By analyzing the objective of the three dr-techniques, we can explain the
observed di�erences in performance. Firstly, pca is a technique that focuses
on preserving variance, so it only preserves outliers if they happen to be in a
direction of high variance. Figure 3.1 from the introduction provides another
illustration of what can happen to an outlier that is in a direction with low
variance. The �gure corresponds to reducing a two-dimensional data set to
one dimension (the line) with pca, and clearly demonstrates how the top-left
outlier ends up in the center of the reduced data set.

mds optimizes the squared stress optimization criterion in Eq. (3.4), which
includes the term ||xi − xj ||M . This term is the distance between two points
xi and xj , which is typically large when one of the points is an outlier. The
criterion uses these distances to the power 4, so the outliers have a large e�ect
on the squared stress criterion. Hence, minimizing these distances has a large
positive e�ect on this criterion and thus mds preserves outliers well.

The t-sne technique optimizes the Kullback-Leibler divergence (3.8), which
attaches high costs to nearby points in high-dimensional space (large pij) that
are mapped to far away points in low-dimensional space (small qij). Hence,
nearby points in high-dimensional space are kept nearby in low-dimensional
space. This does not hold for points that are far away in high-dimensional
space � outliers, which have low pij � as they are mapped to nearby points
(with high qij) with low costs. So t-sne tries to keep nearby points nearby and
is therefore more suitable for preserving clusters than for preserving outliers.

From the analysis above we see that from the three selected methods, mds
achieves the highest scores and is best capable of preserving outliers. However,
it is not necessarily the best dr-technique available, since many others exist
in literature. In particular, the class of supervised dr-techniques (pca, mds,
t-sne are unsupervised) might provide methods with better performance than
mds. These techniques aim to reduce dimensionality while simultaneously
trying to retain �su�cient information� for a classi�cation task (which, in our
case, would be retaining outliers). Hence, they could be applied to the scenario
in this chapter, and possibly have good performance. Nevertheless, supervised
dr-techniques are not included here, because we assume that the dr-techniques
have no apriori knowledge about the outliers, and thus they are not suitable
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Figure 3.7: Data set �Signal strength� after dimensionality reduction with
mds (circles). The triangles mark the outliers that were found in the original
high-dimensional data set.
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Figure 3.8: Data set �Signal strength� after dimensionality reduction with
t-sne (circles). The triangles mark the outliers that were found in the original
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for this chapter. Readers interested in supervised dr-techniques are referred
to, e.g., [141].

The performance measures in this chapter are all based on the elements of
the confusion matrix, which do not contain information about whether a point
is a `large' or `small' outlier. Hence, with these scores we are not able to,
e.g., �nd out which outlier has the large e�ect on a score. This `binary' view
of an outlier is, however, important for the scenario in the current chapter.
Our motivation comes from applications where it is of critical importance to
correctly identify an outlier after dr. If an outlier is no longer an outlier after
dr, then it is useless for the application. Nevertheless, if this `binary' approach
can be relaxed from the point of view of the application, other scores might be
more appropriate (see, e.g., [31]).

3.6 Conclusion

In this chapter we described three well-known dr-techniques (pca, mds, and
t-sne) and analyzed how well they are capable of preserving outliers. Based
on three scores (F1-score, Matthews Correlation, and Relative Information
score), and using three real-world data sets, we assessed the performance of
each method on each data set. The resulting analysis demonstrates that,
among the three described dr-methods, mds is best at preserving outliers.
It consistently achieves the highest scores, and performs signi�cantly better
than both pca and t-sne. In the discussion, we explain that this di�erence in
performance is caused by the speci�c objectives of the techniques: pca tries
to preserve variance, mds preserves large distances (i.e., outliers), and t-sne
preserves clusters. In general, we recommend that the dimensionality reduc-
tion technique is chosen with the intended application in mind. For outlier
detection mds is a good choice, pca is designed for preserving variance, and
for preserving clusters t-sne is a good choice. Future research includes investi-
gating speci�c types of dimensionality reduction (e.g., supervised dr-methods,
real-time dr-methods), and how they are a�ected by outliers.



56 Outlier Preservation by Dimensionality Reduction



4

Throughput Modeling of the
IEEE MAC for Sensor Networks

In this chapter we focus on the `network' aspect of a `sensor network'. The
increasing number of sensors in a network result in large number of mea-
surements that have to be transmitted to, e.g., a middleware component for
further processing, thereby stressing the processing capabilities of the net-
work. We consider a speci�c performance indicator of a network, namely the
saturation throughput . This property re�ects at what speed the network is able
to process measurements by sensors when a large number of these measure-
ments is o�ered. We provide a model for analyzing the saturation throughput
of the ieee 802.15.4 mac protocol, which is the de-facto standard for wire-
less sensor networks, ensuring fair access to the channel. To this end, we
introduce the concept of a natural layer, which re�ects the time that a sensor
node typically has to wait prior to sending a packet. The model is simple and
provides insight how the throughput depends on the protocol parameters and
the number of nodes in the network. Validation experiments with simulations
demonstrate that the model is highly accurate for a wide range of parameter
settings of the mac protocol, and applicable to both large and small networks.
As a by-product, we discuss fundamental di�erences in the protocol stack and
corresponding throughput models of the popular 802.11 standard.

This chapter is based on the results presented in [9].
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4.1 Introduction

The most widely used standard for sensor networks is the ieee 802.15.4 pro-
tocol, which is aimed at providing low-cost, low-power communications for
resource-limited devices. It is particularly suitable for sensor networks, since
sensor nodes are typically battery powered and have few computational re-
sources available. Part of this standard is the mac protocol, which is responsi-
ble for governing access to the wireless channel. In particular, it describes the
collision avoidance (csma-ca) mechanism employed by nodes to limit loss of
packets due to collisions. In essence, this mechanism instructs nodes to wait a
random amount of time before attempting a transmission. Without this mech-
anism, each node in the network would continuously attempt transmissions,
causing massive loss of packets and large periods of inactivity on the network.
However, the waiting time enforced by the csma-ca mechanism might de-
crease the throughput of the network signi�cantly compared to the maximum
speci�ed in the standard.

In the literature, much work has been done on analyzing throughput of the ieee
802.15.4 mac protocol. This mac protocol can be used in two di�erent con-
�gurations: slotted and unslotted. The unslotted con�guration is the simplest
version, whereas the slotted protocol has richer features. Both con�gurations
appear in the literature, and we review the state of the art below. The authors
of [83] analyze both throughput and delay of the unslotted ieee 802.15.4 mac
for a simple network containing a single node. They formulate an expression
for the throughput and the delay in terms of the protocol parameters, and
verify these with results from a real sensor network. [102] looks at the unslot-
ted mac in more detail and formulates a three dimensional Markov Chain for
the csma-ca process. From this, expressions for link reliability, packet delay,
and energy consumption are derived. The results are valid for both a network
in star formation, as well as for a general multi-hop network. For large-scale
networks an approximate model is constructed, in order to keep computations
numerically tractable. Simulations are used to validate the model. [85] ana-
lyzes throughput for the unslotted mac by combining a renewal process for the
physical layer with a semi-Markov process for the mac layer. The analysis re-
sults in equations that are solved via a �xed-point procedure, and the resulting
throughput closely resembles values observed in a discrete event simulation.

For the slotted mac, [126] is similar to [102]. The authors investigate through-
put by constructing a two-dimensional Markov Chain, and derive an expression
for the throughput. They then compare the results of the model with the out-
come of simulations, and demonstrate that their model accurately captures the
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throughput. In [89], Lee et al look at various performance metrics, including
throughput and average service time for a transmission. Their method relies
on viewing a cycle of a transmission and the subsequent waiting by a node as a
renewal process. They derive a model that is solved via a �xed point iteration,
and demonstrate its accuracy by comparing it to results from a discrete event
simulation.

Although the papers mentioned above provide insight into the throughput be-
havior of sensor networks, the models involved are typically rather complex.
Motivated by this, the goal of this chapter is to provide a simple yet accurate
model for analyzing the throughput. To this end, we propose a new concept
called the natural layer which re�ects the time a sensor node typically has to
wait as part of the csma-ca process prior to sending a packet (as detailed in
Section 4.2.1). Using this concept, we develop a simple model for the through-
put, and use simulation results to demonstrate that it is accurate for a wide
range of realistic parameter settings. In our model, we focus on the unslotted
version of the mac protocol. The model provides insights into the di�erences
between ieee 802.15.4 and the popular 802.11 standard. In particular, we
highlight the aspect of `freezing' in the 802.11 protocol, and discuss how the
absence of freezing in ieee 802.15.4 in�uences the saturation throughput.

The organization of the chapter is as follows. In Section 4.2 we outline the
ieee 802.15.4 csma-ca protocol, list model assumptions and notation for our
analysis. Then, in Section 4.3 we derive an expression for the throughput of
sensor networks with a single backo� layer. Subsequently, in Section 4.4 we
introduce the concept of a natural layer and use this to extend the model to
a setting with multiple layers. In Section 4.5 we show simulation results to
demonstrate that the model captures the throughput accurately for a wide
range of parameter settings. Next, in Section 4.6 we discuss key di�erences
between the ieee 802.15.4 and 802.11 standards, and how these di�erences
in�uence modeling of the throughput. Finally, Section 4.7 contains concluding
remarks and ideas for future research.

4.2 Preliminaries

In this section we brie�y outline the ieee 802.15.4 csma-ca protocol, because a
good understanding of this mechanism is essential when modeling throughput.
Additionally, we list the model assumptions and provide some preliminary
remarks.
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Layer 0

0 W0-1
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0 W1-1

...

Layer m

0 Wm-1

Figure 4.1: The csma-ca mechanism applied by each node in the network.

4.2.1 The IEEE 802.15.4 CSMA-CA protocol

The csma-camechanism states that, in order to avoid collisions, a node should
wait a random amount of time (known as the backo� time) prior to sending a
packet. This waiting time a�ects throughput, and a thorough understanding
of the csma-ca mechanism is key to modeling throughput. The backo� time
is drawn uniformly from the interval [0,W0−1], where W0 is the initial backo�
window (controlled via parameter macMinBE ). The resulting backo� time is
discrete, and corresponds to the number of time slots that the node has to
wait. The length (in seconds) of a time slot is de�ned in ieee 802.15.4. After
the required backo� time, the node assesses if the channel is idle and if it is,
the node sends the packet. If, however, the channel is busy, the window W0 is
doubled and the backo� process starts again. This procedure is repeated until
the packet is sent.

Initially, the backo� window W0 is set to 2macMinBE and it is repeatedly
doubled during the csma-ca process. However, overly long backo� times cause
unnecessary delays, so the csma-ca mechanism de�nes a maximum backo�

exponent (macMaxBE ). Once the backo� window reaches 2macMaxBE , the
doubling is disabled.

Figure 4.1 illustrates the csma-ca mechanism as described above. The node
starts in layer 0 and draws a random backo� time from the interval [0,W0−1].
Then it waits until this backo� time has passed, and does a channel assessment.
If the channel is busy, the process moves to layer 1. The window in layer 1
is twice as large as that of layer 0 (W1 = 2 · W0) because of the doubling
of the window. The node now draws a backo� time from [0,W1 − 1], and
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again waits until this time has passed. The window is repeatedly doubled
until the backo� exponent reaches macMaxBE (layer m), at which point the
doubling is disabled. The csma-ca process then continues until the packet is
sent successfully.

4.2.2 Assumptions

Before starting our throughput analysis we mention several assumptions we
make in this chapter.

• Sensor nodes are structured as a star network, and all nodes send packets
to the sink node.
• The network is saturated, meaning that nodes always have a packet ready
for transmission. Consequently, there are no periods of inactivity on the
channel caused by a lack of packets.
• The network uses non-beacon mode, and the unslotted version of the
csma-ca mechanism.
• Acknowledgements are disabled.
• If two nodes �nish a backo� cycle simultaneously, only one of the packets
is transmitted. The other packet moves to the next backo� layer. Hence,
there are no packet collisions. In Section 4.6 we revisit this topic.
• Packets go through the csma-ca mechanism until they are sent.

4.2.3 Preliminary remarks

Notation. The ieee 802.15.4 mac variables macMinBE and macMaxBE are
cumbersome in a mathematical analysis, so we use a di�erent notation in the
remainder of this chapter. By W0 we denote the backo� window for layer 0,

i.e., W0 = 2macMinBE . We use m instead of �macMaxBE -macMinBE � to
indicate how often layer 0 is doubled in size. Finally, T is the number of time
slots (see below) required to send one packet.

Continuous backo� time. For this chapter, we assume that the random
backo� times in the csma-ca mechanism are drawn from a continuous uniform
distribution, even though ieee 802.15.4 speci�es a discrete uniform distribu-
tion. This is done purely for notational convenience, and our method works
for discrete uniform distributions as well.
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Channel speed. We set the channel speed (and thus the maximum through-
put) to 250,000 b/s. The ieee 802.15.4 standard speci�es several options for
the channel speed, depending on con�guration and geographical location. Our
choice for the channel speed is not essential to the model in this chapter; it
works for other channel speeds as well. To emphasize this, we always normalize
the throughput to the interval [0, 1] when reporting on it.

Unit of time. It seems natural to report on time in units of seconds, but this
has several drawbacks. First, the time scales involved are small (in the order
of fractions of milliseconds), and are thus somewhat laborious to work with.
Second, the times depend on the speed of the channel, and this can vary per
con�guration and per geographical region. Even though we choose a certain
channel speed in this chapter, our analysis works for other choices as well. To
preserve this neutrality, we use the time slots from the csma-ca process as
the unit of time throughout this chapter. These time slots are con�guration-
and region-neutral, and can easily be converted to seconds if needed (this is
described in the ieee 802.15.4 standard). An additional bene�t of using time
slots is that we can quickly compare, e.g., the time needed to transmit a packet
to the waiting times described by the csma-ca process. Finally, note that a
non-integer number of time slots is also meaningful when using them as unit
of time � for instance, a single packet transmission takes 12.7 time slots.

4.3 Single-layer analysis

We start our throughput analysis by looking at a simpli�ed version of the
csma-ca mechanism. In this section we assume that it uses just one layer,
layer 0. This simpli�ed scenario forms an introduction to the complete through-
put analysis, later in this chapter. Figure 4.2 shows n nodes going through
the csma-ca process of transmitting packets (marked by T ) and backing o�
(denoted by u1,1, . . . , un,2). The interval lengths u1,1, . . . , un,2 are backo� times
drawn from the uniform distribution on interval [0,W0 − 1] (all nodes are at
backo� layer 0 in our simpli�ed scenario). Node 1 is the �rst to send a packet,
and during the transmission at node 1, the other nodes are going through sev-
eral backo� cycles. In particular, node 2 starts three backo� cycles (of length
u2,1, u2,2, u2,3, respectively), and node n starts two cycles (of length un,1 and
un,2). At the end of the transmission at node 1, this node also starts a backo�
cycle (of length u1,1). The �rst backo� cycle to end after the transmission at
node 1 is the one of length u2,3 at node 2, so the next transmission occurs at
node 2. This process continues over time.
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Ic

Node 1
T u1,1

Node 2
u2,1 u2,2 u2,3 T

...
...

Node n
un,1 un,2

Figure 4.2: Events in the csma-ca process in between two transmissions
(marked by T ). The interval lengths u1,1, . . . , un,2 are backo� times drawn
from the uniform distribution on interval [0,W0 − 1].

For determining throughput, we analyze the time that the channel is idle in
between two transmissions. In Figure 4.2, this idle time (denoted by Ic) is
the time between the end of the transmission at node 1, and the start of the
next transmission at node 2. Note that at the end of the packet transmission
at node 1, the other nodes have already partly gone through a backo� cycle.
Node 1, in contrast, starts a new backo� cycle. Our throughput analysis takes
these two aspects into account: we determine the distribution of the channel
idle time using the distribution of the length of the backo� cycle at node 1, and
using the distribution of the residual of the backo� cycles at the other nodes.

To start the analysis we introduce some notation. U
(k)
0 is the random variable

representing the backo� time at layer 0 for node k (1 ≤ k ≤ n). It is uniformly
distributed (continuously, by assumption) on the interval [0,W0 − 1]. The
corresponding probability density function (pdf) and cumulative distribution
function (cdf) are denoted by f

U
(k)
0

(t) and F
U

(k)
0

(t), respectively. Next we

formulate the distribution of the residual of U
(k)
0 . To be precise, suppose a

node starts a backo� cycle of length t and the node that is currently sending
a packet �nishes at time s ∈ [0, t]. We are interested in the distribution of the

residual backo� time t− s. We denote this residual backo� time by Ū
(k)
0 , with
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pdf f
Ū

(k)
0

(t) and cdf F
Ū

(k)
0

(t). The density of Ū
(k)
0 is given by

f
Ū

(k)
0

(t) =
1− F

U
(k)
0

(t)

EU (k)
0

, t > 0, 1 ≤ k ≤ n, (4.1)

which is the well-known distribution of the residual backo� time [13]. For
the throughput analysis we are interested in the idle time of the channel,
i.e., the time in between the end of a transmission, and the start of the next
one. If we assume, without loss of generality, that node 1 is the one �nishing a

transmission, then the idle time involves random variable U
(1)
0 (for node 1), and

Ū
(2)
0 , . . . , Ū

(n)
0 for the remaining nodes. We are looking for the �rst backo� cycle

to �nish, i.e., the expectation of the minimum of these n random variables. The

idle time of the channel, Ic, is then given by Ic = min{U (1)
0 , Ū

(2)
0 , . . . , Ū

(n)
0 }.

We determine FIc(t), the cdf of Ic, for t > 0 via:

FIc(t) = P(Ic ≤ t)

= P(min{U (1)
0 , Ū

(2)
0 , . . . , Ū

(n)
0 } ≤ t)

= 1− P(min{U (1)
0 , Ū

(2)
0 , . . . , Ū

(n)
0 } ≥ t)

= 1− P(min{U (1)
0 , Ū

(1)
0 , . . . , Ū

(1)
0 } ≥ t)

= 1− P(U
(1)
0 ≥ t) ·

(
P(Ū

(1)
0 ≥ t)

)n−1
(4.2)

= 1− (1− F
U

(1)
0

(t)) · (1− F
Ū

(1)
0

(t))n−1

= 1− EU (1)
0 · f

Ū
(1)
0

(t) · (1− F
Ū

(1)
0

(t))n−1.

In the �fth equality in Eq. (4.2) we used independence of the random variables

U
(1)
0 , Ū

(2)
0 , . . . , Ū

(n)
0 , and in the last equality we substituted Eq. (4.1). The

expectation of Ic can now be obtained by integrating the tail probabilities:

EIc =

∫ W0−1

0
P(Ic ≥ t)dt

=

∫ W0−1

0

(
1− FIc(t)

)
dt

=

∫ W0−1

0
EU (1)

0 f
Ū

(1)
0

(t) · (1− F
Ū

(1)
0

(t))n−1dt (4.3)

=
EU (1)

0

n

=
W0 − 1

2n
,
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where we used in that last equality that U
(1)
0 is uniform on [0,W0−1]. Conform

our expectation, with n = 1 the waiting time is half the initial backo� window
W0, and as n → ∞ the waiting time tends to 0. The throughput Sc is now
computed using

Sc =
T

T + EIc
=

T

T + W0−1
2n

, (4.4)

with T the number of time slots needed to transmit a single packet. Numer-
ical experiments in Section 4.5 demonstrate that this expression does indeed
capture the throughput accurately.

4.4 Multi-layer analysis

When the assumption of a single layer is dropped, the situation becomes con-
siderably more complex. At the end of the packet transmission we now no
longer know the distribution of the remaining n− 1 nodes. For instance, after
the packet transmission at node 1 in Figure 4.2, node 2 has been through two
backo� cycles and is busy with at least its third backo� cycle. It might even
be more than that, since the �gure does not show what happened at node
2 prior to the cycle of length u2,1. Potentially, a throughput analysis of the
multi-layer scenario involves a large and complex model including the behavior
of individual nodes. Clearly, such models are intractable for larger networks
with many nodes. In this section we provide a simple model for the throughput
that allows us to overcome this issue. Before continuing, we recall that in a
multi-layer scenario, the backo� window depends on the layer. To be precise,
in layer x the window Wx is

Wx = W0 · 2min(x,m). (4.5)

So each time a node moves to the next backo� layer, the window is doubled,
until it reaches layer m. At layer 0, the window is W0, and at layer x ≥ m
the window is W02m. See also the description of the csma-ca protocol in
Section 4.2.1. For now, suppose that at the end of a packet transmission,
the n − 1 other nodes are all at the same layer, and denote this layer by x.
Node 1 (which just �nished the transmission) is at layer 0. Following the
notation of the previous section, we denote the backo� time at layer x for

node k (1 ≤ k ≤ n) by U (k)
x , and the corresponding remainder by Ū

(k)
x . Then,

we have Ic(x) = min{U (1)
0 , Ū

(2)
x , . . . , Ū

(n)
x }. Note that we changed notation

from Ic to Ic(x), re�ecting the dependency on layer x. Repeating the steps of
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the previous section gives FIc(x)(t) for t > 0:

FIc(x)(t) = P(Ic(x) ≤ t)

= P(min{U (1)
0 , Ū (2)

x , . . . , Ū (n)
x } ≤ t)

= 1− P(min{U (1)
0 , Ū (2)

x , . . . , Ū (n)
x } ≥ t)

= 1− P(min{U (1)
0 , Ū (1)

x , . . . , Ū (1)
x } ≥ t) (4.6)

= 1− P(U
(1)
0 ≥ t) ·

(
P(Ū (1)

x ≥ t)
)n−1

= 1− (1− F
U

(1)
0

(t)) · (1− F
Ū

(1)
x

(t))n−1

= 1− EU (1)
0 · f

Ū
(1)
0

(t) · (1− F
Ū

(1)
x

(t))n−1.

