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1. Recently, I was told by my colleague Mr A,H.M. Levelt that, in
a physical discussion on the attraction potential of atoms 1), the

following question arose.

Problem, Let q%t) be a real, continuous function on the interval
[O,GO}. Suppose that the integral

(1) I(x) = fm(e"‘ PLE) _qyas

0
converges for all x>0. In how far the function ¢ (t) is then

determined by the function I(x)?

In the following we shall answer thls question. First, we
shall show, at hand of a simple example, that the integral in the
right hand member of (1) does not necessarily converge absolutely,
Theorem 1. Let ¢(t) be continuous on [0,00) and let yﬂt) be

d:;‘ined by e(t) it Je(t)] ¢
( - { ir {o(t)] > 1.

Suppose that the integral (1) converges for all x >0, Then the
integral

. G\D x.

(3) T*(x) = f{e*"@’(t)-q Fx@7(5) Jat

0
converges absolutely for x >0. This result remains true i1f one

takes ¢ '(t)= sign p(t)rorj@(t)] > 1.

This theorem will enable us to treat the problem stated by
making use of known results (viz, the inversion formula) for ab-
solutely convergent, two-sided Laplace integrals. We shall fiﬁd
that there is a large class of functions ¢ (t) leading to the same
function I(x). In the case that ¢(t) is positive (so that the
integral (1) converges absolutely) this class, which will be
characterized explicitly, contains exactly one monotonic function
(see theorem 2 and the final remarks).

1) This discussion took place at a colloguium in the "Van der
Waals Laboratorium", Municipal University of Amsterdam,
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2, The example meant above is as follows, Let n run through the
positive integers and consider the function Y (t) defined by

1 for 05t <1 —
\//(t) = ‘0'2/3 for 2n 2t < 2n+1
~£72/3  for on-q st < 2n
One has
' ' a a
[ (@ ¥ () qyae - x f{yf(t) + o(t‘”/3)} at
1
[a] ;
—x z (-1)¥ k f £~ 3at),
k=
oo 1
and so [( ¥ (t) -1)dt converbes. On the other hand,
f{e”xv t) ﬂdtw- f -XW(‘? ’ )dt clearly diverges. It is

easy to construct a function ® (t), which has the same properties
and, in addition, is continuous on [O,m).

In the following a fundamental role 1s played by the function
A4(u) defined by
{,u{t]gp(t) >u} if uzo
#{tigo(t) < u} if u<0 |,
where on the right the Lebesgue measure of the indicated set of

(4)  a(u) =

numbers t >0 is meant., We also introduce, for arbitrary a >0, the
functions goa(t) t>O) and « (u) given by

for O‘ £a
(5) (,Ua(t)={90 or t »a
ot %(t)>u} if uz0
6 u) = ¢
(&) A {—/a{ti g (t)cu} if u<o

We wilsh to express the integrals (1) and (3) as integrals
depending on the function _&(u). This is done as follows. Let a >0
be arbitrary. Then /Lca(u) vanishes if [u| is sufficiently large.
Further, /ua(u) is bounded and, if u,u' are of the same sign
and u' > u,

o (u') - (u) = —wft] uep(t) ur}.
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"Then, by well-known arguments, since e *"_1=0 for u=0 2),
a o
-x @, (%)
a -X
f (e -1)dt = —/(e u-’l)d/da(u
e} - o0

Since 4 (u) vanishes for ]u] sufficiently large, partial inte-
gration yields
a

(7) f (e7® P(t) _yap = —x / L, (u)du (a >0).

o

Now suppose that the integral (1) converges absolutely (or, what
comes to the same thing, that the integrals of e—X%AL<u) over
(0,00) and (-¢9,0) are finite), and, in the last formula, pass to
the limit for a— ca, Sinoe/p%(u) is positive and a non-decreasing
function of a if u >0 and -« (u) is likewise positive and non-

decreasing if u <0, one has

3 oo
lim J{ (e %(t)-ﬂ)dt = -X Jf e ™Y 1im /ué(u)du,

a—>co J - 00 a—>o

and so one gets
oo (9]
(8)  I(x) -.-f (e P(E) _4yar - _xf e u (u)du.

o ~ G0

It follow~ from our decduction that, under the hypothesls made,
the function 4 (u) is f_..ite for u#0.

In a similar way one can derive that

(9) I%(x) = [c{\ge’xsp( )4+ x <p }dt

1
= -X J (e—xu_ (u)au - XJ[ (u)du,
1

luf 21

provided that the firat integral converges absolutely or that the
integrals in the las. member are finite,

Next, we come to the
Proof of theorem 1. Let X be any positive number, Consider the two
integrals

2) An approximating sum to the Stieltjes integral in the formula
stated 1s also an @pproximating sum to the integral on the left
considered as a Lebesgue integral.

3) SeeBE.C. Titchmarsh, Theorv of functions, 0xford 1939, theorem
10.02,
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4( (u)du, J[C:'%X%Aza(u)du (a >0).

)
In virtue of the relation (7) and the conditions of the theorem

these two integrals are bounded in absolute value by a constant

c=c(x) not depending on a. Further, since’/xa(u) is 20 for u>0
and £0 for u<0,

M () £ e (u)

for u>0 as well as for u < 0. Hence,

jr(e"%xu—e‘xu)/%a(u)dtzg 2c(x),

- 0o
where the integrand is nonnegative throughout the interval {-co, o).
b
Since 44 (u)= 1im . (u), we also have
a—» 0o

\f (e“% "xul/x(u)du < 2c¢c{x).

