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0. Introduction 

Let {T(t}}1;;,o be a C0 -semigroup of bounded linear operators on a (real or 

complex) Banach space X. By defining T*(t) := ( T(t))* for each t, one obtains 

a semigroup { T* (t) }r;;, 0 on the dual space X*. Throughout this paper, we will 

denote the semigroups { T(t)} 1 ;;, 0 and { T*(t)} 1 ;;, 0 by T(t) and T*(t}, respectively, 

and it will be clear from the context when we mean the semigroup or the single 
operator. 

The adjoint semigroup T*(t} fails in general to be strongly continuous again. 

Therefore it makes sense to define 

X 0 = {x*EX*: Jim llT*(t)x* - x*ll = o}. 
tlO 

This is the maximal subspace of X* on which T*(t) acts in a strongly 

continuous way. The space xo was introduced by Phillips in 1955 [Ph]. 
Recently, this space has been studied extensively by various authors (e.g., [Ne], 

[NP], [P]), in particular in connection with applications to certain evolution 
equations (e.g., [Cl]). 

The purpose of this paper is to study the properties of £ 8 in case E is a 

Banach lattice and T(t) is a positive C 0-semigroup. Virtually nothing is known 

about the Banach lattice properties of £ 8 and one of the most obvious 

questions, viz. under what conditions Eo is a sublattice of E*, is wide open. If 
T*(t) is a lattice semigroup, in particular if T(t) extends to a positive group, 

then £ 8 is a sublattice [Cl, Part IV]; this follows from 

and the lattice property of the norm. Recently, Grabosch and Nagel [GN] 

constructed a positive C 0 -semigroup on an AL-space E for which Eo is not a 

sublattice of£*. In fact, in this example the space £0, with the order inherited 

from E*, even fails to be a Banach lattice in its own right. 
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In order to motivate our main results, we start by considering in some detail 

the translation group T(t) on C0(1R), given by T(t)f(s) = f(t + s). This semi

group has some features which turn out to be representative for the abstract 

situation. 

THEOREM 0.1. Let T(t) he the translation group on E = C 0 (1R). 

(i) ([Pl]) µ E £0 !land only ifµ is absolutely continuous with respect to the 

Lebesgue measure m. 
(ii) ([MG]. [WY]) If Jl E £* is singular with respect to rn, then T(t)µ J_ µ 

for almost all tEIR. In particular, for any vEE* we have limsup110 

llT*(t)v - 1·11=211v,ll, where vs is the singular part ofv. 
(iii) The space o.f' singular measures is T*(t)-invariant. 

Note that T*(t)v is just the translate in the opposite direction of v in the 

sense that for a measurable set G we have (T*(t)v)(G) = v(G + t). Also, by (i) it 

is clear that a measure µ is singular if and only ifµ J_ £ 8 in the Banach lattice 

sense. Versions of Theorem 0.1 for commutative locally compact groups 

(instead of~) can be found in [GM, Chapter 8]. In [Pa2], the Wiener-Young 

theorem ((ii) above) has been analysed in detail in the context of adjoint 

semigroups. There, extensions have been obtained for the adjoints of positive 

semigroups essentially on C(K)-spaces. In the present paper, most of the results 

in [Pa2] will be extended to positive semigroups on arbitrary Banach lattices. 

For the convenience of the reader, we include full proofs. Although several 

proofs are completely different, this causes a small overlap with [Pa2]. 

We will prove the following Banach lattice versions of (i)-(iii). Let T(t) be a 

positive C0 -semigroup on a Banach lattice E. Then: 

(i) £ 8 is a projection band if E* has order continuous norm (Theorem 2.1). 

The most important class of (non-reflexive) Banach lattices whose duals have 

order continuous norm is the class of AM-spaces. This class contains C 0 (1R). In 

contrast, note that the dual of an AL-space does not have order continuous 

norm unless E is finite-dimensional. 

(ii) Suppose x* .l E 8 . Then we have Jim sup110 II T*(t)x* - x* II ~ 211x* II 
(Theorem 4.4). If moreover E* has order continuous norm or E has a 

quasi-interior point, then T*(t)x* .l x* for almost all t?: 0 (Corollary 
3.4). 

(iii) The disjoint complement of £ 8 is T*(t)-invariant if T*(t) is a lattice 
semigroup (Corollary 4.8). 

We use (iii) to show that if T*(t) is a lattice semigroup, then the quotient 

E* /(£8 )dd is either zero or else 'very large' (Theorem 4.10). Here (Eo )dd is the 
band generated by Eo. 

We assume the reader to be familiar with some standard theory of Banach 

lattices. For more information as well as the terminology we refer to [M], 

[AB], [S], [Z]. Throughout this paper, all Banach spaces and lattices may be 

either r~al ~r.v<;ii;nglex. 
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1. Some preliminary information 

In this section we recall some of the basic facts about ad joint semigroups which 
will be used in the sequel. Proofs can be found e.g. in [BB]. 

Let T(t) be a C0-semigroup (i.e., a strongly continuous semigroup) on a 
Banach space X. Its generator will be denoted by A with domain Dl A). 
Considering the adjoint semigroup T*(t) on the dual space X*, we define 

x0 = {x* EX*: lim II T*(t)x* - x* II = o}. 
t !O 

the domain of strong continuity of T*(t). Then xo is a T*(t)-invariant, norm 
closed, weak*-dense subspace of X* (hence x 0 = X* if X is reflexive). The 
space X8 is precisely the norm closure of D(A * ), the domain of the ad joint of 
A. In particular, for ). E p(A) = p(A *) we have R(J., .4 * )x* E xC· for all x* E.\"". 
where R()., A*) = R(i,, A)* = (), - A*)- 1 is the resolvent. For all x* EX* we 
have lim;._ 00 A.R(}., A*)x* = x*, where the limit is in the weak*-sense. An 
alternative description of X8 is given by 

x0 = { x* EX*: }~1: II ,l.R(A., A* )x* - x* II = 0}. 