We can also compute EIc(x) as before by integrating the tail probabilities via

EIc(x) =

∫ W0−1

0
P(Ic(x) ≥ t)dt. (4.7)

Here, we used that U
(1)
0 is uniform on [0,W0− 1] to establish the interval over

which to integrate. The resulting expression for EIc(x) requires several pages to
display, so we omit it here for compactness. The expression for throughput in
Eq. (4.4) still holds, but we repeat it here with adapted notation to emphasize
the dependence on x:

Sc(x) =
T

T + EIc(x)
. (4.8)

We now focus our attention on the throughput analysis of a single node. With-
out loss of generality, we assume that this is node 1. Prior to a packet trans-
mission, node 1 spent some time waiting as part of the csma-ca process. By
assumption, we know that it is currently at layer x and thus we also know how
much time node 1 spent waiting: the sum of the expected backo� time at layers
0, . . . , x. However, for reasons that become apparent later, we need a sensible
interpretation of a layer number x that is non-integer. To this end, suppose
that x = bxc + α, with α ∈ [0, 1) and bxc the largest integer smaller than x.
When a node is at a decimal layer x, we interpret this as it having to wait at
all integer layers 0, . . . , bxc , plus a fraction α at the layer with backo� window
Wbxc+α. This interpretation is consistent with the integer view of layers when
α = 0 and when α tends to 1.

With this interpretation, we denote the waiting time on a node by IN (x) and
calculate its expectation from

EIN (x) =

bxc∑
j=0

EU (1)
j + αEU (1)

x . (4.9)
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We can expand the sum in Eq. (4.9) further, taking care that the doubling
is stopped after layer m and that we do not know whether x is larger or

smaller than m. With U
(1)
x uniformly distributed on [0,Wx − 1], some careful

calculations yield

EIN (x) = − bxc+1
2 +W0

2min(bxc,m)+1−1
2

+ W02m

2 (bxc −m)+ + αW0
2min(x,m)−1

2 ,
(4.10)

where (x)+ = max(0, x). Similar to Eq. (4.4), we can �nd the throughput of
one particular node using

SN (x) =
T

T + EIN (x)
. (4.11)

We now have an expression for the throughput on the channel from Sc(x) in
Eq. (4.8), and for the throughput provided by each node (SN (x) in Eq. (4.11)).
In a fair star network, all nodes are identical and each contributes an equal
share to the throughput on the channel. Therefore, the following consistency
relation should hold:

Sc(x) = n · SN (x). (4.12)

Analyzing the saturation throughput is now done by calculating a value x such
that Eq. (4.12) holds.

In Figure 4.3, the throughput expressions for n · SN (x) and Sc(x) are plotted
for a network with n = 10 nodes. We see that for x = 0, n · SN (x) > Sc(x)
and that n · SN (x) decreases to 0 as x increases. Sc(x), on the other hand,
becomes constant as x increases, and the two lines intersect at the dotted line.
We are looking for the value of x for which this intersection occurs (denoted
by x∗). The following lemma shows that x∗ exists and is unique.

Lemma 4.4.1. The consistency relation in Eq. (4.12) has a unique solution x∗.

Proof. We begin the proof by inspecting Eq. (4.12) with n = 1, for which
it reduces to EIN (x) = EIc(x). For EIc(x), Eq. (4.7) is the same as Eq. (4.3)
so that EIc(x) = (W0 − 1)/2. The same expression results from Eq. (4.10) if
we calculate EIN (0), and thus for n = 1 the natural layer is x∗ = 0. This
corresponds to intuition, since with a network containing 1 node, the channel
is always free at the end of the backo� time at layer 0, and there is no need to
go to higher layers.
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n · SN (x)

Sc(x)
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.

.

Figure 4.3: Throughput n · SN (x) and Sc(x) for a network with n = 10
nodes. SN (x) decreases as x increases, whereas Sc(x) becomes constant. The
x value at which the two lines intersect is the natural layer x∗.

To show uniqueness for the case with n > 1 we inspect the behavior at x = 0
and as x→∞. At x = 0 we have EIc(0) = W0−1

2n (again from Eq. (4.3)), and
thus

Sc(0) =
T

T + W0−1
2n

=
n · T

nT + W0−1
2

.

From Eq. (4.10) we get EIN (0) = W0−1
2 and thus

n · SN (0) =
n · T

T + W0−1
2

.

So at x = 0 we have n · SN (0) > Sc(0) (since n > 1).

As x → ∞, EIN (x) tends to in�nity linearly, and thus SN (x) tends to 0.
However, EIc(x) becomes constant as x → ∞, because the doubling of Wx is
stopped when x > m. Hence, Sc(x) also tends to a constant and as x → ∞
we have n ·SN (x) < Sc(x). Consequently, by the Intermediate Value Theorem
[123], somewhere in the interval (0,∞), there is a unique x = x∗ where the
monotonously decreasing n ·SN (x) crosses the constant Sc(x), so that we have
Sc(x

∗) = n · SN (x∗).
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De�nition We call the unique solution x∗ to Eq. (4.12) the natural layer.
Based on Eq. (4.10), the natural layer is interpreted as the expected amount
of time that a node typically has to wait as part of the csma-ca process, prior
to sending a packet.

Observe that there is no guarantee that the natural layer x∗ is an integer, which
is why we extended the interpretation of a layer to non-integer values. In the
next section we demonstrate that the throughput Sc(x

∗) closely resembles the
results of simulations.

4.5 Experiments

We validate the model described in the previous section by comparing it to
the results obtained from a discrete event simulation of the csma-ca process.
Finding the throughput using our model is done by numerically �nding the
natural layer x∗ for which Eq. (4.12) holds. Once x∗ is found, we use Eq. (4.8)
to calculate Sc(x

∗).

In Figure 4.4 we compare the throughput Sc obtained from our model (lines),
to the results of the discrete event simulations (markers). The �gure shows the
throughput for varying number of nodes n, and several ieee 802.15.4 parameter
settings (for easy notation we report W0 and Wm instead of the corresponding
parameter values for macMinBE and macMaxBE ). The values from the anal-
ysis closely match those of the simulations, demonstrating that our analysis
accurately captures the throughput. Also, as n increases the throughput tends
to 1 for all parameter settings. This is as we expected, since we assumed in
Section 4.2.2 that there are no collisions between packets that simultaneously
�nish a backo� cycle. We revisit the topic of collisions in the next section.

Note that with n = 1 the natural layer is always x∗ = 0 and the multi-layer
analysis in Section 4.4 should match the result of the single-layer analysis in
Section 4.3. Substituting n = 1 in Eq. (4.4) yields the values in Table 4.1,
which nicely match the left-most markers in Figure 4.4. Next, we inspect the
natural layer numbers corresponding to the graphs in Figure 4.4. These are
plotted in Figure 4.5, where for small n the lines show a slight curvature, and
as n increases they suggest a linear increase in the natural layer. These e�ects
are due to the mac protocol stopping the doubling of the backo� window after
layer m. We expect that with a deeper analysis we are able to explain the
e�ects in detail.
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Figure 4.4: Throughput Sc as computed via the natural layer (solid line),
and as obtained from simulations (markers), for varying number of nodes in
the network (n).
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Figure 4.5: The natural layer x∗ as computed in our throughput analysis for
varying number of nodes in the network (n).
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W0 Wm Sc

2 16 0.96
2 64 0.96
4 16 0.89
8 32 0.78

Table 4.1: Throughput according to the single-layer analysis from Eq. (4.4)
for the parameter values used in Figure 4.4.

Figures. 4.4-4.5 demonstrate that despite its simplicity the model leads to an
accurate prediction of the throughput for a wide range of protocol parameter
settings. In the next section we make several remarks relevant to the through-
put model discussed in this chapter.

4.6 Discussion

Comparison to 802.11. Many papers investigating saturation throughput
are based on the paper by Bianchi [29], who formulates a model for the through-
put of a wlan network as speci�ed in the ieee 802.11 standard. The mac
protocols of ieee 802.11 and ieee 802.15.4 are highly similar, except for a
property called freezing. In 802.11, a node that is backing o� does a channel
assessment at the end of each time slot, to see if the channel is busy. If the
channel is busy, the backo� process is paused until the channel is free again.
So during a transmission, all non-sending nodes are idle and not backing o�.
This `freezing' feature, which is absent in ieee 802.15.4, has signi�cant impact
on the throughput performance of 802.11.

Speci�cally, consider the three event types on the channel identi�ed by Bianchi:
a successful transmission, a collision between two or more packages, and a
backo� event. The probability of these events is easy to derive from the two-
dimensional discrete-time Markov chain (de�ned in [29]) that describes the
evolution of the backo� state (i, k), where i is the retransmission counter and
k is the backo� counter. For the ieee 802.15.4 protocol the absence of freezing
implies that the Markov chain has to be extended to include the duration
of transmissions (as done in, e.g., [126]). As an alternative, in the present
chapter we propose a di�erent approach by introducing the concept of a natural
layer, allowing us to consider a much simpler, single-layered model for the
throughput.
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Figure 4.6: Collision rate when a discrete backo� time distribution is used
in simulations. The experiment shows a zero collision rate (diamonds) because
(1) a random waiting time is used prior to sending the �rst packet, and (2)
a packet transmission is equivalent to a non-integer number of backo� steps.
When the �rst is disabled, and the second modi�ed to an integer, the collision
rate is high and steadily approaches 1 as the number of nodes increases (circles).

Collisions. A collision between packets occurs when two or more nodes �nish
backing o� at the same time slot, see the channel idle, and consequently trans-
mit a packet simultaneously. In the scenario with continuously distributed
backo� times (as we assume in this chapter), it is highly unlikely that two or
more nodes �nish backing o� at the same time and cause a collision. At �rst
glance, this event seems more likely in the scenario with a discrete distribution
for the backo� times (as used in ieee 802.15.4). If two nodes draw the same
(discrete) backo� time and start the backo� process at the same time, then
they potentially cause a collision.

There are, however, two factors that make it unlikely that the two backo�
processes start simultaneously. First, our discrete event simulation waits a
random amount of time before processing the �rst packet. This amount of time
is drawn from a continuous uniform distribution, thereby preventing the backo�
process at the nodes to start simultaneously. In practice, such a precaution is
advised as well. Second, a packet transmission is equivalent to a non-integer
number of backo� steps.
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To verify this observation about collisions, we change the distribution of the
backo� time to a discrete uniform distribution, run simulations again, and
record the collision rate. The result is plotted in Figure 4.6 (blue diamonds),
and demonstrates that the collision rate is equal to 0, even for a large number
of nodes. Next, we disable the random waiting time that is used before pro-
cessing the �rst packet, and modify the packet size such that a transmission
takes an integer number of backo� steps. Figure 4.6 shows a collision rate that
approaches 1 as the number of nodes n in the network increases (black circles).
Hence, with the disabled waiting time and the modi�ed packet size, most trans-
missions cause a collisions as expected. This experiment demonstrates that the
inclusion of a random waiting time prior to the �rst packet transmission and
of the non-integer number of backo� steps needed for a packet transmission,
e�ectively prevent collisions.

Avoiding long waiting times. Figure 4.4 demonstrates that our model for
the throughput accurately captures the throughput recorded in a discrete event
simulation. However, a close look at the line corresponding to parameter values
W0 = 8,Wm = 32 (the ieee 802.15.4 defaults) suggests a slight irregularity for
our model at n = 2. This irregularity is exaggerated in Figure 4.7, where we
decrease the packet size from 1,250 to 250 bits and �x W0 = 8,Wm = 32. For
small packet sizes, our model only captures throughput well for large n.

The irregularity is due to a small packet size as compared to the backo� times.
For example, suppose node 0 starts a packet transmission and the other n− 1
nodes are backing o�. Node 0 then transmits the packet, and draws a new
backo� time from interval [0,W0 − 1]. If the sum of this transmission time
and backo� time is smaller than the residual backo� times at the other n− 1
nodes, node 0 also transmits the next packet. Hence, in a scenario where the
packet size is small and the residual backo� times are large, it is likely that
several consecutive transmissions occur at node 0. We observed the tendency
for consecutive transmissions in the discrete event simulation as well. The
irregularity vanishes for increasing n, since then the minimum of the residual
backo� times at the other n− 1 nodes decreases.

Our model assumes, in Eq. (4.6), that the random variables for the residual

backo� time Ū
(k)
x∗ of the n− 1 waiting nodes are independent. In the situation

described above, this assumption fails and our model no longer captures the
throughput well. This is, however, not a severe restriction on our model: if a
network operator expects mainly small packets, he has the option to choose
appropriately small values for the window sizes, thereby avoiding situations
with long waiting times. Our model can be used to �nd values for the protocol
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Figure 4.7: Throughput Sc via the natural layer (solid line), and simulations
(markers), for decreasing packet size.

parameters such that waiting times are acceptable.

Near insensitivity to the backo� time distribution. Our throughput
model is also valid for non-uniform backo� time distribution. Section 4.4 is
written for general U

(k)
x , and only requires a change to the lower and upper

bound of the integral in Eq. (4.7) if the distribution has a domain di�erent
from [0,W0]. On the node level, Eqs. (4.9) and (4.11) remain valid, as does
the consistency relation Eq. (4.12).

4.7 Conclusion

In this chapter we presented a simple yet powerful method for analyzing the
throughput of a network of sensor nodes running the ieee 802.15.4 mac proto-
col. We introduced the concept of a natural layer which allowed us to analyze
the waiting time involved in the mac protocol. Then, we formulated a model
for the throughput on the channel, and a model for the contribution to the
throughput of a single node. Combining these two resulted in an equation
from which we numerically computed the natural layer, which in turn gave
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the throughput. The model was validated with experiments from a discrete
event simulation, and demonstrated that our model accurately captures the
throughput from the simulations.

Future work includes adding more features of the mac protocol, particularly
acknowledgements and a maximum number of layers in the csma-ca process.
Central to this research will be analyzing how much extra idle time these
aspects cause in the wireless channel, and how they in�uence the natural layer.
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5

On the Control of a Queueing
System with Aging State

Information

In previous chapters we considered various aspects of sensor networks and the
data produced by these networks. The following chapters deal with Markov
Decision Processes (mdps), a popular modelling framework for scenarios in-
volving sequential decision making under uncertainty. For the current chapter
we investigate control of a queueing system in which a component of the state
space is subject to aging. The controller can choose to forward incoming queries
to the system (where it needs time for processing), or respond with a previ-
ously generated response (incurring a penalty for not providing a fresh value).
Hence, the controller faces a trade-o� between data freshness and response
times.

A similar trade-o� occurs in the context of wireless sensor networks. Consider,
e.g., a scenario where sensor nodes periodically report measurements to a cen-
tralized middleware component, which then saves these reports into, e.g., a
database. When an application needs a measurement from a sensor, it sends a
query to the middleware component. The component (having the role of con-
troller) can then decide to either fetch a new measurement from the network, or
to return a previously generated measurement from the database. Obtaining
fresh measurements from the wireless sensor network is time-consuming due to
the wireless transmissions across the network. On the other hand, the latest
value in the database might be too old for practical purposes. The middleware
component thus faces a trade-o� that is similar to the one discussed in this
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chapter. In practice, middleware components typically use a simple thresh-
old policy, where the network is used when the age of the last reported value
exceeds some speci�ed threshold.

For the current chapter we consider a scenario involving a more general queue-
ing system, as an illustration of how a simple threshold policy can be im-
proved by taking the load of the network into account. We model the system
as a Markov Decision Process that turns out to be complex, then simplify it,
and construct a control policy. This policy has near-optimal performance and
achieves lower costs than both a threshold policy and a myopic policy.

This chapter is based on the results presented in [6] and [2].

5.1 Introduction

We illustrate the system in Figure 5.1, where a controller Ctrl handles incoming
queries that require a response. The controller uses a policy to determine
whether a query receives a response with fresh data, or with aged data. In the
�rst case, the query is forwarded to a queue Q1 where the query is eventually
serviced. In the second case, the query is immediately answered with a known,
aged, response that is stored in, e.g., a database (db). The db is regularly
refreshed by reports from a queue Q2. For modelling purposes we assume that
both queries and report requests arrive according to a homogeneous Poisson
process with rate λ1 and λ2, respectively. Also, we assume that the processing
time in the queues is exponentially distributed with parameter µ1 (for queries)
and µ2 (for report requests).

An example of the interaction between queries, reports, and the age of the
latest value in the db is shown in Figure 5.2. At time 1 a job is completed at
the server of Q2 (resulting in a report) and sets the age to 0. This age then
increases linearly until the next report is generated at time 4. Meanwhile, at
time 1.5 a query arrives at the controller, at which moment the age of the
latest value in the database is 0.5. Then at time 3 the second query arrives,
which sees the most recent value in the database at age 2. Query 3 arrives
after the second report is generated, at which point the value in the database
has age 1. Report 3 at time 6 refreshes the database again and sets the age to
0. Note that the graph does not show which decisions the controller takes on
arrival of a query.
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Figure 5.1: The controller (Ctrl) assigns incoming queries to either Q1 in the
queueing system, or to the db. In the �rst case, the query gets a fresh response,
but has to wait some time before it is generated. In the second situation, the
systems returns a previously generated (and thus aged) response immediately.
The db is regularly refreshed with fresh values (reports) from Q2.
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Figure 5.2: Interaction between queries q1, . . . , q3, reports r1, . . . , r3, and the
age of the latest value in the database. In the graph, three reports arrive (at
times 1, 4, and 6) that reset the age to 0. In between reports, the age increases
linearly with time. Upon a query arrival, the controller sees the latest value
in the database at a certain age and uses that age to take its decisions. For
instance, query q2 arrives at time 3, at which moment the most recent value
in the database has age 2.
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The scenario described above is characterized by three distinctive elements:
(1) a queueing system, (2) a database that is periodically refreshed from the
queueing system, and (3) the controller assigning queries to either of the two
other elements. Despite a thorough literature review, we did not �nd any
research with the same combination of elements (apart from [2], where we
investigate the same scenario using a di�erent model). Caching scenarios, such
as the web server example mentioned before, are related, but seem to be not
used together with a queueing system. From a queueing theoretic approach,
the papers [41] and [108] are somewhat similar to our situation. They deal
with several servers for which aged information about the loads is available
and, as in our approach, this aged information is periodically updated by the
queues via reports. Their system, however, does not contain a database, but
has multiple queues that can serve the incoming jobs. The controller decides
which of the queues to use based on the aged load information, and thus
addresses a problem di�erent from ours.

Addressing the trade-o� between data freshness and response times is tradi-
tionally done using a threshold policy. When the age of the database value
exceeds a certain given threshold, fresh data is retrieved, and otherwise the lat-
est database value is used. Although such policies are commonly used, there
is room for improvement by setting a dynamic threshold: in cases where the
information retrieval is time-consuming (as it is in wireless sensor networks),
using a database value that is slightly above the threshold value might be ac-
ceptable. Motivated by this, our aim in the current chapter is to demonstrate
for our example scenario that it is possible to �nd a policy that performs bet-
ter than a simple threshold policy. We formulate our control problem as a
three-dimensional mdp, which turns out to be complex and hard to solve an-
alytically. Then, we provide a clever strategy for reducing the dimensionality
of the model, and construct an approximate model that captures the system
dynamics in a simpler way, allowing for an analytical solution. After deriving
this solution, we apply one-step policy improvement to obtain an improved
policy. We numerically compare this policy to the optimal policy, as well as to
a myopic policy and to a traditional age-threshold policy. The improved policy
achieves near-optimal performance, and has lower costs than the myopic and
the age-threshold policy.

The structure of this chapter is as follows. Section 5.2 introduces the mdp used
to model the scenario above, and Section 5.3 illustrates the three steps of our
approach to �nding a near-optimal control policy. Then, Section 5.4 presents
the �rst of these steps, detailing how the approximate model is constructed.
The second step, �nding a solution to the approximate model, is in Section 5.5.
Section 5.6 contains the third and �nal step, describing the derivation of our
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near-optimal control policy. Numerical experiments with this policy are pre-
sented in Section 5.7, as well as a closer look at the optimal policy. We �nish
with conclusions and future research directions in Section 5.8.

5.2 Model formulation

The trade-o� we discuss in this chapter is between data freshness and query
response times. Here, we assume that the query response time is proportional
to the current workload of the system, i.e., the number of queries plus the
number of report requests in the system. The decision (to use either the db,
or the queueing system) thus depends on the number of queries in the system,
on the number of report requests, and on the age of the most recent value
in the db. In order to analyze decision policies, we formulate the scenario as
an mdp. The state space is X = N0 × N0 × N0, where (i, j,N) ∈ X denotes
a system containing i queries and j report requests, and where the latest
report refreshed the db N time units ago. The controller can choose actions
a from A = {Q1,db}, where Q1 indicates forwarding of the query to Q1 (see
Figure 5.1). The cost function c(i, j,N ; a) incorporates the costs of each action
available to the controller:

c(i, j,N ; a) =

{
γ1(i+ 1) + γ2j + γ3, if a = Q1,

(N − T )+, if a=db.
(5.1)

Here, γ1(i+1)+γ2j+γ3 is a weighted sum (with weights γ1, γ2, γ3 ∈ R) of the
number of queries and report requests in the system, re�ecting the workload
of the system after assigning a new query to it. The term (N −T )+ in the cost
function is a penalty for returning a stale value from the db instead of a fresh
value. The parameter T indicates a threshold below which the latest value
in the db is recent enough to answer the query. Note that we took γ1(i + 1)
rather than γ1i in the cost function, because we include the query that is about
to be assigned to Q1 when that action is chosen. Additionally, the resulting
expression for the improved policy closely resembles a simple myopic policy,
enabling us to interpret the di�erence between the two policies

The state space, the action set, the transition rates, and the cost function
de�ne the mdp. More explicitly, the optimality equation of the mdp can be
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formulated as follows:

g + V (i, j,N) = λ2V (i, j + 1, N + 1)

+ µ1V (i− 1, j,N + 1)1{i>0} + µ2V (i, j − 1, 0)1{j>0}

+ (1− λ1 − λ2 − µ11{i>0} − µ21{j>0})V (i, j,N + 1)

+ λ1 min
{
γ1(i+ 1) + γ2j + γ3 + V (i+ 1, j,N + 1);

(N − T )+ + V (i, j,N + 1)
}
,

(5.2)

with V (i, j,N) the relative value function and g the time-average costs. The
uniformization term is formed by the third line, where we assumed that pa-
rameters λ1, λ2, µ1, µ2 are normalized such that λ1 +λ2 +µ1 +µ2 = 1. Hence,
we can regard these parameters as transition probabilities and Eq. (5.2) as a
discrete-time model. Also note that N measures the number of uniformized
time steps since the generation of the last report, and not �real� time. Finally,
we assume the stability conditions ρ1 := λ1/µ1 < 1 and ρ2 := λ2/µ2 < 1 hold.

