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0. INTRODUCTION 
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Let X be a complex Banach space and A the generator of a C0 -semigroup T(t). There 
exist real M 2: 1 and w such that llT(t)ll ~ M ewt. It is well-known that {A: Re>. > w} C e(A), 
the resolvent set of A. For such >.,we write R(>.,A) for (>.I - A)-1 • 

It follows from the Hille-Yosida theorem that 

M 
llR(>.,A)ll ~ Re>._ w, (Re>. > w). 

In this paper, we will use the symbol >. exclusively for real >., >. > w. 
The adjoint semigroup T*(t) = (T(t))* is weak"'-continuous; its weak"-generator is A*, 

the adjoint of A. T*(t) need not be strongly continuous however, and therefore it makes sense 
to define the semigroup dual space x0 as the subspace of X* on which T*(t) is strongly 
continuous: ~ 

X 8 = { x* EX* : llT*(t)x* - x*ll -+ 0, (t l 0)}. 

x0 is the norm-closure of D( A*) and is a weak*-dense linear subspace of X*, which is invariant 
under T*(t), Vt 2:: 0. The restrictions T0(t) of T*(t) to x0 form a C0 -semigroup on x0, 
generated by A0, the part of A* in x0. These facts are standard, see e.g. [1]. 

By applying the same construction to the semigroup T0(t), the second semigroup dual 
space x00 can be defined. 

The map j: X-+ X0*, 

'( ) 0 < J x ,x > 

is an embedding which maps X into x00 and hence we may regard X as a subspace of x00. 
X is called 0-re:flexive (with respect to T(t)) if X = x00. X is 0-reflexive if and only if x0 
is; moreover, X is 0-reflexive if and only if R(>.,A) is a(X,X8)-compact [5]. Recently, B. de 
Pagter proved that X is 0-reflexive if and only if R(>.,A) is weakly compact [4]. 
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Consider the trivial semigroup T(t) = I. It is easily seen that with respect to this 
semigroup the theorems above reduce to classical theorems about reflexivity. This observation 
suggests an analogy between the theories of X* and X8. One might ask if other theorems 
about duals have an analogon for x0 too. 

In this paper, it will be shown that for most of the Halm-Banach theorems (see, for 
instance, [7]) this is indeed the case. Invariance under the semigroup turns out to be the 
relevant extra hypothesis to be imposed. 

In the second part of this paper, the theory of the first part will be applied to study 
8-reflexivity. We will give a new proof of de Pagter's characterization of 8-reflexivity. 

1 EXTENSION AND SEPARATION THEOREMS 

In this section some extension- and separation theorems for x0 will be deduced. 
Let F be a closed subspace of X. On F* define a norm as usual: 

llf*ll = sup I< f*,L> I (f* E F*). 
JEF,ll!ll=l 

Denote by Ap the part of A in F; let AP, : F* --+ F* be its adjoint. 

Theorem 1.1. Let T(t) be a C0 -semigroup, l!T(t)ll ::; ~M ewt. Suppose F is a closed 
subspace of X, invariant under T(t), \It 2: 0. Let j8 E p8. Then for each E > 0 there is an 
element xG E X8 such that 

and 

x81F=f8. 

Moreover, if j8 E D(AP,) then we may choose x8 E D(A*). 

Proof: 
From the conditions on Fit follows that pG is well-defined and is the closure of D(Aj;.). 

Fix / 8 E D(A'F) and E > 0. Since limsup,\>w,,\->oo llAR(.,\,A*)ll::; Mand (I - A'F/A)f8 --+ 
j8 (A --+ oo) in the norm topology of F*, we can choose A = A(J8) such that 

Put J* = (AI - A'F )J8 . Then J* E F* and J* can be ~xtended to some x* EX* such that 

l<x*,x>I < llf*llJJxll VxEX. 
Put x8 = R(A,A"')x*. Then x8 E D(A*) extends J8, and 

So 

< x8 ,x > = < x*,R(A,A)x > ::; llf*ll llR(.,\,A*)ll llxll 

< (Mli/8 11 + E) llxll Vx EX. 

llx0 JI < Mll/8 11 + t. 
Now let / 8 E F 8 . Without loss of generality assume that llf8 1J = 1. Fix some k > 2 + 4M/E 
and choose a sequence 

(J;f)n?_t--+ / 8 , · J;f E D(A}), IJJ5f II= 1, \In, 
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such that 111;?+1 - /211~1/kn2 , which is always possible since pG is the closure of D(A'F)· 
Choose (y~)n~o C D(A*), such that yif extends J~, y<j! extends J;f+l - J2 (n 2: 1), 

llYifll < M + ~' llY~li < (M + ~)/kn2 (n 2: 1). 