If T(t) extends to a C0-group, then the space x0 with respect to the semigroup 
{ T(t)}1 ;;.o is equal to the domain of strong continuity of the group t T(tl:rE ~· 

Examples of spaces x0 for various semigroups can be found in [BB]. [Ne]. 
[NP]. In particular we mention that if T(t) is the translation group on C0t~l 
or L 1(1R), then x0 can be identified canonically with L 1(lR) and BUC(:R) (the 
space of all bounded, uniformly continuous functions on m. respectively. 

We will have the occasion to use the so-called weak*-integrals (or Gelfand 
integrals) of X*-valued functions. Let [a, b] c 1R and f: [a. b] ..... X* a weak*
continuous function (or, more generally, a weak*-measurable function such 
that ti-+(f(t),x)eL 1[a,b] for all xEX). The weak*-integral weak* 

J~ f(t) dt EX* is then defined by the formula 

(weak* f f(t)dt,x) = f (f(t), x)dt, 'r/xeX. 

In this situation, the function t 1-+ llf(tll! is a Borel function on [u. h] and we 

have the estimate 

\\weak* r f(t) dt II~ r llf(t)il dt. 
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If T(t) is a C0-semigroup on X, then for each x* EX* the map t 1-+ T*(t)x* is 

weak *-continuous on [O, oo l and for all 0 :;;; a < b E lR we have 

weak* f T*(t)x*dteD(A*) c xo. 

Finally we say a few words about the Banach lattice situation. Let E be a 
Banach lattice and T(t) a positive C0-semigroup on E. Suppose that M, ware 
such that II T(t)ll :;;; Me"'1 for all t ~ 0. If A. E !R is such that ), > w, then A. E p(A) 
and R()., A) ~ 0 (for the basic theory of positive semigroups we refer to [Na]). 
As mentioned in the introduction, E0 need not be a sublattice of E*. As usual, 
we denote by (Eo )d the disjoint complement of £ 8 in E*, i.e., 

Here x* .l y8 means that Ix* I /\ I y8 I = 0. Then (£8 )dd' the disjoint comple

ment of (£8 )d, is equal to the band generated by £ 8 . Since £ 8 = D(A * ), it is 
clear that (EO)dd = (D(A*)r. In general, (E8 )d is not T*(t)-invariant (see 
Example 3.7). However, the subspace (E8 )dd is always T*(t)-invariant. Indeed, 
if x* EE* is such that Ix* I :;;; IR()., A *)y* I for some y* EE* and A. > w, then 
IT*(t)x*I:;;; R().,A*)T*(t)ly*I. This shows that the (order) ideal generated by 
R()., A*)(E*) = D(A*) is T*(t)-invariant. Since T*(t), being the adjoint of a 
positive operator, is order continuous, this implies that the band 
(D(A*))dd = (EO)dd is T*(t)-invariant as well. 

2. The structure of £0 

In this section we will assume that T(t) is a positive C0 -semigroup on a Banach 
lattice E. 

THEOREM 2.1. If E0 is contained in a sublattice of E* with order continuous 
norm, then E8 is an ideal in E*. In particular, if E* has order continuous norm, 
then E8 is a projection band. 

Proof Let F be a sublattice of E* with order continuous norm, containing 
£0. 

Step 1. First let 0:;;; Ix* I :;;; y* with y* E £0. We will show that x* E £0. 
Choose ).0 > 0 such that R(A., A)~ 0 for A. ~ A.0 . Put 

G := {AR(A., A)* y*: ), ;;::: .A.0 }. 
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Since y* E E8 , this set is relatively compact subset of F. hence certain!~ 
relatively weakly compact in f. Let 

sol.FG:= {!EF:3gEG with III ~g} 

be the solid hull of G in F. Since F has order continuous norm. solFG is 

relatively weakly compact in F [M, Prop. 2.5.12 (iv)]. Since £0 c F and 

0 ~ IA.R(A., A)* x* I ~ R(A., A)* Ix* I ~ ).R(),, A)* y* for all /. ;?; i. 0 • it is clear that 

In particular, H is relatively weakly compact in F. Let z* be any u(F, f*l· 

accumulation point of Has),-+ oo. Then::* is also a weak- and hence a weak*

accumulation point of H. But on the other hand, weak* lim 1 _,1.R(i .. Al*x* 

=x*. Therefore necessarily z* = x*. Since i,R{).,A)*x*EEo for each i.;?; /. 0 • it 

follows that x* belongs to the weak closure of £ 0 . Hence x* E £·=·. 

Step 2. Suppose lx*I ~ ly*I with y*EEo. We will show that x*E . B) 

Step 1 it suffices to show that Ix* I E £0. Therefore we may assume that x* ? 0. 

For A~ ).0 put 

z! := \},R(A., A)* y*\ /\ x*. 

Then, since x* ~ 0 and }.R(I., A)* ;?; 0, 

0 ~ zf ~ IJ.R(A., A)* y* I ~ ),R(),, A)* I y* I. 

and since ),R(A., A)* I y* I is a positive element in £ 8 , it follows from Step I that 

z! E £ 8 . But since y* E £0 we have lim1 __ x 11.R(}.. A)* y* I = I y* I. and therefore 

lim zf = lim JAR()., A)* y*I /\ x* = ly*I /\ x* = x*. 
;.-oo ;.,-.:x_. 

