
Clocks, Trees and Stars

in Process Theory

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam,

op gezag van de Rector Magnificus

prof. dr. P.W.M. de Meijer

ten overstaan van een door het college van dekanen

ingestelde commissie in het openbaar te verdedigen

in de Aula der Universiteit

(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),

op donderdag 1 december 1994 te 9.00 uur

door

Willem Jan Fokkink

geboren te Oegstgeest

1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301637693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1e Promotor: prof. dr. J.A. Bergstra
2e Promotor: prof. dr. J.C.M. Baeten
Faculteit: Wiskunde en Informatica

The work in this thesis has been carried out at the CWI in Amsterdam, in the
context of:

• ESPRIT basic research action no. 3006, Theories of Concurrency: unification
and extension (CONCUR),

• RACE project no. 1046, Specification and Programming Environment for
Communication Software (SPECS),

• RACE project no. 2076, Broadband Object-Oriented Service Technology: a
tools environment for advanced telecommunication services (BOOST).

Printed by CopyPrint 2000, Enschede

Copyright c© 1994 by Wan Fokkink

CWI, P.O. Box 94079, 1090 GB Amsterdam, wan@cwi.nl

ISBN: 90-74795-11-0

Contents

1 Preface 1

2 A Complete Equational Axiomatization for Prefix Iteration 7
2.1 Introduction . 7
2.2 Minimal Process Algebra with Iteration 8
2.3 A Term Rewriting System . 9

2.3.1 Proper iteration . 10
2.3.2 The TRS for MPA⊕δ . 10

2.4 Normal Forms Decide Bisimilarity . 11

3 Basic Process Algebra with Iteration: Completeness of its Equational Axioms 15
3.1 Introduction . 15
3.2 BPA with Binary Kleene Star . 16
3.3 A Conditional Term Rewriting System 18

3.3.1 Turning round two rules for BPA 18
3.3.2 Proper iteration . 19
3.3.3 One rule for axiom PI2 . 20
3.3.4 Four rules for axiom PI1 . 20
3.3.5 Two conditional rules for axiom PI3 21
3.3.6 The entire TRS . 22
3.3.7 Termination . 23

3.4 Normal Forms Decide Bisimilarity . 24
3.4.1 An ordering on process terms 25
3.4.2 Some lemmas . 26
3.4.3 The main theorem . 27

4 The Tyft/Tyxt Format Reduces to Tree Rules 33
4.1 Introduction . 33
4.2 Preliminaries . 35

4.2.1 The signature . 35
4.2.2 Transition system specifications 35
4.2.3 Strong bisimulation . 36
4.2.4 The tyft/tyxt format . 36

4.3 Unification . 38

i

ii Contents

4.4 Tyft/Tyxt Reduces to Tree . 39
4.4.1 Tyft/tyxt reduces to tyft . 40
4.4.2 Tyft reduces to xyft . 40
4.4.3 Xyft reduces to tree . 43

4.5 Extensions to Other Formats . 44
4.5.1 The ntyft/ntyxt format . 44
4.5.2 The panth format . 45
4.5.3 Panth does not reduce to negative tree 45

5 Idempotent Most General Unifiers for Infinite Sets 49
5.1 Introduction . 49
5.2 Preliminaries . 50
5.3 The Main Theorem . 50

6 An Elimination Theorem for Regular Behaviours with Integration 55
6.1 Introduction . 55
6.2 The Syntax and Semantics . 56

6.2.1 Bounds and conditions . 56
6.2.2 Process terms . 57
6.2.3 Free variables and substitutions 58
6.2.4 Operational semantics . 58
6.2.5 Bisimulation . 59

6.3 An Elimination Theorem . 59
6.3.1 Regular processes . 59
6.3.2 A counter-example . 61
6.3.3 Strongly regular processes . 61
6.3.4 Two counter-examples . 62
6.3.5 Orderings on bounds . 63
6.3.6 The main theorem . 65
6.3.7 An example . 68

6.4 Timed Automata . 68

7 An Effective Axiomatization for Real Time ACP 71
7.1 Introduction . 71
7.2 The Syntax and Semantics . 72

7.2.1 Bounds and conditions . 72
7.2.2 Process terms . 73
7.2.3 Free variables and substitutions 74
7.2.4 Operational semantics . 74
7.2.5 Bisimulation . 75
7.2.6 Axioms for bounds and conditions 76
7.2.7 Axioms for process terms . 77
7.2.8 Basic terms . 78

7.3 Unique Normal Forms . 79

Contents iii

7.3.1 Some basic equations . 80
7.3.2 Reducing conditions to intervals 80
7.3.3 Adapting deadlocks . 81
7.3.4 Removing redundant variables 82
7.3.5 Removing double terms . 82
7.3.6 Construction of normal forms 83
7.3.7 The main theorem . 84
7.3.8 An example . 86

7.4 Parallelism and Synchronization . 87
7.4.1 Operational semantics for ACPρI 88
7.4.2 Axioms for ACPρI . 89

7.5 Related Work . 91
7.5.1 Timed CCS . 91
7.5.2 Timed automata . 92

7.6 Appendix: Three Proofs . 92

8 Complete Axioms for Timed Regular Processes with Silent Steps 97
8.1 Introduction . 97
8.2 Timed Regular Processes . 99

8.2.1 Recursion . 99
8.2.2 Operational semantics . 99
8.2.3 Strong bisimulation . 100
8.2.4 Regular processes . 100
8.2.5 An axiom system . 101
8.2.6 Completeness . 101

8.3 Abstraction . 104
8.3.1 The time shift . 104
8.3.2 Branching bisimulation . 105
8.3.3 One axiom for abstraction . 106
8.3.4 Completeness . 106

iv

Acknowledgements

First of all I want to thank my first promotor Jan Bergstra, omnipresent, full of
energy, never short of an original opinion or a fresh scheme.

Second promotor Jos Baeten was my supervisor in the first year, and arranged
my appointments in three international research projects.

It has been a great pleasure to live in the friendly and stimulating working climate
of the CWI, these last four years. Frits Vaandrager has been an ideal supervisor,
always willing to discuss any topic or to read any draft and provide good comments.
I am very grateful to Henri Korver, Steven Klusener, Doeko Bosscher and David
Griffioen for creating a special AP2 atmosphere, being a unique mixture of small
talk, weird parties and devoted science.

Chris Verhoef played a key role in my getting the job at the CWI, and he posed
me a question which resulted in writing the paper on tree rules. Special thanks also
go to Jos van Wamel, companion in the ORFIS project, who has become such a
good friend, and to ski and skate partner Alban Ponse, whose canteen question on
iteration provided me half a year of research.

Hans Zantema is the co-author of Chapter 3, on the Kleene star. If ever you
have a problem in termination of a term rewriting system, I strongly recommend
that you send it to hansz@cs.ruu.nl. Steven Klusener is the co-author of Chapter
7, on real time process algebra. We have had endless technical debates on this topic,
which, I must confess, were mostly won by him.

I thank the members of the reading committee Jaco de Bakker, Peter van Emde
Boas, Catuscia Palamidessi and Frits Vaandrager, for their careful review of this
thesis, and Paul Klint for his willingness to take part in the opposition.

Finally, I want to thank for various reasons, Praethuys companion Arie van
Deursen, secretary Mieke Bruné, Rob van Glabbeek for his fine comments on the
paper on tree rules, Catuscia Palamidessi who initiated the generalization of the
unification theorem, Jan Friso Groote and Bas van Vlijmen from the NS project,
ex-room-mate Joris Hillebrand, cleaner Mustapha Rouhou for his Ramadan meals,
Joop Fokkink for the enormous joint effort spent on renovating Bankastraat 5 II,
chess-mate Niek Narings who comes back from Spain in order to take part in the
ceremony, and many many others for entertaining conversations near the cappuccino
machine.

1

Preface

Process algebra, or process theory, constitutes an attempt to reason about ‘be-
haviours of systems’ in a mathematical framework. Starting from a syntax, each
syntactic object is supplied with some kind of behaviour, and a semantic equivalence
says which behaviours are to be identified. Three well-known semantic equivalences
are trace equivalence, strong bisimulation and branching bisimulation. Process alge-
bra expresses such equivalences in axioms, or equational laws. We require that a set
of axioms is sound (i.e. if two behaviours can be equated, then they are semantically
equivalent), and we desire that it is complete (i.e. if two behaviours are semantically
equivalent, then they can be equated).

Process algebra can be applied to prove correctness of system behaviour. It en-
ables to express (un)desirable properties of the behaviour of a system in an abstract
way, and to deduce by mathematical manipulations whether or not the behaviour
satisfies such a property.

Process algebra has links with a surprising number of other fields in theoretical
computer science, such as term rewriting, abstract data types, formal languages,
operational semantics, dynamic logic and modal logic. This thesis shows clear signs
of such connections: Chapters 2 and 3 consider an operator from formal languages,
and make heavy use of term rewriting, Chapter 4 deals with a format in operational
semantics, and Chapter 5 generalizes a folk result from logic programming to infinite
sets.

The diversity of topics in this thesis is caused by my main scientific interest,
which is trying to solve open questions. This characteristic has the virtue that the
problems that are solved in this thesis are in general of a complicated nature, but it
has the drawback that the introductions of the chapters do not excel in providing a
deep motivation for these problems.

The contents of this thesis can be divided into three distinct parts, namely clocks,
trees and stars. Actually, the only obvious link between these three parts is that they
are in the realm of process algebra. The title of the thesis reflects the chronological
order in which the papers on these topics have been produced. In the thesis itself
this order has been reversed.

The chapters in this thesis are self-contained, so that they can be read separately.

1

2 1. Preface

In such a set-up, repetition of basic definitions is hard to avoid. Especially the last
three chapters contain quite some overlap in their preliminaries.

Stars

During the early days of computer science, about forty years ago, Kleene introduced
a binary operator x∗y, called iteration or Kleene star. It describes the behaviour of
the program while b do x od ; y, that is, x∗y can choose to execute either x, after
which it evolves into x∗y again, or y, after which it terminates. Two years later,
a unary version x∗ of iteration was proposed, which has been studied extensively
ever since. In 1964, Redko proved that there does not exist a complete finite set of
(unconditional) axioms for unary iteration with respect to trace equivalence.

One and a half year ago, Bergstra, Bethke and Ponse proposed eight axioms
for Basic Process Algebra (BPA) extended with the binary Kleene star; the five
standard axioms from BPA together with three extra axioms for iteration.

x · x∗y + y = x∗y
x∗y · z = x∗(yz)

x∗(y · (x+ y)∗z + z) = (x+ y)∗z

They conjectured that these axioms are complete with respect to strong bisimulation
(in the absence of the constants ‘empty process’ and ‘deadlock’). Chapter 3 contains
a proof of this conjecture.

The usual strategy for proving such a completeness result is to produce a Term
Rewriting System (TRS) from the axioms as follows.

1. Turn the axioms s = t into rewrite rules s→ t.

2. Add extra rewrite rules in order to make the TRS weakly confluent, which
means that if there are one-step reductions from a term p to terms p′ and p′′,
then both p′ and p′′ can be reduced to a term q.

3. Check that the resulting TRS is terminating, which means that there are no
infinite reductions.

Then Newman’s Lemma ensures that each term reduces to a unique normal form,
which does not reduce any further. The last step in the completeness proof is to
show that normal forms with equivalent behaviour are syntactically the same.

In this case, the extra rewrite rules that are needed in order to make the TRS
weakly confluent are very complicated. As a consequence, it became a major problem
to prove termination. Luckily, this property could be deduced by means of semantic
labelling, a technique for proving termination which has been developed by Hans
Zantema quite recently. Finally, a hairy proof showed that strongly bisimilar normal
forms are indeed syntactically the same (modulo AC).

With this result at hand, it turned out to be quite easy to come up with a
complete set of axioms for prefix iteration a∗x, where the left argument is restricted

3

to atomic actions. Moreover, the constant deadlock could be added to this syntax
without severe complications. In Chapter 2 it is proved that basic CCS extended
with prefix iteration is axiomatized completely by the four standard axioms for basic
CCS together with two extra axioms for prefix iteration.

a · a∗x+ x = a∗x
a∗(a∗x) = a∗x

The completeness proof for prefix iteration in Chapter 2 is in fact a highly simplified
version of the completeness proof for iteration, and it makes a perfect introduction
before reading Chapter 3.

Trees

In order to describe a semantic equivalence by means of axioms, it is essential that
such an equivalence is a congruence. This means that if pi and qi are equivalent
behaviours for i = 1, ..., n, and if f is a function with n arguments, then f(p1, ..., pn)
and f(q1, ..., qn) are equivalent behaviours. Unfortunately, proofs of such congruence
properties are invariantly long, technical and boring. Therefore, until recently, such
congruence proofs were usually skipped, either with the claim ‘trivial’ or with the
one-liner ‘left to the reader’.

A popular way to supply terms with behaviour is by means of transition rules
à la Plotkin. De Simone was the first to define a format for transition rules which
ensures that behaviour defined by rules in this format is always a congruence for
strong bisimulation. This format was generalized by Groote and Vaandrager to the
so-called tyft/tyxt format. They proved that behaviours generated by well-founded
tyft/tyxt rules are always a congruence for strong bisimulation. They showed that
all the syntactic restrictions of the tyft/tyxt format are essential for this congruence
result, but it was unclear whether the well-foundedness restriction is vital. This
restriction was needed in the proof, but no counter-examples were found to show
that the congruence theorem breaks down without it.

Chapter 4 provides the answer to this open question, namely, it shows that the
well-foundedness restriction can be omitted. This follows from a stronger result,
which says that for each collection of transitions rules in tyft/tyxt format, there is
an equivalent collection of transition rules in the more restrictive tree format. Tree
rules are well-founded, so the congruence theorem of Groote and Vaandrager applies
to this format.

A key lemma in the proof that tyft/tyxt reduces to tree turned out to be a weaker
version of a well-known result in unification theory. This result uses the following
definitions:

1. A substitution σ is idempotent if σσ = σ.

2. A substitution σ is a unifier of a collection E of equations if (s)σ = (t)σ for
all equations s = t in E.

4 1. Preface

3. A unifier Θ of E is called most general if each unifier of E is of the form Θσ
for some substitution σ.

A classical theorem says that if a finite set of equations allows a unifier, then it
allows an idempotent most general unifier. The lemma in Chapter 4 however also
applies to infinite sets of equations. This led to the generalization of this unification
theorem to infinite sets, which is presented in Chapter 5.

Clocks

Each field of science is familiar with the phenomenon fashion. Suddenly, a certain
special topic A becomes a main point of interest, many scientists express their own
views on A, conferences are dedicated to A, journals are flooded by papers on A.
At the time of my appointment at the CWI, time clearly was the fashion in process
algebra. While reasoning about behaviours, time often is a crucial and complicating
factor. Hence, many process algebras were extended with some notion of time.

Jos Baeten and Jan Bergstra defined an extension of the Algebra of Commu-
nicating Processes (ACP) with real time. They introduced the advanced notion of
integration, which allows to express time dependencies, i.e. the behaviour of a pro-
cess may depend on the moment in time when some previous action was executed.
Steven Klusener introduced quite a number of new concepts for this algebra, such
as prefix integration and conditional terms, and he defined an axiomatization for
conditional terms. According to my job description, I started to work in the algebra
ACPρI that was proposed by Steven.

My first feat, which is presented in Chapter 7, was to show that strong bisim-
ulation equivalence for ACPρI is decidable, i.e. for each pair of terms in ACPρI it
can be decided whether or not they are bisimilar. The decision algorithm is based
on Steven’s axiomatization for conditional terms.

In Chapter 6 it is investigated whether the merge ‖ can be eliminated from
regular processes in ACPρI with recursion, which means that for each pair of regular
processes p and q, their merge p‖q is regular too. This natural question leads to a
remarkable result, namely, the answer is ‘no’ for the full algebra of regular processes,
but it is ‘yes’ for a certain subalgebra. That is, for each pair of processes in this
algebra, their merge is bisimilar to a process in this algebra. This subclass is very
specific, because if it is enlarged or restricted in any obvious way, then the elimination
result is lost. The discovered algebra is equal to the class of timed automata of Alur
and Dill, which is a popular extension of automata with time.