From this construction it follows that I: y~ converges to some xG, which is in XG, by the 
closedness of XG. Since I:~-:,10 y~ is an extension of J2, it follows that xG is an extension of 
JG, which furthermore satisfies 

€ ~ 1 € 2 llxGll < (M + 2)(1 + L.,, kn2) < (M + 2)(1 + k) < M + €. 

n=l 

0 

The following example shows that the inequality in Theorem 1.1 cannot be sharpened to 
llxGJJ ~ MllJGJJ. 
Example 1.2. 

Let X = C0 [0, oo ), the space of continuous complex-valued functions vanishing at infinity, 
provided with the supnorm. It is well-known [1] that 

T(t)J(x) = J(x + t) 

defines a C0 -contraction semigroup, whose semigroup dual space XG is L 1 [O, oo ), the action 
of g E XG on Co[O, oo) being given by 

< g,f > = 100 
J(x)g(x)dm(x). 

(m(x) denotes the Lebesgue measure on [0,oo)). Put F = F1 ©F2 ; F1 ={JEX: J(x) = 
0, \f x 2: 1 }, F2 = the one-dimensional subspace spanned by the function e-x. Fis closed and 
invariant under T(t), Vt 2: 0. Put 

< JG,J > /(1) (JEF) 

then it is easily verified that JG E pG and 11/011 = 1. Let g E L1 [O, oo) be any extension of 
jC:J. Since g vanishes on Fi, it has support in [1, oo ). Pick o > 1 such that 

f l+li 
li lg(x)ldm(x) < 11911· 

Since g extends JG, we have 

f I+o 
~ e-1 li Jg(x)ldm(x) 

Hence llYll > 1 = II/Gii· <> 
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In typical situations, the requirement that F should be invariant is not fulfilled. Nev
ertheless, the following lemma shows that a certain class of funtionals still can be extended. 
First we need some definitions. 

Let F C X be a linear subspace such that F n D(A) is dense in F. Define D(AP,) as the 
collection of x* E X* for which there exists an element J* E F* such that 

<f*,f> <x*,AJ>, VJED(A)nF. 

In this case, put AP, : X* -+ F*; AP,x* = J*. Since D(A) n Fis dense in F, AP,x* is 
well-defined as an element of F*. 

Lemma 1.3. Let JG E D(AR(.\,A)F). Then there is a xG E D(A*) such that xGJF = 

Proof: 
Put J* = >..JG - A* JG. Then f* E (R(>..,A)F)*. By the Hahn-Banach theorem, R(.\,A)F 

f* can be extended to an element x* EX*. Put xG = R(>.,A*)x*, then x0 E D(A*) and it 
obviously extends J0. D 

Lemma 1.4 . Let A be tbe generator of a C0 -semigroup T(t) on a Banach space X. Let 
G C X be a convex set. Then >..R(>..,A)G C G if and only if T(t)G C G \;/t 2 0. 

Proof: 
Suppose T(t)G C G \;/t 2 0. It follows directly from 

that >..R( >..,A )x E G if x E G, since G is convex and >.e-.\t dt is a probability measure on [O, oo ). 
The other half is proved analogously, using the inverse Laplace formula [6] 

1 l'i'+ioo 
T(t)x = 27ri .,,-ioo eµt R(µ, A)xdµ ~ ( 1' > max(O,w )). 

D 

We will use Lemma's 1.3 and 1.4 to derive a semigroup version of a standard separation 
theorem. 

Theorem 1.5. Let F be a closed subspace of X, invariant under T(t),Vt 2': 0. Let y rf_ F. 
Then there is a xG E D(A*) such that 

0 Vx E F; 1. 

Proof: 
Let pa E X* be any functional for which 

< 10 ,f + ty > t (! E F, t E <C). 



5 

By the Hahn-Banach theorem such functionals exist. Let G be the subspace spanned by F 
and y. We claim that JG E D(AR(>.,A)a)· Define g* E (R(>.,A)G)* by 

< g*, R(.A,A)(J + ty) > = t < J8 , AR(.A,A)y > . 

By the closedness and invariance of F it follows from Lemma 1.4 that R( .A,A )f E F, hence 
AR(.A,A)J E F and so < / 8 , AR(.A,A)f >= O for all f E F. Therefore J8 E D(AR(>.,A)c) 
and 

A* 10 * R(>.,A)a = g · 

Now Lemma 1.3 applies. D 

Theorem 1.5 can be obtained also as a simple consequence of the following more general 
separation theorem. 