Since Eo is closed it follows that x* E £ 8 . This proves that E''' is an ideal. 

The second statement is a consequence of the fact that every closed ideal in 

a Banach lattice with order continuous norm is a projection band. 

In [NP] we observed that if Eis a tJ-Dedekind complete Banach lattice. then 

the band generated by Eo is the whole £*. In fact. this follows from weak*_ 

Jim;.-<:<• AR(},, A)* x* = x* and the fact that every band projecti_on in the dual ol 

a cr-Dedekind complete Banach lattice is weak*-sequent1ally continuous 

[AB, Thm. 13.14] (consider the band projection onto the band generated by 

Eo). 
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COROLLARY 2.2. If Eis a <J-Dedekind complete Banach lattice whose dual has 
order continuous norm, then E8 = E*. 

An example of such a Banach lattice is E = c0 • 

The following corollary is a converse of Theorem 2.1 in case R(),, A) is weakly 
compact for some ), E p(A) (hence for all ;, E p(A)). This is the case if and only if 
E is 0-reflexive with respect to T(t); see [Pal]. 

COROLLARY 2.3. U R(A., A) is weakly compact, then the following assertions 
are equivalent: 

(i) Eo is an ideal; 
(ii) £0 is contained in a sublattice with order continuous norm; 

(iii) £0 is a u-Dedekind complete sublattice. 
Proof. (iii)= (ii): If £0 is u-Dedekind complete then, by the weak compact

ness of R()., A), Eo actually has order continuous norm [NP]. (ii)= (i) follows 
from Theorem 2.1 and (i) =(iii) follows from the fact that the dual of a Banach 
lattice is always Dedekind complete. 

3. Disjointness almost everywhere 

Throughout this section, let T(t) be a pos1t1ve C0 -semigroup on a Banach 
lattice E. Fix a real ). E p(A) with ), > w, with w E IR such that II T(t) II ~ Me"" for 
a suitable constant M ~ 1. 

We start with the simple observation that x E { R(/,, A)x }dd for all 0 ~ x EE. 
Indeed, suppose y EE such that y /\ RU, A)x = 0. Since 0 ~ R(ll, A)x 
~ R(I., A)x for all 11 ~ ),, this implies that 

y /\ (11R(11, A)x) = 0. 

Now it follows from limµ~ 1 pR(p, A)x = x that y /\ x = 0. This shows that 

and hence xE {R(A., A)x}dd. 
For the adjoint semigroup the situation is different. It can happen that 

x* ..L R()., A*)x* for some 0 ~ x* EX*. For example, let T(t) be the translation 
group on E = C 0(1Rl) and let x* be a measure which is singular with respect to 
the Lebesgue measure. Then x* ..l L 1(1Rl), here identifying absolutely continuous 
measures with their L 1-densities. But R(},, A* )x* E £ 8 = L 1(1R), so indeed 
x* ..l R(J., A*)x*. 

As one of the results of this section we will characterize these functionals x* 
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as the elements of (EO)d. The following lemma is a first step towards this 

characterization. 

We will use repeatedly the formula 

(x* /\ y*, x) = inf{ (x*, u) + (y*, u): u, uE[O, x], u + v = x}, 

valid for arbitrary x*,y*EE* and 0:::; xEE (see e.g. [Z], Theorem 83.6). 

LEMMA 3.1. Suppose 0:::; xEE, 0:::; x*EE* and 0 ~ y*EE* satisfy 

(R(),, A*)x* /\ y*,x> = 0. Then,for almost all t ~ 0 (with respect to the Lebes

gue measure) we have ( T*(t)x* /\ y*, x) = 0. 

Proof The formula (*) applied to T*(t)x* /\ y* shows that for x ~ 0 the 

function f(t) := (T*(t)x* /\ y*, x> is measurable, being the infimum of continu

ous functions. We must show that f = 0 a.e. Fix e > 0. By (*), applied to 

R()., A* )x* /\ x*, it is possible to choose u, v E [O, x] such that u + v = x and 

(R()., A*)x*, u) < 1:, (y*, v) <e. 

Then 

L"' e-;.r ( T*(t)x* /\ y*, x> dt :::; f" e- 1·' (T*(t)x*, u) dt + l"' e-.« (y*, v) dt 

= (R(/,, A*)x*, u) + r 1(y*, v):::; (1 + ). - 1)e. 

Since e > 0 is arbitrary it follows that 

lx e- 1-'(T*(t)x* /\ y*,x)dt=O. 

The lemma now follows from the fact that the integrand is a positive function. 

Thus, if R(/., A* )x* A y* = 0, then by the lemma for all x ~ 0 we have 

( T*(t)x* /\ y*, x) = 0, except for t belonging to a set of measure zero. This 

exceptional set, however, may vary with x and therefore one cannot conclude 

that T*(t)x* A y* = 0 for almost all t. The following example shows that 

indeed this need not be the case. 

EXAMPLE 3.2. Let T be the unit circle in the complex plane, which will be 

identified with the interval [O, 2n), and let C( T) denote the Banach lattice of 

continuous functions on T Let E = !1([0, 2n); C( T)). With the pointwise order, 

E is a Banach lattice. Note that E* = /"' ([0, 2n); M(T)), where M(T) = C(T)* 

is the space of bounded Borel measures on T Define an element x* EE* by 
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x*•:.:)· = () +· () where £5 is the Dirac measure concentrated at ix. Let R(t) be . \ 0 <l' Cl 

the rotation group on C( T) and define a positive C0-group T(t) on E by 

( T(t)x)(ix) := R(t)(x(cx)). 