Steven defined branching bisimulation in the presence of time. Chapter 8 presents
a complete axiomatization for Basic Process Algebra extended with the constant
‘silent step’, denoted by τ , and deadlock and recursion and time, but without inte-
gration, modulo branching bisimulation. It turns out that it is much easier to deal
with the silent step together with recursion in the presence of time. Namely, the
untimed recursive equation X = τ ·X has infinitely many solutions τ · p, while its
timed variant allows only one solution.

5

Origins of the chapters

Chapter 2. W.J. Fokkink. A complete equational axiomatization for prefix iteration.
Information Processing Letters, 52(6):333–337, 1994.

Elsevier is acknowledged for their permission to print this paper.

Chapter 3. W.J. Fokkink and H. Zantema. Basic process algebra with iteration:
completeness of its equational axioms. The Computer Journal, 37(4):259–267,
1994.

Chapter 4. W.J. Fokkink. The tyft/tyxt format reduces to tree rules. In M. Hagiya
and J.C. Mitchell, editors, Proceedings 2nd International Symposium on The-
oretical Aspects of Computer Software (TACS’94), Sendai, Japan, LNCS 789,
pages 440–453. Springer-Verlag, 1994.

Chapter 5. W.J. Fokkink. Idempotent most general unifiers for infinite sets. Report
CS-R9442, CWI, Amsterdam, 1994.

Chapter 6. W.J. Fokkink. An elimination theorem for regular behaviours with in-
tegration. In E. Best, editor, Proceedings 4th International Conference on
Concurrency Theory (CONCUR’93), Hildesheim, LNCS 715, pages 432–446.
Springer-Verlag, 1993.

Chapter 7. W.J. Fokkink and A.S. Klusener. An effective axiomatization for real
time ACP. To appear in Information and Computation.

Chapter 8. W.J. Fokkink. Regular processes with rational time and silent steps.
Report CS-R9231, CWI, Amsterdam, 1992.

6 1. Preface

2

A Complete Equational
Axiomatization for Prefix Iteration

Wan Fokkink

Prefix iteration a∗x is added to Minimal Process Algebra (MPAδ), which is
a subalgebra of BPAδ equivalent to Milner’s basic CCS. We present a finite
equational axiomatization for MPA∗δ , and prove that this axiomatization is
complete with respect to strong bisimulation equivalence. To obtain this
result, we set up a term rewriting system, based on the axioms, and show
that bisimilar terms have the same normal form.

2.1 Introduction

Kleene [5] defined a binary operator ∗ in the context of finite automata, called
Kleene star or iteration. Intuitively, the expression p∗q yields a solution for the
recursive equation X = p ·X + q. In other words, p∗q can choose to execute either
p, after which it evolves into p∗q again, or q, after which it terminates.

Milner [9] studied the unary version p∗ of the Kleene star in the setting of (strong)
bisimulation equivalence, and raised the question whether there exists a complete
axiomatization for it. Bergstra, Bethke and Ponse [1] incorporated the binary Kleene
star in Basic Process Algebra (BPA) [2], and they suggested three equational axioms
for iteration. In Chapter 3 it is proved that these three axioms, together with the
five standard axioms for BPA, are a complete axiomatization for BPA∗ modulo
bisimulation.

In this chapter, we add the deadlock δ to the syntax. Sewell [12] proved that
there does not exist a complete finite equational axiomatization for BPA∗δ . In order
to prove a completeness result, nevertheless, we restrict the binary sequential com-
position x · y to its unary prefix version a · x, to obtain Minimal Process Algebra
MPAδ, equivalent to basic CCS [8]. Likewise, we add prefix iteration a∗x to the
syntax, resulting in the algebra MPA∗δ . This algebra is less expressive than BPA∗δ .
For instance, it cannot express a simple process such as (a + b)∗c. On the other

7

8 A Complete Equational Axiomatization for Prefix Iteration

x
a−→ x′

x+ y
a−→ x′

a←− y + x

a · x a−→ x

a∗x
a−→ a∗x

x
b−→ x′

a∗x
b−→ x′

Table 2.1: Action rules for MPA∗δ

hand, it contains processes which can be expressed neither in BPA∗ nor in BPAδ,
such as a∗δ.

We propose two simple equational axioms for iteration, which are actually in-
stantiations of the first and the third axiom for the binary Kleene star. We prove
that these two axioms, together with the four standard axioms of MPAδ, are a com-
plete axiomatization for MPA∗δ with respect to bisimulation. The proof consists of
producing a term rewriting system from the axioms, and showing that bisimilar nor-
mal forms are equal modulo AC. This method yields an algorithm to decide whether
or not two terms are bisimilar.

Acknowledgements. Jan Bergstra initiated this research, and Jos van Wamel
provided helpful comments.

2.2 Minimal Process Algebra with Iteration

We assume an alphabet A of atomic actions. The signature of the algebra MPA∗δ(A),
or MPA∗δ for short, consists of a constant δ, which represents deadlock, together with
the binary alternative composition x+y, and the unary prefix sequential composition
a ·x and prefix iteration a∗x, for a ∈ A. Table 2.1 presents an operational semantics
for MPA∗δ in Plotkin style [11]. Prefix iteration a∗x can choose to execute either a,
after which it evolves into a∗x again, or x.

Our model for MPA∗δ consists of all the closed terms that can be constructed from
deadlock and the three operators. That is, the BNF grammar for the collection of
process terms is as follows, where a ∈ A:

p ::= δ | p+ p | a · p | a∗p.

As binding convention, ∗ binds stronger than ·, which in turn binds stronger than
+.

Process terms are considered modulo (strong) bisimulation equivalence [10]. In-
tuitively, two process terms are bisimilar if they have the same branching structure.

2.3. A Term Rewriting System 9

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A6 x+ δ = x

MI1 a · a∗x+ x = a∗x
MI3 a∗(a∗x) = a∗x

Table 2.2: Axioms for MPA∗δ

Definition 2.1 Two processes p0 and q0 are called bisimilar, denoted by p0 ↔ q0,
if there exists a symmetric relation B on processes such that p0Bq0, and if p

a−→ p′

and pBq, then there is a transition q
a−→ q′ with p′Bq′.

The action rules in Table 2.1 are in the tyft/tyxt format of Groote and Vaandrager
[4]. Hence, bisimulation equivalence is a congruence with respect to all the operators,
i.e. if p ↔ p′ and q ↔ q′, then p + q ↔ p′ + q′ and a · p ↔ a · p′ and a∗p ↔ a∗p′.
See [4] for the definition of the tyft/tyxt format, and for a proof of this congruence
result. (This proof uses the extra assumption that the rules are well-founded. In
Chapter 4 it is shown that this requirement can be dropped.)

Furthermore, the three rules for MPAδ are pure, and the two rules for iteration
incorporate the Kleene star in the left-hand side of their conclusions. Hence, MPA∗δ
is an operationally conservative extension of MPAδ, i.e. the action rules for iteration
do not influence the transition systems of MPAδ terms. See [4] for the definitions,
and for a proof of this conservativity result.

Table 2.2 contains an axiom system for MPA∗δ , which consists of the four axioms
from MPAδ together with two axioms for iteration. In the sequel, p = q will mean
that the equality can be derived from these axioms. The axiomatization for MPA∗δ
is sound with respect to bisimulation equivalence, i.e. if p = q then p ↔ q. Since
bisimulation is a congruence, this can be verified by checking soundness for each
axiom separately, which is left to the reader. In this chapter it is proved that the
axiomatization is complete with respect to bisimulation, i.e. if p ↔ q then p = q.

2.3 A Term Rewriting System

Our aim is to prove that the axioms in Table 2.2 are complete for our model of
MPA∗δ modulo bisimulation. A standard scheme for such a proof is to set up a Term
Rewriting System (TRS) from the axioms as follows.

1. Turn the axioms into rewrite rules.

2. Apply the Knuth-Bendix completion algorithm [7], which yields extra rewrite

10 A Complete Equational Axiomatization for Prefix Iteration

rules to make the TRS weakly confluent. That is, if a term p has one-step
reductions p′ and p′′, then both terms can be reduced to a term q.

3. Check that the resulting TRS is terminating, which means that there are no
infinite reductions.

If a TRS is weakly confluent and terminating, then Newman’s Lemma says that it
reduces each term to a unique normal form, which does not reduce any further. The
construction of the TRS ensures that all its rules can be deduced from the axioms.
The final step in the completeness proof is to show that bisimilar normal forms are
syntactically equal.

See [3, 6] for an overview of the field of term rewriting.

2.3.1 Proper iteration

We want to define a TRS for process terms that reduces bisimilar terms to the same
normal form. However, it is not so easy to construct such a TRS for MPA∗δ . Namely,
the terms a∗x+ x and a∗x are bisimilar, so they should reduce to the same normal
form. A rule a∗x −→ a∗x+ x does not terminate, so we need the rule

a∗x+ x −→ a∗x.

This rule is not yet sufficient, because it does not deal with the case a∗(b∗x) +
x ↔ a∗(b∗x). Hence, for this case we must introduce an extra rewrite rule. But this
rule does not cover the case a∗(b∗(c∗x))+x↔ a∗(b∗(c∗x)), etc. So in order to obtain
unique normal forms modulo bisimulation for MPA∗δ , apparently we need an infinite
number of rewrite rules.

To avoid this complication, we replace iteration by an equivalent operator a⊕

x, called proper prefix iteration, which represents the behaviour of a · a∗x.1 The
operational semantics and the axiomatization for proper iteration are given in Table
2.3. They are obtained from the action rules and axioms for MPA∗δ , using the
equivalences a∗x ↔ a⊕x+ x and a⊕x ↔ a · a∗x. Note that

MPA∗δ + (a⊕x = a · a∗x) ` PMI1, 3,
MPA⊕δ + (a∗x = a⊕x+ x) ` MI1, 3.

So we find that the axiomatization in Table 2.3 is complete for MPA⊕δ if and only if
the axiomatization in Table 2.2 is complete for MPA∗δ .

2.3.2 The TRS for MPA⊕
δ

We want to find a TRS for MPA⊕δ that reduces bisimilar terms to the same normal
form. In particular, the TRS should be terminating. Axioms A1,2 obstruct this
property, so from now on process terms are considered modulo AC (that is, modulo

1The standard notation for this construct would be a+x, but we want to avoid ambiguous use
of the +.

2.4. Normal Forms Decide Bisimilarity 11

a⊕x
a−→ a⊕x+ x

PMI1 a · (a⊕x+ x) = a⊕x
PMI3 a⊕(a⊕x+ x) = a⊕x

Table 2.3: Semantics and axioms for proper iteration

1. x+ x −→ x
2. x+ δ −→ x

3. a · (a⊕x+ x) −→ a⊕x
4. a⊕(a⊕x+ x) −→ a⊕x

5. a · (a⊕δ) −→ a⊕δ
6. a⊕(a⊕δ) −→ a⊕δ

Table 2.4: Rewrite rules for MPA⊕δ

associativity and commutativity of the +). This equivalence is denoted by p =AC q,
and we say that p and q are of the same form.

Table 2.4 contains a TRS for MPA⊕δ , which is obtained in two steps. First, axioms
A3,6 and MI1,3 are turned into rewrite rules, aiming from left to right. Next, the
Knuth-Bendix completion algorithm is applied, which yields Rules 5 and 6. The
resulting TRS in Table 2.4 is weakly confluent, and all its rules can be deduced from
the axioms for MPA⊕δ . Furthermore, in each rule the term at the left-hand side
contains more symbols than the term at the right-hand side, so clearly the TRS is
terminating. Thus, Newman’s Lemma ensures that the TRS reduces each term to
a unique normal form, modulo AC.

2.4 Normal Forms Decide Bisimilarity

We have developed a TRS for MPA⊕δ that reduces terms to a unique normal form.
Its rules can all be deduced from the axioms of MPA⊕δ . Therefore, all the rules are
sound with respect to bisimulation equivalence, so each term is bisimilar with its
normal form. Hence, in order to determine completeness of the axiomatization for
MPA⊕δ with respect to bisimulation, it is sufficient to prove that if two normal forms
are bisimilar, then they are equal modulo AC.

The proof of the completeness theorem is in fact a simplified version of the

12 A Complete Equational Axiomatization for Prefix Iteration

completeness proof in Chapter 3, with some minor extra cases to deal with deadlock.
We apply induction on the following weight function on terms:

g(δ) = 0
g(p+ q) = max{g(p), g(q)}
g(a · p) = g(p) + 1
g(a⊕p) = g(p) + 1.

Clearly, each process term p is a sum of terms of the form δ and a · q and a⊕q,
which are called the summands of p.

Theorem 2.2 If two normal forms p and q are bisimilar, then p =AC q.

Proof. We apply induction on g(p) + g(q). If g(p) + g(q) = 0, then both p and q
must be sums of δ. Since p and q are normal forms, Rule 1 ensures that both p and
q are of the form δ, so p =AC q.

Now assume that we have already proved the theorem for bisimilar normal forms
p and q with g(p) + g(q) < n, for some n ≥ 1. We prove it for g(p) + g(q) = n,
by showing that the separate bisimilar summands of p and q are of the same form.
Since g(p)+g(q) > 0, clearly p and q are not bisimilar to δ. Then Rule 2 ensures that
they do not contain any summands δ. This leaves the following three possibilities.

1. First, suppose that summands a · r of p and a · s of q are bisimilar, so r ↔ s.
Since g(r) + g(s) < n, the induction hypothesis yields r =AC s.

2. Next, let summands a · r and a⊕s be bisimilar, so r ↔ a⊕s + s. We deduce a
contradiction.

If s 6=AC δ, then a
⊕s+ s is a normal form, because we cannot apply Rule 1 or

2 to a⊕s+ s, and a⊕s and s are normal forms. Moreover, g(r)+g(a⊕s+ s) < n,
so the induction hypothesis yields r =AC a⊕s + s. Then we can apply Rule 3
to a · r =AC a · (a⊕s+ s), so a · r is not a normal form. Contradiction.

If s =AC δ, then r↔ a⊕δ, and g(r)+g(a⊕δ) < n, so induction yields r =AC a
⊕δ.

Then we can apply Rule 5 to a · r =AC a · (a⊕δ). Again, contradiction.

3. Finally, assume that summands a⊕r and a⊕s are bisimilar, so a⊕r+r↔ a⊕s+s.
We prove r =AC s.

If r and s do not contain summands that are bisimilar with a ⊕ s and a⊕ r
respectively, then a⊕r + r ↔ a⊕s + s implies r ↔ s. Since g(r) + g(s) < n,
induction yields r =AC s, and we are done.

So suppose that either r contains a summand bisimilar to a⊕s, or s contains a
summand bisimilar to a⊕r. We deduce a contradiction.

By symmetry, it is sufficient to deduce a contradiction for the first case only,
where r contains a summand bisimilar to a ⊕ s. Induction yields that this
summand of r is of the form a⊕s. According to Rule 1, r can contain only one
subterm of the form a⊕s. Hence, either r =AC a⊕s, or r =AC a⊕s + r′ where

References 13

the summands of r′ are not bisimilar to a⊕s. Then a⊕r + r ↔ a⊕s+ s implies
that the summands of r′ are bisimilar to summands of s.

The term s does not contain any summands bisimilar to a⊕ s or a⊕ r. For
else, induction would yield that this summand is of the form a ⊕ s or a ⊕ r
respectively, which would imply that s contains more symbols than s or r
respectively. However, clearly s cannot contain more symbols than itself, and
since r has a summand a⊕s, it follows that r contains more symbols than s.