5.3 Obtaining the near-optimal policy

Ideally, we would like to solve the optimality equation (5.2) analytically and
obtain an expression for the relative value function (and, consequently, for the
optimal policy). However, the optimality equation has several complicating
aspects that prevent us from doing so:

• It contains the decision capturing the trade-o� faced by the controller,
which involves evaluation of a minimization term.
• In this minimum the inhomogeneous terms γ1(i + 1) + γ2j + γ3 and

(N − T )+ add to the complexity of the model.
• The state space variables interact with each other, i.e., in Eq. (5.2),
V (i, j,N) depends on `neighbors' V (i, j + 1, N + 1), V (i − 1, j,N + 1),
V (i, j,N+1), and V (i+1, j,N+1), so it is challenging to �nd a solution
by decomposing the state space.
• A complex relation between j andN exists due to the term µ2V (i, j − 1, 0).

In order to circumvent these complexities, we take three steps in the upcoming
sections. We derive an approximate model to the original problem (step I),
which we can solve analytically for a speci�c policy (step II). This solution
is then converted into a near-optimal control policy for the original problem
(step III). In more detail, the three steps are:
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I We start in Section 5.4 with a modi�cation of the optimality equa-
tion (5.2), obtained by removing the N -dimension, resulting in an mdp
for an approximation to V (i, j,N) (denoted by Ṽ (i, j)).

II In Section 5.5 we choose a policy for this new mdp and solve it analyti-
cally, yielding a solution Ṽ α(i, j). Here, α is the parameter of a Bernoulli
routing policy.

III Finally, in Section 5.6, we apply one-step policy improvement by inspect-
ing the minimum in Eq. (5.2), substituting Ṽ α(i, j) for V (i, j,N). This
results in an improved policy, denoted by π′.

Eq. (5.3) schematically re�ects the steps and the notation used.

V (i, j,N)
I−→ Ṽ (i, j)

II−→ Ṽ α(i, j)
III−→ π′. (5.3)

5.4 Step I: model approximation

Looking at Eq. (5.2), we see that N is in the state space to accommodate the
penalty term (N − T )+. Therefore, if we replace the (N − T )+ by a suitable
constant C, the N can be removed from the state space. Introducing the
constant C in Eq. (5.2) yields

g̃ + Ṽ (i, j) = λ2Ṽ (i, j + 1)

+ µ1Ṽ (i− 1, j)1{i>0} + µ2Ṽ (i, j − 1)1{j>0}

+ (1− λ1 − λ2 − µ11{i>0} − µ21{j>0})Ṽ (i, j)

+ λ1 min
{
γ1(i+ 1) + γ2j + γ3 + Ṽ (i+ 1, j);C + Ṽ (i, j)

}
.

(5.4)

As it turns out, the constant C does not a�ect our near-optimal policy, so
assigning a value to it is not strictly necessary (in Section 5.6.1 the term
(N − T )+ is reintroduced). However, the idea of reducing the state space in
this manner might be applicable to other mdps, so for completeness we shortly
illustrate how C can be determined for Eq. (5.2). To this end, we inspect this
mdp for the policy that always uses the db to answer queries. Replacing the
minimum in Eq. (5.2) by this policy yields the equation

gDB + V DB(j,N) = λ2V
DB(j + 1, N + 1) + µ2V

DB(j − 1, 0)1{j>0}

+ (1− λ1 − λ2 − µ21{j>0})V
DB(j,N + 1)

+ λ1

(
(N − T )+ + V DB(j,N + 1)

)
,

(5.5)
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where variable i is removed from the notation because it no longer in�u-
ences the relative value function. In [2, Appendix B], we show that gDB =

λ1
(1−λ2)T+1

λ2
. Note that if we replace (N − T )+ by constant C in Eq. (5.5),

then we would have gDB = λ1C. A suitable choice for C is one that leaves the

time-average costs intact, i.e., C = (1−λ2)T+1

λ2
.

5.5 Step II: near-optimal control policies

The next step is to �x a policy for the mdp in Eq. (5.4) so that we can obtain
an analytic expression for the corresponding relative value function. For this
policy we choose the Bernoulli policy, which randomly assigns incoming queries
to either Q1 (with probability α ∈ [0, 1]) or to the db (with probability 1−α).
Replacing the minimum in Eq. (5.4) by the Bernoulli policy yields the di�erence
equation

g̃α + Ṽ α(i, j) = λ2Ṽ
α(i, j + 1)

+ µ1Ṽ
α(i− 1, j)1{i>0} + µ2Ṽ

α(i, j − 1)1{j>0}

+ (1− λ1 − λ2 − µ11{i>0} − µ21{j>0})Ṽ
α(i, j)

+ λ1α
[
γ1(i+ 1) + γ2j + γ3 + Ṽ α(i+ 1, j)

]
+ λ1(1− α)

[
C + Ṽ α(i, j)

]
.

(5.6)

Note how the application of the Bernoulli policy decouples the queueing system
from the db. In the remainder of this section we derive an expression for the
relative value function Ṽ α(i, j) by solving Eq. (5.6). This result is summarized
in the following theorem:

Theorem 5.5.1. The solution to Eq. (5.6) is given by

Ṽ α(i, j) =
γ1λ1α

µ1 − λ1α

i(i+ 1)

2
+

γ2λ1α

µ2 − λ2

j(j + 1)

2
,

and

g̃α = λ1(1− α)C + λ1α

(
γ1λ1α

µ1 − λ1α
+

γ2λ2

µ2 − λ2
+ γ1 + γ3

)
.

Substitution of these expressions for Ṽ α(i, j) and g̃α into Eq. (5.6) shows
that these indeed form a solution. In the following subsections we derive
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the expressions in Theorem 5.5.1 by solving Eq. (5.6). First, we tackle the
inhomogeneous terms γ1(i + 1) + γ2j + γ3 and C by considering an equa-
tion for ∆1Ṽ

α(i, j) = Ṽ α(i + 1, j) − Ṽ α(i, j). This removes the inhomo-
geneous term C and transforms the other term to γ1. Then we look at
∆2

1Ṽ
α(i, j) = ∆1Ṽ

α(i + 1, j) − ∆1Ṽ
α(i, j), which eliminates the remaining

inhomogeneous term γ1. We solve this equation, and then retrace our steps
from ∆2

1Ṽ
α(i, j) to ∆1Ṽ

α(i, j) to Ṽ α(i, j).

During the derivation we encounter an issue concerning uniqueness of solutions
to the Poisson equation for ∆2

1Ṽ
α(i, j). There, we postulate a form for a

solution and must show that this solution is unique. Showing uniqueness is
not trivial and involves several technical arguments that result in additional
restrictions on the form of ∆2

1Ṽ
α(i, j). This important part of the derivation

is placed in Section 5.9.

5.5.1 Solving the di�erence equation for ∆2
1Ṽ

α(i, j)

The behavior of the di�erence equation on the interior of the state space di�ers
from the behavior on the boundaries {i = 0} and {j = 0}. Therefore, we �rst
study the di�erence equation for the interior {i, j > 0} of the state space. We
de�ne ∆1Ṽ

α(i, j) := Ṽ α(i+ 1, j)− Ṽ α(i, j), and for i > 0 and j > 0 it holds
that

∆1Ṽ
α(i, j) = λ1α

[
γ1 + ∆1Ṽ

α(i+ 1, j)
]

+ λ1(1− α)∆1Ṽ
α(i, j)

+ λ2∆1Ṽ
α(i, j + 1)

+ µ1∆1Ṽ
α(i− 1, j) + µ2∆1Ṽ

α(i, j − 1)

+ (1− λ1 − λ2 − µ1 − µ2)∆1Ṽ
α(i, j).

(5.7)

Now, de�ne ∆2
1Ṽ

α(i, j) = ∆1Ṽ
α(i+ 1, j)−∆1Ṽ

α(i, j), for which we have

∆2
1Ṽ

α(i, j) = λ1α∆2
1Ṽ

α(i+ 1, j) + λ1(1− α)∆2
1Ṽ

α(i, j)

+ λ2∆2
1Ṽ

α(i, j + 1)

+ µ1∆2
1Ṽ

α(i− 1, j) + µ2∆2
1Ṽ

α(i, j − 1)

+ (1− λ1 − λ2 − µ1 − µ2)∆2
1Ṽ

α(i, j).

We suggestively write this as

(λ1α+ µ1)∆2
1Ṽ

α(i, j) + (λ2 + µ2)∆2
1Ṽ

α(i, j) =

λ1α∆2
1Ṽ

α(i+ 1, j) + µ1∆2
1Ṽ

α(i− 1, j)

+ λ2∆2
1Ṽ

α(i, j + 1) + µ2∆2
1Ṽ

α(i, j − 1).

(5.8)
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The notation suggests that the solution to this equation might be split up in
a part that only depends on i and a part that only depends on j. That is, a
solution might be given by ∆2

1Ṽ
α(i, j) = Ṽ α

1 (i) + Ṽ α
2 (j) with Ṽ α

1 (i) and Ṽ α
2 (j)

satisfying{
(λ1α+ µ1)Ṽ α

1 (i) = λ1αṼ
α

1 (i+ 1) + µ1Ṽ
α

1 (i− 1),

(λ2 + µ2)Ṽ α
2 (j) = λ2Ṽ

α
2 (j + 1) + µ2Ṽ

α
2 (j − 1).

(5.9)

These equations are simple homogeneous di�erence equations of which the
solutions are given by

Ṽ α
1 (i) =

µ1Ṽ
α

1 (0)− λ1αṼ
α

1 (1)

µ1 − λ1α
+
λ1α

(
Ṽ α

1 (1)− Ṽ α
1 (0)

) ( µ1
λ1α

)i
µ1 − λ1α

,

Ṽ α
2 (j) =

µ2Ṽ
α

2 (0)− λ2Ṽ
α

2 (1)

µ2 − λ2
+
λ2

(
Ṽ α

2 (1)− Ṽ α
2 (0)

) (µ2
λ2

)j
µ2 − λ2

.

(5.10)

Note that with these expressions for Ṽ1α(i) and Ṽ2α(j), ∆2
1Ṽ

α(i, j) is a solution
to Eq. (5.8). It is, however, not immediately obvious that this is also the

solution. We return to this issue in Section 5.9.

The values for Ṽ α
1 (0), Ṽ α

1 (1), Ṽ α
2 (0), Ṽ α

2 (1) still need to be determined to make
the solution consistent at the boundaries. For this purpose, consider the bound-
ary {j = 0} of the state space, where ∆1Ṽ

α(i, 0) becomes (for i > 0)

∆1Ṽ
α(i, 0) = λ1α

[
γ1 + ∆1Ṽ

α(i+ 1, 0)
]

+ λ1(1− α)∆1Ṽ
α(i, 0)

+ λ2∆1Ṽ
α(i, 1) + µ1∆1Ṽ

α(i− 1, 0)

+ (1− λ1 − λ2 − µ1)∆1Ṽ
α(i, 0).

(5.11)

Similarly, for ∆2
1Ṽ

α(i, 0) we have that

∆2
1Ṽ

α(i, 0) = λ1α∆2
1Ṽ

α(i+ 1, 0) + λ1(1− α)∆2
1Ṽ

α(i, 0)

+ λ2∆2
1Ṽ

α(i, 1) + µ1∆2
1Ṽ

α(i− 1, 0)

+ (1− λ1 − λ2 − µ1)∆2
1Ṽ

α(i, 0).

Again, we can suggestively write this as

(λ1α+ µ1)∆2
1Ṽ

α(i, 0) + λ2∆2
1Ṽ

α(i, 0) =

λ1α∆2
1Ṽ

α(i+ 1, 0) + µ1∆2
1Ṽ

α(i− 1, 0)

+ λ2∆2
1Ṽ

α(i, 1),
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leading to the following system of equations{
(λ1α+ µ1)Ṽ α

1 (i) = λ1αṼ
α

1 (i+ 1) + µ1Ṽ
α

1 (i− 1),

λ2Ṽ
α

2 (0) = λ2Ṽ
α

2 (1).
(5.12)

From these expressions, we obtain that on the boundary {j = 0} of the state
space, the mdp behaves exactly the same as the mdp on the interior of the
state space. Furthermore, it shows that Ṽ α

2 (0) = Ṽ α
2 (1) and thus that Ṽ α

2 (j)

in Eq. (5.10) is a constant: Ṽ α
2 (j) = c2. Without loss of generality, we can

set c2 = 0 and determine ∆2
1Ṽ

α(i, j) completely from Ṽ α
1 (i). Hence, we have

∆2
1Ṽ

α(i, j) = Ṽ α
1 (i) + Ṽ α

2 (j), where Ṽ α
2 (j) ≡ 0 and

Ṽ α
1 (i) =

µ1Ṽ
α

1 (0)− λ1αṼ
α

1 (1)

µ1 − λ1α
+
λ1α

(
Ṽ α

1 (1)− Ṽ α
1 (0)

) ( µ1
λ1α

)i
µ1 − λ1α

.

5.5.2 Analyzing ∆1Ṽ
α(i, j + 1)−∆1Ṽ

α(i, j)

For the derivation of an expression for Ṽ α(i, j) (which we do in the next sec-
tions), we require an intermediate result about ∆1Ṽ

α(i, j + 1) − ∆1Ṽ
α(i, j).

With notation

∆2∆1Ṽ
α(i, j) := ∆1Ṽ

α(i, j + 1)−∆1Ṽ
α(i, j),

we prove the following lemma in this section:

Lemma 5.5.2. The relative value function Ṽ α(i, j) satis�es

∆2∆1Ṽ
α(i, j) = 0.

In words, Lemma 5.5.2 states that �rst di�erencing Ṽ α(i, j) in i, followed by
di�erencing the result in j, equals 0.

Proof. We start again for the interior {i, j > 0} of the state space, where we
have the following relation for i > 0 and j > 0:

∆1Ṽ
α(i, j) = λ1α

[
γ1 + ∆1Ṽ

α(i+ 1, j)
]

+ λ1(1− α)∆1Ṽ
α(i, j)

+ λ2∆1Ṽ
α(i, j + 1)

+ µ1∆1Ṽ
α(i− 1, j) + µ2∆1Ṽ

α(i, j − 1)

+ (1− λ1 − λ2 − µ1 − µ2)∆1Ṽ
α(i, j).
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We �nd for ∆2∆1Ṽ
α(i, j)

∆2∆1Ṽ
α(i, j) = λ1α∆2∆1Ṽ

α(i+ 1, j) + λ1(1− α)∆2∆1Ṽ
α(i, j)

+ λ2∆2∆1Ṽ
α(i, j + 1)

+ µ1∆2∆1Ṽ
α(i− 1, j) + µ2∆2∆1Ṽ

α(i, j − 1)

+ (1− λ1 − λ2 − µ1 − µ2)∆2∆1Ṽ
α(i, j).

(5.13)

By similar line of reasoning as before, we derive that ∆2∆1Ṽ
α(i, j) = V̄1(i) +

V̄2(j), with

V̄1(i) =
µ1V̄1(0)− λ1αV̄1(1)

µ1 − λ1α
+
λ1α

(
V̄1(1)− V̄1(0)

) ( µ1
λ1α

)i
µ1 − λ1α

,

V̄2(j) =
µ2V̄2(0)− λ2V̄2(1)

µ2 − λ2
+
λ2

(
V̄2(1)− V̄2(0)

) (µ2
λ2

)j
µ2 − λ2

,

(5.14)

where the values for V̄1(0), V̄1(1), V̄2(0), V̄2(1) are determined from ∆2∆1Ṽ
α(i, 0)

and ∆2∆1Ṽ
α(0, j). We start with the former by inspecting the term ∆1Ṽ

α(i, 1).
From Eq. (5.7) we have that

∆1Ṽ
α(i, 1) = λ1α

[
γ1 + ∆1Ṽ

α(i+ 1, 1)
]

+ λ1(1− α)∆1Ṽ
α(i, 1)

+ λ2∆1Ṽ
α(i, 2)

+ µ1∆1Ṽ
α(i− 1, 1) + µ2∆1Ṽ

α(i, 0)

+ (1− λ1 − λ2 − µ1 − µ2)∆1Ṽ
α(i, 1).

The term ∆1Ṽ
α(i, 0) can be obtained from Eq. (5.11), which we repeat here

for convenience:

∆1Ṽ
α(i, 0) = λ1α

[
γ1 + ∆1Ṽ

α(i+ 1, 0)
]

+ λ1(1− α)∆1Ṽ
α(i, 0)

+ λ2∆1Ṽ
α(i, 1)

+ µ1∆1Ṽ
α(i− 1, 0)

+ (1− λ1 − λ2 − µ1)∆1Ṽ
α(i, 0).

Consequently,

∆2∆1Ṽ
α(i, 0) = λ1α∆2∆1Ṽ

α(i+ 1, 0) + λ1(1− α)∆2∆1Ṽ
α(i, 0)

+ λ2∆2∆1Ṽ
α(i, 1)

+ µ1∆2∆1Ṽ
α(i− 1, 0)− µ2∆2∆1Ṽ

α(i, 0)

+ (1− λ1 − λ2 − µ1)∆2∆1Ṽ
α(i, 0),
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which reduces to

(λ2 + µ2)∆2∆1Ṽ
α(i, 0) + (λ1α+ µ1)∆2∆1Ṽ

α(i, 0) =

λ2∆2∆1Ṽ
α(i, 1) + λ1α∆2∆1Ṽ

α(i+ 1, 0) + µ1∆2∆1Ṽ
α(i− 1, 0).

Again we propose a solution of the type ∆2∆1Ṽ
α(i, j) = V̄1(i)+V̄2(j), resulting

in 
(λ2 + µ2)

(
V̄1(i) + V̄2(0)

)
= λ2

(
V̄1(i) + V̄2(1)

)
,

(λ1α+ µ1)(V̄1(i) + V̄2(0)) = λ1α(V̄1(i+ 1) + V̄2(0))

+ µ1(V̄1(i− 1) + V̄2(0)).

(5.15)

The upper equation translates to

µ2V̄1(i) = λ2V̄2(1)− (λ2 + µ2)V̄2(0), (5.16)

i.e., V̄1(i) is constant for i > 0, which we denote by V̄1(i) = c̄1. By repeating
the arguments above for the boundary {i = 0} of the state space, we �nd that
V̄2(j) := c̄2 is constant. As a consequence, Eq. (5.16) reduces to

µ2c̄1 = λ2c̄2 − (λ2 + µ2)c̄2,

or

µ2c̄1 = −µ2c̄2,

i.e., c̄1 = −c̄2 and thus ∆2∆1Ṽ
α(i, j) = 0, which concludes the proof.

5.5.3 Solving the di�erence equation for ∆1Ṽ
α(i, j)

So far, we have found that ∆2
1Ṽ

α(i, j) satis�es

∆2
1Ṽ

α(i, j) =
µ1Ṽ

α
1 (0)− λ1αṼ

α
1 (1)

µ1 − λ1α
+
λ1α

(
Ṽ α

1 (1)− Ṽ α
1 (0)

) ( µ1
λ1α

)i
µ1 − λ1α

, (5.17)

and we proved that ∆2∆1Ṽ
α(i, j) = 0 in Lemma 5.5.2. Note that this im-

plies that ∆1Ṽ
α(i, j) is independent of j for all i. We continue the proof of

Theorem. 5.5.1 by reverting the di�erencing in i used to obtain Eq. (5.17).
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Recall that ∆2
1Ṽ

α(i, j) = ∆1Ṽ
α(i + 1, j) − ∆1Ṽ

α(i, j). By summing over i,
and then using the right-hand side of Eq. (5.17), we can get an expression for
∆1Ṽ

α(i, j):

∆1Ṽ
α(i, j) = ∆1Ṽ

α(0, j) +
i−1∑
k=0

∆2
1Ṽ

α(k, j)

= ∆1Ṽ
α(0, j) +

µ1Ṽ
α

1 (0)− λ1αṼ
α

1 (1)

µ1 − λ1α
i

+
λ1α

(
Ṽ α

1 (1)− Ṽ α
1 (0)

)
µ1 − λ1α

·
1− ( µ1

λ1α
)i

1− µ1
λ1α

.

(5.18)

Here, ∆1Ṽ
α(0, j) is a constant (by Lemma 5.5.2) which we determine below.

Substituting the expression for ∆1Ṽ
α(i, j) from Eq. (5.18) into Eq. (5.7), we

�nd that necessarily

µ1Ṽ
α

1 (0)− λ1αṼ
α

1 (1) = γ1λ1α.

Solving this for Ṽ α
1 (1) and substituting the result into Eq. (5.17) yields

∆2
1Ṽ

α(i, j) =
γ1λ1α

µ1 − λ1α
+

[
Ṽ α

1 (0)− γ1λ1α

µ1 − λ1α

](
µ1

λ1α

)i
.

