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the associate space. In the second part we investigate when a multiplication operator of the 

form A1if = hj generates a Co-semigroup. For those h for which this is the case we give a 
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1. Preliminaries 

Let (f2, Z:,µ) be a. a-finite measure space and let £0 (µ) denote the linear space of µ-mea.sura.ble 
functions on n which are finite a.e. As usual µ.-a.e. equal functions are identified. A linear 
subspace X of L0 (µ), equipped with a norm II ·II, is called a Banach function space (over 
(D, Z:,µ)) if X is a Banach space with respect to JI · 11 and f E L0 (µ), g E X with Ill :::; lgl 
a.e. implies that f E X and llfll :::; IJgll· Note that every Banach function space is a Banach 
lattice. For the basic theory concerning Banach function spaces we refer to the books [3], [8], 
[9]. We will recall some of the relevant facts. 

We say that X is carried by rt if there is no subset E of rt of positive measure with the 
property that J = 0 a.e. on E for all f E X, or equi vaJently if for every E C n of positive 
measure there is a subset F C E of positive measure such that the characteristic function XF 

belongs to X. It always contains a subset i10 such that X is carried by 0\0o. Therefore we 
will assume henceforth without loss of generality that X is carried by n. 

The associate space (sometimes called the Kothe dual) of X is defined by 

X' = {g E L0 (µ): llfgl dµ < oo,Vj EX}. 

X' is a Banach function space with respect to the norm given by 

11911 = sup I r Jg dµI. 
llJllSl Jn 
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Every g E X' defines a bounded linear functional efi9 E x· via the formula 

VJ EX. 

We have llYllx• ::: jj4>9 llx·. Therefore X' can be identified with a closed subspace of x·. In 
fact X' is even a band in x·. 

The norm of X is called order continuous if In ! 0 in X implies llfnll 1 0. X has order 
continuous norm if and only if X' = x·. 

A linear functional <P E x· is called order continuous if In l 0 in x implies (</J, fn) ~ 0. 
One can show that <jJ E x· is order continuous if and only if <P E X'. Finally, a positive linear 
operator T : X - X is called order continuous if In l 0 implies T f n L 0. 

We will also need some terminology on adjoint semigroups. See [1], [5], [6] for more details. 
Let T(t) be a C0-semigroup of operators on a Banach space X. The a.djoint semigroup on x· 
is defined by T*(t) = (T(t)t. T"(t) need not be strongly continuous. We define 

x0 = {x" EX" : lim llT*(t)x* - x"ll = 0}. 
tjO 

.x0 is a norm-closed, weak" -dense subspace of x·. In fact, if A is the generator of T( t ), then 

.x0 is precisely the norm-closure of D(A"). x0 is invariant under T"(t), so the restrictions 
T0(t) of T(t) to .x0 define a. C0-sernigroup on x0. Applying the same construction to this 
semigroup, we define x00 ::: (X0)8 . The map j : _.'( - x0·, 

is actually an embedding which maps X into .x00. In case j X = x00 we say that X is 
sun-reflexive with respect to T(t). It is well-known that this is the case if and only if the 
resolvent R()., A) is weakly compact. 

If T(t) is a C0-semigroup on a Banach function space X, then one may ask under what 
conditions we have .x0 C X'. Trivially, this is true when X has order continuous norm. 
Recall that a Banach lattice is said to be CT-Dedekind complete if every countable subset that 
is bounded from above has a supremum. Every Banach function space is O"-Dedekind complete. 

Lemma 1.1. Suppose T(t) is a C0 -semigroup on a Banach function space X. Then the 
band generated by x0 is equal to x·. 

Proof: By a result of Schaefer [7] a band in the dual of a CT-Dedekind complete Banach lattice 
is sequentially weak* -closed. Let Y denote the band in X* generated by x0 and take </J E x· 
arbitrary. Since 

weak* 

for any sequence An - oo in q(A), and since ilnR(An,A)*<;!> E x0, it follows that </J E Y and 
hence Y = .\*. I I/ I 
Theorem 1.2. Suppose X is a C0 -semigroup on a Banach function space X. Then X'~ C X' 
if and only if X has order continuous norm. 

Proof: If X hlts order continuous norm, then X' = x·, so trivially x0 c X' holds. 
Conversely, suppose X 8 c X'. Since X' is a band in x·, by Lemma 1.1 we have X* C X', 
forcing X' = x·. 11 I I 
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We remark that the same result holds mutatis mutandis for any a-Dedekind complete 
Banach lattice. The equivalent hypotheses of Theorem 1.2 are always fulfilled in the sun
reflexive case. This is the content of Theorem 1.4 below. 

Recall that a Banach space is called weakly compactly generated (WCG) if it is the closed 
linear span of one of its weakly compact subsets. 