Recall that r is either of the form a⊕s+ r′ or a⊕s, and if r′ occurs, then all its
summands are bisimilar to summands of s. Conversely, since a⊕r+r↔ a⊕s+s,
and since the summands of s are not bisimilar to a⊕s or a⊕r, it follows that
they must all be bisimilar to summands of r′, or to δ. Hence, either s ↔ r′ if
r′ occurs, or s ↔ δ otherwise. We distinguish the two possibilities.

- r =AC a⊕s + r′ and s ↔ r′. Then induction implies s =AC r′, so we can
apply Rule 4 to a⊕r =AC a

⊕(a⊕s+ s). Contradiction.

- r =AC a
⊕s and s ↔ δ. Then induction implies s =AC δ, so we can apply

Rule 6 to a⊕r =AC a
⊕(a⊕δ). Again, contradiction.

Hence, we may conclude that p and q contain exactly the same summands. Rule 1
ensures that both p and q contain each summand only once, so p =AC q. 2

Corollary 2.3 The axiomatization A1,2,3,6 + MI1,3 for MPA∗δ is complete with
respect to bisimulation equivalence.

Proof. If two terms in MPA⊕δ are bisimilar, then according to Theorem 2.2 their
normal forms are of the same form. Since all the rewrite rules can be deduced from
A1,2,3,6 + PMI1,3, it follows that this is a complete axiom system for MPA⊕δ . Then
A1,2,3,6 + MI1,3 is a complete axiomatization for MPA∗δ . 2

References

[1] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and
nesting. The Computer Journal, 37(4):243–258, 1994.

[2] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60(1/3):109–137, 1984.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B, Formal Methods
and Semantics, pages 243–320. Elsevier, 1990.

[4] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. Information and Computation, 100(2):202–260, 1992.

14 A Complete Equational Axiomatization for Prefix Iteration

[5] S.C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, pages 3–41. Princeton University Press, 1956.

[6] J.W. Klop. Term rewriting systems. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, Volume I, Back-
ground: Computational Structures, pages 1–116. Oxford University Press, 1992.

[7] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970. Reprinted in Automation of Reasoning 2, pages 342–376.
Springer-Verlag, 1983.

[8] R. Milner. A Calculus of Communicating Systems. LNCS 92. Springer-Verlag,
1980.

[9] R. Milner. A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences, 28:439–466, 1984.

[10] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5th GI Conference, LNCS 104, pages 167–183. Springer-Verlag, 1981.

[11] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University, 1981.

[12] P. Sewell. Bisimulation is not finitely (first order) equationally axiomatisable.
In Proceedings 9th IEEE Symposium on Logic in Computer Science (LICS’94),
Paris, pages 62–70. IEEE Computer Society Press, 1994.

3

Basic Process Algebra with Iteration:
Completeness of its Equational Axioms

Wan Fokkink & Hans Zantema

Bergstra, Bethke and Ponse proposed an axiomatization for Basic Process
Algebra extended with (binary) iteration. In this chapter, we prove that this
axiomatization is complete with respect to strong bisimulation equivalence.
To obtain this result, we set up a term rewriting system, based on the axioms,
and prove that this term rewriting system is terminating, and that bisimilar
normal forms are equal modulo AC.

3.1 Introduction

Kleene [7] defined a binary operator x∗y in the context of finite automata, which
denotes the iterate of x and y. Intuitively, the expression x∗y can choose to execute
either x, after which it evolves into x∗y again, or y, after which it terminates.
Kleene formulated some algebraic laws for this operator, notably (in our notation)
x∗y = x · x∗y + y. Copi, Elgot and Wright [6] proposed a simplification of Kleene’s
setting, e.g. they defined a unary version of the Kleene star in the presence of an
empty word. The unary Kleene star has been studied extensively ever since.

Redko [12] (see also [5]) proved for the unary Kleene star that a complete finite
axiomatization for language equality does not exist. Salomaa [13] presented a com-
plete finite axiomatization which incorporates one conditional axiom, namely (in
our notation) x = y ·x+z implies x = y∗z if y does not incorporate the empty word.
According to Kozen [8] this last property is not algebraic, in the sense that it is
not preserved under substitution of terms for actions. He proposed two alternative
conditional axioms which do not have this drawback. These axioms however are not
sound in the setting of (strong) bisimulation equivalence.1

1For example, one of Kozen’s axioms is x + y · x + z = x =⇒ x + y∗z = x, which induces
(a+ b)∗c+ a∗c = (a+ b)∗c.

15

16 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

Milner [9] studied the Kleene star in the setting of bisimulation equivalence, and
raised the question whether there exists a complete axiomatization for it. Bergstra,
Bethke and Ponse [3] incorporated the binary Kleene star in Basic Process Algebra
(BPA). They suggested three axioms BKS1-3 for BPA∗, where axiom BKS1 is the
defining axiom from Kleene, while their most advanced axiom BKS3 originates from
Troeger [15]:

x∗(y · (x+ y)∗z + z) = (x+ y)∗z

In this chapter we prove that BKS1-3, together with the five standard axioms
for BPA, form a complete axiomatization for BPA∗ with respect to bisimulation
equivalence. For this purpose, we will replace iteration by proper iteration x⊕ y.
This construct executes x at least one time, or in other words, x⊕y is equivalent
to x · x∗y. The axioms BKS1-3 are adapted to this new setting, and we will define
a term rewriting system based on the axioms of BPA⊕. Deducing termination of
this TRS is a key step in the completeness proof; we will apply the strategy of
semantic labelling from one of the authors [17]. Finally, we will show that bisimilar
normal forms are syntactically equal modulo AC. These results together imply that
the axiomatization for BPA∗ is complete with respect to bisimulation equivalence.
Moreover, the applied method yields an efficient algorithm to decide whether or not
two terms are bisimilar.

Sewell [14] proved that if the deadlock δ is added to BPA∗, then a complete finite
equational axiomatization does not exist. In Chapter 2 it is shown that if sequential
composition and iteration are replaced by their prefix counterparts, then six simple
equational axioms are complete for this algebra.

Acknowledgements. Jan Bergstra is thanked for his enthusiastic support, and
Jos van Wamel for many stimulating discussions.

3.2 BPA with Binary Kleene Star

This section introduces the basic notions. We assume an alphabet A of atomic ac-
tions, together with three binary operators: alternative composition +, sequential
composition ·, and binary Kleene star ∗. Table 3.1 presents an operational seman-
tics for BPA∗ in Plotkin style [11]. The special symbol

√
represents (successful)

termination.
Our model for BPA∗ consists of all the closed terms that can be constructed from

the atomic actions and the three binary operators. That is, the BNF grammar for
the collection of process terms is as follows, where a ∈ A:

p ::= a | p+ p | p · p | p∗p.
In the sequel the operator · will often be omitted, so pq denotes p · q. As binding
convention, ∗ binds stronger than ·, which in turn binds stronger than +.

Process terms are considered modulo (strong) bisimulation equivalence [10]. In-
tuitively, two process terms are bisimilar if they have the same branching structure.

3.2. BPA with Binary Kleene Star 17

a
a−→ √

x
a−→ √

x+ y
a−→ √ a←− y + x

x
a−→ x′

x+ y
a−→ x′

a←− y + x

x
a−→ √

x · y a−→ y

x
a−→ x′

x · y a−→ x′ · y

x
a−→ √

x∗y
a−→ x∗y

x
a−→ x′

x∗y
a−→ x′ · x∗y

y
a−→ √

x∗y
a−→ √

y
a−→ y′

x∗y
a−→ y′

Table 3.1: Action rules for BPA∗

Definition 3.1 Two processes p0 and q0 are called bisimilar, denoted by p0 ↔ q0,
if there exists a symmetric relation B on processes such that:

- p0Bq0,
- if pBq and p

a−→ p′, then there is a transition q
a−→ q′ such that p′Bq′,

- if pBq and p
a−→ √, then q a−→ √.

The action rules in Table 3.1 are in the path format of Baeten and Verhoef [2].
Hence, bisimulation equivalence is a congruence with respect to all the operators,
which means that if p ↔ p′ and q ↔ q′, then p + q ↔ p′ + q′ and pq ↔ p′q′ and
p∗q ↔ p′ ∗q′. See [2] for the definition of the path format, and for a proof of this
congruence result. (This proof uses the extra assumption that the rules are well-
founded. In Chapter 4 it is shown that this requirement can be dropped.)

Furthermore, the action rules for BPA are pure, and the two rules for iteration
incorporate the Kleene star in the left-hand side of their conclusions. Hence, BPA∗

is an operationally conservative extension of BPA, i.e. the action rules for iteration
do not influence the transition systems of BPA terms. See Verhoef [16] for the
definitions, and for a proof of this conservativity result.

Table 3.2 contains an axiom system for BPA∗. It consists of the standard axioms
A1-5 for BPA, together with three axioms BKS1-3 for iteration. In the sequel, p = q
will mean that the equality can be derived from these axioms.

The axiomatization for BPA∗ is sound with respect to bisimulation equivalence,
i.e. if p = q then p ↔ q. Since bisimulation equivalence is a congruence, this can be
verified by checking soundness for each axiom separately, which is left to the reader.
The purpose of this chapter is to prove that the axiomatization is complete with
respect to bisimulation, i.e. if p ↔ q then p = q.

18 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A4 (x+ y)z = xz + yz
A5 (xy)z = x(yz)

BKS1 x · x∗y + y = x∗y
BKS2 x∗y · z = x∗(yz)
BKS3 x∗(y · (x+ y)∗z + z) = (x+ y)∗z

Table 3.2: Axioms for BPA∗

3.3 A Conditional Term Rewriting System

Our aim is to define a Term Rewriting System (TRS) for process terms in BPA∗ that
reduces each term to a unique normal form, such that if two terms are bisimilar,
then they have the same normal form. However, we shall see that one cannot hope
to find such a TRS for iteration. Therefore, we will replace it by a new, equivalent
operator p⊕q, representing the behaviour of p · p∗q, and we will develop a TRS for
the algebra BPA⊕.

We want our TRS to be terminating, so we cannot add the axioms A1,2 as
rewrite rules. Therefore, process terms are considered modulo AC, that is, modulo
associativity and commutativity of the +.

3.3.1 Turning round two rules for BPA

The axiom A3 yields the expected rewrite rule

x+ x −→ x.

Usually, in BPA, the axiom A4 as a rewrite rule aims from left to right. However,
in BPA∗ we need this rewrite rule in the opposite direction. For example, in order
to reduce the term a · (a+ b)∗c+ b · (a+ b)∗c+ c to the term (a+ b)∗c, we need the
reduction

a · (a+ b)∗c+ b · (a+ b)∗c −→ (a+ b) · (a+ b)∗c.

Hence, we define the rewrite rule for A4 the other way round.

xz+ yz −→ (x+ y)z.

In BPA the axiom A5 aims from left to right too, but since we have reversed
A4, we must do the same for A5, otherwise the TRS would not be confluent. For
example, the term (ab)d+ (ac)d would have two different normal forms:

a(bd) + a(cd) and (ab+ ac)d.

3.3. A Conditional Term Rewriting System 19

So we opt for the rule

x(yz) −→ (xy)z.

3.3.2 Proper iteration

Although we have already defined part of a TRS that should reduce terms that are
bisimilar to the same normal form, we shall see now that such a TRS does not exist
at all.

Since x∗y+ z ↔ x∗y if y+ z ↔ y, such terms should have the same normal form.
Therefore, one would expect a rule

x∗y + z −→ x∗y if y + z −→→ y.

However, this rule does not yield unique normal forms, because we have reversed
the rule for A4. For example, the term a∗(b+ ce)+ ce+ de would have two different
normal forms:

a∗(b+ ce) + de and a∗(b+ ce) + (c+ d)e.

To avoid this complication, we replace iteration by an operator x⊕y, called proper
iteration, which displays the behaviour of x · x∗y.2 The operational semantics and
the axiomatization for proper iteration are given in Tables 3.3 and 3.4. They are
obtained from the action rules and axioms for iteration, using the equivalences
x∗y ↔ x⊕y + y and x⊕y ↔ x · x∗y. Note that

BPA∗ + (x⊕y = x · x∗y) ` PI1-3,
BPA⊕ + (x∗y = x⊕y + y) ` BKS1-3.

So we find that the axiomatization in Table 3.4 is complete for BPA⊕ if and only if
the axiomatization in Table 3.2 is complete for BPA∗.

x
a−→ x′

x⊕y
a−→ x′(x⊕y + y)

x
a−→ √

x⊕y
a−→ x⊕y + y

Table 3.3: Action rules for proper iteration

2The standard notation for this construct would be x+y, but we want to avoid ambiguous use
of the +.

20 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

PI1 x(x⊕y + y) = x⊕y
PI2 (x⊕y)z = x⊕(yz)
PI3 x⊕(y((x+ y)⊕z + z) + z) = x((x+ y)⊕z + z)

Table 3.4: Axioms for proper iteration

3.3.3 One rule for axiom PI2

Now that we have replaced iteration by proper iteration, we can continue to define
rewrite rules for this new operator. We start with the one for axiom PI2. The
question is whether it should rewrite from left to right or vice versa. If it would
rewrite from left to right, it would clash with the rule for A4. For example, then
the term a⊕b · c+ dc would have two different normal forms:

a⊕(bc) + dc and (a⊕b+ d)c.

Hence, PI2 yields the rule

x⊕(yz) −→ (x⊕y)z.

3.3.4 Four rules for axiom PI1

The next rule stems from axiom PI1:

x(x⊕y + y) −→ x⊕y.

This rewrite rule causes serious complications concerning confluence; it turns out
that we need three extra rules to obtain this property.

1. A term x(y⊕z + z) + y(y⊕z + z) has two different reductions:

x(y⊕z + z) + y⊕z and (x+ y)(y⊕z + z).

So for the sake of confluence, one of these two reducts should reduce to the
other. If we would add the rule (x + y)(y⊕z + z) −→ x(y⊕z + z) + y⊕z to
the TRS, then the term (ac+ bc)((bc)⊕d+ d) would have two different normal
forms:

(ac)((bc)⊕d+ d) + (bc)⊕d and ((a+ b)c)((bc)⊕d+ d).

Hence, we opt for the rule

x(y⊕z+ z) + y⊕z −→ (x+ y)(y⊕z+ z).

3.3. A Conditional Term Rewriting System 21

2. A term x(y(y⊕z + z)) has two different reductions:

x(y⊕z) and (xy)(y⊕z + z).

A rule (xy)(y⊕z + z) −→ x(y⊕z) clashes with the rule for A5, because then
the term (a(bc))((bc)⊕d+ d)) would get two different normal forms:

a((bc)⊕d) and ((ab)c)((bc)⊕d+ d)).

Therefore, we define

x(y⊕z) −→ (xy)(y⊕z+ z).

3. Finally, a term x⊕(y(y⊕z + z)) has two different reductions:

x⊕(y⊕z) and (x⊕y)(y⊕z + z).

Since a rule (x⊕y)(y⊕z + z) −→ x⊕(y⊕z) would clash with the rule for PI2, we
opt for

x⊕(y⊕z) −→ (x⊕y)(y⊕z+ z).

3.3.5 Two conditional rules for axiom PI3

The obvious interpretation of axiom PI3 as a rewrite rule,

x⊕(x′((x+ x′)⊕z + z) + z) −→ x((x+ x′)⊕z + z),

obstructs confluence. For if x and x′ are normal forms, while the expression x + x′

is not, then after reducing x + x′ we can no longer apply this rule. Therefore, we
translate PI3 to a conditional rule:

x⊕(x′(y⊕z+ z) + z) −→ x(y⊕z+ z) if x+ x′ −→→ y.

Again, this rule leads to a TRS that is not confluent, because a term x⊕(y(y⊕z+z)+z)
with x+ y −→→ y has two reductions:

x⊕(y⊕z + z) and x(y⊕z + z).

So in order to obtain confluence, we add one last conditional rule to the TRS:

x⊕(y⊕z+ z) −→ x(y⊕z+ z) if x+ y −→→ y.