Hence, ∆1Ṽ
α(i, j) becomes

∆1Ṽ
α(i, j) = ∆1Ṽ

α(0, j) +
γ1λ1α

µ1 − λ1α
i

+

[
Ṽ α

1 (0)− γ1λ1α

µ1 − λ1α

]
1− ( µ1

λ1α
)i

1− µ1
λ1α

.

(5.19)

Now we turn our attention to determining the (constant) ∆1Ṽ
α(0, j) by in-

specting the corresponding di�erence equation:

∆1Ṽ
α(0, j) = λ1α

[
γ1 + ∆1Ṽ

α(1, j)
]

+ λ1(1− α)∆1Ṽ
α(0, j)

+ λ2∆1Ṽ
α(0, j + 1) + µ2∆1Ṽ

α(0, j − 1)

+ (1− λ1 − λ2 − µ1 − µ2)∆1Ṽ
α(0, j).

We can rewrite this equation as follows:

0 = λ1α[∆1Ṽ
α(1, j)−∆1Ṽ

α(0, j)] + γ1λ1α

+ λ2[∆1Ṽ
α(0, j + 1)−∆1Ṽ

α(0, j)]

+ µ2[∆1Ṽ
α(0, j − 1)−∆1Ṽ

α(0, j)]− µ1∆1Ṽ
α(0, j).
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Using Lemma 5.5.2 we �nd

0 = λ1α[∆1Ṽ
α(1, j)−∆1Ṽ

α(0, j)] + γ1λ1α− µ1∆1Ṽ
α(0, j).

Eq. (5.19) tells us that ∆1Ṽ
α(1, j) = ∆1Ṽ

α(0, j) + Ṽ α
1 (0), so

∆1Ṽ
α(0, j) =

λ1α

µ1
Ṽ α

1 (0) +
γ1λ1α

µ1
.

Substitution into Eq. (5.19) yields

∆1Ṽ
α(i, j) =

λ1α

µ1
Ṽ α

1 (0) +
γ1λ1α

µ1
+

γ1λ1α

µ1 − λ1α
i

+

[
Ṽ α

1 (0)− γ1λ1α

µ1 − λ1α

]
1− ( µ1

λ1α
)i

1− µ1
λ1α

.

(5.20)

5.5.4 Deriving Ṽ α(i, j)

We derive an expression for Ṽ α(i, j) using ∆1Ṽ
α(i, j) = Ṽ α(i+1, j)− Ṽ α(i, j),

then summing over i, followed by applying Eq. (5.20):

Ṽ α(i, j) = Ṽ α(0, j) +
i−1∑
k=0

∆1Ṽ
α(k, j)

= Ṽ α(0, j) + i
(λ1α

µ1
Ṽ α

1 (0) +
γ1λ1α

µ1

)
+

γ1λ1α

µ1 − λ1α

i(i− 1)

2

+
1

1− µ1
λ1α

[
Ṽ α

1 (0)− γ1λ1α

µ1 − λ1α

][
i−

1− ( µ1
λ1α

)i

1− µ1
λ1α

]
.

(5.21)

In the derivation so far we have postulated a form of a solution several times
(Eqs. (5.9) and (5.12�5.15)), resulting in the expression for Ṽ α(i, j) in Eq. (5.21).
Here, we �nally deal with the uniqueness issue. As mentioned earlier, ensur-
ing uniqueness of a solution Ṽ α(i, j) to Eq. (5.6) is not trivial. Conventional
uniqueness proofs rely on bounded cost functions, and the cost function in
Eq. (5.1) is unbounded. Addressing this point requires several technical argu-
ments which we, for readability, place in Section 5.9. In short, uniqueness is
ensured if Ṽ α(i, j) does not grow exponentially fast. Therefore, we choose the
remaining constant Ṽ α

1 (0) in Eq. (5.21) such that the exponential term ( µ1
λ1α

)i

disappears:

Ṽ α
1 (0) =

γ1λ1α

µ1 − λ1α
.
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Substitution into Eq. (5.21) yields

Ṽ α(i, j) = Ṽ α(0, j) +
γ1λ1α

µ1 − λ1α
i+

γ1λ1α

µ1 − λ1α

i(i− 1)

2
,

or

Ṽ α(i, j) = Ṽ α(0, j) +
γ1λ1α

µ1 − λ1α

i(i+ 1)

2
.

Repeating the steps in Sections 5.5.1-5.5.4 for di�erencing in j instead of i
gives

Ṽ α(i, j) = Ṽ α(i, 0) +
γ2λ1α

µ2 − λ2

j(j + 1)

2
,

so that necessarily

Ṽ α(i, j) =
γ1λ1α

µ1 − λ1α

i(i+ 1)

2
+

γ2λ1α

µ2 − λ2

j(j + 1)

2
. (5.22)

Finally, substituting this expression for Ṽ α(i, j) into Eq. (5.6) and solving for
g̃α yields

g̃α = λ1(1− α)C + λ1α

(
γ1λ1α

µ1 − λ1α
+

γ2λ2

µ2 − λ2
+ γ1 + γ3

)
. (5.23)

This concludes the derivation of the expressions in Theorem 5.5.1.

Remark: The structure of Ṽ α(i, j) in Eq. (5.22) and g̃α in Eq. (5.23) can
be explained intuitively using known results about the M/M/1 queue. The
Bernoulli policy chooses Q1 with probability α and the db with probability
1− α, thereby decoupling the system in three separate elements: the db, Q1,
and Q2. Choosing the db incurs a penalty C, which results in time-average
costs λ1(1 − α)C. This corresponds to the �rst term in Eq. (5.23). The
alternative choice (assignment to the queueing system) incurs costs γ1(i+ 1) +
γ2j + γ3. Note that the two queues (the �rst with arrival rate λ1α, the second
with arrival rate λ2) are independent and that the i and j terms are summed
in the cost function. Consequently, the time-average costs of assignment to the
queueing system are just the summed time-average costs of the two M/M/1
queues with holding costs γ1 and γ2 respectively (and of �xed costs γ1 + γ3).
For a M/M/1 queue we know (from, e.g., [28]) that g = ρ

1−ρh, with ρ = λ/µ
the system load, λ the arrival rate, µ the service rate, and holding costs h. This
explains the γ1λ1α

µ1−λ1α + γ2λ2
µ2−λ2 + γ1 + γ3 term (multiplied by λ1α) in Eq. (5.23).

Also, the relative value function Ṽ α(i, j) in Eq. (5.22) is just the sum of the
relative value functions of the two M/M/1 queues (multiplied by λ1α).
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5.6 Step III: one-step policy improvement

5.6.1 Obtaining the improved policy

In the previous section we approximated V (i, j,N) by Ṽ α(i, j). Next, we
apply a technique called one-step policy improvement, introduced in [118], by
inspecting the minimization term in Eq. (5.2), with V (i, j,N) replaced by
Ṽ α(i, j):

min
{
γ1(i+ 1) + γ2j + γ3 + Ṽ α(i+ 1, j); (N − T )+ + Ṽ α(i, j)

}
. (5.24)

Hence, the improved policy assigns a query to the db if

γ1(i+ 1) + γ2j + γ3 + Ṽ α(i+ 1, j) ≥ (N − T )+ + Ṽ α(i, j).

Substituting Eq. (5.22) and simplifying yields

γ1

1− ρ1α
(i+ 1) + γ2j + γ3 ≥ (N − T )+. (5.25)

Note that this improved policy is independent of the constant C, as mentioned
at the beginning of Section 5.5. Also, in the derivation of Eq. (5.25) we see
that by choosing γ1(i + 1) rather than γ1i in the cost function, we obtain an
expression where the α only occurs in front of the (i + 1) term. This allows
us to intuitively explain the role of α: it acts as a tuning parameter of the
improved policy, determining the in�uence of the number of queries i in the
system on the decisions. For α = 0 the improved policy is independent of λ1,
but as α gets closer to 1 the number of queries in the system is weighed more
heavily in the decision, and the policy becomes more biased towards the db.

5.6.2 Determining α

The improved policy in Eq. (5.25) speci�es a class of policies � only after choos-
ing α (originally the parameter of the Bernoulli policy) do we have a concrete
policy for which we can, e.g., determine average costs. However, we have no
analytical relationship between V (i, j,N) and Ṽ α(i, j), and thus determining
α analytically is not possible. The best analytical option we have is to mini-
mize g̃α (of the Bernoulli policy applied to the simpli�ed mdp) w.r.t. α, and
use the resulting minimum for the improved policy. Unfortunately, subsequent
experiments with value iteration demonstrate unsatisfactory performance of
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Figure 5.3: Average costs g′ of the improved policy, for various values of α.
The points in the graph are obtained with value iteration, using parameters
µ1 = µ2 = 0.3, T = 2, γ1 = γ2 = γ3 = 3, ρ1 = 0.8, ρ2 = 0.1. Our �tting
approach for determining the minimum α̂ yields α̂ = 0.48.

the resulting improved policy. We observed this behavior for various values
for λ1, λ2, µ1, µ2, and T , so the unsatisfactory performance was general. The
Ṽ α(i, j) and g̃α do not approximate V (i, j,N) and g from Eq. (5.2) su�ciently
well.

Fortunately, a simple numerical approach allows us to compute an α that yields
an improved policy with the desired near-optimal performance. To illustrate
this procedure, consider Figure 5.3 showing approximations of the average costs
g′ of the improved policy (obtained with value iteration) as a function of α.
The shape resembles a second-degree polynomial, and by carefully �tting such
a polynomial to the approximate values, we can approximate g′(α). Then, we
use the minimum α̂ of the �tted polynomial as input for the improved policy.
Note that, due to this procedure, the improved policy is not an analytical
policy: each time an improved policy is required, α̂ must be computed using
the �tting procedure.

This approach for determining α̂ requires several approximate values αi that
together capture the shape of g′(α). They should be positioned such that the
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minimum of the polynomial and that of g′(α) are at approximately the same
α-value. Strictly speaking we need only three α-values to �t a second-degree
polynomial. However, g′(α) is not truly a second-degree polynomial, and using
four values results in a more appropriate �t in cases where g′(α) resembles the
polynomial shape less. So how should we position these four points? In the
next section we argue that the most interesting scenario from a practical point
of view is one where ρ1 is large. In this scenario, the number of queries i in
the system is typically large. Recall that α̂ in�uences the improved policy in
Eq. (5.25) via i: as α̂ gets closer to 1 the number of queries in the system
is weighed more heavily in the decision, and the policy becomes more biased
towards the db. Hence, we should concentrate the �t of the polynomial on
the right side of the interval, near α = 1. Following this reasoning, we take
α1 = 0.25, α2 = 0.6, α3 = 0.85, and α4 = 0.95.

The value of each g′(αi) is obtained by running value iteration. The time
needed to execute these four runs of value iteration should be shorter than the
time needed to compute the optimal policy, otherwise there is no reason to use
the improved policy. To this end, we do value iteration for the g′(αi) on a much
smaller state space than the one used for �nding the optimal policy. Suppose
that we run value iteration for the optimal policy on the truncated state space
X̄ = [0,K1] × [0,K2] × [0,K3] (in Section 5.7 we determine K1,K2, and K3

experimentally in such a way that we avoid boundary e�ects). For the g′(αi),
we use the further truncated state space X̂ :=

[
0, bK1

4 c
]
×
[
0, bK2

4 c
]
×
[
0, bK3

4 c
]
.

This e�ectively reduces the time needed to calculate α̂ (and thus also the
improved policy) to a mere fraction of the time needed to obtain an optimal
policy. The number by which K1,K2, and K3 are divided (4) is determined
experimentally to yield both low time-average costs and a short run time for
the improved policy. Note that the further reduction of the state space is
appropriate, because we do not require numerically accurate approximations
of g′(α1), . . . , g′(α4). We only need to capture the general shape illustrated in
Figure 5.3.

The complete procedure is as follows:

1. Calculate the bounds of the further truncated state space X̂ .
2. For each of the values αi, evaluate the improved policy using X̂ as state

space, and record g′(αi).
3. Fit a second-degree polynomial through g′(α1), . . . , g′(α4) using least

squares.
4. Calculate the minimum of this polynomial, and use the α-value for which

this minimum is attained as α̂.
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In the example in Figure 5.3 this procedure yields α̂ = 0.48, which agrees
well with what the �gure suggests. Figure 5.3 is generated with parameters
µ1 = µ2 = 0.3, T = 2, γ1 = γ2 = γ3 = 3, ρ1 = 0.8, ρ2 = 0.1, i.e., values
corresponding to a high load on Q1 and low load on Q2. We expect a signi�cant
fraction of the queries to be assigned to Q1, since a low load on Q2 results in
large N and thus using the db is expensive. This observation is supported by
the value α̂ = 0.48 that our procedure yields for the improved policy. Also,
the �gure indicates that the sensitivity of the average costs g′(α) to α is minor
around the minimum α̂.

5.7 Numerical results

In this section we experimentally inspect the performance of the improved
policy by numerically comparing it to the optimal policy. Additionally, we
compare a traditional age-threshold policy and a myopic policy to the optimal
policy, allowing us to assess how the improved policy performs in relation to
these other two policies. The three policies that we compare to the optimal
policy listed in Eq. (5.26). We see that the age-threshold policy πt ignores
the load on the queueing system, and bases its actions solely on the age N .
The myopic policy πm takes the load of the system into account, by assigning
queries to the db or Q1 based on the cost function in Eq. (5.1) only, ignoring
the relative value function V (i, j,N). In contrast, the improved policy π′ is
based on an approximation of the relative value function, and thus does include
expectations about future query arrivals and report requests in its decisions.
These expectations are captured by the parameter α̂, which determines how
much emphasis the improved policy puts on the number of queries i in the
system. Note that for α̂ = 0 the improved and myopic policy are identical.

πt(i, j,N) =

{
db, if N ≤ T,

Q1, otherwise,

πm(i, j,N) =

{
db, if γ1(i+ 1) + γ2j + γ3 ≥ (N − T )+,

Q1, otherwise,

π′(i, j,N) =

{
db, if γ1

1−ρ1α̂(i+ 1) + γ2j + γ3 ≥ (N − T )+,

Q1, otherwise.

(5.26)
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Looking at our scenario, we expect that as ρ2 → 1, performance should be quite
good, since the db is refreshed often and thus most queries can be answered
from the db. Additionally, in situations with small ρ1 the controller has to deal
with only a small number of queries, costs are typically low, and the policies
should demonstrate good performance. Hence, the most interesting part of
the parameter space is where ρ1 is high and ρ2 is low (we call this the critical
region). We structure our numerical analysis accordingly, by �rst inspecting
the performance of the policies for 0 < ρ1 ≤ 0.8, 0 < ρ2 < 1, followed by an
inspection of the critical region 0.7 < ρ1 ≤ 1, 0 < ρ2 < 0.2.

All numerical experiments below are done using the value iteration algorithm
[159], and thus require a truncation of the state space X = N0 × N0 × N0

to X̄ = [0,K1] × [0,K2] × [0,K3]. Choosing the Ki must be done carefully
to avoid the in�uence of boundary e�ects on the average costs. Tests on the
three policies above, and on the optimal policy, suggests that a truncation
to X̄ = [0, 200] × [0, 200] × [0, 200] is su�cient for 0 < ρ1 ≤ 0.8, 0 < ρ2 <
1. Increasing ρ1 beyond 0.8 quickly adds boundary e�ects and requires a
larger truncated state space: X̄ = [0, 300] × [0, 300] × [0, 300]. Also, for value
iteration we set the convergence criterion such that the procedure stops when
the di�erence of the spans of two consecutive approximations is smaller than
0.001. Finally, we choose the parameters of the cost function in Eq. (5.1). We
set T = 2, γ1 = γ2 = γ3 = 3 and keep these �xed during all experiments.

In the following sections we numerically investigate the performance of our im-
proved policy. First, we compare the three policies listed above to the optimal
policy in Sections 5.7.1 (for the non-critical region) and 5.7.2 (for the critical
region). Then in Section 5.7.3 we look at the time needed to calculate α̂, and
thus the improved policy. Section 5.7.4 introduces a special random policy,
where the controller �ips a (fair) coin to decide which of the two actions to
take. A large number of such policies are then compared to the three policies
described above. Finally, in Section 5.7.5 we take a closer look at the optimal
policy and its structure.

5.7.1 Analysis of region 0 < ρ1 ≤ 0.8, 0 < ρ2 < 1

In Figures 5.4 � 5.6 we inspect the performance of the three policies as com-
pared to the optimal policy. We �x µ1 = µ2 = 0.3 and vary ρ1 and ρ2. The
�gures contain the di�erence in average costs with the optimal policy (in %),
where the load ρ2 on Q2 is varied on the horizontal axis, and the load ρ1 of
Q1 is re�ected by the various lines. Figure 5.4 demonstrates that the simple
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Figure 5.4: Relative di�erence in average costs of the age-threshold policy
compared to the optimal policy.
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Figure 5.5: Relative di�erence in average costs of the improved policy com-
pared to the optimal policy.
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Figure 5.6: Relative di�erence in average costs of the myopic policy compared
to the optimal policy.

age-threshold policy di�ers from optimality by as much as 2,000%. In contrast,
the improved and myopic policies in Figures 5.5 and 5.6 are able to stay within
1.3% and 5.5% of optimality, respectively. Clearly, these policies perform sig-
ni�cantly better than the age-threshold policy, so including the load of the
queue system in the decision by the controller certainly is bene�cial. Further
inspection of Figures 5.4 � 5.6 reveals that the performance of the three policies
degrades when ρ1 and ρ2 reach the critical region. We take a detailed look at
this region in the next section.

5.7.2 Analysis of the critical region 0.7 < ρ1 ≤ 1, 0 < ρ2 < 0.2

We continue with a closer look at the critical region, i.e., the left-hand side of
Figures 5.4 � 5.6, by repeating the corresponding numerical experiments for
di�erent values of ρ1 and ρ2 (again with µ1 = µ2 = 0.3) . The results are in
Figures 5.7 � 5.9. As in the previous section, performance of the age-threshold
policy is quite bad, with di�erences of up to 1,500%. Comparing Figures 5.8 to
5.9 clearly demonstrate that the improved policy has better overall performance
than the myopic policy, with di�erences from optimality of at most 7% and
17%, respectively. The bene�ts of including the approximation to the relative
value function in the improved policy are evident here.
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Figure 5.7: Again, the relative di�erence in average costs of the age-threshold
policy compared to the optimal policy, but now inside the critical region.
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Figure 5.8: Again, the relative di�erence in average costs of the improved
policy compared to the optimal policy, but now inside the critical region.
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Figure 5.9: Again, the relative di�erence in average costs of the myopic
policy compared to the optimal policy, but now inside the critical region.

Finally, Figures 5.8 and 5.9 demonstrate that the relative di�erences are not
monotone. The left-most points (at ρ2 = 0.01) seem to be closer to optimality
than the points at ρ2 = 0.05. Further experiments suggest that this is not
caused by boundary e�ects. Also, the di�erences cannot be explained by the
stopping criterion of value iteration, because the di�erences are too large. Since
the observed feature is present in both �gures, it seems likely that the optimal
policy causes it, and thus that this behavior is a feature of the system. We
return to this topic later in Section 5.7.5 when we talk about the optimal policy.

5.7.3 Computational complexity

As described in Section 5.6.2, the improved policy requires four short runs of
the value iteration algorithm to determine the parameter α̂. The total duration
of these runs should be less than the time required to �nd the optimal policy.
Table 5.1 shows the time needed to �nd α̂ for the improved policy, divided by
the time required to determine the optimal policy. As parameter values we
use the same scenario as in Section 5.7.2, i.e., µ1 = µ2 = 0.3. The two tables
clearly demonstrate that determining the improved policy is much faster than
�nding the optimal policy.



104 Controlling a Queueing System with Aging State Space

ρ1 → 0.7 0.75 0.8 0.85 0.9 0.95

ρ2 = 0.01 0.0122 0.0061 0.0065 0.0059 0.0054 0.0054
ρ2 = 0.05 0.0048 0.0069 0.0068 0.0076 0.0070 0.0069
ρ2 = 0.10 0.0060 0.0058 0.0070 0.0067 0.0078 0.0077
ρ2 = 0.15 0.0056 0.0054 0.0067 0.0063 0.0075 0.0061
ρ2 = 0.20 0.0064 0.0063 0.0061 0.0071 0.0070 0.0068

Table 5.1: The run time for determining α̂ for the improved policy divided
by the run time needed to obtain the optimal policy for various values of ρ1

(columns) and ρ2 (rows).

5.7.4 Model complexity

To get a feel for the complexity of the model in Eq. (5.2), we plot a so-called
Ordered Performance Curve (opc) [69]. Each point in this plot shows the
average costs of a policy that we generate randomly: at each state (i, j,N)
we choose action a = {Q1} with probability 0.5, or a = {DB} otherwise. By
repeating this procedure, we create 2,500 such policies, evaluate them, and plot
their average costs in Figure 5.10. Additionally, this �gure shows the average
costs of the optimal policy and (in our case) of the improved, the age-threshold,
and myopic policies. The parameters are µ1 = µ2 = 0.3, ρ1 = 0.8, ρ2 = 0.1,
based on the critical region in the parameter space. The random policies all
perform better than the age-threshold policy, and once again con�rm that there
is room for improvement on such a traditional policy.

Since the markers of the optimal, improved, and myopic policies are indis-
tinguishable in Figure 5.10, the �fteen best policies are plotted again in Fig-
ure 5.11. The steep slope on the left of both �gures illustrates that none of
the randomly selected policies is able to closely match the performance of the
optimal policy. Hence, the plot demonstrates that the performance of the im-
proved policy is not easily replicated by a random policy, and that including
the load of the system in the decision policy is meaningful.
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Figure 5.10: Ordered Performance Curve - costs of 2,500 randomly selected
policies, as well as the optimal, improved, myopic, and age-threshold policies.
The age-threshold policy clearly performs badly.