Lemma 1.3. Suppose a Banach space X is sun-reflexive with respect to a. C0 -semigroup. 
Then X does not contain a subspace isomorphic to zoo. 

Proof: Suppose the contrary and let Y be a. subspace of X which is isomorphic to zoo. Since 
zoo is complemented in every Banach space containing it as a subpace [4, Prop. I.2.f.2], it 
follows that Y is complemented in X. Since the resolvent R(>.,A) is weakly compact and 
R(>.,A)(X) = D(A) is dense, X is WCG. Now complemented subspaces of WCG spaces a.re 
trivially WCG again. We conclude that zoo is WCG, a contradiction. In fact, every weakly 
compact set of zoo is separable (e.g. note that zoo embeds into L00 [0, 1] and apply [2, Thm. 
VIII.4.13J). //// 

A a-Dedekind complete Banach lattice not having order continuous norm contains a 
subspace isomorphic to 100 [4, Prop. II.l.a.i]. Hence the following is an immediate consequence 
of the previous lemma. 

Theorem 1.4. Suppose X is a a-Dedekind complete Banach lattice. If X is sun-reflexive 
with respect to a C0 -semigroup T(t), then X has order continuous norm. 

In particular this result applies to Banach function spaces. Finally we will consider positive 
semi groups. 

Theorem 1.5. Suppose T(t) is a positive C0 -semigroup on a Banach function space X. 
Then x0 C X' if and only if fn 1 0 implies \\R(..\, A)Jnl\ - 0. 

Proof: Since T(t) is positive, R(..\, A) is positive for ,\ large enough. Since X' is closed 
and x0 is the closure of R(..\, A)*(X"), it suffices to prove that for a positive linear operator 
T: X - X we have T*(X") C X' if and only if fn 10 implies \\T fn\\ - 0. First we prove the 
'if'-part. Let <P E X*. To prove that T*</> E X', let fn 1 0 in X. By assumption this implies 
\ITfn\\ - 0. In particular, (</>,Tfn}--+ 0, so (T*</>,fn} - 0 and hence T*</> EX'. Conversely, 
assume T*X* c X'. Let</> EX* be positive and suppose fn 1 0 in X. Since T*</> EX' we 
have (</>,Tfn} = (T*</>,fn}-+ 0. Since T is positive we actually have (</>,Tfn) ! O. Since this 
holds for all positive</>, from [9] we deduce [IT fn\I __., 0. //// 

2. The multiplication semigroup 

Leth E Lo(µ) be a complex-valued measurable function and define the operator A1i by 

D(.A1i) = {f EX : hf EX}; 

A1if = hf, f E D(Ah)· 

Note that .Ah is a closed operator. Put 

En = { s E n : I h( s) I ::; n}, 

( 1) 

(2) 
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let XE,, be its characteristic function and define the band projections 

Pn : X -+ X, Pnf == XE.f· (3) 

Since IPnfl s; Ill for all f, Pn indeed maps X into X. In fact, from the lattice property of the 

norm we see immediately that Pn is a contraction mapping. 

In general D(An.) need not be dense, as the example X = L00 (0, 1), h(s) = s-1 shows. 

A subset B of L0 (µ) is called solid if the following holds: whenever Ill :S 191 and g E B 
then also f E B. In particular, if B is solid and f E B then also Ill E B. It is easy to see 

that the norm-closure if a solid set is solid. An ideal is a solid linear subspace. Note that bv 

definition every Banach function space is an ideal in L0 (µ). • 

Proposition 2.1. D( Ah) is solid. lWoreover, D( Ah) is dense if and only if limn II Pnf- /II = O 

for all f EX. 

Proof: Suppose g E D(A,.) and let JEX be a function satisfying I/Is; lg!. By assumption 

hg EX, hence also lhgl EX since X is an ideal. But lh/I s; !hgl, so hf EX which implies 

that f E D(Ah)· This proves the first assertion. 

Suppose llPnf - /II - 0 for all J E X. To prove that D( Ah) is dense it suffices to show 

that Pnf E D(A,.) for all JEX. But on E,, we have !h(s)I :Sn, so 

lhP,JI s; lnPnfl s; nlfl 

showing that hPnf EX and l.1ence Pnf E D(A1i). Conversely, suppose D(A1i) is dense. First 

let J E D( Ah). Then 

Hence by the lattice property of the norm, 

1 
llPnf - /II ::; -llA,./ll - 0, n - 00. 

n 

Since D( Ah) is dense and l!Pnll ::; 1 for all n, the general case follows from a density argument. 

!Ill 
Observe that it is an immediate corollary of the above proposition that on the Banach func

tion space X = L1(IR) n L00 (IR) equipped with the norm II/II:= ma..'<{ll!llv(~b ll/llL 00 (1R)}, 

every multiplication semigroup is uniformly continuous. 