22 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

1. x+ x −→ x
2. xz + yz −→ (x+ y)z
3. x(yz) −→ (xy)z

4. x⊕(yz) −→ (x⊕y)z

5. x(x⊕y + y) −→ x⊕y
6. x(y⊕z + z) + y⊕z −→ (x+ y)(y⊕z + z)
7. x(y⊕z) −→ (xy)(y⊕z + z)
8. x⊕(y⊕z) −→ (x⊕y)(y⊕z + z)

9. x⊕(x′(y⊕z + z) + z) −→ x(y⊕z + z)
if x+ x′ −→→ y

10. x⊕(y⊕z + z) −→ x(y⊕z + z)
if x+ y −→→ y

Table 3.5: Rewrite rules for BPA⊕

3.3.6 The entire TRS

The entire TRS is given once again in Table 3.5. The rules are to be interpreted
modulo AC. It is easy to see that all rules can be deduced from BPA⊕.

The usual strategy for deducing that each term has a unique normal form, is
to prove that the TRS is both weakly confluent, (i.e. if a term p has reductions
p′ ←− p −→ p′′, then there exists a q such that p′ −→→ q ←←− p′′), and terminating
(i.e. there are no infinite reductions). Newman’s Lemma says that such a TRS
reduces each term to a unique normal form, which does not reduce any further.

Although our choice of rewrite rules has been motivated by the wish for a weakly
confluent TRS, it is not so easy to deduce this property yet, due to the presence of
conditional rules. The next example shows that the usual method for checking weak
confluence of a TRS, namely verifying this property for all overlapping redexes, does
not work in a conditional setting.

Example 3.2 Consider the TRS which consists of the rules

f(x) −→ b if x −→→ a,
a −→ c.

There are no overlapping redexes, but this TRS is not weakly confluent: f(c) ←−
f(a) −→ b.

However, it will turn out that the confluence property is not needed in the proof of
the main theorem, which states that bisimilar normal forms are equal modulo AC.
Hence, confluence will simply be a consequence of this theorem.

3.3. A Conditional Term Rewriting System 23

3.3.7 Termination

Proving termination of the TRS in Table 3.5, modulo AC, is a complicated matter.
This is mainly due to the presence of Rule 7, in which the left-hand side can be
obtained from the right-hand side by the removal of subterms. A powerful technique
for proving termination of TRSs that incorporate such rules is semantic labelling [17],
where operation symbols that occur in the rewrite rules are supplied with labels,
which depend on the semantics of the arguments. Then two TRSs are involved: the
original system and the labelled system. The main theorem of [17] states that the
labelled system terminates if and only if the original system terminates.

The theory of semantic labelling has been developed for unconditional TRSs.
Therefore, we adapt the TRS in Table 3.5 to an unconditional TRS R, simply by re-
moving the conditions from the last two rules. We shall prove that R is terminating,
which immediately implies termination of the conditional TRS in Table 3.5.

Proposition 3.3 The TRS R is terminating.

Proof. The method from [17] starts with choosing a model, which consists of a set
M, and for each function symbol f in the original signature with arity n a mapping
fM :Mn →M, such that for every rewrite rule, and for all possible values for its
variables in the model, the left-hand side and the right-hand side are equal in the
model. Here we choose the model to be the positive natural numbers. Each process
p is interpreted by its norm |p|, being the least number of steps in which it can
terminate. This norm can be defined inductively as follows:

|a| = 1
|p+ q| = min{|p|, |q|}
|pq| = |p|+ |q|
|p⊕q| = |p|+ |q|.

Note that norm is associative and commutative with respect to the choice operator,
which is essential in order to obtain the termination result modulo AC. Clearly norm
is preserved under bisimulation equivalence. Since the Rules 1-8 of R are sound with
respect to bisimulation, it follows that norm is preserved under application of these
rewrite rules. And it is easy to verify that Rules 9 and 10 of R, which are not sound
because they lack their original conditions, preserve norm too.

Next, we select labels for the function symbols. As labels for the operators
sequential composition and proper iteration we choose the positive natural numbers,
while the atoms and the choice operator remain unchanged. In each ground term, the
occurrences of sequential composition and proper iteration are labelled as follows:
we replace p · q by p〈|q|〉q and p⊕q by p[|q|]q.

Finally, for each rule in the TRS we construct a collection of labelled rules. This
is done by replacing the variables in the original rule by all possible values in the
model, and computing the resulting labels for the operators. This results in the

24 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

following TRS R̄, where the rules are defined for positive natural numbers i and j.

x+ x −→ x
x〈i〉z + y〈i〉z −→ (x+ y)〈i〉z

x〈i+ j〉(y〈j〉z) −→ (x〈i〉y)〈j〉z

x[i+ j](y〈j〉z) −→ (x[i]y)〈j〉z

x〈i〉(x[i]y + y) −→ x[i]y
x〈i〉(y[i]z + z) + y[i]z −→ (x+ y)〈i〉(y[i]z + z)

x〈i+ j〉(y[j]z) −→ (x〈i〉y)〈j〉(y[j]z + z)
x[i+ j](y[j]z) −→ (x[i]y)〈j〉(y[j]z + z)

x[i](x′〈i〉(y[i]z + z) + z) −→ x〈i〉(y[i]z + z)
x[i](y[i]z + z) −→ x〈i〉(y[i]z + z)

Suppose that R admits an infinite reduction. Replace the variables in this reduction
by a constant a to obtain an infinite ground reduction in R. For each symbol ‘·’
and ‘⊕’ that occurs in this reduction, compute its corresponding label. This way
the infinite ground reduction in R transforms into an infinite ground reduction in
R̄. Hence, termination of R̄ implies termination of R.

It remains to prove termination of R̄. Although R̄ is a TRS with infinitely many
rules, this is much easier than proving termination of R. Define a weight function
w:

w(a) = 1
w(p+ q) = w(p) + w(q)
w(p〈i〉q) = w(p) + iw(q)
w(p[i]q) = w(p) + (i+ 1)w(q)

It is easy to verify that for any choice of values for variables in any rule, the weight
of the left-hand side is strictly greater than the weight of the right-hand side. For
example, in the case of Rule 7 these weights are

w(x) + (i+ j)w(y) + (i+ j)(j + 1)w(z)
and w(x) + (i+ j)w(y) + j(j + 2)w(z)

respectively. And (i+ j)(j + 1) > j(j + 2) for i, j ≥ 1.
Due to the strict monotonic behaviour of w (here it is essential that i > 0)

we conclude that each reduction step yields a strict decrease of weight. Hence the
system R̄ is terminating, and so R is terminating. 2

3.4 Normal Forms Decide Bisimilarity

In the previous section we have developed a TRS for BPA⊕ that reduces terms to a
normal form. Since all rewrite rules are sound with respect to bisimulation equiv-
alence, it follows that each term is bisimilar with its normal forms. So in order to

3.4. Normal Forms Decide Bisimilarity 25

determine completeness of the axiomatization for BPA⊕ with respect to bisimula-
tion equivalence, it is sufficient to prove that if two normal forms are bisimilar, then
they are equal modulo AC.

3.4.1 An ordering on process terms

As induction base in the proof of our main theorem, we will need a well-founded
ordering on process terms that should preferably have the following properties:

1. p ≤ p+ q p < pq p < p⊕q
q ≤ p+ q q < pq q < p⊕q.

2. The ordering is preserved under bisimulation.

However, an ordering combining these properties is never well-founded, because for
such an ordering we have

p⊕q ≤ p⊕q + q < p(p⊕q + q)

Since p(p⊕q + q) ↔ p⊕q, it follows that p⊕q < p⊕q.
The norm, indicating the least number of steps a process must make before it

can terminate, induces an ordering that almost satisfies all desired properties. The
only serious drawback of this ordering is that |p| ≥ |p + q|. Therefore we adapt it
to an ordering induced by L-value, which is defined as follows:

L(p) = max{|p′| | p′ is a proper substate of p}
where ‘proper substate’ means that p can evolve into p′ by one or more transitions.
Since norm is preserved under bisimulation equivalence, the same holds for L.

Lemma 3.4 If p ↔ q, then L(p) = L(q).

Proof. If p′ is a proper substate of p, then bisimilarity of p and q implies that there
is a proper substate q′ of q such that p′ ↔ q′, and so |p′| = |q′|. Hence, L(p) ≤ L(q),
and by symmetry L(q) ≤ L(p). 2

We deduce the inductive definition for L-value. L(p+ q) is the maximum of the
collection

{|p′| | p′ proper substate of p}
∪ {|q′| | q′ proper substate of q},

so L(p+ q) = max{L(p), L(q)}. Next, L(pq) is the maximum of the collection

{|p′q| | p′ proper substate of p}
∪ {|q|} ∪ {|q′| | q′ proper substate of q},

so L(pq) = max{L(p) + |q|, L(q)}. Finally, L(p⊕q) is the maximum of the collection

{|p′(p⊕q + q)| | p′ proper substate of p}
∪ {|p⊕q + q|} ∪ {|q′| | q′ proper substate of q},

26 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

so |p⊕q| = max{L(p) + |q|, L(q)}. Recapitulating, we have found:

L(a) = 0
L(p+ q) = max{L(p), L(q)}
L(pq) = max{L(p) + |q|, L(q)}
L(p⊕q) = max{L(p) + |q|, L(q)}.

Hence, L-value too satisfies almost all the requirements formulated above; only, we
have inequalities L(q) ≤ L(pq) and L(q) ≤ L(p⊕ q), instead of the desired strict
inequalities. Therefore, we introduce a second weight function g on process terms,
defined by:

g(a) = 0
g(p+ q) = max{g(p), g(q)}
g(pq) = g(q) + 1
g(p⊕q) = g(q) + 1.

Note that g-value is not preserved under bisimulation equivalence. However, the
following lemma holds.

Lemma 3.5 If p −→ q, then g(p) ≥ g(q).

Proof. For each rewrite rule it is easily checked that the g-value of the left-hand side
is greater than or equal than the g-value of the right-hand side. Since the functions
that are used in the definition of g are weakly monotonous in their coordinates, we
may conclude that g-value is never increased by a rewrite step. 2

In the proof of the main theorem we will apply induction on a lexicographical com-
bination of L-value and g-value.

3.4.2 Some lemmas

We deduce three lemmas that will be used in the proof of the main theorem. The
first lemma is typical for normed processes [1], i.e. for processes that are able to
terminate in finitely many transitions. This lemma originates from Caucal [4].

Lemma 3.6 If pr ↔ qr, then p ↔ q.

Proof. A transition p′r
a−→ p′′r in pr cannot be mimicked by a transition q′r

a−→ r
in qr, because |p′′r| > |r|. Hence, each transition p′r

a−→ p′′r is mimicked by a
transition q′r

a−→ q′′r, and vice versa. This induces a bisimulation relation between
p and q; the transition p′

a−→ p′′ in p is mimicked by the transition q′
a−→ q′′ in q,

and vice versa. 2

Definition 3.7 We say that two process terms p and q have behaviour in common
if there are p′ and q′ such that p

a−→ p′ and q
a−→ q′ and p′ ↔ q′.

Lemma 3.8 If two terms pq and rs have behaviour in common, and |q| ≥ |s|, then
either q ↔ ts for some t, or q ↔ s.

3.4. Normal Forms Decide Bisimilarity 27

Proof. If pq
a−→ q and rs

a−→ r′s with q ↔ r′s, or if pq
a−→ q and rs

a−→ s
with q ↔ s, then we are done. And pq

a−→ p′q and rs
a−→ s with p′q ↔ s would

contradict |q| ≥ |s|. Thus, the only interesting case is if pq
a−→ p′q and rs

a−→ r′s
with p′q ↔ r′s. The inequality |q| ≥ |s| then yields |p′| ≤ |r′|.

We show, with induction on |p′|, that p′q ↔ r′s together with |p′| ≤ |r′| indicate
either q ↔ ts for some t or q ↔ s. If |p′| = 1, then p′

a−→ √, and so p′q
a−→ q. Since

p′q ↔ r′s, this transition can be mimicked by a transition r′s
a−→ r′′s or r′s

a−→ s,
and so q ↔ r′′s or q ↔ s respectively.

Next, let |p′| = n+1. Clearly, there is a transition p′
a−→ p′′ with |p′′| = n. Since

p′q ↔ r′s, and p′q
a−→ p′′q, there must be a transition r′s

a−→ r′′s with p′′q ↔ r′′s.
Since |r′| ≥ |p′| = n+1 implies |r′′| ≥ n = |p′′|, the induction hypothesis learns that
either q ↔ ts for some t, or q ↔ s. 2

Lemma 3.9 If a term rs has normal form q, then pq or p⊕q is not a normal form.

Proof. Suppose that q is a normal form of a term rs. Each rule in Table 3.5 that
applies to a term of the form tu or t⊕u, reduces it to one of either forms again. So
q must be in one of either forms. But Rules 3, 4, 7 and 8 reduce p(tu) and p⊕(tu)
and p(t⊕u) and p⊕(t⊕u) respectively. Hence, pq and p⊕q are not in normal form. 2

3.4.3 The main theorem

Process terms are considered modulo AC. From now on, this equivalence is denoted
by p =AC q, and we say that p and q are of the same form. Clearly, each process term
p is a sum of terms of the form a and qr and q⊕r, which are called the summands of
p.

Theorem 3.10 If two normal forms p and q are bisimilar, then p =AC q.

Proof. In order to prove the theorem, we prove three extra statements in parallel.

A. If two normal forms p =AC rs and q =AC tu have common behaviour, then
s =AC u.

B. If two normal forms p =AC rs and q =AC t⊕u have common behaviour, then
s =AC t

⊕u+ u.

C. If two normal forms p =AC r⊕s and q =AC t⊕u have common behaviour, then
r⊕s =AC t

⊕u.

The statement in the main theorem is labelled D.
If L(p) = L(q) = 0, then both p and q must be sums of atoms. So in this case

A and B and C are empty statements. And D holds too, because bisimilarity of p
and q indicates that they contain exactly the same atoms, and Rule 1 ensures that
both terms contain each of these atoms only once.

Next, fix an m > 0 and assume that we have already proved the four statements
if L(p) and L(q) are smaller than m. We will prove it for the case that they are

28 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

equal to m. Let An and Bn and Cn and Dn denote the assertions for pairs p, q with
max{L(p), L(q)} ≤ m and g(p) + g(q) ≤ n. They are proved by induction on n.

The case n = 0 corresponds with the case L(p) = L(q) = 0, because if g(p) +
g(q) = 0, then both p and q must be sums of atoms. As induction hypothesis we
now assume An, Bn, Cn and Dn, and we shall prove An+1, Bn+1, Cn+1 and Dn+1.

1. An+1 is true.

Let normal forms rs and tu have behaviour in common, with L(rs) ≤ m and L(tu) ≤
m and g(rs) + g(tu) = n + 1. We want to prove s =AC u. By symmetry we may
assume |s| ≥ |u|, so Lemma 3.8 offers two possibilities.

1.1 s ↔ u.

L(s) ≤ L(rs) ≤ m and L(u) ≤ L(tu) ≤ m and g(s) + g(u) < g(rs) + g(tu) = n+ 1.
Hence, Dn yields s =AC u.

1.2 s ↔ vu for some v.

Let w be a normal form of vu. According to Lemma 3.5 g(w) ≤ g(vu), so g(s) +
g(w) < g(rs) + g(vu) = n + 1. Further, since s ↔ w, L(w) = L(s) ≤ m. Hence,
Dn yields s =AC w. However, Lemma 3.9 says that s cannot be a normal form of a
term vu. Contradiction.

2. Bn+1 is true.

According to the previous point we may assume An+1. Let normal forms rs and t⊕u
have behaviour in common, with L(rs) ≤ m and L(t⊕u) ≤ m and g(rs) + g(t⊕u) =
n + 1. We want to prove s =AC t

⊕u + u. Since t⊕u ↔ t(t⊕u + u), Lemma 3.8 offers
three possibilities.

