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Lekkerkerker ,,.,, .: 

1. Recently, I was told by my colleague Mr A.H.M. Levelt that, in 
a physical discussion on the attraction potential of atoms 1 ), the 
following question arose. 

Problem. Let So(t) be a real, continuous function on the interval 
[0,<X>). Suppose that the integral 

(1) I(x) = f~(e-x cp(t)_1)dt 
0 

converges for all x > O. In how far the function cp(t) is then 
determined by the function I(x)? 

In the following we shall answer this question. First, we 
shall ~how, at hand of a simple example, that the integral in the 
right hand member of (1) does not necessarily converge absolutely. 
Theorem 1. Let 9'7(t) be continuous on [o,cxi) and let cp*(t) be 

defined by ) if J l 1 
{2) c/lt) = { cp(ot <p(t) f!: 

if \ 1 ( t )I > 1 • 

Suppose that the integral (1) converges for all x >O. Then the 
integral 

~ 

{ 3 ) I ~ ( X ) = f { e - X Cf' ( t ) - 1 + X (f ~( t ) } d t 
0 

converges absolutely for x > O. This result remains true if one 
takes (f~(t)= sign cp(t)for/<;?(t)j > 1. 

This theorem will enable us to treat the problem stated by 

making use of known results (viz. the inversion formula) for ~b
solutely convergent, two-sided Laplace integrals. We shall find 
that there is a large class of functions sP(t) leading to the same 
function I(x)~ In the case that f(t) is positive (so that the 
integral (1) converges absolute11) this class, which will be 
characterized explicitly, contains exactly one monotonic function 
(see.theorem 2 and the final remarks). 

' 
1) Thia•d1scuasion took place at a colloquium in the 11 van de~ 

Waals Laboratorium11 , Municipa 1 University of Amsterdam,. .. 
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$~ The example meant above is as follows. Let n run through the 

positive integers and consider the function y(t) defined by 

Y,-- ( t ) = { :-2 /3 
for 0 ~ t < 1 ./ 

for 2n ~ t < 2n+1 
-t-2/3 for 2n-1 ~ t .c 2n • 

O,tie has 
a a 

f (e-xyr(t)_1)dt :,::: -x { { f' ( t) + o ( t-4 /3)} dt 
1 

[a] k / fa 4/ 
,.., -x ~ (-1) k-2 3 + o( t- 3at), 

C'v =1 1 

~ n d fl o f ( e - x Y' ( t ) - 1 ) d t c on verge s • 0 n the other ha n d , 

fl:"'x. y(t)_1ldt..--..,; - f7e-xlyr(t)! _1)dt clearly diverges. It is 
q' 0 

e~my tq construct a function ~(t), which has the same properties 

~nQt tn addition, is continuous on [o,c-o). 

ft( i:J.). 

(\) 

In the following a fundamental role is 
defined by 

{ _µ, { t 1 Cf ( t) > u } if u ~ 0 
..,,«,(u) = 

:;,li,{ t I <p(t) < u} if u <o 

played by the function 

:, 

where on the right the Lebesgue measure of the indicated set of 

numbers t > 0 is meant. We nlso introduce, for arbitrary a> O, the 

fur;ictions <fa(t) (t?; 0) and ,,.,u.,8 (u) given by 

{
r.p(t) for 0-&:t~a 

(5) fa(t) = 0 
for t > a 

(6) 
if u ~ 0 

if u < 0 

We wish to express the int8grals (1) and (3) as integrals 

depending on the function ,,,u,(u). This is done as follows. Let a ~o 
be arbitrary. Then _µ3 (u) vanishes if Jul is sufficiently large. 

Further., ?a ( u) 1s bounded n nd, if u, u I a re of the same sign 

and u 1 > u., } 
,,Li, a ( u 1 ) -~la ( u) = -_,µ { t ! u <( tp( t) ~ u 1 • 
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Then, by well-known arguments, since e-xu_1~0 for U=O 2 ), 

f a -x <fa (t) /c-v -xu 

0 
(e -1)dt = - -C<l(e -1)dJ-la(u). 