Then, using the fact that the lattice operations on E are defined pointwise, for 
any t E [O, n) we have 

II T*(t)x* /\ x* 11 ;,:;:; ll(T*(t)x* /\ x*)(t) 11 = llR(t)(x*(t)) /\ x*(t) II 

= 11((5, + b2,) /\ (b0 + b,)11 = llb1 II = 1. 

THEOREM 3.3. Suppose that E has a quasi-interior point, or that E* has order 
continuous norm. Then R(A, A *)x* /\ y* = 0 (0 ~ x*, y* EE*) implies that 
T*(t)x* /\ y* = 0 for almost all t ;.:;:; 0. 

Proof Suppose first that u > 0 is quasi-interior. We have by Lemma 3.1 that 

(T*(t)x* /\ y*, u) = 0, a.a t ;,:;:; 0. 

Since u is a quasi-interior point, this implies that 

T*(t)x* A y* = 0, a.a t;,:;:; 0. 

If£* has order continuous norm, then for all z* EE* the closed unit ball BE is 
approximately z*-order bounded [M, Prop. 2.3.2], i.e. for all e > 0 and z* EE* 
there is an x ;;::: 0 such that 

BE c [-x,x] + eB, •. 

Here B=* is the closed unit ball of the seminorm p,. defined by 
P:•(x) = <lz*I, lxl). Choose x";;::: 0 such that BE c [ -x", x"] + n- 1 By•· By 
Lemma 3.1, there is a set F" c IR> 0 of full measure such that for all t E F" we 
have (T*(t)x* A y*,x.) = 0. Fix any tEF •. Let yEBE arbitrary. Write 
y=y 1 +y2 withy 1 E[-x",x"],y2 En- 1By•· Then 

(T*(t)x* /\ y*, IYI) ~ (T*(t)x* /\ y*, IY 11) + (T*(t)x* A y*, l.vzl) 

~ o + (y*, ly,I) ~ ~. 
- n 

It follows that <T*(t)x* /\ y*, IYI> = 0 for all tE F := n.F,.. Since y is arbitrary 
and the F,. do not depend on y, it follows that T*(t)x* /\ y* = O for t E F. 

COROLLARY 3.4. Suppose x* E £*, y* E (E8 )d and either E* has order continu-
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ous norm or E has a quasi-interior point. Then T*(t)x* J_ v* for almo.\t all t ) O 

Proof y* .l E 8 implies I _v* I .l £ 8 . so in particular R(i., A* ;, Iv* i = 
Therefore T*(t)[x*[ /\ \y*\ = 0 for almost all t. But \T*(t)x*I ~ T*(I j. hence 

for almost all t also IT*(t)x*[ /\ [_v*I = 0. 

The following theorem gives the characterization of functionals in i". 

mentioned at the beginning of this section. 

THEO REM 3.5. For 0 ~ x* EE* the following statt!ments are equiralem: 

(i) x*E(EO)d; 

(ii) R(/,, A* )x* /\ x* = 0: 

(iii) For all 0 ~ x EE we have ( T* (t)x* /\ x*, x) = 0 jlir a/1110~1 u/I 1 ;:, O: 

(iv) For all 0 ~ xEE we have liminf, 10 (T*(t)x* /\ x*,x) = 0. 

Proof The implications (i) =(ii) and (iii)= (iv) are trivial. and {iii"'*' oiil 

follows from Lemma 3.1. So only (iv)= (i) needs proof. Take 0 ~ x* E P 

satisfying (iv). Since £ 8 = D(A*) = R().,A*)E*. it is sufficient to prove that 

x* .l R(),, A* )y* for all y* EE*. Moreover, since 

\R().,A*)y*\ ~ R(),,A*)[y*\EEo, 

all we have to show is that x* /\ zO = 0 for all 0 "" ::0 E . To this end. fix 

O ~ zO E £0 and let x! EE* be any vector such that 0:::; xf:::; 11x* l\ :::' for 

some number n EN. It follows from 0 ;:::; xf ;:::; nx* that 

0 ~ T*(t)x! /\ x! ~ T*(t)nx* /\ nx* = n(T*(r)x* /\ x*), 

so xf satisfies (iv) as well. Fix E > 0 and 0 ;:::; x EE with ii x = l. There exists 

(5 > O such that II T*(t)zO - 2 0 II < i:; for all 0;:::; r < ci. Furthermore. smce 

lim inf110 (T*(t)xf /\ xf, x) = 0, there exists 0 <tu< (i such that 

0;:::; (T*(t0 )xf /\ x!, x) <e. 

By the formula ( * ), there exist 0 ~ u, v EE such that u + r = x and 

(T(t0 )*xf,u) < e, (xf. v) <f.. 

Then 

(x!, u) = (xf, x) - (xf. i') > (xf. x) - <: 

and 
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This implies that 

(:::0, r) = < T*(to):::o, t•) - ( T*Uo):::O - zO, v) 

Hence 

~ (T*(t 0)xf,v)- llT*(t0)z8 - z8 11 llvll 

> ((xf,x) - 2c:J-ellvll ~ (xf,x)- 3e. 

(:::o, x) = (zo, u) + (zO, v) > (xf, u) + ((xf, x) - 3e) > (2xf, x) - 4c:. 

Since e is arbitrary it follows that (z8 , x) ~ (2xf, x) for all x ~ 0, i.e. 
O ~ 2xf ~ zo. Hence, 0 ~ 2xf ~ 2nx* /\ zO and we can repeat the above 
argument. After doing so k times we find that 0 ~ 2kxf ~ z8 . Hence this holds 
for all k EN, so xf = 0. In particular, letting xf = x* /\ z0 , it follows that 
x* /\ zO = 0. This completes the proof. 