2.1 s ↔ t⊕u+ u.

The term t⊕u + u is a normal form, because we cannot apply Rules 1,2 or 6 to it.
Moreover, g(s) + g(t⊕u+ u) = g(s) + g(t⊕u) = n, so Dn yields s =AC t

⊕u+ u.

2.2 vs ↔ t⊕u+ u for some v.

This implies v′s ↔ u for some v′. As in 1.2, we can deduce that then u is a normal
form of v′s, which is a contradiction according to Lemma 3.9.

2.3 s ↔ v(t⊕u+ u) for some v.

Note that g(s) + g(v(t⊕u+ u)) = n+ 1, so we cannot yet apply Dn.
Let v be a normal form. If v =AC t then s ↔ t⊕u, so that Dn yields s =AC t

⊕u.
Then Rule 7 reduces rs, which is a contradiction. So apparently v cannot be of the
form t. Thus, Rule 5 cannot be applied to v(t⊕u+u), so this term is a normal form.

First, consider a summand αβ of s. This term and v(t⊕u+ u) have behaviour in
common, so An+1 yields β =AC t

⊕u+ u.
Next, consider a summand α⊕β of s. This term and v(t⊕u + u) have behaviour

in common. Since α⊕β ↔ α(α⊕β + β), Lemma 3.8 offers three possibilities.

3.4. Normal Forms Decide Bisimilarity 29

- α⊕β + β ↔ t⊕u+ u.

g(α⊕β+β)+g(t⊕u+u) ≤ g(s)+g(t⊕u) = n, so Dn implies α⊕β+β =AC t
⊕u+u.

Since the summands of α⊕β + β and t⊕u + u with greatest size are α⊕β and
t⊕u respectively, it follows that α⊕β =AC t

⊕u.

- w(α⊕β + β) ↔ t⊕u+ u for some w.

Then w′(α⊕β + β) ↔ u for some w′, and we obtain a contradiction as in 1.2.

- α⊕β + β ↔ w(t⊕u+ u) for some w.

Then β ↔ w′(t⊕u+ u) for some w′, and we obtain a contradiction as in 1.2.

So we may conclude α⊕β =AC t
⊕u.

If s contains several summands of the form α(t⊕u+ u) or t⊕u, then we can apply
Rule 1,2 or 6 to s. However, s is in normal form, so apparently it consists of a single
term α(t⊕u + u) or t⊕u. Then apply Rule 3 or 7 applies to rs, which again is a
contradiction, because rs is in normal form.

3. Cn+1 is true.

Assume normal forms r⊕s and t⊕u that have behaviour in common, with L(r⊕s) ≤ m
and L(t⊕u) ≤ m and g(r⊕s) + g(t⊕u) = n + 1. We want to prove r⊕s =AC t⊕u. By
symmetry we may assume |r⊕s| ≥ |t⊕u|, so Lemma 3.8 offers two possibilities.

3.1 r⊕s+ s ↔ v(t⊕u+ u) for some v.

Then s ↔ v′(t⊕u+ u) for some v′. This leads to a contradiction as in 2.3.

3.2 r⊕s+ s ↔ t⊕u+ u.

First, suppose that s and u have no behaviour in common with t ⊕ u and r ⊕ s
respectively, so that s↔ u and r⊕s↔ t⊕u. Since Dn applies to the first equivalence,
we get s =AC u. And the second equivalence yields r(r⊕s+ s) ↔ t(t⊕u+ u) ↔ t(r⊕

s + s), so Lemma 3.6 implies r ↔ t. Since L(r) = L(t) < m, statement D then
implies r =AC t, and we are done.

So we can suppose that either s and t⊕u have behaviour in common, or u and
r⊕s have behaviour in common. We deduce a contradiction.

By symmetry it is sufficient to deduce a contradiction for the first case only,
where s and t⊕u have behaviour in common. If a summand αβ or α⊕β of s has
behaviour in common with t⊕u, then Bn or Cn implies β =AC t

⊕u+u or α⊕β =AC t
⊕u

respectively. If s contains several summands of the form α(t⊕u + u) or t⊕u, then
Rules 1,2 or 6 can be applied to it. However, s is a normal form, so apparently it
contains exactly one such summand.

If u and r⊕s have behaviour in common too, then similarly we can deduce that
u has a summand of the form β(r⊕s + s) or r⊕s, which indicates that u has a size
greater than s. On the other hand, s has a summand α(t⊕u+ u) or t⊕u, so s has a
size greater than u. This cannot be, so u and r⊕s have no behaviour in common.

30 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

And if u has behaviour in common with the summand α(t⊕u + u) or t⊕u of s,
then it follows from An or Bn or Cn that u has a summand of the form β(t⊕u + u)
or t⊕u. Again we establish a contradiction; u has greater size than itself.

Hence, we have found that

- r⊕s+ s ↔ t⊕u+ u,

- s has a summand α(t⊕u + u) or t⊕u, and all other summands of s have no
behaviour in common with t⊕u,

- u has no behaviour in common with r⊕s, nor with the summand α(t⊕u+ u) or
t⊕u of s.

From these facts it follows that

- s =AC α(t
⊕u+ u) + s′ or s =AC t

⊕u+ s′,

- s′ ↔ u,

- r⊕s+ α(t⊕u+ u) or r⊕s+ t⊕u is bisimilar to t⊕u.

Since s′ ↔ u, Dn yields s′ =AC u. We distinguish the two possible forms of s.

- s =AC α(t
⊕u+ u) + u.

Then r ⊕ s + α(t ⊕ u + u) ↔ t ⊕ u. Since r ⊕ s + s ↔ t ⊕ u + u, this yields
(r + α)(t ⊕ u + u) ↔ t(t ⊕ u + u). Lemma 3.6 implies r + α ↔ t, so since
L(r + α) = L(t) < m, we obtain r + α −→→ t. Then Rule 9 can be applied to
r⊕s =AC r

⊕(α(t⊕u+u)+u). Since r⊕s is a normal form, this is a contradiction.

- s =AC t
⊕u+ u.

Then r⊕s+t⊕u↔ t⊕u. Since r⊕s+s↔ t⊕u+u, this yields (r+t)(t⊕u+u)↔ t(t⊕

u+ u). Lemma 3.6 implies r+ t ↔ t, so since L(r+ t) = L(t) < m, we obtain
r + t −→→ t. Then Rule 10 can be applied to r⊕s =AC r⊕(t⊕u + u), and once
more we have found a contradiction.

4. Dn+1 is true.

We may assume An+1 and Bn+1 and Cn+1. Let p and q be bisimilar normal forms
with L(p) = L(q) = m and g(p) + g(q) = n+ 1. We want to prove p =AC q.

First, we show that each summand of p is bisimilar to a summand of q, and vice
versa. Clearly, each atomic summand a of p corresponds with a summand a of q.
We show that each non-atomic summand of p also corresponds to a summand of q.

Suppose that a summand rs of p has behaviour in common with two summands of
q. If these summands are of the form tu and t′u′, then An+1 implies u =AC s =AC u

′,
so that Rule 2 reduces this pair. If they are of the form tu and t′⊕u′, then An+1 and
Bn+1 give u =AC s =AC t′⊕u′ + u′, so that Rule 6 reduces this pair. Finally, if they

References 31

are of the form t⊕u and t′⊕u′, then Bn+1 implies t⊕u+ u =AC s =AC t
′⊕u′ + u′. This

means t⊕u =AC t
′⊕u′, so Rule 1 reduces this pair.

Similarly, if a summand r⊕s of p has behaviour in common with two summands
of q, we find using Bn+1 and Cn+1 that Rule 1, 2 or 6 can be applied to this pair.

So, since q is a normal form, the assumption of a non-atomic summand of p
having behaviour in common with two summands of q leads to a contradiction. By
symmetry, each non-atomic summand of q too can have behaviour in common with
only one summand of p. So apparently, each non-atomic summand of p is bisimilar
to a non-atomic summand of q and vice versa.

- Suppose that summands rs and tu are bisimilar. Then An+1 implies s =AC u,
so according to Lemma 3.6 r ↔ t. Since L(r) = L(t) < m, we obtain r =AC t.

- If summands rs and t⊕u are bisimilar, then Bn+1 implies s =AC t
⊕u+ u. Then

r(t⊕u + u) =AC rs ↔ t⊕u ↔ t(t⊕u + u), so Lemma 3.6 implies r ↔ t. Since
L(r) = L(t) < m, this yields r =AC t. Hence rs =AC t(t⊕u + u), so we can
apply Rule 5 to rs. Contradiction.

- Finally, if summands r⊕s and t⊕u are bisimilar, then Cn+1 says that they are
of the same form.

Hence, p and q contain exactly the same summands. Rule 1 indicates that each of
these summands occurs only once in both p and q, so p =AC q. 2

Corollary 3.11 The TRS in Table 3.5 is confluent.

Corollary 3.12 The axioms A1-5 + BKS1-3 for BPA∗ are complete with respect
to bisimulation equivalence.

Proof. If two terms in BPA⊕ are bisimilar, then according to Theorem 3.10 their
normal forms are of the same form. Since all the rewrite rules can be deduced from
A1-5 + PI1-3, it follows that this is a complete axiom system for BPA⊕. Then
A1-5 + BKS1-3 is a complete axiomatization for BPA∗. 2

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation
equivalence for processes generating context-free languages. Journal of the
ACM, 40(3):653–682, 1993.

[2] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured opera-
tional semantics with predicates. In E. Best, editor, Proceedings CONCUR’93,
Hildesheim, LNCS 715, pages 477–492. Springer-Verlag, 1993.

[3] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and
nesting. The Computer Journal, 37(4):243–258, 1994.

32 Basic Process Algebra with Iteration: Completeness of its Equational Axioms

[4] D. Caucal. Graphes canoniques et graphes algébriques. Theoretical Informatics
and Applications, 24(4):339–352, 1990.

[5] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

[6] I.M. Copi, C.C. Elgot, and J.B. Wright. Realization of events by logical nets.
Journal of the ACM, 5:181–196, 1958.

[7] S.C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, pages 3–41. Princeton University Press, 1956.

[8] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Information and Computation, 110(2):366–390, 1994.

[9] R. Milner. A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences, 28:439–466, 1984.

[10] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5th GI Conference, LNCS 104, pages 167–183. Springer-Verlag, 1981.

[11] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University, 1981.

[12] V.N. Redko. On defining relations for the algebra of regular events. Ukrainskii
Matematicheskii Zhurnal, 16:120–126, 1964. In Russian.

[13] A. Salomaa. Two complete axiom systems for the algebra of regular events.
Journal of the ACM, 13(1):158–169, 1966.

[14] P. Sewell. Bisimulation is not finitely (first order) equationally axiomatisable.
In Proceedings 9th IEEE Symposium on Logic in Computer Science (LICS’94),
Paris, pages 62–70. IEEE Computer Society Press, 1994.

[15] D.R. Troeger. Step bisimulation is pomset equivalence on a parallel language
without explicit internal choice. Mathematical Structures in Computer Science,
3:25–62, 1993.

[16] C. Verhoef. A general conservative extension theorem in process algebra. In
E.-R. Olderog, editor, Proceedings IFIP Conference on Programming Concepts,
Methods and Calculi (PROCOMET’94), San Miniato, IFIP Transactions A-56,
pages 149–168. Elsevier, 1994.

[17] H. Zantema. Termination of term rewriting by semantic labelling. Report
RUU-CS-92-38, Utrecht University, 1992. Revised version RUU-CS-93-24. To
appear in Fundamenta Informaticae (special issue on term rewriting systems).

4

The Tyft/Tyxt Format Reduces to
Tree Rules

Wan Fokkink

Groote and Vaandrager introduced the tyft/tyxt format for Transition System
Specifications (TSSs), and established that for each TSS in this format that is
well-founded, the bisimulation equivalence it induces is a congruence. In this
chapter, we construct for each TSS in tyft/tyxt format an equivalent TSS that
consists of tree rules only. As a corollary we can give an affirmative answer
to an open question, namely whether the well-foundedness condition in the
congruence theorem for tyft/tyxt can be dropped. These results extend to
tyft/tyxt with negative premises and predicates.

4.1 Introduction

A current method to provide process algebras and specification languages with an
operational semantics is based on the use of transition systems, advocated by Plotkin
[13]. Given a set of states, the transitions between these states are obtained induc-
tively from a Transition System Specification (TSS), which consists of transition
rules. Such a rule, together with a number of transitions, may imply the validity of
another transition.

We will consider a specific type of transition systems, in which states are the
closed terms generated by a single-sorted signature, and transitions are supplied
with labels. A great deal of the operational semantics of formal languages in Plotkin
style that have been defined over the years, are within the scope of this format.

To distinguish such labelled transition systems, many different equivalences have
been defined, the finest of which is the strong bisimulation equivalence of Park [12].
In general, this equivalence is not a congruence, i.e. the equivalence class of a term
f(p1, ..., pm) modulo strong bisimulation is not always determined by the equivalence
classes of the terms pi. However, congruence is an essential property, for instance,
to fit the equivalence into an axiomatic framework.

33

34 The Tyft/Tyxt Format Reduces to Tree Rules

Several formats have been developed which ensure that the bisimulation equiv-
alence induced by a TSS in such a format is always a congruence. A first proposal
was made by De Simone [14], which was generalized by Bloom, Istrail and Meyer
[3] to the GSOS format. Next, Groote and Vaandrager [10] introduced the tyft/tyxt
format, and proved a congruence theorem for TSSs in this format that satisfy a
well-foundedness criterion.

Up to now, it has been an open question whether or not well-foundedness is an
essential ingredient of this congruence theorem. The requirement popped up in the
proof, but no counter-example was found to show that the theorem breaks down if
well-foundedness were omitted from it. In this chapter, we prove that the congruence
theorem does hold for general TSSs in tyft/tyxt format, i.e. that the requirement of
well-foundedness can be omitted.

In fact, we will establish a stronger result, namely that for each TSS in tyft/tyxt
format, there is an equivalent TSS consisting of ‘tree rules’ only. A tree rule is a
well-founded rule of the form

{zi ai−→ yi | i ∈ I}

f(x1, ..., xm)
a−→ t

where the yi and the xj are distinct variables and are the only variables that occur
in the rule, the zi are variables, f is a function symbol, and t is any term. Using
terminology from [10], we can say that a tree rule is a pure and well-founded xyft
rule. Since tree rules are well-founded, the reduction of tyft/tyxt format to tree
format immediately implies that the congruence theorem concerning the tyft/tyxt
format can do without well-foundedness.

The major advantage of the main theorem is that it facilitates reasoning about
the tyft/tyxt format. Because often it is much easier to prove a theorem for TSSs in
tree format than for TSSs in tyft/tyxt format. For example, this is the case with the
congruence theorem itself. Another striking example consists of Theorems 8.6.6 and
8.9.1 in [10]. With our result at hand, the complicated proof of the second theorem
can be skipped, because now the second theorem follows from the first one.

Furthermore, the removal of well-foundedness from the congruence theorem for
tyft/tyxt increases the convenience of applying this theorem, since the user no longer
has to recall and check the complicated well-foundedness criterion.

Rob van Glabbeek independently proved the same result, which he announced
in [7]. His proof is along the same lines as the one presented in this chapter.

The proof of the main theorem makes heavy use of a standard result from unifi-
cation theory, which says that for each set of equations that is unifiable, there exists
an idempotent most general unifier. In unification theory, this result is proved for
finite sets of equations, and for substitutions that have a finite domain. However, we
will need the result in a setting which does not satisfy these finiteness constraints.
See Chapter 5 for a proof of the unification result in the infinite case.

Groote [9] added negative premises to tyft/tyxt, resulting in the ntyft/ntyxt
format, and proved that the congruence theorem extends to well-founded TSSs in

4.2. Preliminaries 35

ntyft/ntyxt format. We will show that the reduction of tyft/tyxt rules to tree rules
can be lifted to the positive part of rules in ntyft/ntyxt format, but a simple example
learns that this reduction cannot be applied to the negative premises. Again, we will
find that the congruence theorem concerning the ntyft/ntyxt format can do without
well-foundedness.