Since ? 8 (u) vanishes for juj sufficiently large, partial inte
gration yields 

a c-D 

J (e-x f(t)_•1)dt = -x J e-x~ (u)du (a >0). 
o -G'O a 

(7) 

Now suppose that the integral (1) conv8rges absolutely (or, what 
comes to the same thing, that the integrals of e-x~(u) over 
(0-1"°) and (-C"'v,0) c1re finite), and, in the last formula., pass to 

the limit for a---:> oo. Since _;u-8 (u) is positive and a non-decreasing 

fµnction of a if u > O and -~8 (u) is likewise positive and non

decreasing if u .::.O, one has3) 
a 

1 im J ( e -x Cf ( t ) - -1) d t = 
a ~G\o 

0 

and so one gE:ts 

(8) I(x) = j(e-x <f(t)_1)dt = -x f 90e-xuµ(u)du. 
-W 

0 

It followc from our dC;;ductio~1 t':at, under the hypothc:sis made, 
the function r (u) is f ____ ,ite for ufo. 

In a similar way one can derive that 
('<) 

(9) I~(x) = f { e-x f(t)_1 + x <p*(t)} dt 

0 ,, 

::c -x f (e-xu __ 1)_?-(u)du - xf e-x~(u)du, 

-1 !ul ~1 

provided that the first integral converges absolutely or that the 
integrals in the las, ra~mber are finite. 

Next, we come tn the 

Proof of theorem 1. Let x be any positive number. Consider the two 
integrals 

~--~~------------
2) An approximating s~'ID to the Stieltjes integral in the fo~nula 

stated is also an c=;pproximating sum to the integral on the left 
considered as a Leliesgue integra 1. 

3) See E.C. Titchmarsh, Theor,1 of functions, Oxford 1939, theorem 
10.82. 



-4-
C\:l f e-½x~ (u)du (a >0). 

- 00 /) 

In virtue of the relation (7) and the conditions of the theorem 

these two integrals are bounded in absolute value bJ a constant 

c ... c(x) not depending on a. Further, since _,,,u,8 (u) is ~O for U>O 

and ~ 0 for u < o, 

for U>O as well ns for u<O. Hence, 

f(e-½xu_e-xut,..u 8 (u)du ~ 2c(x), 
- co 

where the integrand is nonnegative; throughout the inter-val (- c--:,, C"O). 
Since fa {u)- lim A (u), we also hove 4 ) 

a _,, C\:> a 

j(e-½xu_8-xu)?-(u)du '§ 2c{x}~ 
-C'O 

Th~n, since 

{ 
( -½x) -½xu if u ~1 1-e e 

j -½xu -xu 1 1 I e -e ~ e -2X l e -2xu _1 if l u! ~1 
1.x _l.xu 

(e 2 -1)e 2 if u ;; -1 , 

the integr>a ls 

JC\:> 1 XU 
e-i )1-(u)clu 

1 

are all finite. This mc,ans that the integral r*(½x) converges 

absolutely (see formula (9)). 
Since x > 0 was zi rbi tra r>y, this proves the first assertion of 

the theorem. Since _,µ-(1) and /u(-1) are finite, the second assertion 

also holds. 

3 •. We now state and prove the following 

Theorem 2 .. Let <p(t) and yr(t) be two functions which are contiXl,uour· 

on [O,C\:l), and suppose that the integrals 
~ ~ 

I(x) ""'f (e-x (f(t)_1)dt, I,/x) = J (e-xf(t)_1}dt 

0 0 

converge forx>O. Let_,,,u(u) be given by (4), and let y(u) be 

defined similarly., with t" ( t) instead of <f ( t). ________ ...,..,__,,.. ___ _ 

4) See footnote 3). 
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Thttn the functions I(x) and r1 (x) are identical if and only 

if the functions r(u) and f"(u) are identical. 

Proof. We first consider th8 case that the integrals I(x) ~nd 

r1(x) are absolutely convergent for x > o. Thc:n for I(x) forml.lla 
(8) holds. Applying the inversion formula for absolut8ly convergent, 

two-sided L8place integrals we get 

1 lc+ic-o ux 
_,,.,l,l(u) = 2Tti . I(x) e dx 

C-l<:-a 

(c>O). 

Similar- formulae hold for r1 ( x) and Y ( u). 