Theorem 1.6. Let A be the generator of a G.o--semigroup T(t) on X. Let G C X be a 
closed convex set, invariant under T(t), Vt ~ 0. Let]( be a convex compact set, G n ]( = 0. 
Then there are x0 E D( A*) and real constants -y1 < -y2 such that for all x E G, y E ](: 

Re < x8 , x > :::; )'1 < 1'2 :::; Re < x8 , y > . 

Moreover, if G is balanced, then x0 can be chosen such that 

I < x0 , x > I ::; 1'1 < 1'2 :::; I < x0 ' y > 1. 

Proof: 
Define the set G>. =(I -A/.A)(Gn D(A)). Take y E J(. Since .AR(>i,A)y--+ y (.\-+ oo), 

there is a.;\ such that .AR(.A,A)y (/.G. Since]( is compact, we may even choose.;\ so that this 
holds for ally EK, i·.e., G n .AR(>i,A)K = 0. By the Hahn-Banach separation theorem, there 
are x* E X* and real constants 'YI < 12 such that for all x E G and y E ](, 

Re< x*,x > ::; )'1 < )'2::; Re< x*,.AR(.X,A)y >. 

In particular this is true for elements x E G n D( A). Hence, defining z = (I - A/.;\ )x E G >., 
we have 

Re< .AR(J\,A*)x*,z > = Re< x*,x > :::; 1'1 < /2::; 

Re < x*, .XR( .A,A )y > Re< .AR(.A,A*)x*,y >. 

Since D(A) n G is dosed in D(A) (with respect to the norm-topology that D(A) inherits from 
X) and R(.X,A) is a continuous map from X onto D(A), G>. = (.\R(>i,A))-1(D(A)nG) is dosed 
in X. It then follows from Lemma 1.4 (applied to G>.) that G C G>.. Therefore J\R(>i,A*)x* 
has the required properties. Finally, if G is convex and balanced, then note that the image 
of G under x0 is also convex and balanced in ([; and does not contain < x0, y > (y E K). 
Hence it must be a multiple of the unit disc. From this it is clear that 

I < x0 ' x > I ::; 1'1 < /2 :::; I < x0 ' y > I (x E G,y EK). 

D 
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Let now G in Theorem 1.6 be a closed subspace of X, invariant under T( t ), \;ft 2: 0 and 
J( = {y},y r;f. G. It follows that there is some x0 E D(A*) under which G has a bounded 
image. On the other hand, this image must be a subspace of <C, which forces < x 8 , G > = 0. 
Hence < x0, y >-=/= 0. Multiplying x0 with the right scalar gives < x0, y >= 1. 

Example 1.7 . 
Let X and T(t) be as in Example 1.2. Put F = {f E X : f(O) = O}. Then F is a 

closed subpace of X. If g is any L 1-function that vanishes on F, then it vanishes on X, i.e., 
g = 0 a.e., as is easily seen from Lebesgue's dominated convergence theorem. We conclude 
that invariance cannot be omitted from the hypotheses in Theorems 1.5 and 1.6. o 

The topology that x0 induces on X will be denoted by the 8- topology. Since X 8 

separates points on X (apply Theorem 1.5 with F = {O} !), this topology makes X into a 
locally convex topological vector space. In referring to this topology we will use notions like 
8-closed, 8- compact, etc. 

Corollary 1.8. Let G C X be convex and invariant under T(t), Vt 2: 0. Then G is closed 
if and only if it is 8-closed. 

Proof: 
Immediate from Theorem 1.6. D 

Bounded sequences of continuous functions in C[O, 1) that converge pointwise to some 
continuous function admit convex combinations that converge uniformly [7, Thm 3.13). We 
will apply Corollary 1.8 to deduce the analogon for almost everywhere pointwise convergent 
sequences of functions. 

Theorem 1.9. Let (xn) be a sequence that converges to some x EX in the 8-topology. 
Then there are numbers O'.in 2: 0 and tin 2: 0 such that 

00 

Yi = L O'.inT(tin)Xn-+ X strongly, 
n=l 

and for each i, I:n O'.in = 1 and only finitely many O'.in are nonzero. 