Verhoef [15] defined the panth format, which adds predicates to ntyft/ntyxt, and
proved that the congruence theorem holds for well-founded TSSs in panth format.
We will show that our results extend to the panth format too.

Acknowledgements. Catuscia Palamidessi and Fer-Jan de Vries noted the link
with unification, and Chris Verhoef provided useful comments. Special thanks go to
Rob van Glabbeek and Frits Vaandrager for suggesting some substantial improve-
ments.

4.2 Preliminaries

This section contains the basic definitions.

4.2.1 The signature

In the sequel we assume the existence of an infinite set of variables V .1

Definition 4.1 A (single-sorted) signature Σ consists of a set of function symbols,
disjoint with V , together with their arities.

The collection T(Σ) of (open) terms over Σ is defined as the least set satisfying:

- each variable from V is in T(Σ),

- if f ∈ Σ has arity n, and t1, ..., tn ∈ T(Σ), then f(t1, ..., tn) ∈ T(Σ).

A term is called closed if it does not contain any variables.

A substitution is a mapping σ : V → T(Σ). Each substitution is extended to a
mapping from terms to terms in the standard way.

4.2.2 Transition system specifications

In the sequel we assume the existence of a set of labels A.

Definition 4.2 For each label a, the expression
a−→ denotes a binary relation on

terms. A pair t
a−→ t′ is called a transition. A transition is closed if it involves

closed terms.

1In several constructions we will assume the existence of ‘fresh’ variables, i.e. variables that
have not yet been used in the construction. Some caution is needed to ensure the existence of such
fresh variables at any time, but clearly this technical problem is not of a serious nature.

36 The Tyft/Tyxt Format Reduces to Tree Rules

Definition 4.3 A (transition) rule is an expression of the form H/c, with H a
collection of transitions, called the premises (or the hypotheses), and c a transition,
called the conclusion of the rule.

A Transition System Specification (TSS) is a collection of transition rules.

The notion of substitution extends to transitions and rules as expected.

Definition 4.4 A proof from a TSS R of a rule H/c consists of an upwardly branch-
ing tree in which all upward paths are finite. Moreover, the nodes of the tree are
labelled by transitions, such that:

• the root has label c,

• if some node has label d, and I is the set of labels of nodes directly above this
node, then

1. either I = ∅, and d ∈ H,

2. or I/d is a substitution instance of a rule in R.

We say that a transition t
a−→ t′ is provable from R, if the rule with no premises

and conclusion t
a−→ t′ has a proof from R.

Definition 4.5 Two TSSs are (transition) equivalent if exactly the same closed
transitions are provable from both.

We will say that a rule r together with a substitution σ deduces a transition
t

a−→ t′ from R if all the premises of r under σ are provable from R, and the
conclusion of r under σ results to t

a−→ t′.

4.2.3 Strong bisimulation

Definition 4.6 Assume a TSS R. Two closed terms p0, q0 are R-bisimilar, notation
p0 ↔R q0, if there exists a symmetric binary relation B on closed terms such that

- p0Bq0,

- if pBq, and p a−→ p′ is provable from R, then there is a closed term q′ such
that q

a−→ q′ is provable from R, and p′Bq′.

4.2.4 The tyft/tyxt format

In general, bisimulation equivalence it is not a congruence, i.e. it may be the case
that pi ↔R qi for i = 1, ..., n, but f(p1, ..., pn) and f(q1, ..., qn) are not R-bisimilar.
Therefore, Groote and Vaandrager [10] have introduced the tyft/tyxt format. If a
TSS is in this format, and it satisfies a well-foundedness criterion, then the bisimu-
lation it induces is a congruence.

4.2. Preliminaries 37

Definition 4.7 A transition rule is a tyft rule if it is of the form

{ti ai−→ yi | i ∈ I}

f(x1, ..., xm)
a−→ t

where the xk and the yi are distinct variables (and I is some, not necessarily finite,
index set). Similarly, a tyxt rule is of the form

{ti ai−→ yi | i ∈ I}

x
a−→ t

where x and the yi are distinct variables. A TSS is said to be in tyft/tyxt format if
it consists of tyft and tyxt rules only.

Definition 4.8 Assume a set {ti ai−→ t′i | i ∈ I} of transitions. Its ‘dependency
graph’ is a directed graph, with the collection of variables V as vertices, and with as
edges the collection

{〈x, y〉 | x and y occur in ti and t
′
i respectively, for some i ∈ I}.

A set of transitions is called well-founded if any backward chain of edges in its
dependency graph is finite. A transition rule is well-founded if its collection of
premises is so, and a TSS is well-founded if all its rules are so.

Example 4.9 Examples of sets of transitions that are not well-founded are:

- {y a−→ y},

- {y1
a−→ y2, y2

b−→ y1},

- {yi+1
a−→ yi | i = 0, 1, 2, ...}.

The following congruence theorem originates from [10].

Theorem 4.10 If a TSS R is well-founded and in tyft/tyxt format, then ↔R is a
congruence.

In Section 4.4 we will see that the requirement of well-foundedness in this theorem
can be dropped.

38 The Tyft/Tyxt Format Reduces to Tree Rules

4.3 Unification

A standard result from logic programming says that if a finite collection E of equa-
tions between terms is unifiable, then there exists a unifier ρ̄ for E such that each
unifier for E is also a unifier for ρ̄. This result follows from the well-known Martelli-
Montanari algorithm [11]. See [1] for the basic definitions and for an introduction
to the field of logic programming and unification.

In Chapter 5, this theorem is generalized to the case where E may be infinite.
The first property in Lemma 4.12, which will be vital in the proof of the main
theorem, is a corollary of this unification result. However, we present a full proof of
the lemma, because we will need two extra properties of the unifier ρ̄, which follow
most easily from its construction. Also, the proof of this lemma is much simpler
than the proof of the stronger unification result in Chapter 5.

Definition 4.11 A substitution σ is a unifier for a substitution ρ if σρ = σ. In this
case, ρ is called unifiable.

Lemma 4.12 If a substitution ρ is unifiable, then there exists a unifier ρ̄ for ρ with
the following properties:

1. Each unifier for ρ is also a unifier for ρ̄.

2. If ρ(x) = x, then ρ̄(x) = x.

3. If ρn(x) is a variable for all n ≥ 0, then ρ̄(x) is a variable.

Proof. Let W denote the collection of variables x for which ρn(x) is a variable for
all n ≥ 0. First, we define the restriction ρ̄0 of ρ̄ to W .

Define a binary relation ∼ on W by x ∼ x′ if ρm(x) = ρn(x′) for certain m and
n. Note that ∼ is an equivalence relation. Under ρ̄0, we contract the elements of
each equivalence class C ⊆ W to one variable from this class as follows.

- If ρ(x0) = x0 for some x0 ∈ C, then for all x ∈ C ρn(x) = x0 for some n. This
implies ρ(x) 6= x for x ∈ C\{x0}, so x0 is determined uniquely. Put ρ̄0(x) = x0

for x ∈ C.

- If ρ(x) 6= x for all x ∈ C, then just pick some x0 ∈ C and put ρ̄0(x) = x0 for
x ∈ C.

Put ρ̄0(y) = y for y 6∈W .
We construct ρ̄(y) as follows. By assumption, ρ allows a unifier σ. Since σρ = σ,

it follows that σρn = σ for n ≥ 0. Clearly, the size of each ρn(y) (that is, the number
of function symbols it contains) is smaller or equal than the size of σρn(y) = σ(y).
Moreover, each term ρn+1(y) has at least the size of ρn(y). So from a certain natural
N(y) onwards, the terms ρn(y) all have the same size. Hence, for n ≥ N(y), ρn+1(y)

4.4. Tyft/Tyxt Reduces to Tree 39

is obtained from ρn(y) by replacing variables by variables. This means that all
variables in ρN(y)(y) are in W . Put

ρ̄(y) = ρ̄0ρ
N(y)(y).

Note that N(x) = 0 if x ∈ W , so ρ̄ equals ρ̄0 onW . We check the required properties
for ρ̄.

• ρ̄ is a unifier for ρ.

First, consider a variable x ∈ W . Since ρ(x) ∼ x, and ρ̄0 contracts variables
in the same equivalence class, we have ρ̄0ρ(x) = ρ̄0(x). Since ρ̄ equals ρ̄0 on
W , this implies ρ̄ρ(x) = ρ̄(x).

Next, consider a variable y 6∈ W . Then clearly N(y) = N(ρ(y)) + 1, so

ρ̄ρ(y) = ρ̄0ρ
N(ρ(y))ρ(y) = ρ̄0ρ

N(y)(y) = ρ̄(y).

• Each unifier σ for ρ is a unifier for ρ̄.

First, consider a variable x ∈ W . Since ρ̄0(x) ∼ x, there are m and n such
that ρmρ̄0(x) = ρn(x). After applying σ to both sides we get σρ̄0(x) = σ(x).
Since ρ̄0(y) = y for variables y 6∈ W , it follows that σρ0 = σ.

So for each variable y we have

σρ̄(y) = σρ̄0ρ
N(y)(y) = σρN(y)(y) = σ(y).

• If ρ(x) = x, then ρ̄(x) = x.

Clearly x ∈ W , so ρ̄(x) = ρ̄0(x). Since ρ(x) = x, the construction of ρ̄0 ensures
that ρ0(x) = x.

• If ρn(x) is a variable for all n ≥ 0, then ρ̄(x) is a variable.

By definition x ∈ W , so ρ̄(x) = ρ̄0(x). From the construction of ρ̄0 it follows
that its image contains variables only. 2

4.4 Tyft/Tyxt Reduces to Tree

This section contains the proof of the main theorem, which says that for each TSS in
tyft/tyxt format there exists an equivalent TSS in the more restrictive tree format.

40 The Tyft/Tyxt Format Reduces to Tree Rules

4.4.1 Tyft/tyxt reduces to tyft

The following lemma from [10] indicates that we can refrain from tyxt rules.

Lemma 4.13 Each TSS R in tyft/tyxt format is equivalent to a TSS in tyft format.

Proof. Replace each tyxt rule r in R by a collection of tyft rules {rf |f ∈ Σ}, where
each rf is obtained by substituting f(x1, ..., xn) for x in r, with x1, ..., xn variables
that do not yet occur in r. Let R′ denote the collection of tyft rules that is thus
obtained. Clearly, for each proof from R of a certain closed transition, there is a
proof from R′ of the same transition, and vice versa. Hence, R and R′ are equivalent.
2

4.4.2 Tyft reduces to xyft

In this section, we prove that the tyft format reduces to xyft rules, which will be an
intricate affair.

Definition 4.14 A tyft rule is said to be a xyft rule if the left-hand sides of its
premises are all single variables.

Theorem 4.15 Each TSS R in tyft format is equivalent to a TSS in xyft format.

Proof. We shall prove R equivalent with the TSS S of xyft rules that are provable
from R. Since all rules in S are provable from R, clearly the transitions provable
from S are provable from R. We now show that each closed transition p

a−→ p′

provable from R is provable from S, using ordinal induction on the length of a proof
P of p

a−→ p′ from R.
Let P have length α, and suppose that we have proved the case for closed transi-

tions that have a proof shorter than α from R. We will construct from P a sequence
of proofs Qn from R of tyft rules rn that, together with a substitution σn, deduce
p

a−→ p′ from S. Each Qn will be a sub-tree of P , where its nodes are furnished
with new labels, which under σn yield the original labels of P . The ‘limit’ of the Qn

will be a proof Q from R of a xyft rule r that deduces p
a−→ p′ from S.

Let r0 ∈ R together with a substitution σ0 constitute the last step in P . The
premises of r0 under σ0 are all provable from R by a strict sub-proof of P , so
according to the induction hypothesis these transitions are provable from S. Hence,
r0 together with σ0 deduces p

a−→ p′ from S. The proof Q0 of r0 from R consists
simply of a bottom node labelled by the conclusion of r0 and upper nodes labelled
by the premises of r0.

Next, suppose that we have constructed a proof Qn−1 from R of a tyft rule rn−1,
which together with a σn−1 deduces p

a−→ p′ from S. By assumption, Qn−1 is a
sub-tree of P , and the labels of Qn−1 under σn−1 yield the original labels of P . Let
rn−1 be of the form

{ti ai−→ yi | i ∈ I}

f(x1, ..., xm)
a−→ t

4.4. Tyft/Tyxt Reduces to Tree 41

Let I0 ⊆ I be the subset of i’s for which the term ti is not a single variable, but of
the form gi(ui1, ..., uimi

).
The premises of rn−1 are labels of upper nodes in Qn−1. Since Qn−1 is a sub-tree

of P , the premises correspond with nodes in P , which have labels σn−1(ti
ai−→ yi).

For i ∈ I0, let si ∈ R and τi together constitute the step in P to the node with
label σn−1(ti

ai−→ yi). Ordinal induction implies that the premises of si under τi are
provable from S. To obtain Qn, the rules si will be imported into Qn−1, so assume
that each si contains only fresh variables, to avoid name clashes.

Since the conclusion of si under τi yields σn−1(ti
ai−→ yi), and ti = gi(ui1, ..., uimi

),
it follows for i ∈ I0 that si is of the form

{tj
bj−→ yj | j ∈ Ji}

gi(xi1, ..., ximi
)

ai−→ vi

with τi(xik) = σn−1(uik) and τi(vi) = σn−1(yi).
Let σn be a substitution equal to σn−1 for variables in Qn−1, and equal to the τi

for variables in the si for i ∈ I0. Moreover, define a substitution ρn by:

ρn(xik) = uik for i ∈ I0 and k = 1, ...,mi,
ρn(yi) = vi for i ∈ I0,
ρn(x) = x otherwise.

Note that σn is a unifier for ρn, or in other words, σnρn = σn:

σnρn(xik) = σn(uik) = σn−1(uik) = τi(xik) = σn(xik),
σnρn(yi) = σn(vi) = τi(vi) = σn−1(yi) = σn(yi).

So Lemma 4.12 indicates the existence of a unifier ρ̄n for ρn with the following
properties.

1. Each unifier for ρn is a unifier for ρ̄n, which implies: ρ̄nρ̄n = ρ̄n,

σnρ̄n = σn.

2. If ρn(x) = x, then ρ̄n(x) = x.

Since ρ̄n is a unifier for ρn, it follows that the conclusion of ρ̄n(si) equals ρ̄n(ti
ai−→ yi)

for i ∈ I0:

ρ̄n(gi(xi1, ..., ximi
)

ai−→ vi) = ρ̄n(gi(xi1, ..., ximi
)

ai−→ ρn(yi))

= ρ̄n(ρn(gi(xi1, ..., ximi
))

ai−→ yi) = ρ̄n(gi(ui1, ..., uimi
)

ai−→ yi).

Hence, we can extend ρ̄n(Qn−1) to a proof Qn from R. Namely, extend ρ̄n(Qn−1)
above nodes labelled by ti

ai−→ yi for i ∈ I0 with new nodes that have as labels the

premises of ρ̄n(si), i.e. ρ̄n(tj
bj−→ yj) for j ∈ Ji. Since the new steps in Qn match

with the rules ρ̄n(si) for i ∈ I0, it follows that Qn constitutes a proof from R of some
rule rn.