We will now characterize those h E L 0 (µ) which give rise to a generator of a Co-semigroup. 

Theorem 2.2. A1i generates a Co-semigroup on D(A1i) if and only if Re h :S I< for some 
constant [{. 

Proof: Suppose Ah generates a Co-semigroup T(t) on the closure of D(Ah)· Let the sets En 
be defined by (2). If a constant I\ as above does not exist, then for every n there is a set Fn 
of positive measure such that Re h > n on Fn. Since X is carried by n, there are subsets 

Gn C Fn of positive measure such that the characteristic functions '(c. belong to X. Since 

l1 = ukE1<, there is a kn such that Ek. nGn has positive measure. Since 
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it follows that XE ... na,. EX. Moreover, since lhl ::; kn on Ei.. we have XE •• nG. E D(Ah), 
and XE.,.nc,. is not the zero element of X since µ(Ek,. n Gn) > O. Put 

fn = XE •• nG •. 
llxE •• na .. 11 

It is not difficult to see, e.g. from the exponential formula (cf. [l, p.79]) 

( n n )n T(t)j = lim -R(-,Ah) J, 
n-oo t t J E D(Ah), 

that for almost all s we have 

T(t)fn(s) = eth(s) fn(s). 

Note that the latter formula makes sense since fn E D(A,.) and by assumption T(t) is defined 
on D(Ah)· Since Reh> non Ek,. n Gn we get 

implying 

a contradiction since this would mean that the operator T(t) is unbounde<l for each t > 0. 
Conversely, suppose Re h ::; f{ for some K. Define 

T(t)f(s) = eth(•) i(s), i E D(A.h)· 

Then clearly llT(t)I!::; eKt. We will show that T(t) is a Co-semigroup whose generator is Ah· 
Fix f E D(Ah) and€> 0. Since D(Ah) is solid, so is its closure D(Ah); in other words, D(Ah) 
is a Banach function space on its own right. Hence we may apply Proposition 2.1 to obtain 
an n such that llPnf- !II<€. Now on En we have -n::; lhl :Sn. Choose 0 <to::; l so small 
that for any 0 ::; t ::; to and lal 5 n we have le"t - ll < €. Then for such t, 

llT(t)J - /II 5 llT(t)(J - Pnf)ll +II/ - Pnf\I + llT(t)Pni - Pnf\\ 

::; (eI<t + l)E + l\(eht - l)xs.i\\ 
5 ( elKI + 1 )t + €\\XE. i\I 
5 (elKI + l +Iii\\)£. 

Therefore T(t) is strongly continuous on D(Ah) and obviously A.his its generator. //// 

We remark that this result could also easily be derived from the Hille-Yosida theorem. 
It is an easy consequence of the definition that X has order continuous norm if and only if 

for all f E X and decreasing sets F1 :J F2 :J ... L 0 we have l\h:F~ II .....,. 0. Using this equivalent 
formulation together with Proposition 2.1 and Theorem 2.2 we obtain: 

Theorem 2.3. X has order continuous norm if and only if Ah generates a Co-semigro11p on 
X for every h whose real part is bounded from above. 
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Proof: Suppose X has order continuous norm. Take h with Re h ~ K and define the sets En 
and maps P,.. according to (2) and (3). Since 

E1 c E2 c ... T n, 

for all J E X we get 
JIPnf - !II = ll!Xn\s,.11 __., 0. 

Hence by Proposition 2.1, D(Ah) is dense. Then Theorem 2.2 shows that Ah is a generator 
on X. 

Conversely, let n = Fo :) F1 ::i F2 ::i ... l 0. Define h E L0 (µ) by 

h(s) = -n, SE Fn \Fn+l· 

Then 
En= {s En: lh(s)I Sn}= l1\Fn+1· 

Since by assumption Ah is a generator on X, hence in particular D( Ah) is dense, we get by 
Proposition 2.1 

llfxF.+, 11 = lllxo\F.+1 - !II = l!Pnf - !II __.. 0. 

/Ill 
From now on we assume h to be fixed with Re h bounded from above. If Ah is the 

generator of a semigroup T(t) on X, then the adjoint T"(t) is well-defined on X". In the 
following theorem we will give a representation for the semigroup dual x0. Let [P;;,X"];;"= 1 

denote the closed linear span in x· of the subspaces P;;, x·, n = 1, 2, ... 