Next we will study the behaviour of T*(t) on the disjoint complement (E8 t 
In general, (£0)d need not be T*(t)-invariant. It may even happen that 
T*(t)E* c £0 for all t > 0, e.g. if T(t) is an analytic semigroup. Using the 
above theorem we obtain the following result. 

COROLLARY 3.6. IfT*(t) is a lattice semigroup, then (E 8 )d is T*(t)-invariant. 
Proof If 0 ~ x* E (£8 )d, then R()., A* )x* /\ x* = 0. Hence also 

R(/., A*)T*(t)x* /\ T*(t)x* = T*(t)(R(J., A*)x* /\ x*) = 0, 

so T*(t)x* E (EO)d by Theorem 3.5. 

We note that, in particular, if T(t) extends to a positive group, then T*(t) is 
a lattice semigroup and the above corollary applies. Furthermore we note that, 
as observed before, if T*(t) is a lattice semigroup, then £ 8 is a sublattice of E*. 

The following example shows that Corollary 3.6 (and some results to follow) 
fail if T*(t) is not a lattice semigroup. 

EXAMPLE 3.7. Let T(t) be the semigroup on E = C[O, 1] defined by 

T(t)f(s) = {f(t + s), t + s ~ l; 
f(l), else. 

Then one easily verifies the following facts: 
(i) E8 =L 1[0,l]EBlR6 1; 

(ii) b0 .1£8 and T*(t)6 0 = 6 1 E £8 for all t ;;?; 1. 

In view of Corollary 3.6 we will restrict our attention in the last part of 
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this section mainly to the situation in which T*(t) is a lattice semigroup. 

We will study the occurrence of mutually disjoint elements in the orbits 

{T*(t)x*: t ;:3: O}, where 0 ~ x*E(£0t The first result in this direction is a 

simple consequence of Theorem 3.3. 

PROPOSITION 3.8. Assume that E* has order continuous norm, or that E has 

a quasi-interior point. Furthermore, assume that T*(t) is a lattice semigroup. 

Then for 0 ~ x* E (E8 )d we have: 

(i) Ifs ;:3: 0 is fixed, then T*(t)x* l. T*(s)x* for almost all t ;:3: O; 
(ii) T*(t)x* l. T*(s)x* for almost all pairs (t, s) ~ 0 (with respect to the 

Lebesgue measure on IR + x IR + ). 

Proof (i) Takes ~ 0. It follows from Corollary 3.6 that T*(s)x* E (E8 f Now 

the result follows from Theorem 3.3 (with y* = T*(s)x*). 
(ii) This follows via Fubini's theorem from (i). 

Suppose that (£8 )J =I= { 0} and let 0 < x* E (EO)d be fixed. We define 

t 0 := inf{t > 0: T*(t)x* = 0}. 

If T*(t)x* =I= 0 for all t ;:3: 0 we put t 0 = oc. If t 0 < w, it follows from the 

weak*-continuity of ff-+ T*(t)x* that T*(t0 )x* = O; in particular t0 > 0. Hence 

T*(t)x* > 0 for all 0 ~ t < t0 and T*(t)x* = 0 for all t ~ t 0 . 

We will say that a set H c [O, t0 ) supports a disjoint system (for x*) if 

{ T* (t)x*: t EH} is a disjoint system in E*, i.e. T*(t)x* 1- T* (s)x* for any two 

t =I= s EH. In view of Proposition 3.8 one might ask whether there exist 'large' 

sets supporting a disjoint system. Observe already that, by Zorn's lemma, any 

set supporting a disjoint system is contained in a maximal one. 
Let m* denote the outer Lebesgue measure. 

LEMMA 3.9. Suppose that E* has order continuous norm, or E has a quasi

interior point. Suppose T* (t) is a lattice semigroup and let x* E (E8 t 
(i) If H c [O, t 0 ) is a countable set supporting a disjoint system, and if 

Jc [O, t0 ) is an open interval, then there exists s El\H such that Hu {s} 

supports a disjoint system. 
(ii) If H c [O, t0 ) is a maximal set supporting a disjoint system, then H is 

uncountable. 
(iii) Let H c [O, t 0 ) support a disjoint system. If T*(t)x* /\ T*(s)x* > 0 for 

some 0 < s < t, then m*([O, t]\H) ;i: !s. 
Proof. (i) For t EH let 

F, = {h ;;i: 0: T*(h)x* A T*(t)x* = O}. 

By Proposition 3.8(i) we know that m(IR+ \F,) = 0. Since His countable, the set 
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F= n{F1:tEH} satisfies rn(IR+\F) =0 as well, and hence FnJ # 0. Now 
take any s E F n J. 

(ii) Follows immediately from (i). 
(iii) Since IT*(t)x*I" IT*(s)x*I > 0, also IT*(t - s + h)x*I "IT*(h)x*I > O 

for all O ~ h ~ s. Hence, if h EH n [O, s], then h + t·- s ~ H, i.e. 

([O, s] n H) + t-s c [O, t]\H, 

so m*([O, s] n H) ~ m*([O, t]\H). Now 

s ~ m*([O, s] n H) + m*([O, s]\H) ~ 2m* ([O, t]\H), 

so m*([O, t]\H) ~ !s. 

We do not know whether a maximal set supporting a disjoint system must 
be measurable. This is the reason for taking the outer Lebesgue measure rather 
than the Lebesgue measure. 

EXAMPLE 3.10. Let T(t) be the rotation group on E = C(T). Identifying the 
unit circle T with [O, 2n), we let x* = b0 + b". Then H = [O, n) is a maximal 
set supporting a disjoint system for x*. This shows that the constant -! in 
Lemma 3.9(iii) is optimal. 