-0
Then, since (1-¢ %X)e -5xu 1P u =21
1 L
]e~§xu_e—xu [ 2 e'fx le” 2xu - ar lul £1
(e2%-1)e XU 4p g <=1 ,

the Iintegrals

o0 -1 1
1fe“'12"‘“/u(u)du, f e"%xu/u.(u)du, / (e“%x“-q)/u.(u)du
- -1
are all finite. This mcans that the integral I*(%x) converges
absolutely {see formula (9)).

Since x » O was arbitrary, this proves the first assertion of
the theorem. Since (1) and _4(-1) are finite, the second assertion
also holds,

3. We now state and prove the following
Theorem 2, Let ¢(t) and W(t) be two functions which are conginuour
on [0, ), and suppose that the integrals

co o
I{x) ='jr(e’x ¢(t)-1)dt, I,(x) = jr(e‘xyy(t)—ﬁ)dt

converge for x>0. Let w (u) be given by (%), and let v(u) be
defined similarly, with W (t) instead of ¢@(t).

D P " G QP AT S YD s - o

4) See footnote 3).
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Then the functions I(x) and I,l(x) are identical if and only
if the functions «(u) and Y (u) are identical.
Proof. We first consider the case that the integrals I(x) and
I,](x) are absolutely convergent for x >0, Then for I(x) formula
(8) holds. Applying the inversion formula for absolutely convergent,
two-sided Laplace integrals we get

(u) = E?'c"f f+iw1(x) e ax (e>0).

C=1lc<o

Similas formulae hold for Iq(x) and v (u).
From this the assertion of the theorem follows,

Next, we deal with the more gencral case, in which the inte-
grals I(x) and I (X) do not necessarily be absolutely oonv»rgent
Then, at any rate, in virtue of theorem 1 the integral I ( ) is
absolutely convergent for x >0, Further, formula (9) holds. Similar
remarks hold for the integral I ( ) obtained from I'(x) by replacing

¢ (t) by Y(t). We note that from these factg and the conditions of
the theorem it follows that the integrals J’¢(t)dt and J%ﬁ (t)at
converge and that

(10)  I7(x) - I.(x) = I(x) - T,(x) +8 % ,

o *
where 8 = f{(p’zt)— v (t)} dt is a finite constant,
o
We introduce functions /u,l(u) and Vv,(u) as follows:
/\

-1
/CL,](u) AL (u) At (u)
= f du or du
Vq(u) a 14 (u)
aecording as to whether us>0 or u <0, In virtue of (9) the integral

1
fu/zc(u)du is finite. Then u/a,‘(u} tends to zero if u—>+0 5)
f1so if u——> ~-0, Similarly, u v,](u) tends to zero if u—=>+0 or -0.
—xu ,1(u) tend to zero for u— oo and for

, and

Further, e~ /a.,1(u) and e
u—>» -0, Hence, by partial integration, we find

- e - {u - X -Xu d
x f( ¥_1) wfu)du wfﬂe Ly () du

2 2 Xu
= =X u)du ~ x e {u)du
-‘4 /oL,l( ful 1 A

J.
5) If £ >0 is chosen arbitrarily, then [ ' um(u)du<e for a suitably
chosen and 0< d < cf hc,nce S

c)/'x.c,1 (d) =o‘f (u)du < f u(u)du +Jf/oo u)du <« 2¢€
for sufficiently small cf

-
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and similarly

* oo
2 -
Iq(x) = -X 'J;}e xu vq(u)du.

It follows from these results and the relation (40) that I(x)
and Iq(x) are identical, if and only if

1 ciieo ~-/3 _ux .
/(‘Lq(u)-vq(u)z-gﬁ_—ic\—/im —X—e dX:::—/S,

here necessarily /3 =0, because of /u4(1)= v1(1)=o. This proves the
theorem,

Pinal remarks, It is easy to construct two continuous functions

@ (t) and Y (t), leading to identical functions I(x) and Iq(x).

Let @ (t) be continuous on [O,co) and suppose that @ (0)= W(ﬂ):q(Qﬁ
Purther, take

Sﬂét-}-’}g for 0 %
1%

W (t) ={ @(t-1 for

c,o(t) for -
Then clearly me?e“x ?(t)-ﬂ)dtz‘f~(e" wy(t)—ﬂ)dt, if the first

integral convgrges.

In general, the last relation holds, 1f the first integral
converges and Y(t)= @(Lt), where L is any one—to—one,wpeasure
preserving mapping of [O,oo) onto itself, such that jpy(t)dt is
unchanged, If‘cp(t) is positive, there is exactly on€ such mapping,
for which @ (Lt) is monotonic (and continuous); actually, 97(Lt)
is the inverse function of t=u(u).

In the physical discussion meant in the introduction the
function <p(t) was monotoneously decreasing from + oo to some nega-
tive value on some interval [O,to) and monotoneously increasing to
0 on the 1nterval (to,oo). H:re we get the same integral I(x), if
we apply any deformation to the graph of u= @(t), such that the
lengths of the horizontal line-segments with endpoints on this
2 graph remain unchanzged and such
that we get the graph of some
function u=Y(t).
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