Proof: 
Let H1 be the set {T(t)xn: n E JN, t 2: O}. Let H be the convex hull of Hi. Then both H 

and its closure are convex and invariant under all T(t),1 and by Corollary 1.8 its norm-closure 
and its 8-closure are the same. Now x belongs to the 8-closure by assumption, and it follows 
from metric space theory that there is some sequence (y;) C H norm-converging to x. D 

Define on Co[O, l] = {f E C[O, l]: f(l) = O} the Co-semigroup T(t) ofleft-translations by 

T(t)f(x) = { f(x + t), 
0, 

x:Sl-t; 
elsewhere. 

Corollary 1.10 . Let Un) C C0 [0, l] be a bounded sequence of functions, converging 
almost everywhere (with respect to the Lebesgue measure) to some f E C0 [0, l]. Then there 
is a sequence of convex combinations of left-translates off n that converges uniformly to f. 

Proof: 
The semigroup adjoint space XG is L1 [O, l]. By Lebesgue's dominated convergence theo

rem, a.e. pointwise convergence implies 8-convergence, and the result follows from Theorem 
1.9. D 
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2. 8-REFLEXIVITY 

The ideas of section 1 will now be applied to study 8-reflexivity. We will give a new 
proof to the theorem that X is 8-reflexive iff R(>.,A) is weakly compact [4]. From now on let 
B (B0*) denote the closed unit ball of X (X0*). 

It is well-known [5] that X is 8-reflexive iff R(>.,A) is a(X,X0)-compact. From this the 
following lemma follows easily. 

Lemma 2.1 . Let F C X be a dosed subspace, invariant under T(t), "i/t > 0. If X is 
8-reflexive, then F is 8-reflexive too. 

Proof: 
By assumption the image R(>.,A)B of the unit ball B of X is relatively 8-compact and 

so is (R(.A,A)B) n F, since Fis 8-dosed by Theorem 1.5. By Lemma 1.4, R(>.,A)(B n F) c 
(R(>.,A)B) n F and so R(>.,A)(B n F) is relatively 8-compact. Since the topology induced by 
p0 on Fis weaker than the one induced by xe on F, R(>.,A)(B n F) is relatively compact 
in the F0-topology of F. D 

Lemma 2.2 . If xe is separable, then X is separable. 

Proof: 
Let B0 be the unit ball of xe and let (x~) c B 8 be a countable dense set. Choose 

(xn) C X,llxnJJ = 1 such that I< x~,xn > J > t· Let F be the closed subspace spanned 
by the set {T(t)xn: n E IN,t ~ 0}. Fis separable and invariant under T(t),Vt ~ 0. Suppose 
there is some y rJ. F. By Theorem 1.5, there is an element x0 E B0 that annihilates F and is 
nonzero at y. But then 

1 
2 

< < I 0 0 I < X - Xn ,Xn > + I < x0 ,Xn > I 

=l<x0-x~,xn>I < JJx0-x~ll, 

a contradiction to the density of ( x~) in B0. This shows F = X and hence X is separable. 
D 

Theorem 2.3 
X0*. 

Proof: 

If X is 8-reflexive, then B is relatively weak* -sequentially compact in 

Let ( Xn) C B be a countable set. We have to show that there is an element x0* E X0* 
and a subsequence (xn,) such that for i-+ oo, 

< 0 > <xe*,xG> X ,Xn; -+ 

Let Y be the closed linear span of {T(t)xn : n E IN, t ~ O}. Y is separable and invariant 
under T(t), "i/t ~ 0. By Lemma 2.1, y00 = Y is separable and hence ye is separable, by 
Lemma 2.2. Let H = (y;;;_) be a countable dense set in Y. Since (xn) is bounded, by a 
diagonalization argument we find a subsequence ( xnJ such that < y;;;_, Xn, > converges for all 
m. By considering the Xn, as elements of X0* it is seen from the Banach-Steinhaus theorem 
that there is a y0* E Y0* such that 

< 0* 0 > Y ,Ym "i/y~ EH. 
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From the denseness of (y~) in H it follows that 

< 0 > < 0* 0 > y ,xn; --+ y ,y 

Now define a functional x0* on x0 by 

< 0* 0 > x ,x < 0* 01 > y ,x y ' 

x0 IY denoting the restriction of x0 to Y. Then x0* is linear and continuous: If x~ --+ x0 in 
X 8 , then also x~IY --+ x8 iy in Y8 and hence 

< 0* 01 > y ,x y 

So x0* E X0*. Since each Xn; E Y, we also have 

0 < X ,Xn; > 01 <x y,Xn; > < 0* 01 > y ,x y 

D -

< .0* 0 > x ,x . 