THEOREM 3.11. Suppose that E* has order continuous norm, or E has a 
quasi-interior point. Suppose T*(t) is a lattice semigroup and let x* E (EO)d. 

(i) There exists an uncountable dense set H c [O, t 0 ) supporting a disjoint 
system. 

(ii) If T(t) extends to a positive group, then either the orbit { T*(t)x*: t E ~} is 
a disjoint system, or m*(IR\H) = oo for each set H c IR supporting a 
disjoint system. 

Proof (i) Let (Jnl:°=i be an enumeration of the open intervals in [O, t 0 ) with 
rational endpoints. Using Lemma 3.9(i) we inductively construct a sequence 
(t.);'= 1 supporting a disjoint system with t.eJn for all n. This sequence (t.) is 
contained in some maximal H supporting a disjoint system. Clearly His dense 
in [O, t0), and by Lemma 3.9(ii) H is uncountable. 

(ii) Now assume in addition that T(t) extends to a positive group, and that 
H c IR supports a disjoint system with rn*(IR+ \H) = K < (jj. Then also 
H + := H n ~+ supports a disjoint system and m*(IR + \H +l ::::; K. It follows 
from Lemma 3.9(iii) that T*(t)x* " T*(s)x* = 0 for alls # t > 2K. Therefore, 
ifs# tin IR, then for n so large that s + n > 2K, t + n > 2K we have 

T*(n}(T*(t)x* A T*(s)x*) = T*(t + n)x* A T*(s + n)x* = 0. 

Since T*(n) is injective, this implies that T*(t)x* " T*(s)x* = 0. 
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In the situation of Theorem 3.11, it is clear from (i) that (EO)d is not norm 

separable. So in this situation we have either (EO)d = {O} or (EO)d is non

separable. In this direction we can prove more, under much weaker assump
tions, using a different method of proof. This is what we will do next. 

First we recall some facts. Let E be a Banach lattice and J c E an ideal. 
The annihilator JJ_ = {x* EE*: (x*, x) = 0, Vx El} is a band in E*, and hence 

we have the band decomposition E* = JJ_ E9 (JJ_t Let PJ be the band 
projection in E* onto (J J_ l 

LEMMA 3.12. Let Jc: E be an ideal and 0;:;; T: E-+ E be a positive operator 
such that T(J) c: J. Then P1 T*::::;; T* PJ. 

Proof Since T(J) c J implies that T*(JJ_) c 1 1 , it follows that 

and so P1 T* P1 = P1 T*. Hence P1 T* = P1 T* P1 ;:;; T* P1 . 

In the following theorem, T(t) is any positive C0-semigroup on E. We do not 
assume that T*(t) be a lattice semigroup. 

THEOREM 3.13. If (EO)d contains a weak order unit, then T*(t)(E*) c (£8 )dd 

for a/It> 0. 
Proof. Let 0 ;:;; w* E (£0 )d be a weak order unit. Fix 0 ;:;; x* E E* and 

0 ::::;; x EE. Let J be the closed ideal in E generated by the orbit { T(t)x: t ~ O}. 
Then J is T(t)-invariant and has a quasi-interior point 0 ::::;; u E J. By Lemma 
3.1, 0::::;; w*E(EO)d implies that (T*(t)x* /\ w*,u) = 0 for almost all t ~ 0. 
Since 

0::::;; P1 (T*(t)x*) /\ w*::::;; T*(t)x* /\. w*, 

it follows that (P 1 (T*(t)x*) /\ w*, u) = 0 a.e., and hence P 1 ( T* (t)x*) /\. w* E J 1 

a.e. But also P1 (T*(t)x*) A. w*E(J1 )d, so P1 (T*(t)x*) J\ w* = 0 a.e., hence 

PJ(T*(t)x*)E(EO)dd a.e. Now observe that. if t~O is such that 

P 1 (T*(t)x*)E(E8 )dd, then by Lemma 3.12, 

P 1 (T*(t + s)x*) = P1 (T*(s)T*(t)x*)::::;; T*(s)P1 (T*(t)x*). 

Also, as observed in Section 1, (Eo )ad is T*(t)-invariant. Combining these facts, 
we conclude that P1 (T*(t)x*)E(EO)Jd for all t>O. Therefore, P1 (T*(t)x* /\ w*) 

= 0, i.e., T*(t)x* /\. w* EJ1 for all r > 0, which implies in particular that 

< T*(t)x* /\ w*, x) = O for all t > 0. Since 0 ;;;;; x EE was arbitrary, it follows 
that T*(t)x* J\ w* = 0 for all t > 0, i.e., T* (t)x* E (E8 )dd for all t > 0. 

Together with Theorem 2.1 this implies: 
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COROLLARY 3.14. Suppose E* has order continuous norm. If (E8 )d contains 
a weak order unit, then T*(t)(E*) c E0 for all t > 0, i.e. T*(t) is strongly 

continuous for t > 0. 

COROLLARY 3.15. Suppose E* has order continuous norm and suppose T(t) 
extends to a (not necessarily positive) group. Then either E* = £ 8 or (E8 )d does 

not contain a weak order unit. 

COROLLARY 3.16. Suppose T*(t) is a lattice semigroup. Then either 
(EO)d = {O} or (EO)d does not contain a weak order unit. 

Proof Suppose (EO)d contains a weak order unit. By Theorem 3.13, 
T*(t)(E*) c (EO)dd for all t > 0. It follows from Corollary 3.6 that (E8 )d is 
T*(t)-invariant, and hence T*(t)((E8 )d) = {O} for all t > 0. From the weak*
continuity of n-~ T*(t)x* it now follows that (E8 )d = {O}. 