0 5 10 15
2

3

4

5

6

7

8

index

C
os

ts

OPC (top 15 policies)

 

 

Random policies
Optimal
Myopic
Improved

Figure 5.11: The same opc as in Figure 5.10, but now only for the �fteen
best policies. The improved and myopic policies are both close to the optimal
policy, and perform signi�cantly better than the best random policy.
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Figure 5.12: The optimal policy for N = 55, with gray indicating that action
a = db is taken, and black that a = Q1 is taken.

5.7.5 The optimal policy

Next, we inspect the optimal policy in Figures 5.12 and 5.13, again using
parameters µ1 = µ2 = 0.3, ρ1 = 0.8, ρ2 = 0.1 from the critical region. The
�rst shows a cross-section of the optimal policy at N = 55, the second at
N = 120. Here, for each grid point (i, j) the color gray indicates that action
a = db is taken and black that a = Q1. The �gures suggest that (away from
the boundaries) the optimal policy is a hyperplane in three-dimensional space,
i.e., a switching policy. This observation is supported by intuitions about the
problem scenario: once Q1 reaches a certain load, the controller switches to
using the db, and continue to do so as the load increases. Hence, an optimal
policy with a switching structure is in line with our expectations. We were
unable to verify this structure mathematically, but we expect that a proof is
feasible. The conjecture below formalizes the claim:

Conjecture 5.7.1 (Asymptotic switching policy). The optimal policy for the
mdp in Eq. (5.2) is a switching curve for N su�ciently large.

Looking at Figures 5.12 and 5.13, we see that the optimal policy is cropped
near the boundary {j = 0} of the state space. This e�ect is caused by the
interaction between the number of report requests j and the costs (N−T )+ for
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Figure 5.13: The optimal policy for N = 120, with gray indicating that
action a = db is taken, and black that a = Q1 is taken.

db assignments. They are connected viaN using the term µ2V (i, j−1, 0)1{j>0}
in Eq. (5.2), which drops out at the boundary {j = 0} of the state space.
Consequently, on the boundary the connection between j and N is severed,
and changes the structure of the mdp and the optimal policy signi�cantly.
This also explains the observation in Section 5.7.2 that the performance of the
improved and myopic policies changes for ρ2 ≈ 0.

Still, in situations where the boundary {j = 0} of the state space is not reached
frequently, we expect switching policies to perform well since the boundary
e�ect is relatively small. This is supported by the results on our improved
policy and the myopic policy (both are switching policies) in the previous
sections.

5.8 Conclusion

In this chapter we investigated the trade-o� between data freshness and query
response times. We formulated this trade-o� as a Markov Decision Process
with a three-dimensional state space. The resulting model contained several
complication aspects, preventing a derivation of an analytical expression for the
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optimal policy. Instead, we introduced a three-step approach to �nding an ap-
proximate policy with near-optimal performance. The �rst step demonstrated
how the original three-dimensional model can be approximated by a simpler
two-dimensional model that still captures the important dynamics. Then, in
the second step, we described how this simpler model can be solved analyt-
ically, using di�erencing techniques to deal with the inhomogeneous terms.
In step three we applied one-step policy improvement to construct our ap-
proximate policy. Finally, we numerically demonstrated that this improved
policy has near-optimal performance, and signi�cantly outperforms both an
age-threshold policy and a myopic policy. Moreover, the experiments reveal
that there is room for improvement on the traditional age-threshold policy,
which is commonly used in practice. Future research directions include mak-
ing the improved policy analytic by removing the dependence on short runs
of value iteration for determining the parameter α (see also the remark at
the end of Section 6.7), and proving the conjecture that the optimal policy is
asymptotically a switching curve.

5.9 Appendix: uniqueness

In Section 5.5 we solved the two-dimensional di�erence equation (5.6), known
in mdp literature as the Poisson equation. For this equation we have only one
boundary condition V (0, 0) = 0, which is not enough to completely determine
the solution. Consequently, after solving the di�erence equation the constant
Ṽ α

1 (0) is yet to be determined in Eq. (5.21).

In order to investigate uniqueness we repeat arguments from Chapter 2 and 4
of [27]. First, note that Eq. (5.6) induces a Markov cost chain with transition
matrix P , state space X = N0 × N0, and cost function

c(i, j) = λ1α [γ1(i+ 1) + γ2j + γ3] + λ1(1− α)C.

Denote with B(X ) the Banach space of bounded real-valued functions u on X
with the supremum norm, i.e., the norm ||·|| de�ned by

||u|| = sup
(i,j)∈X

|u(i, j)| .

Conventional uniqueness proofs for Markov cost chains rely on bounded cost
functions contained in B(X ). However, our cost function c(i, j) is unbounded
and thus not contained in B(X ). A remedy to this situation is to consider
suitable larger Banach spaces instead of B(X ). In order to construct such a
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space, consider a weight function w : X → [1,∞). The w-norm is then de�ned
by

||u||w = sup
(i,j)∈X

|u(i, j)|
w(i, j)

.

A function u is said to be w-bounded if ||u||w < ∞, and the space of all
w-bounded functions is denoted by Bw(X ). We also de�ne the matrix norm
related to ||·||w as ||A||w = sup {||Au||w : ||u||w ≤ 1}. This norm can be rewrit-
ten in the following equivalent form (see Eq. (7.2.8) in [67])

||A||w = sup
x∈X

∑
y∈X

|Axy|w(y)

w(x)
.

Finally, we introduce the taboo transition matrix MP as

MPxy =

{
Pxy, y 6= M,

0, y ∈M,

with x, y ∈ X and in our case M = (0, 0). We now state a property and
adapted theorem from [27] on uniqueness of solutions of Eq. (5.6).

Property 5.9.1 (page 19 of [27]). A Markov chain is called w-geometrically
recurrent with respect to M [w-GR(M)] if there exists an ε > 0 such that
||MP ||w ≤ 1− ε.

Theorem 5.9.2 (Lemma 2.1 combined with Theorem 2.10 of [27]). Suppose
that the Markov chain induced by a policy π is unichain, stable, aperiodic, and
w-GR(M). Let both (g, V ) and (g′, V ′) be solutions to the Poisson equation.
Then g = g′ and the relative value functions V and V ′ di�er by only a constant.

In our case, the Bernoulli policy does indeed induce a Markov chain that is
unichain, stable, and aperiodic. The key to ensuring uniqueness is choosing a
suitable weight function w such that Property 5.9.1 is satis�ed. Section 3.4 of
[146] shows that a suitable weight function is of the form

w(i, j) = K
i∏

k=1

(1 +mk)

j∏
l=1

(1 + nl),

where {mk}, {ml}, and K are constants. Unfortunately, the expressions in-
volved are cumbersome and not easy to state explicitly, making it di�cult for
us to illustrate the construction of the weight function. In the remainder of
this section we make an additional assumption that allows us to �nd a weight



110 Controlling a Queueing System with Aging State Space

function that is explicit. This assumption is only made to facilitate explicit-
ness, and readers interested in the case without the assumption are referred to
[146].

Following Section 4.1 of [27], we assume that ρ1α + ρ2 < 1. The non-zero
entries in the transition matrix are given by

P(i,j)(i+1,j) = λ1α,

P(i,j)(i,j+1) = λ2,

P(i,j)(i−1,j) = µ11{i>0},

P(i,j)(i,j−1) = µ21{j>0},

P(i,j)(i,j) = 1− P(i,j)(i+1,j) − P(i,j)(i,j+1) − P(i,j)(i−1,j) − P(i,j)(i,j−1).

Set w(i, j) = (1 + k1)i(1 + k2)j for some constants k1 and k2. Now consider

||MP ||w =
∑

(i′,j′) 6=(0,0)

P(i,j)(i′,j′)w(i′, j′)

w(i, j)
,

which is given by

λ1α(1 + k1) + λ2(1 + k2), (i, j) = (0, 0),

λ1αk1 + λ2k2 + 1− µ1, (i, j) = (1, 0),

λ1αk1 + λ2k2 + 1− µ2, (i, j) = (0, 1),

λ1αk1 + λ2k2 + 1− µ1k1

1 + k1
, i > 1, j = 0,

λ1αk1 + λ2k2 + 1− µ2k2

1 + k2
, i = 0, j > 1,

λ1αk1 + λ2k2 + 1− µ1k1

1 + k1
− µ2k2

1 + k2
, i > 0, j > 0.

We need to choose k1 and k2 such that all expressions are strictly less than 1.
Observe that if the fourth and �fth expression are less than 1, then all others
are also satis�ed. Hence, we can restrict our attention to the system

f1(k1, k2) = 1 + λ1αk1 + λ2k2 −
µ1k1

1 + k1
,

f2(k1, k2) = 1 + λ1αk1 + λ2k2 −
µ2k2

1 + k2
,

with the assumptions λ1α+ λ2 + µ1 + µ2 < 1 and ρ1 + ρ2 < 1.

Observe that f1(0, 0) = f1

(
(µ1 − λ1α)/(λ1α), 0

)
= 1. Thus, the points (0, 0)

and
(
(µ1 − λ1α)/(λ1α), 0

)
lie on the curve f1(k1, k2) = 1. Furthermore, k2
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satis�es k2 = µ1/λ2 − µ1/
(
λ2(1 + k1)

)
− λ1α/λ2. Note that this function has

a maximum value at k1 =
√
µ1/(λ1α)− 1. Hence, this description determines

the form of f1; the curve f1(k1, k2) = 1 starts in (0, 0) and increases to an
extreme point, and then decreases to the k1-axis again. The curve f2 has a
similar form, but with the role of the k1-axis interchanged with the k2-axis.

The curves determine an area of points (k1, k2) such that f1 and f2 are strictly
less than one if the partial derivative to k1 at (0, 0) of the curve f1(k1, k2) = 1
is greater than the partial derivative to k2 of the curve f2(k1, k2) = 1 at
(0, 0). These partial derivatives are given by (µ1−λ1α)/λ2 and λ1α/(µ2−λ2),
respectively. Since ρ1α+ρ2 < 1, we have λ1αµ2 +λ2µ1 < µ1µ2. Adding λ1αλ2

to both sides gives λ1αλ2 < µ1µ2−λ1αµ2−λ2µ1+λ1αλ2 = (µ1−λ1α)(µ2−λ2).
Hence, the relation λ1α/(µ2 − λ2) < (µ1 − λ1α)/λ2 holds. Thus, indeed the
partial derivative to k1 at (0, 0) of the curve f1(k1, k2) = 1 is greater than the
partial derivative to k2 of the curve f2(k1, k2) = 1 at (0, 0), and there is an
area of pairs (k1, k2) such that the Markov chain is w-GR(M). For these points
it holds that (1+kn) < 1/ρn for n = 1, 2. Observe that any sphere with radius
ε > 0 around (0, 0) has a non-empty intersection with this area. Hence, the
cost function cannot contain terms in i and/or j that grow exponentially fast to
in�nity, and neither can the relative value function. Consequently, we need to
choose Ṽ α

1 (0) in Eq. (5.21) such that the exponential term
( µ1
λ1α

)i
disappears.
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6

Value Function Discovery in
Markov Decision Processes with

Evolutionary Algorithms

In this chapter we introduce a novel method for discovery of relative value
functions for Markov Decision Processes (mdps). This method, which we call
Value Function Discovery (vfd), is based on ideas from the Evolutionary Al-
gorithm �eld. vfd's key feature is that it discovers descriptions of relative
value functions that are algebraic in nature. This feature is unique, because
the descriptions include the model parameters of the mdp. The algebraic ex-
pression of the relative value function discovered by vfd can be used in several
scenarios, e.g., conversion to a policy (with one-step policy improvement) or
control of systems with time-varying parameters.

The work in this chapter is a �rst step towards exploring potential usage sce-
narios of discovered relative value functions. We give a detailed description of
vfd and illustrate its application on an example mdp. For this mdp we let
vfd discover an algebraic description of a relative value function that closely
resembles the optimal relative value function. The discovered relative value
function is then used to obtain a policy, which we compare numerically to the
optimal policy of the mdp. The resulting policy has near-optimal performance
on a wide range of model parameters. Finally, we identify and discuss future
application scenarios of discovered relative value functions.

This chapter is based on the results presented in [5].
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6.1 Introduction

When dealing with mdps, various techniques are available to, e.g., obtain op-
timal policies for decision making. These techniques fall into two categories,
namely numeric and algebraic techniques. In the former category, the most
well-known methods are value iteration, policy evaluation, and policy iteration
[130]. Value iteration is an iterative technique for �nding an optimal control
policy and the corresponding time-average cost. With policy evaluation one
can �nd the time-average cost of a given policy, and policy iteration improves
and evaluates policies iteratively. The aforementioned techniques are numeric
in nature, so when, e.g., the model parameters change they have to be reapplied
to the updated scenario. Ideally, one would like to solve an mdp algebraically
and obtain the optimal policy (with the model parameters included). This
approach is, however, often not feasible due to complexities of the model.

Motivated by this, we introduce a novel method called Value Function Discov-
ery that is aimed at obtaining an algebraic description of a relative value func-
tion. In essence, vfd �ts an algebraic function through several sample points of
the relative value function. The �tting procedure is based on a technique from
the Evolutionary Algorithm (ea) family known as Genetic Programming (gp).
By including sample points for various model parameters, vfd can also include
these parameters when discovering a relative value function. After applying
vfd, the relative value function can be used to, e.g., obtain an algebraic policy.
In the current chapter we use this to demonstrate that, for an example mdp,
the relative value function discovered by vfd yields a near-optimal policy.

In the remainder of this chapter we describe vfd and illustrate it by applying
vfd to an example mdp. We start with a review of related work in Section 6.2,
and an introduction to gp in Section 6.3. Then, we continue with a detailed
description of vfd in Section 6.4 and of the example mdp in Section 6.5.
Numerical results are presented in Section 6.6, followed by a discussion in
Section 6.7 and concluding remarks in Section 6.8.

6.2 Related work

The literature combining eas and mdps mostly uses eas to learn policies (con-
trary to vfd, which learns relative value functions). In [35] the authors in-
troduce evolutionary policy iteration, where the policy improvement step is
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integrated with an ea to iteratively obtain better policies. This procedure is
shown to have monotone convergence for �nite action spaces. The authors
of [71] enhance the work in [35] by generating policies in the population via
sub-mdps, thereby speeding up convergence. From an application perspective,
[161] provides an example of how eas and mdps can be used in a practical sce-
nario. [24] compares an ea to policy iteration, and provides a useful reminder
that policy iteration typically converges quickly and thus often outperforms an
ea-approach.

Closest to our research is [93] by Lin et al., where the authors construct a
piecewise linear approximation of the relative value function. In this approach,
the linear elements are learned using a Genetic Algorithm. Like vfd, Lin's ap-
proach results in an approximation of the relative value function. However, the
relative value function discovered by vfd is a closed-form expression, whereas
[93] �nds a piecewise linear approximation. Having a closed-form expression is
preferable when, e.g., studying the structure of the mdp using the discovered
relative value function. Also, [93] focuses on convex relative value functions,
and vfd does not make any assumptions about the structure of the relative
value function. Another di�erence is the type of ea that is used: [93] employs
a Genetic Algorithm, whereas vfd is based on gp. In particular, [93] does
not use the tree-based representation inherent to gp. Finally, [93] does not
allow for the placement of model parameters in the approximate relative value
function.

A paper that does use gp in an mdp-context is [53]. The authors loosely
explore the combination of gp and mdps on an example of a war game and
demonstrate that it performs well compared to a pure mdp-based technique.
Their approach di�ers from the one described in this chapter, because they use
gp to learn policies and not relative value functions, as vfd does.

Summarizing, the distinguishing feature of vfd is its focus on discovering
relative value functions. Although existing methods in literature choose to
learn policies, learning relative value functions has signi�cant advantages as
well. In particular, vfd has the following bene�ts:

• vfd applied to an optimal relative value function yields policies with
near-optimal performance.
• For mdps that allow for an explicit closed-form expression of the optimal
relative value function, vfd can �nd this optimal relative value function
with arbitrary precision. Thus, it can also �nd the optimal policy for
such mdps. We present an illustration of this in Section 6.6.6.
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• vfd produces an algebraic expression of a policy that includes the param-
eters of the mdp. Hence, the policy is still applicable if the parameters
of the model change in value. This allows for dynamic control in time-
varying systems, without making the underlying model time-dependent.
• Relative value functions discovered by vfd can help gain an understand-
ing of the structure of the optimal relative value function, policy, and
model.
• Alternative techniques for analyzing mdps often require knowledge of
structural properties of the relative value function (e.g., gradient-based
methods such as local search). These properties can be discovered by
vfd.
• For many mdps a near-optimal policy does not require an extremely
accurate �t of the optimal relative value function. Thus, learning relative
value functions can quickly result in good policies.
• vfd works with any mdp without requiring any changes to the algorithm.

6.3 Genetic programming

Since vfd is based on gp, we give a short description of this technique in this
section. Readers interested in a more detailed treatment of gp are referred
to books [44, 125, 142]. The general idea of gp is to maintain a population
of individuals and iteratively attempt to improve this population over several
generations. In each generation (i.e., an iteration step), the current population
form new o�spring by combining individuals. The main idea underlying gp is
that combining good individuals leads, over time, to o�spring that are better
than their predecessors. Below we describe this procedure in more detail, with
particular attention for the mutation and recombination operators used for
generating o�spring. Determining the quality of an individual is related to
vfd's application of gp to mdps, so we postpone it until Section 6.4.

In gp, each individual in the population is an algebraic expression represented
by a tree, and later we use such trees to represent the relative value func-
tion of an mdp. Figure 6.1A illustrates a tree representation of the function
V (x) = x(x+1)

2µ(1−ρ) (the relative value function of anM/M/1 queue [28]). The op-

erators {/, ∗,+,−} from this expression are in the internal nodes of the tree,
whereas the leafs contain the variables (x), parameters (ρ, µ), and constants
(1, 2). In this chapter we only use the operators {/, ∗,+,−} from the example,
but the representation is �exible and also allows for, e.g., exponents, square
roots, and logarithms. Also, note that a representation of a function by a
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Figure 6.1: Two trees, each a representation of V (x) = x(x+1)
2µ(1−ρ) .

tree is not unique: the tree in Figure 6.1B is also a valid representation of
V (x) = x(x+1)

2µ(1−ρ) . Unicity of representation is, however, not required by vfd.
In fact, this feature is used by vfd to include a preference for short trees.

gp uses the mutation and recombination operator to generate new o�spring
from an existing population. In particular, the recombination operator gener-
ates two new o�spring from two parents, and the mutation operator produces
one new o�spring from one parent. The recombination operator takes the
following two steps:

1. Randomly select a node in each of the two trees.
2. Exchange the two subtrees.

The procedure is illustrated in Figure 6.2, where recombination is applied to
the two trees in Figures 6.2A and 6.2B. The subtree with the encircled ∗ as
root in Figure 6.2A is exchanged with the subtree with root / (also encircled),
resulting in the trees in Figures 6.2C and 6.2D. This combines the functions

V (x) =
x(x+ 1)

2µ(1− ρ)
and V (x) = x

1

µ
+ x+ 3.3,

to, respectively,

V (x) =
x(x+ 1)

2 1
µ

and V (x) = x(1− ρ)µ+ x+ 3.3,

Mutation of trees is similar to recombination, except that a selected subtree is
removed and replaced by a randomly generated subtree. The procedure is:
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(D) Tree 2 after recombination.

Figure 6.2: The recombination operator illustrated on the two trees in Fig-
ures 6.2A and 6.2B. The encircled subtrees are exchanged, resulting in the
trees in Figures 6.2C and 6.2D.

1. Select one of the nodes of the tree uniformly at random.
2. Remove this node and the subtree attached to it.
3. Randomly generate a new subtree.
4. Insert this new subtree in the place of the old subtree.

Figure 6.3 illustrates the procedure for the tree for V (x) = x(x+1)
2µ(1−ρ) which we

saw earlier, displayed again in Figure 6.3A. The circled node is selected for
mutation and removed from the tree, together with its subtree. It is replaced
by a randomly generated subtree, in this case a simple tree with only one
element (x). The result is shown in Figure 6.3B, with the newly added tree

encircled. Thus, mutation changes V (x) from x(x+1)
2µ(1−ρ) to x(x+1)

2x .

Applying the gp paradigm with only the recombination operator already re-
sults in the desired improvement of the population over time. This improve-
ment is, however, limited by the information present in the population at the
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Figure 6.3: Mutation removes the subtree of the encircled node in Fig-
ure 6.3A (representing the term µ(1− ρ)) and replaces it by a randomly gen-
erated subtree. The new subtree contains, in this case, only the element x and
is encircled in Figure 6.3B.

start of the algorithm. The mutation operator is used by gp to insert new
information into the population. The performance of gp is determined partly
by carefully balancing the application of the mutation and recombination op-
erators.

6.4 Value Function Discovery

vfd applies gp to relative value functions of an mdp. Each individual in the
population corresponds to a potential relative value function, and by repeatedly
modifying these trees with the mutation and recombination operators, vfd
discovers new relative value functions. In order to judge the quality of a tree in
the population, vfd compares it to several sample points of the actual relative
value function. If a tree `closely' matches the sample points, it is considered
a `good' relative value function (this is made precise in Section 6.4.7). By
including sample points for various mdp parameter values, vfd is able to
include these parameters in the tree representation, and thus in the discovered
relative value function.