From this the assertion of th8 theorem follows. 

Ne~t, we deal with the more genoral case, in which th~ int8-
grals I(x) and I 1 (x) do not necessarily be absolutely conv~rsent. 
Then, at any rate, in virtue of theorem 1 the integral r*(x) is 
a bsolut8 ly convergent for x > O. Further, formula ( 9) holds. Similar 

* ¼ remarks hold for the integral r 1 (x) obtained from I (x) by replacing 

(f (t) by y,r(t). We note that from these fact& and the cong,itiomJ of 

the theorem it follows that the: integrals f y?(t)dt and f yr(t)dt 
converge and that 0 0 

* * (10) I (x) - I 1 (x) == I(x) - I 1 (x) +/3 x , 

where /3 == f{°;p(.t)- v,""(t)} dt is a finite constant~ 
0 

We introduce function::i /u1 (u) and v 1 (u) as follows: 

fa1(u) ~ j _µ,(u) du or 11 .,,;,,(u) du ' 

v 1 (u) u V (u) u y (u) 

aecording as to whether u > O or u <O. In virtue of (9) thE; ;1.nt8gral 

f1u_µ(u)du is finite. Then u,,.u1 (u) tends to zer-o if u ➔ +o 5), and 

&1ao if u~ -0. Similarly, u v 1 (u} tends to zero if u-➔ +O or -0. 

Further, e-x~ 1 (u) and e-xuv 1 (u) tend to zero for U~C\.':1 a11d for 

u--,-~. Hence, by partial integration, we find 

I-ll<(x):::: -x f1 (e-xu_1}_µ.,(u)du - x J e-x~(u)du 
-1 1 IUJ~ 1 

:;:; -x2 f e-xup1 (u)du ... x2 J e-xuµ1{u)du 
-1 lul ~1 

5) ... If-;-;O ... i; chosen arbitrarily, then fcf1 u,.,u(u}du ~ e for a suitably 
chosen "1 and O < cf< °1, h<::mce cf 1 

~ ( cf) = cf ¥(u)du < rrf.t UA(u)du + cf 1 r (u)du ,t!. 2 €. 
for sufficiently sma 11 cf'. 1 
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and similarl-y 

~-( ) 2 J 00 -xu ( ) r1 x = -x e v1 u du. 
-CIO 

It follows from these results and th~ relation (10) that I(x) 

and r 1 (x) are identical, if and only if 
1 C +i,t-,,:) /3 U:X: 

,,,a1 (u) - v1 (u) = 2n:;i J. ".. -x e dx ""' -/3 ; 
c-1 .. "' 

here necessarily (3 =0, because of __µ1(1)~ Y1(1)=0. This proves the 

theorem. 

Final remarks. It is easy to construct two continuous functions 
<.p (t) and Y,,-(t), lending to identical functions I(x) and I 1(x). 
Let <p(t) be continuous on [o,c-o) and suppose that <f(O)= ({J(1)=<f~2~ 
Further, take 

{ 
~ ( t+1) for O ~ t "- 1 

"tj/(t) = (f(t-1) for 1§t 4 2 
<f ( t) for t ?;; 2 • 

Then clearly jG\:J(e-x lf(t)_1)dt= J7,e-xy(t)_1)dt, if the first 
0 0 

integral converges. 
In general, th~ last relation holds, if the first integral 

converges and y(t)= ~(Lt), where Lis any one-to-one, measure 
pt'eserving mapping of [o,oo) onto itself, such that J;(t)dt is 
unchanged. If c:p(t) is positive., there is exactly on2 such mapping, 

for which cp (Lt) is monotonic (and continuous); actually, 'f (Lt) 
is the inverse function of t=_,P,(u). 

In the physical discussion meant in the introduction the 
function cp(t) was monotoneously decreasing from+ NJ to some nega

tive value on some interval [o,t 0 ) and monotoneously increasing tn 
0 on the interval (t 0 ,c-o). K-;re we get the same integral I(x), if 

we apply nny deformatlon to the graph of U= cp(t), such that the 
lengths of the horizontal line-segments with endpoints on this 

graph remain unchan3ed and such 
that we get the graph of some 
function U= -yr( t) . 