The preceding results can be regarded as lattice versions of the following 
result proved in [Ne]: If T(t) is a C0-semigroup on a Banach space X such that 
X* ;xo is separable, then T(t)(X*) c x0 for all t > 0, i.e. T*(t) is strongly 
continuous for t > 0. In particular, if T(t) extends to a group, then either x0 
= X* or X* ;xo is non-separable. 

In the setting of Corollary 3.15, one might wonder when exactly one has 
£0 = E*. In this direction, we can prove: 

PROPOSITION 3.17. Let E = C0(Q) with Q locally compact H ausdorjf, and let 
T(t) be a positive C0-group on E. If E8 = E* then T(t) is a multiplication group. 

Proof Since each operator T*(t) is a lattice isomorphism, atoms in 
M(Q) = (C0(Q))* are mapped to atoms. Hence, for each weQ we have 
T*(t)c5w = <f>w(t)c5w(rJ• say. Here c5"' is the Dirac measure at w. By the strong 
continuity oft~ T*(t)c5.,, we must have that w(t) = w, so T*(t)i5w = <f>w(t)c5w. 
For f E C0(Q) one then has 

(T(t)j)(w) = (c5"', T(t)f) = <f>w(t)(f, c5w) = <f>w(t)f(w). 

Every multiplication group on a real Banach lattice E has a bounded 
generator [Na, Proposition. C-11.5.16]. If E is complex, then a positive 
semigroup leaves invariant the real part of E. Therefore, both in the real and 
complex case, from the above results we conclude: 

COROLLARY 3.18. Let T(t) be a positive C0-group with unbounded generator 
on the Banach lattice E = C0(Q). Then (E8 )d does not contain a weak order 
unit. 
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4. Limes superior estimates 

We start in this section with an arbitrary C0-semigroup T(t) on a Banach space 

X. We choose M ~ 1 and w E IR such that II T(t) II ~ M e"'t. It is our objective to 

study the quantity II T*(t)x* - x* II as t l 0 for x* EX*. Our first results are 

general limes superior estimates, which we will improve later in the context of 

positive semigroups. 

For x* EX* define 

p(x*):= limsup llT*(t)x* - x*ll. 
rio 

It is clear that p defines a seminorm on X*. Note that p(x* + xO) = p(x*) for 

all x 8 E x 0 and x* EX*. In particular, p(x*) = 0 if and only if x* E X 8 . 

Furthermore, 

p(x*) ~Jim sup (II T*(t)ll + llllx* 11 ~ (M + l)llx* II 
I io 

for all x* EX*. 

Since x 0 is a closed subspace of X*, the quotient space X*/X8 is a Banach 

space. Let q: X* -+ X* ;xo be the quotient map. The following result shows 

that the seminorm p is actually equivalent to the quotient norm on X* /X8 . 

THEOREM 4.1. For all x*EX* we have llqx*ll ~ p(x*) ~ (M + l)llqx*ll-

Proof For arbitrary x*EX* and x8 EX 8 we have 

p(x*) = p(x* + x 8 ) ~ (M + l)llx* + x 8 II. 

By taking the infimum over all xOEX8 we obtain p(x*) ~ (M + lJllqx*ll

For the converse, we recall that for any r > 0 we have weak* 

Jo T* ( t)x* dt E xo. Therefore, 

llqx*ll ~11~weak* f: T*(t)x*dt-x*[l=~Jlweak* J: (T*(t)x*-x*)dtll 

1 J' ~ - 11 T*(t)x* - x* 11 dt ~ sup 11 T*(t)x* - x* 11-
r 0 0,;;r,;;r 

Hence. 

II qx* 11 ~ inf ( sup 11 T* (t)x* - x* 11) = p(x* ). 
r>O O~r~ r 
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We mention an immediate consequence of the above theorem. 

COROLLARY 4.2. Let x 0 c Y, with Y a complemented subspace <d' X*, say 

X* = Y EB Z. Then there is a constant C > 0 such that for all x* E Z we have 

Jim sup II T*(t)x* - x* 11 ): C !Ix* II. 
I L 0 

Proof. Since x 0 c Y, the formula !!Ix*!!!:= llqx*ll defines a norm on Z 

which satisfies ! ! Ix* 111 = infxoExo llx* - x 0 II ): infyEY II x* - Yll. But X* /Y :::::: Z 

and consequently ! ! Ix* 111 ;:?: Cllx* II· Now we can apply Theorem 4.1. 

On the quotient space X* /X8 we can define a quotient semigroup Tq*(t) via 

the formula 

Tq*(t)qx*:= q(T*(t)x*). 

Using the equivalence in Theorem 4.1, we can investigate some properties of 

this quotient semigroup via the seminorm p. For this purpose, the following 

result turns out to be useful. 

LEMMA 4.3. Let [a, b] c IR be a closed interval and f: [a, b]-> X* a weak*

continuous function. Then t H p(f (t)) is a bounded Borel function on [a, b J and 

p (weak* f f(t) dt) ~ f p(f(t)) dt. 