Theorem 2.4. X8 = [P;;,x·]~=t· 

Proof: First note that x· is a Banach lattice, so whenever r./> E x·, then lr./>I is a well-defined 
element of X* of norm ll<Pll· We start by showing that D(Aj;) is solid. Suppose l<PI s; liPI with 
i/J E D( Aj;). Clearly, 

(h</>,J) := (</>,hf) 

defines a linear functional h</> on D(A1i) and for f E D(Ai.), 

(h</>,f) = (</>,hf) S (l</>l,lhfl):::; (17Jil.lhfl) = (lh7/il,lfl):::; \IAi:iP\111111· 

Therefore h</> is bounded on D( A1i ). Since D( Ai.) is dense, hr./> extends to a bounded linear 
functional on X. This proves that rJ> E D(Aj;). 

We will now prove the inclusion [P;;,X"]~=l c x0. Let r./> E P;;,.r, say</>= P;;,1/J. We 
have to show that </> E X 8 . Since D( Aj;) is solid, so is its closure x0. Therefore it suffices to 
show that 14>1 E X8 . Fix t > 0 and choose to > 0 so small that for any 0 :::; t :S to and !al $ n 
we have le"1 - ll < £. Since we have l<PI = IP::.¥il = P;;,17/il, and hence fort :S to, 

Hence 

l(T"(t)l4>1 - lr./>I, !)I= l(liPl,Pn(eth f - J))I 

= l(l1P\,xe.(et1i - l)f)I 

:S E(l</>I, IJl)I 

:S Ell<f>ll llfll· 

l!T"(t)l<i>I - l</>111 :S Ell4>11 
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showing that 14>1 E X 0 and therefore also </> E X 0 . Since x0 is a closed linear space this 
implies that [P:x·i~=l c x0. 

To conclude the proof we show the reverse inclusion. Since D(Ai;) = x0 it suffices to 
prove that D(Ai:) C (P:X·]~=I· Let 4> E D(Ai;). Since D(Ai;) is solid, we may without loss 
of generality assume that </> ~ 0. It suffices to prove that UP:</>- </>II .... Oas n - oo. For any 
f E D(Ai.) we have 

l(P:<P- <P, !)I= l(<P. X(O\E.i/)1 5 ~l(<P. lhfl)I = ~(lh</>I, Ill) 5 ~llA"tt>ll ll/11· 
n n n 

/Ill 
Finally we will consider the case where n is compact Hausdorff space and µ is a Borel 

measure. In this case it is natural to see what improvements can be obtained when we require 
h E L0 (µ) to be continuous. In fact we will ask something weaker, viz. that !hi is a continuous 
function n -> IR, the one-point compactification of JR. For such functions we put £"'° = 
{s En: lh(s)I = oo}. Since h E £0(µ), necessarilyµ(£,,,,)= O. We will say that f EX is 
compactly supported if there is a compact K C !l\£00 such that f = '(K f a.e. and we define 
Xc to be the linear subspace of X consisting of all compactly supported functions. Of course 
X c depends on h. A functional <P E x· is said to be compactly supported if there is a compact 
KC !l\E00 such that(</>,/)= (</J,x.d) for all JEX. 

Theorem 2.5. A1i generates a Co-semigroup if and only if Xc is dense in X. In this case 
xe is the closure of the compactly supported functionals. 

Proof: Suppose A1i generates a Co-semigroup. Since !hi is continuous, we see that the sets 
En c !l\E00 defined by (2) are closed in n, hence compact. Now take f E X arbitrary. 
By assumption D(A1i) is dense, so by Proposition 2.1 we have l!Pnf - f\I - 0. Since Pnf is 
supported in the compact set En. this proves that Xc is dense in X. 

For the converse, assume Xc to be dense. In view of Theorem 2.2 we must show that 
D(Ai.) is dense (the convention that Re h 5 K is still in force). In fact we will show that 
X 0 C D(Ai. ). Indeed, let f E X0 be supported in the compact set K C !l\E"". Since lhl 
is continuous as a function [{ - Ill, we see that h is bounded on K. This implies that 
h E D(A1i). 

The assertion on xe is proved in exactly the same way, using the characterization from 
Theorem 2.4. I I 11 

Example 2.6. (i) Let X = L1(IR), h(t) = t. Letting n = Ill we conclude from Theorem 
2.5 that xe is the closed ideal in £00 generated by C0 (IR.). 

(ii) Let X = L1 (D) with D the closed unit disc in~- Suppose his continuous in D with 
lim,_ 1 ih(s)i = oo for all t E 8D. Then x0 is the closed ideal in L00 (D) generated by the 
suhpace of continuous functions which are zero on oD. 

From Theorem 2.4 or 2.5 we immediately deduce the following. 

Corollary 2.7. Let X be a Banach space with an unconditional basis {xn}~=i· 1;hen 
Axn := knXn generates a C0 -semigroup if and only if Re kn 5 K for some constant It· If 
lkn 1 - oo then xe = [x~J~= 1 , the closed linear span of the coordinate functionals. 

Proof: Regard X as a Banach function space on f! = IN. 1111 
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