Vx 8 E X 8 . 

Before turning to the characterization of 8-reflexivity, we note that from Theorem 2.3 
two natural questions arise: 

1. Is B0* itself weak*-sequentially compact? 
2. Is B0* the weak* -sequential closure of B in X0*? 

The next theorem supplies a (partial) answer. 

Theorem 2.4 . Suppose X is separable and 8-reflexive. Then B 8 * is weak*-sequentially 
compact. Moreover, B0* is the weak*-sequential closure of Bin X0*. 

Proof: 
x00 = X is separable and so is x0 by Lemma 2.2. Hence BG* is metrizable, by a well

known metrizability theorem [7]. Since B0* is also weak*-compact by the Banach-Alaoglu 
theorem, it follows that B0* is weak"'-sequentially compact. Since B C B0* is weak*-dense 
(this is proved in much the same way as the weak*-denseness of the inclusion B C B**), the 
second statement is just a simple consequence of metric space theory. D 

If X is separable, the proof of Theorem 2.3 is much simpler. Indeed, we now just have to 
appeal to the first part of Theorem 2.4. 

Theorem 2.5. X is 8-reflexive if and only if R(>.,A) is weakly compact. 

Proof: 
If R(>.,A) is weakly compact, then it certainly is a(X,X0)-compact, and therefore X 

is 8-reflexive. Conversely, if X is 8-reflexive, then R(>.,A)B is relatively weakly sequentially 
compact. To see this, let (xn) be a countable subset in R(>.,A)B. Write Xn = R(>.,A)yn, Yn E 
B. By Theorem 2.3 there is a y8 * E X 8 "' and a subsequence (YnJ of (Yn) such that 

0 < x , Yn; > --+ < 0* 0 > y ,x 

Applying this to elements R(>.,A*)x* E D(A*) c xe we see that 

< x*,R(A,A)xn, > --+ < R(>.,A8 *)y8 *,x* > Vx* EX*. 

But R(.-\,A8 *)y8 * E D(AG*) C x00 = X. This proves our claim. By the Eberlein-Shmulyan 
theorem, R(.X,A)B is relatively weakly compact, i.e., R(.-\,A) is weakly compact. D 
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Note that weak limits of subsequences in R(>.,A)B are found to lie in D(A8 *). 

It is tempting to conjecture that X is 0-reflexive iff B is (relatively) (sequentially) 0-
compact. We will show that only the ' if '-part is true. In fact we have the following 

Example 2.6 . 

Let X and T(t) be as in Corollary 1.10. It is well-known that x0 = L1 [0,l] and X is 
0-reflexive with respect to T(t) [2]. Let fn be the function 

{
l, xs!; 

fn(x) = I+ 1- nx, t S X S t + ~; 
0, else. 

By Lebesgue's dominated convergence theorem, each subsequence Jn; -+ X[o,~] in the 0-
topology of X. But X[o,1] does not belong to X (however, it does belong to L00 [0, l] = X 8 *!). 
Thus 0-reflexivity does ::!not imply relative sequential 0-compactness of B. o 

Theorem 2.1 . If B is relatively sequentially 0-compact, then X is 0-reflexive. 

Proof: 
Let R(>.,A)(xn) C R(>.,A)B be a sequence. By assumption there is a subsequence (xn;) 

of (xn) and an element x0 EX such that 

0 <x ,Xn;>-+ <xG,xo> 

In particular this is true for elements R(>.,A*)x* E D(A*). Thus 

< x*, R( >.,A)xn, > -+ < x*, R( >.,A)xo > Vx* E X*. 

This shows that R(>.,A)B is relatively weakly sequentially compact, and therefore R(>.,A) is 
weakly compact by the Eberlein-Shmulian theorem. 0 

The hypothesis of Theorem 2. 7 can be weakened to relative 0-compactness of B, as is 
seen from the following theorem: 

Theorem 2.8 . The implications i =? ii=? iii hold: 
i.B is relatively 0-compact 
ii. Every countable set in B has a 0-limit point in X 
iii.B is relatively sequentially 0-compact. 

Proof: 
i =? ii: Trivial. ii =? iii: Using our semigroup versions of the Hahn-Banach theorems, 

the proof of the corresponding theorem for weak compactness, as e.g. given in Dunford and 
Schwartz [3], can be carried over almost word for word. 0 

Acknowledgements - I would like to thank Odo Diekmann, who read the manuscript with 
extreme care and suggested many improvements, and Hans Heesterbeek and Henk Heijmans 
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