In the remainder of this section we describe vfd in more detail, with particular
attention for the preparation of the sample points, several gp-speci�c aspects
that were omitted from Section 6.3, and determining the quality of the �t of a
tree to the sample points.
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6.4.1 Preparing sample points

Before vfd starts, it requires input from the mdp in the form of sample point
sets. The sample points in each set are generated by �xing the values of the
model parameters, �nding the relative value function numerically (with, e.g.,
value iteration), and then selecting appropriate sample points. By repeating
these steps for multiple values of the model parameters, they can be included
in vfd. The steps are described below, along with some supporting notation:

1. Fix values for each of the m model parameters.
2. Find a numeric approximation of the relative value function of the mdp

(by, e.g., value iteration).
3. Select several sample points that together capture the shape of the rel-

ative value function. Each sample point is denoted by s, and the pairs
(s, V (s)) together form the sample point set Sq.

4. Save these sample points into a �le.
5. Repeat steps 1�4 for several combinations of the m parameters. We

denote the resulting number of sample point sets by Q, and each sample
point set by Sq, with q ∈ [0, Q− 1].

In these steps, several choices are made based on the mdp that vfd is applied
to: (a) the values for the m parameters in each sample point set in step 1, (b)
the selection of the sample points in each set in step 3, and (c) the number of
sample point sets Q in step 5. Section 6.5.2 illustrates the considerations for
making these choices on an example mdp.

Preparing the sample point sets requires running, e.g., value iteration on the
mdp, which yields an optimal policy. So why not use this policy instead of
running vfd? Well, the policy found by value iteration is numeric in nature,
whereas vfd produces an algebraic policy. Consequently, the policy resulting
from vfd can be applied to model parameters that are not used to generate the
sample points. This feature is illustrated later in this chapter in Section 6.6.4,
when we apply vfd to an example mdp.

In this chapter we use value iteration for generating the sample point sets, but
for applying vfd other techniques can be used as well. For instance, when
the mdp is too large for running value iteration, one can also use td-learning
[148], which provides numerical approximations of the relative value function
using simulations.
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Algorithm 6.1 Value function discovery (vfd)

1: function vfd( )
2: samplePointSets ← readSamplePointSets()
3: population ← initPopulation()
4: while not isConverged() do
5: repeat

6: if apply mutation then
7: children ← mutate(selectParent())
8: else

9: children ←recombine(selectParent(),
10: selectParent())
11: end if

12: until lambda children generated
13: setError(children)
14: population ← population + children
15: sort(population)
16: survivorSelection()
17: if not isPopulationDiverse() then
18: initPopulation()
19: end if

20: end while

21: return population[0]
22: end function

6.4.2 Overview

A pseudo code listing of vfd is shown in Algorithm 6.1, and in the follow-
ing paragraphs we describe the steps involved. We start with a high-level
description in Algorithm 6.1, and then move on to a detailed description of
the functions involved (Algorithms 6.2 and 6.3). During these descriptions we
encounter the �rst of several parameters of vfd, which are listed in Table 6.1
(together with assigned values that we use later in the example mdp in Sec-
tion 6.5). Functions and parameters are written in smallcaps throughout the
text, including trailing brackets () for functions.

The algorithm starts at line 2 by loading the sample point sets of the mdp
from the �les. These are used later to determine the error of a tree. Next, the
population is initialized by �lling it with mu randomly generated trees. Lines
4�20 describe the steps taken by gp: �rst, lambda children are generated using
mutation and recombination (lines 6�11). Then, their error is calculated, they
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are added to the population, and the population is sorted from smallest error
to largest (lines 13-15). Survivor selection removes lambda trees from the
population, leaving mu individuals (line 16). This procedure is repeated until
convergence (line 4).

Repeating the gp-like procedure described above eventually leads to a pop-
ulation where most trees are the same or similar. When this happens, the
algorithm loses its ability to learn and evolve, and the population is said to
have lost diversity. vfd deals with this by checking the level of diversity
in each generation (with the isPopulationDiverse() function at line 17).
When this check indicates that too much diversity has been lost, vfd reinitial-
izes the population (line 18) with random trees and restarts the search process.
Upon convergence vfd returns the discovered tree (line 21).

6.4.3 Mutation, recombination, diversity, and convergence

Next we describe the functions used in Algorithm 6.1 in more detail, start-
ing with the mutate() function at line 1 of Algorithm 6.2. Mutation occurs
according to the gp paradigm, as described in Section 6.3: a random point
in the tree is selected (line 2) and the subtree at that point is replaced by
a randomly generated subtree (lines 3 and 4). Similarly, the recombination
operator is represented by the recombine() method. Both functions rely on
a numbering of the nodes in a tree, which vfd assigns using a root-left-right
walk of the tree.

Each time that vfd generates one or two new individuals, it decides whether
to use mutation or recombination. This is done probabilistically via the com-
mand line parameters applymutationprob: with probability applymuta-

tionprob vfd uses mutation, with probability 1-applymutationprob it
uses recombination.

Checking for diversity is done in isPopulationDiverse(). It �nds the error
of the best tree (the �rst in the population) and the worst tree (the last in the
population) at lines 26 and 27 respectively. Diversity is then calculated via
�error of worst tree - error of best tree�/ �error of best tree� at line 28, which
is then compared to diversity_threshold, another parameter of vfd. If
diversity drops below this threshold, diversity is considered to be lost (line 29).

The next function is initPopulation(), which periodically reinserts diversity
into the population. The entire population is cleared (line 17) and reinitialized
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Algorithm 6.2 vfd continued

1: function mutate(parent)
2: z ← randint [0,numElements(parent)−1]
3: newSubtree ← generateRandomTree()
4: parent→setSubtree(z, newSubtree)
5: end function

6:

7: function recombine(parent1, parent2)
8: z1 ← randint [0,numElements(parent1)−1]
9: z2 ← randint [0,numElements(parent2)−1]
10: subTree1 ← parent1→getSubtree(z1)
11: subTree2 ← parent2→getSubtree(z2)
12: parent1→setSubtree(z1, subtree2)
13: parent2→setSubtree(z2, subtree1)
14: end function

15:

16: function initPopulation( )
17: population ← List()
18: for k ← 0, . . . ,mu−1 do
19: population[k] ← generateRandomTree()
20: end for

21: setError(population)
22: sort(population)
23: end function

24:

25: function isPopulationDiverse(population)
26: min ← population[0]→getError()
27: max ← population[mu−1]→getError()
28: div ← (max-min)/min
29: return div > diversity_threshold

30: end function

31:

32: function isConverged( )
33: return population[0]→getError() < min_error

34: end function

with randomly generated trees (lines 18�20). The �nal steps at lines 21 and
22 calculate the error of each tree and sort the population (on error). Readers
familiar with gp most likely notice that vfd's treatment of diversity di�ers
from common practice in gp. We added a paragraph on the reasons for this
di�erence in Section 6.7.
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The �nal function in Algorithm 6.2 is the isConverged() function, which de-
termines whether the current best individual is good enough to allow stopping
of vfd. If its error is lower than the threshold value min_error (speci�ed
by the user), vfd stops.

6.4.4 Bloat in gp

When recombination exchanges, for instance, the root of the �rst tree with a
leaf of the second tree, the second tree can increase in depth and in number of
elements. Over time, this typically leads to large and deep trees, with negative
e�ects on both speed and memory usage. This problem is called bloat and must
be dealt with by vfd. It does this by enforcing a maximum on the number
of elements in the tree, as speci�ed by the command line parameter maxele-
mentsintree. This feature is not shown in the mutate() and recombine()
functions in Algorithm 6.2 to keep the listing readable, but it is present in
the implementation of vfd. Additionally, the sort() function, which sorts a
given set of trees by error in ascending order, has a built-in preference for trees
with a small number of elements. Speci�cally, if two trees have equal error,
the sort function puts the tree with the fewest elements in front. This gives
vfd a slight inclination to discover short trees and prevent bloat.

6.4.5 Parent selection and survivor selection

We continue with the selectParent() function in Algorithm 6.3, which is
used by the mutation and recombination operators to determine which par-
ent(s) to act upon. Following convention in the gp community, vfd relies on a
strategy called over-selection when selecting parents. In this strategy the pop-
ulation is split into two groups, one containing `good' parents and the other
with `bad parents'. The two groups are separated by taking the sorted popula-
tion and de�ning the �rst `goodpct' percent individuals as good parents, and
the remaining trees as bad parents. The parameter goodpct is automatically
determined by vfd from the size of the population mu. For this, vfd again
relies on gp-conventions and uses values ranging from 4−32%, as described in
[44, Table 6.4]. Once the split point z1 is known (line 2), a parent is selected
from the good parents with probability selectfromgoodprob and from the
bad parents otherwise. selectfromgoodprob is set to 0.8, again following
conventions in the gp community. The selection is done at lines 4 and 6. Note
that for recombination the selectParent() function is called twice.
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Algorithm 6.3 vfd continued

1: function selectParent( )
2: z1 ← �oor(mu·goodpct)
3: if select from good then
4: z2 ← randint[0, z1 − 1]
5: else

6: z2 ← randint[z1, mu−1]
7: end if

8: return population[z2]
9: end function

10:

11: function survivorSelection(population)
12: remove population[mu:mu+lambda−1]
13: end function

14:

15: function setError(trees)
16: for tree in trees do
17: maxError ← 0
18: for q ← 0, . . . , Q− 1 do
19: err ← calcError(samplePointSets[q], tree)
20: maxError ← max (err, maxError)
21: end for

22: tree→setError(maxError)
23: end for

24: end function

The survivorSelection() function is used by vfd in each generation after
the lambda children have been generated. Its purpose is to select mu survivors
from among the mu+lambda individuals currently in the population. vfd

uses a greedy approach and simply removes the lambda individuals with the
worst error from the population (line 12).

6.4.6 Creating random trees

Mutation and initialization of the population use function generateRan-

domTree() for creating new trees. The type of operator in an internal
node is determined randomly: it is a `+', `-', `*', or `/' with probability
prob_plus, prob_min, prob_multiply, and 1-prob_plus-prob_min-

prob_multiply, respectively. Similarly, leaf nodes are a variable, mdp pa-
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rameter, or constant with probability prob_variable, prob_parameter,
and 1-prob_variable-prob_parameter. We expect that the division op-
erator `/' is needed less often than the others, and this is re�ected in the values
of vfd's parameters in the bottom part of Table 6.1.

6.4.7 Goodness of �t (error)

So far we have not yet discussed how the error of a tree is de�ned. This
de�nition ties the gp approach of vfd to the mdp setting of �nding a good
relative value function. The error of a tree must be chosen in such a way that
a low error corresponds to a good �t of the function described by the tree on
the sample points obtained from the mdp. For vfd the error Eq on sample
point set Sq is calculated via

Eq = max
(s,V (s))∈Sq

|Ṽ (s)− V (s)|
V (s)

. (6.1)

Here, Ṽ (·) is the function discovered by vfd and V (·) the optimal relative value
function found by value iteration. The error Eq is calculated in the function
calcError() at line 19 in Algorithm 6.3. The error of a tree is then de�ned
as

E = max
q∈[0,Q−1]

Eq, (6.2)

i.e., the error of the tree is its worst error achieved on all the sample point
sets. The error in Eq. (6.1) uses a relative measure of error by dividing by
V (s), contrary to, e.g., the mean squared error. This ensures that sample
points that naturally have large values for V (s) do not dominate the search
process of vfd. Also, we use �max(s,V (s))∈Sq � rather than �mean(s,V (s))∈Sq �
(i.e., MAPE). With MAPE, a large relative error for a small sample point s
can be mitigated by a small relative error of large sample points. In the context
of mdps, however, small states are usually visited more often, so we require a
better �tting relative value function in such states. At larger states we want
to allow larger errors. Therefore, using �max(s,V (s))∈Sq � in vfd is preferable to
MAPE.
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Parameters Name In example Allowed values

Command line
seed 3,151,492 [0,maxint]
mu 1,000 [1,maxint]
lambda 500 [1,maxint]
maxelementsintree 125 [1,maxint]
min_error 0.2 [0,1]
applymutationprob 0.2 [0,1]
diversity_threshold 0.01 [0,maxdouble]

Parent selection
goodpct 0.32 [0,1]
selectfromgoodprob 0.8 [0,1]

Random tree creation
prob_plus 0.3 [0,1]
prob_minus 0.3 [0,1]
prob_multiply 0.3 [0,1]
prob_parameter 0.45 [0,1]
prob_variable 0.45 [0,1]

Table 6.1: The parameters available to vfd (�rst column), the values as-
signed to them for the example mdp in Section 6.5 (second column), and the
values allowed by vfd (third column).

6.5 Example mdp

In the following paragraphs we illustrate vfd on an example mdp. We describe
how vfd is con�gured and, in doing so, we have to choose the command line
parameters of vfd, listed in the top part of Table 6.1. It shows the values we
are going to choose in this section, as well as the range of values that is allowed.
For completeness, it also has the parameters that were discussed in Section 6.4
and the values assigned to them by vfd. Before starting, we emphasize that
we make reasonable choices for vfd's parameters and the sample point sets,
rather than seeking choices that lead to, e.g., fast run times. Our focus is on
demonstrating that vfd can indeed be used to learn a relative value function
that yields a near-optimal policy.
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λ
µ1

µ2

Figure 6.4: An M/M/2 system with control, where jobs (arriving with rate
λ) from the queue have to be assigned to either a fast server S1 (with service
rate µ1) or to a slow server S2 (with service rate µ2 < µ1).

The mdp in this section is suitable for demonstrating vfd because:

• No known expression for the optimal policy or the relative value function
exists, so we have no prior knowledge that vfd can capture the optimal
relative value function.
• The system resembles a combination of an M/M/1 and M/M/2 system,
which helps us when generating sample point sets and when choosing
maxelementsintree.
• The system is relatively simple and easy to understand.
• The state space is small, which keeps run times of vfd short.

6.5.1 Model formulation

Figure 6.4 shows a queue with Poisson arrivals (rate λ) and two servers with
exponential service rates µ1 and µ2 (without loss of generality we take the
service rates such that µ1 > µ2). Arriving jobs are put into the queue and,
when they reach the head of the queue, have to be assigned non-preemptively
to either the fast server (S1) or the slower server (S2). This decision is taken
after a job completion, as well as when a new job arrives at the queue. We
model this scenario as an mdp, with states (x, i) ∈ X = N × {0, 1}. Here, x
denotes the number of jobs in the queue and at S1, and i the number of jobs
at S2. Our aim is to minimize the average number of jobs in the system. From
[81] we have the optimality equation

g + V (x, i) = x+ i+ λW (x+ 1, i) + µ1W ((x− 1)+, i) + µ2W (x, 0) (6.3)

with

W (x, 0) = min{V (x, 0);V (x− 1, 1)} if x > 0,

W (0, i) = V (0, i),

W (x, 1) = V (x, 1).

(6.4)



6.5 Example mdp 129

The function W (x, i) re�ects the decision to be taken after the occurrence of
an event. In particular, if S2 is empty the decision is between leaving the job
in the queue (V (x, 0)) or moving one job from the queue to S2 (V (x − 1, 1)),
as shown in Eq. (6.4). If the queue and S1 are empty then moving a job is not
possible and the state of the system does not change (W (0, i) = V (0, i)). Also,
if the second server is busy the state does not change (W (x, 1) = V (x, 1)).
In Eq. (6.3), x + i re�ects the number of jobs in the system, W (x + 1, i) the
decision upon a job arrival,W ((x−1)+, i) the decision when a job is completed
at S1, and W (x, 0) the decision when a job is completed at S2. Finally, the
constant g is the time-average cost of the system.

Note that this formulation allows preemptive behavior, since the expression
W (1, 0) = min{V (1, 0);V (0, 1)} can result in moving a job in service at S1 to
S2. However, since µ1 > µ2 and rates are exponential, such a move would result
in a longer expected service time for the job than when it is left at S1. Hence,
the optimal policy automatically enforces non-preemptive behavior. Finally,
in Eq. (6.3) and (6.4) we assume that the parameters are normalized such that
λ+ µ1 + µ2 = 1.

6.5.2 Generating sample point sets

The �rst step to running vfd is preparing the sample point sets. The steps
were described in Section 6.4.1 and we repeat them here for convenience. In
these steps, we include the fact that m = 3 for the example mdp, and that we
use value iteration for generating the sample points.

1. Fix values for each of the three parameters λ, µ1, and µ2.
2. Run value iteration for the mdp.
3. Select sample points that capture the shape of the relative value function.
4. Save these sample points into a �le.
5. Repeat steps 1�4 for Q pairs of the three parameters.

First we decide upon the number of sample point sets Q (for step 5) that we
will generate, and on the mdp parameter values used for each set (for step 1).
We make our choice for a worst-case scenario where S2 is never used (i.e., an
M/M/1 system) and choose parameters for the sample point sets based on the
load ρ = λ/µ1 ∈ [0, 1]. Then, we generate parameters µ1 and µ2 uniformly
from [0, 1], set λ1 = ρµ1, at the same time ensuring that µ1 > µ2 and that
λ+ µ1 + µ2 = 1.
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Set ρ λ µ1 µ2

0 0.100 0.0814 0.8135 0.1051
1 0.400 0.2688 0.6719 0.0594
2 0.525 0.3158 0.6015 0.0827
3 0.650 0.3701 0.5693 0.0606
4 0.775 0.4028 0.5198 0.0774
5 0.900 0.4662 0.5180 0.0159
6 0.950 0.4804 0.5057 0.0139

Table 6.2: Model parameters per sample point set.

In the region 0 ≤ ρ ≤ 0.4 the load on the system is low, and possible wrong
decisions in a policy have little impact. Hence, we expect that an accurate
relative value function in that region is not required, and we cover it by just
two sample point sets: one at ρ = 0.1 and another at ρ = 0.4. Following
similar reasoning, we choose two sample point sets `close together' at ρ = 0.9
and ρ = 0.95 to cover scenarios with a high load. The region 0.4 < ρ < 0.9 is
then covered by Q − 4 sample point sets distributed evenly over the interval.
Short experiments suggest that Q = 7 is a reasonable choice. The resulting
ρ-values are {0.1, 0.4, 0.525, 0.65, 0.775, 0.9, 0.95}, and the model parameters of
each set are listed in Table 6.2.

Note that, generally speaking, using many sample point sets (i.e., a large Q)
ensures that vfd discovers a well-�tting relative value function. On the other
hand, the points in each sample point set are used many times to evaluate
trees, contributing signi�cantly to the computational complexity. Moreover,
vfd has to discover a relative value function that closely �ts each sample point
set, so using many sets increases the time needed by vfd to discover such a
function. Consequently, choosing Q is a trade-o� between the goodness of �t
of the discovered relative value function, and the run time of vfd.

Now that the number of sets is chosen, the sample points in each set can be
selected. To run value iteration we must decide on a boundary for the �rst
dimension of the state space X = N × {0, 1}. We use a value L to limit the
state space to X̂ = [0, L] × {0, 1}, where L is the smallest value such that
P(x > L) < 0.001 in the worst case M/M/1 scenario. For each sample point
set we then take 2 × 10 points, with the ten x-values evenly distributed over
[0, 0.75 · L] and i both 0 and 1 (recall that (x, i) ∈ X̂ is a point in the state
space). These sample points capture the shape of the relative value function
and avoid boundary e�ects of value iteration (by using d0.75 · Le instead of
L). If 0.75 ·L < 10 then we take only d0.75 ·Le points instead of ten. Finally,
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we stop value iteration once the span of two consecutive iterations is less than
10−6.

With these sample points, the part of the state space outside X̂ is not covered
by sample points. Most likely, vfd will not discover a relative value function
that extrapolates well outside X̂ . By choosing L such that P(x > L) < 0.001,
we ensure that it is unlikely that the system reaches states outside X̂ , thus min-
imizing the e�ect of vfd's inability to extrapolate. In general, when applying
vfd the user should keep in mind that it is good at interpolating between sam-
ple points, and not at extrapolating. Hence, the sample points should cover the
area in the state space that the user is most interested in. A similar argument
holds for the placement of the Q sample point sets in the parameter space.

6.5.3 Determining command line parameters

The next step is determining the command line parameters, as listed in the
top part of Table 6.1. The �rst, seed, can be set to any desired integer
value, as it is only used to initialize the random number generator. For the
population size mu and the number of children lambda we follow current
trends in gp and choose them such that lambda<mu. In [44] populations
with several thousands of individuals are suggested, but since our mdp has
fairly low dimensionality we conservatively set mu= 1,000 and lambda= 500.

For the parameter maxelementsintree we manually count the number of
elements needed for the M/M/1 relative value function (13) and the M/M/2
relative value function (≈ 90), based on the expressions in [28]. Then, we
set maxelementsintree to a value somewhat higher than 90 (125), and
ran some short experiments to see how large the resulting trees where. These
experiments suggest that using 125 elements is su�cient. In general it is wise to
set maxelementsintree to a slightly bigger value than expected, since that
gives vfd some more freedom. Also, the sort() function prefers smaller trees,
so this tends to counteract a possibly too large value of maxelementsintree.

Next is min_error, which in�uences the stopping criterion of vfd. Large
values for min_error let vfd stop quickly (but with a badly �tting tree),
smaller values allow vfd to search longer (with a better �tting tree). Note
that for the current mdp the performance of a discovered relative value function
depends on the decision min{Ṽ (x, 0); Ṽ (x−1, 1)}. Even if Ṽ (x, i) is not highly
accurate, the decision can still be correct. Hence, we choose min_error quite
large and set min_error= 0.20.
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The value of diversity_threshold is determined by visually observing the
progress made by vfd in terms of error in several short experimental runs.
vfd should have su�cient time to discover good functions in between reini-
tialisations of the population, but should stop as soon as error stops decreasing
signi�cantly. This means that diversity_threshold should not be too high.
After some experiments we set it to 0.01, i.e., diversity is lost when the worst
tree di�ers by at most 1% from the best tree (in terms of error).