42 The Tyft/Tyxt Format Reduces to Tree Rules

Due to property 2 of ρ̄n, the rule rn has conclusion f(x1, ..., xm)
a−→ ρ̄n(t), and

premises ρ̄n(ti)
ai−→ yi for i ∈ I\I0 and ρ̄n(tj)

bj−→ yj for i ∈ I0 and j ∈ Ji. Hence,
rn is a tyft rule. Property 1, σnρ̄n = σn, implies that rn together with σn deduces
p

a−→ p′ from S.
Finally, σnρ̄n = σn ensures that σn applied to Qn yields the original labels of P .
In general, rn is not yet a xyft rule, because although we have removed from rn

all the premises of rn−1 that do not have a single variable as left-hand side, we may
have introduced other premises in rn that are of this form. Therefore, we repeat the
construction above again and again, to obtain sequences {Qn}∞n=0 and {rn}∞n=0 and
{σn}∞n=0 and {ρ̄n}∞n=1, where Qn is a proof from R of rn, and rn together with σn
deduces p

a−→ p′ from S.
We construct the limit Q of the proofs Qn. The tree structure of Q is simply the

limit of the trees Qn; this is well-defined, because Qn incorporates Qn−1. However,
the labels of the nodes in Q cannot be determined so easily, because the labels in
the Qn are not consistent; if a certain node in Qn−1 has label l, then in Qn it is
renamed to ρ̄n(l). To resolve this complication, we need some extra machinery.

If ρ̄n(x) 6= x, then it follows from property 1 of ρ̄n, namely idempotence, that x
cannot occur in any term ρ̄n(y). To obtain Qn, we have applied ρ̄n to all its labels,
so x does not occur in Qn. This implies ρ̄m(x) = x for m > n. Hence, we can define
a substitution ρ̄ as follows:

ρ̄(x) = ρ̄n(x) if ρ̄n(x) 6= x for some n,
ρ̄(x) = x otherwise.

Furthermore, let σ be a substitution that equals σn for variables in Qn for all n.
Since σnρ̄n = σn for all n, we have σρ̄ = σ. So according to Lemma 4.12 there exists
a unifier ρ̂ for ρ̄ with the following properties:

1. σρ̂ = σ.

2. If ρ̄(x) = x, then ρ̂(x) = x.

3. if ρ̄k(x) is a variable for k ≥ 0, then ρ̂(x) is a variable.

Since ρ̂ is a unifier for ρ̄, it follows that ρ̂ is a unifier for all substitutions ρ̄n.
Now we can determine the labels of Q. If a node has label l in Qn−1, then in Q

we furnish it with the label ρ̂(l). This definition does not depend on the choice of n,
because although in Qn the label is adapted to ρ̄n(l), the equality ρ̂ρ̄n = ρ̂ ensures
that the resulting label in Q would remain the same.

Since Q is a sub-tree of P , each upward path in Q must be finite. And if a step
in P matches with a rule s ∈ R together with a τ , then the same step in Q matches
with s together with ρ̂τ . Hence, Q is a proof from R of a rule r.

We check that r is xyft. First, consider a premise of r. It has been introduced
in some rn, and was maintained in all subsequent rm, so apparently in rn it had

the form z
b−→ y, and ρ̄k(z) is a variable for all k ≥ 0. So according to property

3, ρ̂(z) is a variable. Moreover, ρ̄n(y) = y for all n, so due to property 2 ρ̂(y) = y.

4.4. Tyft/Tyxt Reduces to Tree 43

Summarizing, the premise in r has the form ρ̂(z)
b−→ y with ρ̂(z) a variable. Clearly,

the conclusion of r equals f(x1, ..., xm)
a−→ ρ̂(t) (where t is the right-hand side of

the conclusion of r0). So r is xyft.
Since r is provable from R and xyft, by definition r ∈ S. Since σρ̂ = σ, the

conclusion of r under σ results to p
a−→ p′, and the premises of r under σ are all

provable from S. So r proves p
a−→ p′ from S. Then clearly p

a−→ p′ is provable
from S. 2

Although according to Theorem 4.15 the tyft/tyxt format reduces to the more
restrictive xyft format, this is by no means an argument to abandon the tyft/tyxt
format. Because a simple TSS in tyft/tyxt format may take a much more compli-
cated form if it is described in xyft format. This is demonstrated by the following
example.

Example 4.16 Assume two functions a, b of arity zero, a function f of arity one,
and a label l. Consider the following TSS in tyft format.

a
l−→ a

a
l−→ y

a
l−→ f(y)

To describe this TSS in xyft format, we need an infinite number of rules: a
l−→ fn(a)

for n = 0, 1, 2, ... (The auxiliary function symbol b is present to avoid that the TSS

can be described by the single rule a
l−→ x.)

4.4.3 Xyft reduces to tree

The following terminology originates from [10].

Definition 4.17 A variable is called free in a rule if it does not occur at the right-
hand side of the premises, nor at the left-hand side of the conclusion of the rule. A
rule is called pure if it does not contain any free variables.

Definition 4.18 A tree rule is a pure and well-founded xyft rule.

Theorem 4.19 Each TSS R in xyft format is equivalent to a TSS in tree format.

Proof. We prove R equivalent with the TSS S of tree rules that can be proved from
R. Since all rules in S can be proved from R, clearly each transition provable from
S is also provable from R. We check the converse, namely that a closed transition
p

a−→ p′ provable from R is provable from S.
Fix a rule r in R that together with a closed substitution σ deduces p

a−→ p′

from R. Let r be of the form

{zi ai−→ yi | i ∈ I}

f(x1, ..., xm)
a−→ t

44 The Tyft/Tyxt Format Reduces to Tree Rules

Using ordinal induction, it follows that σ(zi
ai−→ yi) is provable from S for i ∈ I.

We construct from r a rule r′ in S that deduces p
a−→ p′ from S as follows.

If there is no backward path in the dependency graph of r from a vertice yi to a
vertice xj, then replace the variables zi and yi in r by σ(zi) and σ(yi) respectively.
Moreover, replace free variables z in t by σ(z). The resulting rule r′′ is a substitution
instance of r, so r′′ is provable from R. Remove each premise σ(zi

ai−→ yi) from r′′.
Since such transitions are provable from R, the resulting rule r′ is provable from R.

Clearly, r′ is pure and xyft. Moreover, r′ is well-founded, because for each premise
zi

ai−→ yi in r
′, the backward path from the vertice yi in the dependency graph of r′

terminates at a vertice xj. Hence, r
′ is a tree rule, so r′ ∈ S. Since r′ together with

σ deduces p
a−→ p′ from S, it follows that p

a−→ p′ is provable from S. 2

So, we have found that for each TSS in tyft/tyxt format there exists an equivalent
TSS in tree format. Since tree rules are well-founded tyft rules, this result implies
that the congruence theorem for tyft/tyxt can do without well-foundedness.

Corollary 4.20 If a TSS R is in tyft/tyxt format, then ↔R is a congruence.

4.5 Extensions to Other Formats

4.5.1 The ntyft/ntyxt format

Groote [9] extended the tyft/tyxt format to the ntyft/ntyxt format, which as extra
feature allows transition rules to contain negative premises, i.e. expressions of the
form t

a−→/ . In a setting with negative premises, the definition for transitions that
can be proved from a TSS has to be adapted, in order to deal with rules such as

t
a−→/

t
a−→ t′

The most general way to associate transitions with a TSS that incorporates negative
premises is through the notion of a stable model, which was introduced by Gelfond
and Lifschitz [6] in logic programming. Bol and Groote [4], who adapted this notion
for TSSs, showed that there exist TSSs in ntyft/ntyxt format with a unique stable
model for which bisimulation is not a congruence. Therefore, they defined the
(complicated) notion positive after reduction, inspired by the work of Van Gelder,
Ross and Schlipf [5] in logic programming, and proved a congruence theorem for
well-founded TSSs in the ntyft/ntyxt format that are positive after reduction.

Van Glabbeek [8] proposes the notion complete (with positive support). Basically,
a TSS is complete if for each closed transition p

a−→ p′, the TSS can prove either
p

a−→ p′ or its negation p
a−→/ p′. Van Glabbeek proposes a notion of provability that

allows to derive negative transitions. Van Glabbeek shows that the notions complete
and positive after reduction are equivalent.

Without any further complications, we can repeat the construction from the
previous section to show that each complete TSS in ntyft/ntyxt format is equivalent

4.5. Extensions to Other Formats 45

to a complete TSS in an extension of the tree format, which allows rules to have
premises of the form t

a−→/ . Again, TSSs in the latter format are well-founded, so
as a corollary we see that the well-foundedness condition in the congruence theorem
for the ntyft/ntyxt format can be dropped.

Corollary 4.21 If a complete TSS R is in ntyft/ntyxt format, then ↔R is a con-
gruence.

4.5.2 The panth format

Baeten and Verhoef [2] extended the tyft/tyxt format with predicates, i.e. not only
relations t

a−→ t′, but also predicates such as t
a−→ √

are allowed to occur in
transition rules. The definition of strong bisimulation, Definition 4.6, is adapted
accordingly by adding a third condition:

- if pBq, and p a−→ √ is provable from R, then q
a−→ √ is provable from R.

Next, Verhoef [15] extended the path format with negative premises. A congruence
theorem holds for well-founded complete TSSs that are in the so-called panth format,
which is essentially the natural extension of ntyft/ntyxt with predicates.

Without any further complications, we can repeat the construction from the
previous section to show that each complete TSS in panth format is equivalent
to a complete TSS in an extension of the tree format, which allows rules to have
premises of the form z

a−→ √ and t
a−→/ and t

a−→/ √, and a conclusion of the form
f(x1, ..., xm)

a−→ √. As a corollary, we see that the well-foundedness condition in
the congruence theorem for the panth format can be dropped.

Corollary 4.22 If a complete TSS R is in panth format, then ↔R is a congruence.

4.5.3 Panth does not reduce to negative tree

We show that in general terms in negative premises cannot be reduced to variables.
The negative tree format allows complete TSSs which consist of pure and well-
founded panth rules, where the variables of all the premises (so also of the negative
premises) are variables. We present a complete TSS in panth format for which there
does not exist an equivalent TSS in negative tree format.

Our counter-example is presented in the setting of Basic Process Algebra (BPA).
This formalism assumes an alphabet A, representing functions with arity zero, and
the functions + and ·, both of arity two, denoting alternative and sequential com-
position respectively. BPA assumes relation

a−→ and predicates
a−→ √ for a ∈ A.

The action rules of BPA are as follows.
Add two functions f and g with arity one and a predicate

ok−→ √ to BPA, and
extend the operational semantics by the following two transition rules, to obtain the
TSS R.

x
a−→ y1 y1

a−→ √

g(x)
ok−→ √

g(x)¬ ok−→ √

f(x)
ok−→ √

46 The Tyft/Tyxt Format Reduces to Tree Rules

a
a−→ √

x
a−→ √

x+ y
a−→ √ y + x

a−→ √
x

a−→ x′

x+ y
a−→ x′ y + x

a−→ x′

x
a−→ √

x · y a−→ y

x
a−→ x′

x · y a−→ x′ · y

The TSS R is complete and in panth format. The premise g(x)¬ ok−→ √ cannot be
reduced. An obvious attempt to delete this negative premise would be to replace
the second rule by the following two rules.

x
a−→/

f(x)
ok−→ √

x
a−→ y y

a−→/

f(x)
ok−→ √

However, this adapted TSS is not equivalent to R. For example, f(aa+ ab)
ok−→ √

holds in the new TSS, but not in R.

Lemma 4.23 Let T be a TSS in negative tree format and p0 and p1 two closed
terms, such that:

1. if T proves p0
a−→ q, then T proves p1

a−→ q,

2. if T proves p0
a−→ √, then T proves p1

a−→ √,

3. if T proves p0¬ a−→, then T proves p1¬ a−→,

4. if T proves p0¬ a−→ √, then T proves p1¬ a−→ √.

If T proves f(p0)
ok−→ √, then T proves f(p1)

ok−→ √.

Proof. Suppose that r ∈ T together with a substitution σ deduces f(p0)
a−→ √

from T . Since r is in negative tree format, it has a conclusion of the form f(x)
ok−→ √,

and σ(x) = p0.
Define a substitution σ′ by σ′(x) = p1 and σ′(x) = σ(y) for y 6= x. Since r is

in negative tree format, properties 1-4 of the transition systems of p0 and p1 ensure

that r together with σ′ deduces f(p1)
ok−→ √ from T . 2

The TSS R that was defined before proves f(aa)
ok−→ √, but not f(aa+ ab)

ok−→√
. Hence, Lemma 4.23 ensures that R cannot be equivalent to a TSS in negative

tree format.

References 47

References

[1] K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, Volume B, Formal Methods and Semantics, pages
493–574. Elsevier, 1990.

[2] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, editor, Proceedings 4th Conference on
Concurrency Theory (CONCUR’93), Hildesheim, LNCS 715, pages 477–492.
Springer-Verlag, 1993.

[3] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced: preliminary
report. In Proceedings 15th ACM Symposium on Principles of Programming
Languages, San Diego, California, pages 229–239, 1988. To appear in Journal
of the ACM.

[4] R.N. Bol and J.F. Groote. The meaning of negative premises in transition sys-
tem specifications. In J. Leach Albert, B. Monien, and M. Rodŕıguez Artalejo,
editors, Proceedings 18th International Colloquium on Automata, Languages
and Programming (ICALP’91), Madrid, LNCS 510, pages 481–494. Springer-
Verlag, 1991.

[5] A. van Gelder, K. Ross and J.S. Schlipf. Unfounded sets and well-founded se-
mantics for general logic programs. In Proceedings 7th Symposium on Principles
of Database Systems, pages 221–230. ACM SIGACT-SIGMOD, 1988.

[6] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings 5th Conference on Logic
Programming, pages 1070–1080. MIT press, 1988.

[7] R.J. van Glabbeek. Full abstraction in structural operational semantics. In
M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Proceedings 3rd Conference
on Algebraic Methodology and Software Technology (AMAST’93), Twente, The
Netherlands, Workshops in Computing, pages 77–84. Springer-Verlag, 1993.

[8] R.J. van Glabbeek. Unpublished manuscript on the meaning of negative
premises in transition system specifications.

[9] J.F. Groote. Transition system specifications with negative premises. Theoret-
ical Computer Science, 118(2):263–299, 1993.

[10] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. Information and Computation, 100(2):202–260, 1992.

[11] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4(2):258–282, 1982.

48 The Tyft/Tyxt Format Reduces to Tree Rules

[12] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5th GI Conference, LNCS 104, pages 167–183. Springer-Verlag, 1981.

[13] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University, 1981.

[14] R. de Simone. Higher-level synchronising devices in meije–SCCS. Theoretical
Computer Science, 37:245–267, 1985.

[15] C. Verhoef. A congruence theorem for structured operational semantics with
predicates and negative premises. In B. Jonsson and J. Parrow, editors, Proceed-
ings 5th Conference on Concurrency Theory (CONCUR’94), Uppsala, LNCS
836, pages 433–448. Springer-Verlag, 1994.

5

Idempotent Most General Unifiers for
Infinite Sets

Wan Fokkink

A standard result from unification theory says that if a finite set E of equa-
tions between terms is unifiable, then there exists an idempotent most general
unifier for E. In this chapter, the theorem is generalized, in first-order logic,
to the case where E may be infinite.

5.1 Introduction

The unification problem is to determine, given an equation s = t in some logic,
whether there exists a substitution σ such that (s)σ = (t)σ. The substitution σ
is a ‘unifier’, and s = t is called ‘unifiable’. For an introduction into the field of
unification theory, see [1, 7].

A first algorithm, which solves the unification problem in first-order logic, stems
from Herbrand’s thesis [4] (see [3]). This algorithm was rediscovered by Prawitz [11],
and its full significance was recognized only after Robinson [12] had employed it in
his resolution principle for automatic theorem-proving. Robinson was the first to
define the basic concepts for unification. His algorithm decides whether an equation
is unifiable or not, and if so, then it produces a unifier which is idempotent and ‘most
general’, which means that all other unifiers for the equation can be derived from
it. More efficient unification algorithms, for finite sets of equations, were proposed
by Paterson and Wegman [9] and Martelli and Montanari [8] and Eder [2].

Pietrzykowski [10] defined an algorithm to detect whether or not an equation is
unifiable in second-order logic. Huet [5] showed that such an algorithm does not
exist in third-order logic. In [6] however, he introduced an algorithm in ω-order
logic which, given a unifiable equation, computes a unifier for this equation. For
non-unifiable equations, this algorithm may not terminate.