Proof For n E N, n > 0, define 

Pn(x*):= sup llT*(t)x*-x*ll,x*EX*. 
0,,;;; t,;; l/11 

Each p,. is a seminorm on X* and p,.(x*) l p(x*) for all x* EX*. Note that 

Pn(x*) = sup. ( sup l<T*(t)x* - x*, x)I) 
0 ,;;t,;; !/n llxll,;; 1 

= sup ( sup l<x*, (T(t) - J)x)I) 
0,;;1 ( 1/n llxll,;; 1 

= sup{!(x*,y)l:yED"}, 

where D,. = Uo,;; 1 ,;;1;11 (T(t)- I)Bx,Bx being the closed unit ball of X. Hence, 

p,.(f(t)) = SUPxeD, l(f(t), x)! for all a~ t ~b. Being the pointwise supremum of 

continuous functions, p,.(f( ·))is lower semi-continuous. Since p,.(f(t)) l p(f(t)) 

for all a~ t:::; b, it follows that p(f( ·))is a Borel function. 
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For x ED. we have 

\<weak* f f(t)dt,x>\ =If (f(t),x)dt\ 

~ f J<f(t),x)J dt ~ r p"(j(t))dt, 

and so 

P (weak* f f(t) dt) ~ Pn (weak* f f(t) dt) 

= sup \<weak* f b f(t) dt, x) I ~ f h p.(f(tll dt. 

XEDn a u 

Finally, it follows from the monotone convergence theorem that 

r p.(f(t)) dt t r p(f(t)) dt. 

This concludes the proof. 

The above lemma can be used to prove the following property of the 

seminorm p. 

PROPOSITION 4.4. For all x* EX* we hare 

p(x*) ~ lim sup p(T*(t)x* - x*). 
tLO 

In particular, if x* EX* is such that Jim110 p( T*(t)x* - x*) = O. then 1itx* l = 0, 

i.e., x* E xo. 
Proof For all x* EX* and 1 > 0 we have, using Lemma 4.3. 

p(x*) = p G weak* t (T*(t)x* - x*)dt) 

~ ~ f' p(T*(t)x* - x*)dt ~ sup p(T*(t)x* - x*). 
t" 0 

o< r~t 

A combination of this result with Theorem 4.1 yields the following: 

COROLLARY 4.5. JflimriollT.i*(t)qx* -qx*ll ==0, then qx* = 0. 
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Thus the only element in X* /X8 whose 'I'q*(t)-orbit is strongly continuous, 

is the zero element. This result was first proved in [Ne]. The (more compli

cated) proof given there shows that in fact the following stronger result is true: 

if the r:(t)-orbit of some qx* is norm-separable in X* / X 0 , then it is identically 

zero for t > 0. 

We now return to the Banach lattice case. In Theorem 0.1, £0 is comple

mented in E* and therefore we can already conclude from Theorem 4.1 that 

the limes superior estimate must hold with some constant C. In general £0 is 

not complemented, but we always have a direct sum decomposition of E* into 

the band generated by £ 8 and the disjoint complement of £0 (which of course 

may be {0}). Therefore Corollary 4.2 can be applied and we get a constant 

C > 0 such that for all x* J_ £ 8 we have 

lim sup II T*(t)x* - x* II ~ Cllx* II. 
r l 0 

The following theorem shows that in fact we can achieve C = 2. 

THEOREM 4.6. lfx*E(E8 )d, then limsupriollT*(t)x* - x*ll ~ 211x*ll. 

Proof First we observe that for x* EE* and 0 ~ x EE, 

liminf <IT*(t)x*l,x) ~ <lx*l,x). 
t LO 

Indeed, if IYI ~ x, then 

Jim inf <T*(t)lx*I, x) ~ lim inf l(T*(tjx*, y)I = lim l(T*(t)x*, y)I = l(x*, y)I, 
r!O tlO r!O 

and hence 

liminf<IT*(t)x*l,x)I ~ sup{j(x*,y)l:lyl ~ x} = <lx*j,x). 
t ! 0 

Now take x* E(E 8 )d and 0 ~ xEE with II.xii = 1. From Lemma 3.1 we know 

that (T*(t)jx*I /\ lx*I, x) = 0 for almost all t ~ 0, and hence (IT*(t)x*I 

/\ lx*l,x) = 0 a.e. Using the lattice identity [AB, Theorem 1.4(4)] 

2(1T*(t}x*I /\ lx*I) = IT*(t)x*I + lx*l - llT*(t)x*l - lx*ll. 

we see that, for almost every t ~ 0, 

llT*(t)x* - x* 11 ~ (IT*(t)x* - x*I. x) ~<I IT*(tJx* 1- Ix* 11, x) 

= (IT*(t)x*j,x) + (lx*j,x). 
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This implies that 

lim sup II T*(t)x* - x* II ;:-: lim inf <IT*(t)x*I, x) + (lx*I, x) ;;::: 2(1x* I, x). 
t!O qo 

Since 0 ::;;;; x e E of norm one is arbitrary, the result follows. 
If E* has order continuous norm, then by Theorem 2.1 £ 8 is a projection 

band. Let n be the band projection onto its disjoint complement. 

COROLLARY 4.7. If E* has order continuous norm, then 

211rrx* 11 ::;;;; lim sup II T*(t)x* - x* II ::;;;; (M + l)llnx*ll. 
qo 

In particular, if M = 1, i.e., if lim1 !O II T(t)ll = 1, then Iim sup1 !O II T*(t)x* - x* II 
= 211nx* II. 

If x* is contained in the band generated by £ 0 but not contained in £ 0 itself, 
then the limes superior can be anything between 0 and 2, as is shown by the 
following example. 

EXAMPLE 4.8. Let E = L 1(1R), T(t) the translation group on E. Let f e C0 (1R) 
be of norm one such that f = 0 on [ -1, l]. Let 0 :::::; et ~ I and define 
geE* = L"'(~) by 

{
f(s), 

g(s) := et, 

-et, 

lsl > l; 

SE [0, 1]; 

s E [ -1, O]. 

Then llgll = 1, g belongs to the band generated by £ 8 , and 

lim sup1!0 11 T* (t)g - g 11 = 2et. 
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