Parameter applymutationprob is used by vfd to decide between using the
mutation or recombination operators. The gp literature (see [44, Sec. 6.4]
and the references therein) suggests using a mutation probability in the or-
der of 0.05. However, experiments on the current mdp indicate that setting
applymutationprob to 0.2 yields better results.

6.6 Numerical results

6.6.1 Sample points

Section 6.5.2 describes how the sample points for our mdp example are gener-
ated. The values for the model parameters per sample point set are outlined
in Table 6.2. For each of the model parameters in Table 6.2 we then run value
iteration to �nd the sample points. Figure 6.5 shows the resulting sample
points (marked by squares) for several of the sets. Note that the system with
high load (Figure 6.5D) the optimal relative value function attains values in
the order of 104, whereas for lower loads in Figures 6.5A and 6.5B these values
are signi�cantly smaller. Also, in Figure 6.5A the boundary d0.75 ·Le for value
iteration is smaller than the number of desired sample points (ten), in which
case only d0.75 · Le sample points are retained. This results in three sample
points for both i = 0 and i = 1, i.e., six sample points in total.
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Figure 6.5: Sample point sets 0, 2, 4, and 6.
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Figure 6.6: Ṽ (x, i) for sets 0, 2, 4, and 6.
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6.6.2 The discovered relative value function

Having speci�ed all the input for vfd, it is ready to run. The relative value
function Ṽ (x, i) discovered by vfd is

Ṽ (x, i) = i/
[
0.28µ2(2λµ2(i+ µ1)(2λ+ µ1)− i+ µ2)

·
(

(i+ λ)

(
λ2

µ1
+ µ2

)
+ i− µ1

)
+ µ2

]
+ x

− λ
(
λ2 + 1

)
x
[
λ2 − λ

λ2
(

3.58iλ
µ1

+ 3.58λ2x+ x
)

+ µ2x

µ2

− 3.58(λ+ µ1)− 3.58λx− µ1x− 2µ2 − x
]
.

(6.5)

Ṽ (x, i) is plotted in Figure 6.6 (dash-dotted line) together with the sample
points for the same sets as in Figure 6.5. Additionally, the �gure contains
two lines (dotted) above and below the sample points that indicate how much
Ṽ (x, i) is allowed to di�er from the sample points, as speci�ed by the error
criterion in Eq. (6.1) and by the parameter min_error. When running,
vfd continues looking for a relative value function until one is found that
lies completely between this upper and lower bound. Figure 6.6 demonstrates
that Ṽ (x, i) resembles V (x, i) well, and that it indeed lies between the speci�ed
bounds. By modifying the parameter min_error, the user of vfd can control
the distance between the upper and lower bounds, and thus the accuracy of
Ṽ (x, i). Also, observe that the distance between the upper and lower bound
increases as x gets larger, as a consequence of our choice for a relative error
criterion (as discussed in Section 6.4.7).

6.6.3 The policy derived from Ṽ (x, i)

Next, we convert Ṽ (x, i) to a (algebraic) policy using a technique called one-
step policy improvement, introduced in [118]. Observe that for states (x, 1) it
is not possible to assign a job to server S2, so the policy is trivial in these
states. Therefore, we focus on states (x, 0). To obtain the policy, we take the
term min{V (x, 0);V (x− 1, 1)} in Eq. (6.4) and substitute Ṽ (x, i) for V (x, i).
Evaluating the minimum results in an action for each state (x, 0), i.e., server
S2 is used when Ṽ (x, 0) > Ṽ (x− 1, 1). Unfortunately, the resulting inequality
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Set ρ g g̃ Policy

0 0.100 0.1107 0.1107 Use S2 if x > 25.5719
1 0.400 0.6643 0.6643 Use S2 if x > 10.2648
2 0.525 1.0589 1.0665 Use S2 if x > 5.9715
3 0.650 1.7107 1.7368 Use S2 if x > 6.4751
4 0.775 2.4684 2.5085 Use S2 if x > 4.6315
5 0.900 7.3973 7.7279 Use S2 if x > 15.5992
6 0.950 12.8241 13.5369 Use S2 if x > 17.4802

Table 6.3: time-average cost g̃ for the policy based on the relative value
function in Eq. (6.5) discovered by vfd. These costs are compared to costs g
of the optimal policy. The policy in the last column indicates for which states
(x, 0) a job should be assigned to server S2.

is lengthy and challenging to interpret. Instead, we simplify the inequality for
parameters λ, µ1, µ2 of the sample point sets in Table 6.2, and list the policies
in the last columns of Table 6.3. The policies indicate for which states (x, 0)
the second server S2 should be used. All policies are of threshold type, and
the same structure holds for the optimal policy (see [81] for a proof). The
time-average cost g̃ of the discovered are in Table 6.3, and demonstrate that
the policy yields good results for the various model parameter values.

6.6.4 vfd and interpolation

The time-average cost in Table 6.3 are based on the model parameters in
Table 6.2, which were given to vfd as input. As mentioned in Section 6.5.2,
we expect that vfd is able to interpolate well in the range [0.100, 0.950] for
ρ. To investigate this, we �x new values for ρ within that range (the second
column in Table 6.4) and generate new values for the model parameters λ, µ1,
and µ2 (columns 3 − 5). Then, we rerun value iteration to get the costs g
of the optimal policy, and apply policy evaluation to �nd the costs g̃ of the
policy based on Ṽ (x, i) from Eq. (6.5). The last two columns of Table 6.4
demonstrate that g and g̃ are consistently close and that vfd performs well on
these new model parameters. We repeated this experiment several times for
other values of the parameter seed, and vfd continually yielded similar good
results.
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Set ρ λ µ1 µ2 g g̃

0 0.010 0.0088 0.8832 0.1080 0.0101 0.0101
1 0.200 0.1533 0.7663 0.0805 0.2496 0.2496
2 0.300 0.2094 0.6981 0.0924 0.4270 0.4270
3 0.450 0.2848 0.6329 0.0823 0.8067 0.8100
4 0.600 0.3686 0.6143 0.0171 1.4930 1.4930
5 0.700 0.3823 0.5462 0.0715 1.9669 2.0080
6 0.825 0.4443 0.5385 0.0172 4.3761 4.4744
7 0.875 0.4567 0.5219 0.0215 5.7497 5.9840
8 0.925 0.4571 0.4942 0.0487 5.8536 6.0514

Table 6.4: time-average cost g̃ for the policy based on the relative value
function discovered by vfd, compared to costs g of the optimal policy. The
model parameters (λ, µ1, µ2) and loads (ρ) are di�erent from the ones vfd was
given as input.

6.6.5 Computational complexity

With the model parameter values from Table 6.2 and the corresponding sample
point sets vfd requires 2 minutes and 7 seconds to discover the Ṽ (x, i) from
Eq. (6.5). Since vfd relies on several sources of randomness (controlled via
command line parameter seed), we inspect whether this run time is represen-
tative of vfd in general. To this end, we run vfd for 25 di�erent values of
seed, record the run times, and compute the median of these run times. This
results in a median run time of 2 minutes and 21 seconds, which corresponds
well with the previously observed run time. For the mdp in this chapter the
run time is quite short, which is mainly due to the small state space of the mdp
in Eq. (6.3). On mdps with larger state spaces the run time will be longer, but
we feel that this is well worth the e�ort. Obtaining near-optimal policies for
large mdps via mathematical procedures is extremely challenging, time con-
suming, and does not always yield results. vfd, however, is easy to set up and
run.

6.6.6 vfd applied to M/M/1

In Section 6.2 we claimed that for mdps that allow for an explicit closed-form
expression of the optimal relative value function, vfd can �nd this optimal
relative value function. As an illustration, we let vfd discover the relative value
function of anM/M/1 queue. To this end, we set µ2 = 0, regenerate the sample
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point sets, and run vfd with parameter min_error set to 0.0001 (slightly
bigger than 0 to allow for small numerical inaccuracies in value iteration). vfd
discovers the function

Ṽ (x) =
x(λ+ µ+ x)

−2λ+ 2µ
,

which simpli�es to

Ṽ (x) =
x(x+ 1)

2(µ− λ)
.

This is indeed the relative value function of anM/M/1 queue [28], and demon-
strates that vfd is able to discover the closed-form expression that we expected.

6.7 Discussion

The results from the previous section demonstrate that vfd is able to dis-
cover relative value functions that closely resemble the optimal relative value
function, and that the policy derived from a discovered relative value function
perform wells. The good results in this chapter indicate that vfd is a promising
technique and shows great potential. The research on vfd so far is, however,
an initial step of exploring the idea of combining gp with mdps. In particular,
using vfd to gain valuable insights into the structure of an optimal relative
value function is still unexplored. Another interesting application scenario of
vfd is that of the control of an mdp with time-varying parameters. Having
an algebraic policy prevents the need to make and analyze a time-dependent
model. In the remainder of this section we list several potential directions for
future research.

Shorter descriptions. In this chapter we showed the relative value function
discovered by vfd in Eq. (6.5), but we did not analyze it further. It can,
however, provide useful insights. For instance, Ṽ (x, i) in Eq. (6.5) contains the
element λ/µ1, the load of an M/M/1 system. It does, however, not contain

λ
µ1+µ2

, the load on an M/M/2 system. At the moment it is quite di�cult
to interpret the discovered relative value function, because the expression in
Eq. (6.5) is somewhat long. We even expect that it is acceptable to sacri�ce
some accuracy in return for shorter trees. An inclusion of this feature in vfd
might help in discovering relative value functions that are simpler and easier
to interpret.
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Include prior knowledge. vfd does not utilize any prior knowledge about
the structure of the relative value function in the population. However, it
might speed up the search process or result in better relative value functions if
this knowledge is included. For the mdp in this chapter, we could for instance
add several elements of theM/M/1 andM/M/2 relative value function to the
population, such as λ/µ1 , λ/(µ1 +µ2), and x2 (both theM/M/1 andM/M/2
relative value functions are quadratic in x).

Di�erent error criterion for large mdps. Prior to running vfd, it has
to be supplied with sample point sets. For the mdp in this chapter, each set
contains several points ((x, i), V (x, i)) that together capture the shape of the
optimal relative value function. The V (x, i) are obtained by value iteration,
which is computationally feasible for the small example mdp. For larger mdps,
however, this might not be possible. Earlier, we already mentioned the use
of td-learning as an alternative to value iteration. Another potential solution
is to determine the error of a tree using the Bellman error of the optimality
equation of the mdp, instead of with Eq. (6.1). For the mdp in this chapter,
the modi�ed error of a tree would be

Eq =
∑

(x,i)∈Sq

βx+i
∣∣∣− Ṽ (x, i) + x+ i+ λW̃ (x+ 1, i)

+ µ1W̃ ((x− 1)+, i) + µ2W̃ (x, 0)
∣∣∣. (6.6)

This expression is based on the optimality equation in Eq. (6.3) and Eq. (6.4),
with V (x, i) replaced by Ṽ (x, i). Note that Eq ≥ g, because that is the error
reached by the optimal relative value function. Also, the sample point sets Sq
no longer contain V (x, i), only a number of points (x, i) in the state space.
Finally, to avoid over�tting to sample points farther away in the state space,
the sum is weighted by a factor βx+i, with β a suitable constant (in Eq. (6.1)
over�tting was avoided by dividing by V (x, i), but in this modi�ed error cri-
terion V (x, i) is no longer available). We expect that with this modi�cation,
vfd is better able to handle large mdps.

Additional operators. The current version of vfd uses only operators
{/, ∗,+,−}, but the representation of a function in gp is �exible enough to also
allow for, e.g., exponents, square roots, logarithms, and rounding. Addition-
ally, we could add other genetic operators besides mutation and recombination,
such as deleting and inserting nodes.

Determining vfd's parameters. In Section 6.5 we determined values for
the parameters of vfd. We wanted to set the parameters of vfd to values that
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yield good policies. In particular, we were not looking for the best parameter
settings. The current, basic, mdp does not require too much consideration for
the vfd parameters, but for larger systems we expect the parameter values
to be more important. A potential improvement is to use a parameter tuning
tool such as Bonesa [143] to select good parameters, or to learn parameters on
the go with, e.g., a co-evolutionary algorithm (see [47] for an example).

Improve diversity handling. The current setup of vfd reinitializes the
entire population when diversity is lost, so it does not attempt to maintain
diversity of a population. Upon loss of diversity the search is simply restarted
elsewhere. With the basic mdp we used in this chapter, such a naive attitude
towards diversity is su�cient to get a good relative value function quickly.
However, for mdps with larger state spaces, or mdps that require a smaller
error, this approach most likely does not yield a su�ciently good relative value
function in a reasonable amount of time. Traditionally, gp algorithms employ a
diversity maintenance scheme, e.g., a temporary increase of applymutation-
prob upon loss of diversity. We expect that vfd will also need a diversity
maintenance strategy, as we continue our experiments with vfd in the near
future. For the current chapter we decided not to include such a scheme, be-
cause that would have resulted in even more parameters for vfd. This would
have clouded our focus on discovery of relative value functions and the resulting
policies in the context of mdps.

Learning policies. With certain mdps it is also possible to use vfd to learn
policies directly. In [81] the author proves that the optimal policy for the mdp
in this chapter is a switching curve, i.e., there is a threshold T such that only
S1 is used for x ≤ T and both S1 and S2 are used for x > T . We can thus
apply vfd to sample points of this threshold T and learn an expression for T
in terms of the model parameters. This experiment is the topic of the next
chapter. Another example is the improved policy π′(i, j,N) from Chapter 5,
shown in Eq. (5.26). This policy includes a parameter α̂ that is determined
with a numerical procedure. Instead of this procedure, vfd can be applied to
sample points of g′(α) and thus help discover an expression for g′(α), which
can then be minimized with respect to α. This yields an expression for the
parameter α̂ in terms of the model parameters λ1, λ2, µ1, and µ2. With this
expression for α̂, the policy π′(i, j,N) no longer needs a numerical procedure.

Consistency of discovered value functions. vfd is a stochastic process,
and running vfd with di�erent values for the parameter seed should ideally
result in the same discovered relative value function. This is particularly useful
when analyzing the structure of the value function discovered by vfd in order
to learn something about the true relative value function. We expect that such
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consistency is di�cult to achieve, because vfd imposes no restrictions on the
description of a discovered value function, and vfd is satis�ed with any tree
that has a su�ciently low error. Analyzing the relative value function of an
mdp is, however, still possible with vfd, by inspecting the discovered trees
from several runs of vfd for common structures.

6.8 Conclusion

In this chapter we introduced vfd, a novel method for discovering algebraic
descriptions of relative value functions of mdps using a gp approach. We
started with a description of gp, in particular of the representation used in
gp, and of the mutation and recombination operators. Then we gave a detailed
description of vfd, discussed an example mdp, and applied vfd to that mdp
to discover a relative value function. To illustrate how a discovered relative
value function can be used, we obtained a policy from it via one-step pol-
icy improvement. Numerical experiments demonstrated that this policy has
near-optimal performance, both for model parameters that vfd was given a
priori, and for new parameters. We identi�ed several opportunities for future
research, containing both improvements to vfd and alternative applications of
the algorithm.
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7

Discovery of Structured
Optimal Policies in

Markov Decision Processes

In this chapter we continue work on vfd, the novel method for discovery of
relative value functions for Markov Decision Processes that we introduced in
Chapter 6. vfd discovers algebraic descriptions of relative value functions
using ideas from the Evolutionary Algorithm �eld and, in particular, these
descriptions include the model parameters of the mdp. We extend that work
and demonstrate how additional information about the structure of the mdp
can be included in vfd. For this we use the same example mdp as in Chap-
ter 6, and include prior knowledge that the optimal policy is of threshold type.
We let vfd learn an expression for this threshold in terms of the model pa-
rameters, and numerically inspect its performance. We demonstrate that this
alternative use of vfd also yields near-optimal policies, illustrating that vfd
is not restricted to learning relative value functions and can be applied more
generally.

This chapter is based on the results presented in [7] and [8].



144 Discovery of Structured Optimal Policies in MDPs

7.1 Introduction

We use the example mdp from Section 6.5 to illustrate this alternative appli-
cation of vfd. For convenience we repeat the description of the mdp here.
Figure 7.1 shows a queue with Poisson arrivals (rate λ) and two servers with
exponential service rates µ1 and µ2 (µ1 > µ2). Arriving jobs are put into the
queue and, when they reach the head of the queue, they have to be assigned
non-preemptively to either the fast server (S1) or the slower server (S2). This
decision is taken after a job completion, as well as after a job arrival. The state
space of the resulting mdp is X = N× {0, 1}, where a state (x, i) ∈ X re�ects
that there are x jobs in the queue and at S1, and i jobs at S2. From [81] we
have the optimality equation

g + V (x, i) = x+ i+ λW (x+ 1, i) + µ1W ((x− 1)+, i) + µ2W (x, 0) (7.1)

with

W (x, 0) = min{V (x, 0);V (x− 1, 1)} if x > 0,

W (0, i) = V (0, i),

W (x, 1) = V (x, 1).

(7.2)

The function W (x, i) re�ects the decision to be taken after the occurrence of
an event. In particular, if S2 is empty the decision is between leaving the job
in the queue (V (x, 0)) or moving one job from the queue to S2 (V (x − 1, 1)),
as shown in Eq. (7.2). If the queue and S1 are empty then moving a job is not
possible and the state of the system does not change (W (0, i) = V (0, i)). Also,
if the second server is busy the state does not change (W (x, 1) = V (x, 1)). In
Eq. (7.1), the second, third, and fourth term on the right-hand side correspond
to the decision upon a job arrival, a job completion at S1, and a job completion
at S2, respectively. Finally, the constant g is the time-average cost.

For the mdp in Eq. (7.1), we know that the optimal policy of Eq. (7.1) is of
threshold type (see [81] for a proof). To be precise, for given model parameters
λ, µ1, µ2 the optimal policy states that server S2 should be used whenever
x > T , i.e., when x exceeds a certain threshold T . By viewing this threshold as
a function of the model parameters, we can apply vfd and discover an algebraic
expression for T in terms of the model parameters (λ, µ1, µ2). Compared to
using vfd for discovering relative value functions, this alternative application
has the advantage that it is much faster, since the threshold T depends only on
model parameters (λ, µ1, µ2) and not on state (x, i). Most importantly though,
it demonstrates that vfd is �exible and not restricted to learning relative value
functions.
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λ
µ1

µ2

Figure 7.1: A queueing system with jobs arriving at rate λ, and with two
servers S1 (at the top) and S2 (at the bottom). Both servers handle jobs from
the queue, but server S1 is faster than S2 (re�ected by service rates µ1 and µ2

such that µ1 > µ2). Upon completion of a job, and upon arrival of a new job,
a controller decides whether to assign a job from the queue to either S1 or S2

(dashed line). See also Figure 6.4 and the description in Section 6.5.

The remainder of this chapter is structured as follows. First, in Section 7.2.1 we
describe the setup of the experiments in this chapter. This includes the choice
of sample points, and of the value of vfd's parameters. Section 7.3 demon-
strates the results of applying vfd to discovery of thresholds, and Section 7.4
has concluding remarks.

7.2 Setup of experiments

In this section we describe the experiment where vfd learns an expression for
the threshold T . Prior to running vfd, we make a minor change to vfd to
facilitate the fact that a threshold has only integer values. Also, we determine
the contents and location of the sample point sets, and vfd's parameters.
As in Chapter 6, we make reasonable choices for the sample point sets and
vfd's parameters, rather than seeking choices that lead to, e.g., the fastest run
times. Our focus is on demonstrating that vfd can indeed be used to learn an
algebraic description of a threshold policy that has near-optimal performance.

7.2.1 Learning thresholds with vfd

We denote the threshold discovered by vfd as T̃ , following the notation of
Chapter 6. Before running experiments on vfd, we make one small adjustment
to the error criterion used by vfd in Eq. (6.1). The threshold T is an integer
number, whereas running vfd unchanged yields a T̃ that potentially returns
non-integer values. Additionally, the threshold is independent of the state
(x, i), so we do not need to take the maximum over sample points anymore.
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To this end, we modify the error on a sample point set Eq from Eq. (6.1) to

Eq =

∣∣∣bT̃ c − T ∣∣∣
T

, (7.3)

where bT̃ c denotes the largest integer smaller than T̃ . Also, we included no-
tation T and T̃ to emphasize that vfd discovers thresholds in this chapter.
The expression for the total error E remains the same as in Eq. (6.2). This
change to vfd is purely for convenience to avoid scenarios where vfd spends
time improving a threshold T̃ = 5.3 to T̃ = 5, even though the improvement
has no e�ect on the resulting policy. vfd also works well when the threshold
is considered as a decimal number, as we demonstrated in [8].

7.2.2 Sample point sets

Recall that, when learning relative value functions with vfd, each sample point
set contains several sample points (x, i) on the relative value function V (x, i)
for �xed parameters λ, µ1, µ2. For the current problem we can su�ce with a
single point in each sample point set, namely the threshold value T found by
value iteration. Note that by making this change we only a�ect the input to
vfd, and not the algorithm itself.

As in Chapter 6 we base the choice for the parameters λ, µ1, µ2 corresponding
to each sample point set on the load ρ = λ/µ1 ∈ of a M/M/1 system. In the
region 0 ≤ ρ < 0.7 the load on the system is low, and possible wrong decisions
in a policy have little impact. Therefore, we focus the experiment in this chap-
ter on the region 0.7 ≤ ρ ≤ 1. We want to let vfd discover a function that is
close to optimality, so we place the sample point sets close together at intervals
of 0.025. This results in Q = 11 sets at ρ = 0.700, 0.725, . . . , 0.925, 0.950. Then
we generate parameters µ1 and µ2 uniformly from [0, 1], and set λ1 = ρµ1. In
generating these values we also ensure that µ1 > µ2 and that λ+ µ1 + µ2 = 1.
The resulting parameters are in Table 7.1. Recall from Chapter 6 that when
applying vfd to mdps with a large dimensionality, having many sample point
sets is typically not computationally feasible. Each (large) sample point set
is used with each tree in the population to determine how well that tree �ts,
so having many sample point sets increases vfd's run time severely. In this
chapter, however, each sample point set contains just one point, so we can use
many of them without a�ecting run time too much.
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Set ρ λ µ1 µ2

0 0.700 0.369 0.527 0.104
1 0.725 0.373 0.515 0.112
2 0.750 0.379 0.506 0.115
3 0.775 0.396 0.512 0.092
4 0.800 0.409 0.511 0.080
5 0.825 0.450 0.546 0.003
6 0.850 0.447 0.525 0.028
7 0.875 0.424 0.484 0.092
8 0.900 0.466 0.518 0.015
9 0.925 0.445 0.481 0.074
10 0.950 0.485 0.510 0.005

Table 7.1: Model parameters per sample point set.

Name In example Allowed values

seed 3,151,492 [0,maxint]
mu 1,000 [1,maxint]
lambda 500 [1,maxint]
min_error 0 [0,1]
maxelementsintree 100 [1,maxint]
applymutationprob 0.05 [0,1]
diversity_threshold 0.01 [0,maxdouble]

Table 7.2: The parameters available to vfd, the values assigned to them for
the example mdp in Section 7.1, and the values allowed by vfd.

7.2.3 Setting parameters of vfd

Running vfd requires the speci�cation of several parameters, listed in Ta-
ble 7.2. Following the reasoning in Section 6.5.3 we keep parameters seed,
mu, lambda, and diversity_threshold at the same value as in Table 6.1.
Parameter min_error we set to 0 because we want vfd to discover a per-
fectly �tting function on the sample point sets. For parameter applymuta-
tionprob we rely on experience from the gp community and set it to 0.05.
The remaining parameter, maxelementsintree, is determined with short
experimental runs, suggesting that vfd is capable of �nding well-�tting rela-
tive value functions with maxelementsintree= 100. The resulting values
for the vfd parameters are shown in the second column of Table 7.2.
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Set ρ T T̃

0 0.700 2 2
1 0.725 2 2
2 0.750 2 2
3 0.775 3 3
4 0.800 3 3
5 0.825 32 32
6 0.850 6 6
7 0.875 2 2
8 0.900 8 8
9 0.925 3 3
10 0.950 13 13

Table 7.3: Threshold T̃ of the policy discovered by vfd, compared to thresh-
old T of the optimal policy.

7.3 Numerical results

We run vfd with the sample point sets from Section 7.2.2 and the parameters
from Section 7.2.3. The threshold T̃ discovered by vfd is

T̃ = 3λ− 2µ1 − 0.47− λ− 0.12

λ+ µ1 − λµ1 − 0.82

+
λ

µ2
(µ1 − 0.40)(λ− µ1µ2)

− 0.47(µ1 − λ)
[
λ+ µ1 − λ(2µ1 − µ2) + 1− λ+ 2µ1

µ2

]
.

(7.4)

In Table 7.3 we list the threshold T̃ from vfd, and the threshold T of the
optimal policy. The table demonstrates that the discovered expression for the
threshold does indeed perfectly match the optimal values.

Next, we inspect the performance of the expression in Eq. (7.4) on model pa-
rameters that it was not trained on. To this end, we select 10 values for ρ,
di�erent from those in Table 7.3, and generate new parameters λ, µ1, µ2 as
before. The new model parameters are shown in Table 7.4 in the �rst four
columns. Then we calculate the threshold T̃ (sixth column), and the optimal
threshold T (�fth column). Table 7.4 demonstrates that the expression dis-
covered by vfd yields thresholds that closely resemble the optimal thresholds,
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ρ λ µ1 µ2 T T̃

0.710 0.411 0.578 0.011 17 17
0.735 0.421 0.573 0.007 25 25
0.760 0.422 0.555 0.023 8 8
0.785 0.429 0.546 0.025 7 7
0.810 0.443 0.548 0.009 15 15
0.835 0.416 0.498 0.086 2 3
0.860 0.429 0.499 0.072 3 3
0.885 0.458 0.517 0.025 6 6
0.910 0.474 0.521 0.004 18 19
0.935 0.465 0.497 0.038 4 4

Table 7.4: Threshold T̃ of the policy discovered by vfd, compared to thresh-
old T of the optimal policy. The model parameters are di�erent from the ones
vfd was given as input.

even for the new model parameters. We repeated this experiment several times,
and the function discovered by vfd consistently returned thresholds close to
optimal.

In order to investigate the run time of the alternative use of vfd described
in this chapter, we repeat the process from Section 6.6.5. There, we recorded
a median run time of 2 minutes and 21 seconds over 25 runs. In the current
setup, running vfd 25 times gives a median run time of 47 seconds. This is
faster than before, even with a low value for min_error and many sample
point sets (Q = 11) to cover the parameter space.

7.4 Conclusion

In this chapter we continued work on vfd, a novel algorithm for discovering
relative value functions for Markov Decision Processes. We applied vfd to
an example mdp, for which we know that the optimal policy is of threshold
type. Instead of discovering the relative value function with vfd, we learned
an algebraic expression for the threshold in terms of the model parameters. We
numerically inspected the resulting threshold and compared the corresponding
policy to the optimal policy. The results demonstrate that his alternative use
of vfd also yields near-optimal policies and thresholds that closely resemble
the optimal value.
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Summary

Networks of Sensors � Operation and Control

Over the past few years, the use of sensors has been growing at an unprece-
dented rate. Smartphones, intelligent washing machines, smart energy meters,
and cars all work with a wide variety of sensors. On a larger scale, sensors are
used for, e.g., patient observation in health care, smart building management,
monitoring of infrastructural performance, and tracking wildlife. Further evi-
dence of the popularity of sensors can be found on Gartner's 2015 Hype Cycle,
which features `The Internet of Things' � in which sensors play an important
role � as one of the emerging technologies. With modern-day technology it
is possible to make cheap `mini-computers' that sensors can be attached to,
yielding devices smaller than a credit card capable of monitoring of and in-
teraction with the environment. In this thesis we refer to these devices as
sensor nodes. Typically, besides sensors and basic processing capabilities, a
node is also equipped with a radio that allows it to communicate wirelessly
over short distances. Multiple nodes can form a network to jointly cover large
geographical distances, i.e., form a sensor network.

Applications working with sensors and sensor networks face a number of chal-
lenges that are unique to sensor technology. Measurements from sensors are,
for instance, subject to a certain amount of noise and can thus be unreliable.
Also, sensor nodes are often battery-powered, and a nearly depleted battery
might cause parts of a sensor network to be unreachable, or increase unrelia-
bility of measurements. Challenges such as these will become more relevant as
the use of sensor technology gains in popularity in the near future. This raises
the need for a deeper understanding of the challenges, for practical methods
to deal with them, and for innovative solutions. This is the main motivation
for the research in this thesis.
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The chapters in thesis are grouped in two parts, with Part I consisting of three
chapters on topics related to sensor networks and their challenges. Part II,
also containing three chapters, deals with Markov Decision Processes (mdps),
a popular framework for controlling systems under uncertainty.

The �rst chapter in Part I is Chapter 2, and reviews middleware components
for sensor networks. Typically, sensor technology uses a wide range of data
formats and access protocols, and applications relying on sensor technology
are forced to deal with this diversity. A middleware component forms a bridge
between sensor applications and sensor technology, and hides the technological
diversities from applications by o�ering a uni�ed access point to the sensor
technology. In Chapter 2 we review several types of component available in
the literature, and then focus on a speci�c type that has gained in popularity
recently. We call this a centralized middleware component, describe its gen-
eral architectural form, and discuss four well-known centralized components.
We �nish with an outlook to future developments in the area of centralized
middleware components.

In Chapter 3 we consider outliers (abnormal measurements) in sensor data, and
how well dimensionality reduction techniques preserve these outliers. Dimen-
sionality reduction is a family of techniques that aims to remove redundancy
from data and create a shorter summary. Applying a dimensionality reduction
technique to sensor data might reduce an outlier to a summary that is normal
(compared to other summaries), thus losing the outlier and preventing appli-
cations relying on outliers to work with the short summaries. In Chapter 3 we
describe three popular dimensionality reduction techniques, and experimen-
tally determine how well they preserve outliers on a number of sensor data
sets. The experiments identify one of the techniques as best able to preserve
outliers, and we discuss the intuitions behind this result.

Chapter 4 deals with an important performance indicator of sensor networks:
the saturation throughput. This property re�ects how fast a sensor network
can transmit measurements when many sensor nodes have a measurement to
transmit. The network can only transmit one measurement at a time, so each
node follows a set of rules to determine when it is allowed to transmit a mea-
surement. This set of rules is described in the `Media Access Control' protocol
of ieee 802.15.4, and instructs nodes to alternate a random waiting time with
transmission attempts. Although the random waiting time allows multiple
nodes to transmit measurements, it also causes the channel to be idle for short
periods of time and thus to decrease throughput. In this chapter we provide
a model for analyzing the saturation throughput of the ieee 802.15.4 mac

protocol. Central to the model is the concept of a natural layer, which re�ects
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the time that a sensor node typically has to wait before sending a packet (as
instructed by the mac protocol). The key feature of the model is its simplicity
compared to existing models in the literature. Also, it provides insight how
the throughput depends on the protocol parameters and the number of nodes
in the network. Validation experiments with simulations demonstrate that the
model is highly accurate for a wide range of parameter settings of the mac
protocol, and applicable to both large and small networks.

The �rst chapter in Part II is Chapter 5, in which we consider the control of a
queueing system. The controller of the system has to answer incoming queries
with a response, which it can do by either forwarding incoming queries to the
system (where it needs time for processing), or by responding with a previ-
ously generated response (incurring a penalty for not providing a fresh value).
Hence, the controller faces a trade-o� between data freshness and response
times. Addressing the trade-o� is traditionally done using a threshold policy.
When the age of the database value exceeds a certain given threshold, fresh
data is retrieved, and otherwise the latest database value is used. Although
such policies are commonly used, there is room for improvement by setting a
dynamic threshold: in cases where the information retrieval is time-consuming
(as it is in wireless sensor networks), using a database value that is slightly
above the threshold value might be acceptable. In Chapter 5 we model the
system as an mdp, which turns out to be complex. In order to circumvent the
complexities, we simplify the model and use this model to construct a control
policy for the full, complex, model. Experiments with value iteration show
that applying this policy leads to near-optimal performance and, in particular,
that it performs signi�cantly better than a traditional threshold policy.

In Chapter 6 we introduce Value Function Discovery (vfd), a novel method
for discovery of relative value functions for mdps. This method learns algebraic
descriptions of relative value function by applying an Evolutionary Algorithm
to sample points of the relative value function of an mdp. vfd's key feature is
that the model parameters of the mdp are included in the discovered algebraic
descriptions. The relative value function discovered by vfd can be used to, e.g.,
construct a policy for controlling a system with time-varying parameters. In
Chapter 6, we describe vfd and apply it to an example mdp. We demonstrate
that the discovered relative value function closely resembles the relative value
function of the mdp. Additionally, we convert the discovered function to a
policy, and demonstrate numerically that the resulting policy has excellent
performance on a wide range of model parameters.

Finally, in Chapter 7 we continue work on vfd and again apply it to the
example mdp of Chapter 6. This time, we include prior knowledge that the
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optimal policy of the mdp is of threshold type. Instead of using mdp to discover
a relative value function, we apply vfd to sample points of the threshold policy
so that vfd discovers an algebraic expression for the threshold in terms of the
model parameters. We demonstrate that this alternative use of vfd also yields
near-optimal policies, illustrating that vfd is not restricted to learning relative
value functions and can be applied more generally.



Samenvatting

Netwerken van Sensoren - Werking en Aansturing

De laatste jaren is het gebruik van sensoren met ongekende snelheid gegroeid.
Smartphones, intelligente wasmachines, slimme (energie) meters, en auto's wer-
ken allemaal met een breed scala aan sensoren. Sensoren worden o.a. gebruikt
voor het observeren van patiënten in een ziekenhuis, het beheer van klimaat in
gebouwen, het monitoren van structurele eigenschappen van een brug, en voor
het volgen van wild in een reservaat. De populariteit van sensoren blijkt ook uit
de 2015 editie van de Gartner Hype Cycle, waar `The Internet of Things' � een
onderwerp waar sensoren veelvuldig gebruikt worden � genoemd wordt als één
van de opkomende technologieën. Dankzij recente technologische ontwikkelin-
gen is het mogelijk om sensoren te koppelen aan goedkope `mini-computers',
resulterend in apparaten die kleiner zijn dan een credit card en toch voldoende
rekenkracht hebben om simpele applicaties uit te voeren. Behalve sensoren
bevatten deze apparaten meestal ook een draadloze verbinding die geschikt is
voor het verzenden van data over korte afstanden. Om grotere afstanden te
overbruggen vormen de apparaten gezamenlijk een netwerk, zodat toepassin-
gen in een groter geogra�sch gebied ook tot de mogelijkheden behoren.

Toepassingen die gebruik maken van sensoren of sensornetwerken worden ge-
confronteerd met een aantal uitdagingen die uniek zijn voor sensortechnologie.
Metingen van sensoren hebben bijvoorbeeld meestal een bepaalde onnauwkeu-
righeid. Verder werken sensoren vaak op een batterij, en een lege batterij
kan ervoor zorgen dat een deel van het netwerk onbereikbaar wordt. Zulke
uitdagingen worden steeds belangrijker naarmate het gebruik van sensoren
blijft groeien in de nabije toekomst. Een grondig begrip van deze uitdagingen,
goede methodes om er mee om te gaan, en innovatieve oplossingen zijn hier-
bij noodzakelijk. Dit is de belangrijkste motivatie voor het onderzoek in dit
proefschrift.
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Het proefschrift bestaat uit twee delen, waarvan het eerste deel drie hoofdstuk-
ken bevat rond het thema `sensornetwerken'. Het tweede deel bevat drie hoofd-
stukken rond het onderwerp `Markov-beslismodellen', een populair raamwerk
voor het modelleren van beslisproblemen in onzekere omstandigheden (welke
vaak voorkomen in sensornetwerken).

Het eerste deel start met een behandeling van middlewarecomponenten voor
sensornetwerken in Hoofdstuk 2. Sensoren en sensornetwerken gebruiken pro-
tocollen en gegevensformaten die vaak verschillen per fabrikant, zodat appli-
caties genoodzaakt zijn om met deze diversiteit om te gaan. Een middlewa-
recomponent vormt een brug tussen (netwerken van) sensoren en de applica-
ties, en verbergt de diversiteit aan formaten achter een uniforme interface die
bruikbaar is voor alle applicaties. Hoofdstuk 2 behandelt een aantal types
componenten, en richt zich uiteindelijk op de recentelijk populaire `centrale
middlewarecomponenten'. De algemene architectonische kenmerken van dit
type worden besproken, gevolgd door een beschrijving van vier verschillende
voorbeeldcomponenten. Het hoofdstuk eindigt met een vooruitblik naar toe-
komstige ontwikkelingen op het gebied van centrale middlewarecomponenten.

In hoofdstuk 3 richten we onze aandacht op uitbijters (abnormale metingen in
sensordata), en wordt onderzocht hoe goed zogenaamde dimensiereductietech-
nieken in staat zijn deze uitbijters te behouden. Een dimensiereductietechniek
is gericht op het verwijderen van redundantie uit data, en vormt een soort
samenvatting van de originele data. Het toepassen van een dimensiereduc-
tietechniek kan er toe leiden dat een uitbijter in de originele data vervolgens
tussen de samenvattingen geen uitbijter meer is. Applicaties die afhankelijk
zijn van uitbijters (bijvoorbeeld een toepassing die een alarm stuurt bij te hoge
CO2 metingen) kunnen dan geen gebruik maken van de korte samenvattingen.
De toenemende hoeveelheid sensordata betekent echter dat het gebruik van de
korte samenvattingen wel degelijk wenselijk is voor deze applicaties is vanuit
een rekenkundig oogpunt. Hoofdstuk 3 behandelt drie populaire dimensiere-
ductietechnieken, en onderzoekt aan de hand van een aantal kwaliteitscriteria
hoe goed de drie technieken in staat zijn om uitbijters te behouden. De experi-
menten laten zien dat één van de drie technieken het beste uitbijters behoudt,
en we bespreken de intuïties achter dit resultaat.

Hoofdstuk 4 gaat over een belangrijke prestatiemaat van een sensornetwerk:
de doorvoercapaciteit. Deze maat geeft aan hoe snel een sensornetwerk in staat
is om een meting te versturen in een situatie waar vele andere sensoren in
het netwerk dat eveneens willen doen. Het draadloze kanaal dat het netwerk
gebruikt is slechts in staat om één meting tegelijkertijd te versturen, dus iedere
sensor volgt een stelsel van regels om te bepalen wanneer deze een meting mag
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versturen. De regels zijn beschreven in het `Media Access Control' protocol
van de ieee 802.15.4 standaard, en zorgen ervoor dat sensoren afwisselend
een bepaalde hoeveel tijd wachten en een verzendpoging doen. Het wachten
resulteert erin dat meerdere sensoren metingen kunnen versturen, maar zorgt
er tegelijkertijd ook voor dat het kanaal nu en dan niet gebruikt wordt, wat
weer nadelig is voor de doorvoercapaciteit. In dit hoofdstuk presenteren we
een model voor het analyseren van de doorvoercapaciteit van het ieee 802.15.4
mac protocol. Het model draait om het concept van de natuurlijke laag, welke
correspondeert met de tijd dat een sensor normaal gesproken moet wachten
(volgens het mac protocol) voor het verzenden van een meting. Vergeleken
met bestaande modellen in de literatuur onderscheidt ons model zich door zijn
eenvoud. Het model biedt inzicht in hoe de doorvoercapaciteit afhangt van de
protocolparameters, en van het aantal sensoren in het netwerk. Experimenten
met simulaties laten zien dat het model zeer nauwkeurig is voor een brede
selectie van waarden voor de protocolparameters, en dat het toepasbaar is op
zowel grote als kleine sensornetwerken.

Deel twee van het proefschrift, over Markov-beslismodellen, start met Hoofd-
stuk 5 en bekijkt de aansturing van een wachtrijsysteem. De controller van
het systeem ontvangt aanvragen voor metingen uit het wachtrijsysteem, en
kan deze beantwoorden door een nieuwe meting op te vragen bij het systeem,
of door een eerder gedane meting te gebruiken als antwoord. De eerste op-
tie (een nieuwe meting ophalen) kost echter relatief veel tijd, zeker bij grote
drukte in het systeem. De tweede optie (een eerder gedane meting teruggeven)
kost geen tijd, maar geeft een meting terug die al wat ouder is. De controller
maakt voor zijn beslissing dus een afweging tussen de tijd die nodig is om een
nieuwe meting op te vragen bij het wachtrijsysteem, en de leeftijd van de eer-
der gedane meting. In de praktijk wordt hiervoor door de controller vaak een
drempelwaardestrategie gebruikt, waarbij het wachtrijsysteem gebruikt wordt
als de leeftijd van de eerdere meting boven een bepaalde drempelwaarde komt.
Ondanks de populariteit van drempelwaardestrategieën is er ruimte voor ver-
betering, zeker wanneer het systeem erg druk bezet is. In dit scenario kan
het de moeite waard om soms toch een wat oudere waarde terug te geven
wanneer het opvragen van een nieuwe meting teveel tijd in beslag zou nemen.
In Hoofdstuk 5 modelleren we het beslissingsprobleem van de controller als
een Markov-beslismodel. De complexiteit van het model verhindert een exacte
analyse, maar met een versimpeling van het model zijn we toch in staat om een
beslissingsstrategie voor de controller af te leiden. We laten met experimenten
zien dat deze beslissingsstrategie aanzienlijk beter presteert dan de drempel-
waardestrategie, en dat het meenemen van de drukte van het wachtrijsysteem
in het beslissingscriterium dus de moeite waard is.
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In Hoofdstuk 6 introduceren we Value Function Discovery (vfd), een inno-
vatieve methode voor het vinden van relatieve waardefuncties van Markov-
beslismodellen. Deze methode leert algebraïsche uitdrukkingen van relatieve
waardefuncties door het toepassen van een Evolutionair Algoritme op nume-
rieke benaderingen van deze waardefuncties. Het belangrijkste aspect van vfd
is dat de parameters van het Markov-beslismodel inbegrepen zijn in de al-
gebraïsche uitdrukkingen die vfd vindt. De gevonden relatieve waardefunc-
ties kunnen bijvoorbeeld gebruikt worden voor het opstellen van een beslis-
strategie voor de aansturing van een model met tijdsafhankelijke parameters.
Hoofdstuk 6 beschrijft vfd en past de methode toe op een voorbeeld Markov-
beslismodel. We laten door middel van experimenten zien dat vfd een waar-
defunctie vindt die de waardefunctie van de optimale strategie dicht benadert,
en dat de prestatie van de corresponderende beslissingsstrategie zeer goed is
vergeleken met de optimale strategie.

Het laatste hoofdstuk van dit proefschrift, Hoofdstuk 7, gaat eveneens over
vfd en past de techniek wederom toe op het Markov-beslismodel uit Hoofd-
stuk 6. Echter, dit keer gebruiken we voorkennis dat de optimale strategie
voor het beslismodel een drempelwaardestrategie is. We passen vfd op een
slimme manier toe, zodat deze een algebraïsche uitdrukking vindt voor de
drempelwaarde (in plaats van de relatieve waardefunctie) in termen van de
modelparameters. Resultaten van numerieke experimenten laten zien dat deze
alternatieve toepassing van vfd ook resulteert in een beslissingsstrategie met
uitstekende prestaties, en dat vfd dus niet beperkt is tot het leren van relatieve
waardefuncties.
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