In this chapter, we prove that each infinite unifiable collection of equations, in
first-order logic, allows an idempotent most general unifier. Since the collection of

49

50 Idempotent Most General Unifiers for Infinite Sets

equations is infinite, our construction involves limit procedures.
For an application of this result, in the setting of operational semantics à la

Plotkin, see Chapter 4 of this thesis.

Acknowledgements. This research was initiated by discussions with Catuscia
Palamidessi.

5.2 Preliminaries

In the sequel we assume an alphabet, which consists of the disjoint union of an
infinite set of variables and a set of function symbols. Each function symbol f is
provided with an arity ar(f), being a natural number ≥ 0. The collection of terms
over the alphabet is defined inductively as follows:

- each variable is a term,

- for f is a function symbol, and t1, ..., tar(f) terms, f(t1, ..., tar(f)) is a term.

The number of function symbols in a term is called the size of the term. Syntactic
equivalence between terms is denoted by = .

A substitution is a mapping from variables to terms. The notation σ = τ means
that (x)σ = (x)τ for all variables x. Each substitution is extended to a mapping
from terms to terms in the standard way.

Definition 5.1 The domain of a substitution σ is the collection of variables x for
which (x)σ 6= x.

Substitutions are allowed to have an infinite domain.

Definition 5.2 A substitution σ is idempotent if σσ = σ.

In the sequel, E denotes a set of equations s = t between terms.

Definition 5.3 A substitution σ is a unifier for E if for all s = t ∈ E we have
(s)σ = (t)σ. The set E is called unifiable if it allows a unifier.

A substitution σ is a unifier for a substitution τ if τσ = σ.

Definition 5.4 A unifier Θ for E is called most general if for each unifier σ for E
there exists a substitution σ′ such that Θσ′ = σ.

5.3 The Main Theorem

A standard result from unification theory says that if a finite set E of equations
between terms is unifiable, then there exists an idempotent most general unifier for
E. In this chapter, the theorem is generalized to the case where E may be infinite.
First, we rephrase the theorem.

5.3. The Main Theorem 51

Proposition 5.5 The following two statements for a substitution Θ are equivalent.

1. Θ is an idempotent most general unifier for E.

2. Θ is a unifier for E, and each unifier for E is a unifier for Θ.

Proof. (⇒) Let σ unify E. Since Θ is most general, there is a substitution σ ′ such
that Θσ′ = σ. Furthermore, Θ is idempotent, so

Θσ = ΘΘσ′ = Θσ′ = σ.

(⇐) Each unifier σ for E unifies Θ, which means that Θσ = σ. So Θ is most general.
Θ is a unifier for E, so in particular Θ unifies itself. Hence, ΘΘ = Θ. 2

An equation s = t will be called a proper sub-equation of equations C[s] = C[t]
for non-trivial contexts C[].

Theorem 5.6 If E is unifiable, then there exists a unifier Θ for E such that each
unifier for E is also a unifier for Θ.

Proof. Let τ0 denote the identity substitution, and define Ee
0 = {e} for each e ∈ E.

We define a construction which produces from a substitution τn−1 and unifiable sets
of equations Ee

n−1, a substitution τn and unifiable sets of equations Ee
n.

• If Ee
n−1 contains an equality f(s1, ..., sar(f)) = g(t1, ..., tar(g)), then f ≡ g,

because Ee
n−1 is unifiable. Replace each such equation in Ee

n−1 by its proper
sub-equations si = ti for i = 1, ..., ar(f). Denote the resulting set by F e

n. Note
that a substitution unifies Ee

n−1 if and only if it unifies F e
n.

• Suppose that a variable x is not in the domain of τn−1, and that ∪e∈EF e
n

contains (one or more) equations of the form x = t or t = x, where t is not
a single variable. Then choose one of these equations x = t or t = x, and
put (x)τn = t. Put (y)τn = (y)τn−1 for all other variables y. In particular, τn
equals τn−1 on the domain of τn−1.

• Put Ee
n = (F e

n)τn.

From the following Property 1, and from the fact that τ0 and E are unifiable, it
follows immediately that all Ee

n are unifiable.

1. Each unifier σ for τn−1 and ∪e∈EEe
n−1, is also a unifier for τn and ∪e∈EEe

n.

Proof. Since σ unifies Ee
n−1, it also unifies F e

n, for each e ∈ E.
If (x)τn = (x)τn−1 for a variable x, then (x)τnσ = (x)τn−1σ = (x)σ, because σ

unifies τn−1. Otherwise, if (x)τn 6= (x)τn−1, then it follows from the construction of
τn that (x)τn = x (or its reverse) is in ∪e∈EF e

n. Since σ unifies all F e
n, it follows that

(x)τnσ = (x)σ. Hence, σ unifies τn.
(Ee

n)σ = (F e
n)τnσ = (F e

n)σ, because σ unifies τn. Since σ unifies F e
n, it follows

that σ unifies Ee
n, for each e ∈ E. 2

52 Idempotent Most General Unifiers for Infinite Sets

2. Each unifier σ for τn and Ee
n, is also a unifier for τn−1 and Ee

n−1.

Proof. τn−1 equals τn on its domain, and σ unifies τn, so σ also unifies τn−1.
(F e

n)σ = (F e
n)τnσ = (Ee

n)σ, and σ unifies Ee
n, so σ unifies F e

n. Then σ unifies
Ee
n−1. 2

Since τn equals τn−1 on the domain of τn−1, we can define the ‘union’ τ of the
substitutions τn:

(x)τ =

{

(x)τn if (x)τn 6= x for some n,
x otherwise.

3. For each variable x, either (x)τ = x, or (x)τ is not a variable.

Proof. If (x)τ 6= x, then (x)τ = (x)τn for some n > 0. Let n be the smallest natural
number for which this equality holds, so that (x)τn 6= (x)τn−1. Then it follows from
the construction of τn that there is an equation x = t or t = x in ∪e∈EF e

n, where t
is not a variable, and (x)τn = t. Hence, (x)τ = t is not a variable. 2

4. For each variable x, there is a natural M(x) such that (x)τM(x)+1 = (x)τM(x).

Proof. Fix a unifier σ for E. Since σ also unifies the identity τ0, Property 1 implies
that σ is a unifier for all τn. So σ is a unifier for their union τ , which means that
(x)τmσ = (x)σ for all m. Thus, the size of the terms (x)τm cannot grow beyond
the size of (x)σ. The term (x)τm+1 is obtained from (x)τm by application of τ , so
the size of (x)τm+1 is at least the size of (x)τm. Hence, there is a natural M(x)
such that for m ≥M(x), all terms (x)τm have the same size. Then Property 3 of τ
implies (x)τm+1 = (x)τm for m ≥M(x). 2

We define the ‘limit’ τ̄ of τ by

(x)τ̄ = (x)τM(x).

Property 4 implies that τ τ̄ = τ̄ . So, since τ is the union of all τn, τnτ̄ = τ̄ for all n.

5. For each e ∈ E, there is a natural N(e) such that Ee
N(e) contains only equations

of the form x = y, where x and y are not in the domain of τ̄ .

Proof. Fix an e ∈ E, and consider the sequence {(Ee
n)τ̄}∞n=0.

Each equation in Ee
n−1 is either maintained, or replaced by proper sub-equations

in F e
n. Hence, each equation in (Ee

n−1)τ̄ is either maintained, or replaced by proper
sub-equations in (F e

n)τ̄ = (F e
n)τnτ̄ = (Ee

n)τ̄ . Since proper sub-equations have a size
smaller than the original equation, each chain of subsequent proper sub-equations
in the subsequent (Ee

n)τ̄ is finite. So, by König’s Lemma, there is some N(e) such
that all equations in (Ee

n−1)τ̄ are maintained in (Ee
n)τ̄ for each n > N(e).

Consider an equation s = t in Ee
n−1 for some n > N(e). Since (s = t)τ̄ ∈ (Ee

n−1)τ̄
is maintained in (Ee

n)τ̄ , s = t ∈ Ee
n−1 is maintained in F e

n. So s = t cannot have any
proper sub-equations, or in other words, s or t must be a variable, say, s = x.

Now suppose that t is not a variable. We deduce a contradiction. First, we show
that then (x)τn is not a variable. Distinguish two cases.

5.3. The Main Theorem 53

- (x)τn−1 6= x. Since τn and τn−1 coincide on the domain of τn−1, we have
(x)τn = (x)τn−1 6= x. Then Property 3 yields that (x)τn is not a variable.

- (x)τn−1 = x. Then x is not in the domain of τn−1. Furthermore, x = t ∈ F e
n

where t is not a variable. So from the construction of τn we see that (x)τn is
not a variable.

The equation x = t ∈ F e
n takes the form (x = t)τn in Ee

n. Since (x)τn and (t)τn
are not variables, this equation is replaced by proper sub-equations in F e

n+1. But
this contradicts the fact that equations in (Ee

n)τ̄ are maintained in (Ee
n+1)τ̄ . So

apparently, t must be a variable.
Thus, each equation in Ee

n−1 for n > N(e) is of the form x = y. In Ee
n, such

an equation takes the form (x = y)τn, so (x)τn and (y)τn are variables too. Then
Property 3 yields (x)τn = x and (y)τn = y. Hence, x and y are not in the domain
of τn for any n > N(e), so they are not in the domain of their union τ . Then x and
y are not in the domain of τ̄ . 2

We define the ‘limit’ Ē of E by

Ē =
⋃

e∈E

Ee
N(e).

Construct a unifier ρ for Ē as follows. Two variables are said to be ‘equivalent’ if
they can be equated by equations in Ē. We define ρ to contract the elements of each
equivalence class C to one variable in this class. That is, just pick some x0 ∈ C,
and put (x)ρ = x0 for x ∈ C.

Finally, we define the desired unifier Θ for E such that each unifier for E is also
a unifier for Θ:

Θ = τ̄ ρ.

6. Θ is a unifier for E.

Proof. Since τnτ̄ = τ̄ , also τnΘ = τnτ̄ ρ = τ̄ ρ = Θ. So Θ unifies τn for all n.
Consider an equation x = y ∈ Ē. Property 5 ensures that x and y are not in the

domain of τ̄ , so (x = y)Θ = (x = y)τ̄ ρ = (x = y)ρ. Since x and y can be equated
in Ē, ρ maps x and y to the same variable. So indeed this last equality holds, and
thus (x = y)Θ holds. So Θ unifies Ē.

Since Θ unifies all τn and Ē, in particular it unifies τN(e) and Ee
N(e) for each

e ∈ E. Then Property 2 yields that Θ unifies Ee
0 = {e}, for each e ∈ E. 2

7. Each unifier for E is a unifier for Θ.

Proof. Let σ unify E. Then according to Property 1, σ unifies τn and Ee
n for all

naturals n and e ∈ E.
σ unifies all τn, so it unifies their union τ . Since (x)τ̄ = (x)τM(x), σ unifies τ̄ .
σ unifies all Ee

N(e), so it unifies their union Ē. By definition of ρ, (x)ρ and x can

be equated in Ē for each x. Hence, (x)ρσ = (x)σ for each x.
So, Θσ = τ̄ ρσ = τ̄σ = σ. 2

54 Idempotent Most General Unifiers for Infinite Sets

References

[1] K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, Volume B, Formal Methods and Semantics, pages
493–574. Elsevier, 1990.

[2] E. Eder. Properties of substitutions and unifications. Journal of Symbolic
Computation, 1(1):31–46, 1985.

[3] J. van Heijenoort, editor. Jacques Herbrand: Écrits Logiques. Presses Univer-
sitaires de France, 1968. English translation: W.D. Goldfarb, editor. Jacques
Herbrand: Logical Writings. Reidel, 1971.

[4] J. Herbrand. Recherches sur la Théorie de la Démonstration. PhD thesis,
Université de Paris, 1930.

[5] G.P. Huet. The undecidability of unification in third order logic. Information
and Control, 22(3):257–267, 1973.

[6] G.P. Huet. A unification algorithm for typed λ̄-calculus. Theoretical Computer
Science, 1:27–57, 1975.

[7] Z. Manna and R. Waldinger. The Logical Basis for Computer Programming.
Volume II: Deductive Systems. Addison-Wesley, 1990.

[8] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4(2):258–282, 1982.

[9] M. Paterson and M. Wegman. Linear unification. Journal of Computer and
System Sciences, 16(2):158–167, 1978.

[10] T. Pietrzykowski. A complete mechanization of second-order type theory. Jour-
nal of the ACM, 20(2):333–364, 1973.

[11] D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.

[12] J.A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

6

An Elimination Theorem for Regular
Behaviours with Integration

Wan Fokkink

This chapter deals with an extension of the process algebra ACP with ratio-
nal time and integration. We determine a proper subdomain of the regular
processes for which an elimination theorem holds, namely, for each pair of
processes p0, p1 in this class there is a process q in this class such that p0‖p1

and q are bisimilar. Some simple examples show that if this subdomain is
enlarged, then the elimination result is lost. The subdomain is equivalent to
the model of timed automata from Alur and Dill.

6.1 Introduction

In recent years, process algebras such as CCS, CSP and ACP, have been extended
with constructs that mean to describe some notion of either discrete or dense time.
This chapter is based on the approach of Baeten and Bergstra [3], which extends
ACP with real time. They introduced the notion of integration, which expresses the
possibility that an action occurs somewhere within a time interval. The construct
∫

v∈V p executes the process p, where the behaviour of p may depend on the value of
v in the time interval V . In this chapter, we restrict to prefix integration, and in-
tegration is parametrized by conditions, which consist of inequalities between linear
expressions of variables. These notions originate from Klusener [9].

This chapter concerns regular processes. Traditionally, a process is regular if it
consists of a finite number of states. However, here such a definition would not work,
due to the presence of the integral construct, which causes even finite processes to
have an infinite number of transitions. Therefore, a regular process is defined to
be the solution of a linear specification, which is motivated by the fact that regular
processes in the untimed case are exactly the solutions of linear specifications.

For the sake of verification in process algebra, it is important to have an elim-
ination theorem which says that the parallel composition of two regular processes

55

56 An Elimination Theorem for Regular Behaviours with Integration

is again a regular process. Namely, in general a verification deals with a process
∂H(p1‖ · · · ‖pk), where p1, ..., pk are regular. Elimination theorems have been de-
duced for regular processes in untimed ACP (see [4]), and in timed ACP without
integration [6]. In this chapter, we set out to deduce an elimination theorem for
regular processes in timed ACP with integration. A simple example will show that
in general, the merge can not be eliminated from processes in this algebra. We will
determine a subclass of ‘strongly’ regular processes, for which an elimination the-
orem does hold. Furthermore, some more examples will show that the elimination
result is lost if the subalgebra is enlarged in any obvious way.

At first sight, the syntactic restrictions for the subdomain of strongly regular pro-
cesses may seem quite arbitrary. However, if one studies the examples more closely,
then it turns out that linear specifications which do not satisfy these restrictions
tend to describe different kinds of irregular behaviour, such as accelerations and
oscillations. The subdomain seems to be sufficiently wide for practical purposes, see
e.g. Hillebrand [8].

The subdomain of strongly regular processes can be linked to the class of timed
automata from Alur and Dill [2]. It is not possible to obtain a precise translation
between the processes in our subdomain and timed automata, due to the require-
ment of non-Zeno behaviour and the presence of fairness restrictions for languages
accepted by timed automata. If these restrictions are discarded, then the classes of
strongly regular processes and of timed automata turn out to be equivalent. Hence,
the operations from ACP can be used to compose smaller timed automata into larger
ones. This compositionality is missing in existing timed automata work.

The proof of the elimination theorem turns out to be deplorably complicated.
In order to keep the exposition as simple as possible, the left merge , the commu-
nication operator | and the encapsulation operator ∂H will be excluded from to the
syntax. The elimination result extends to the syntax which does incorporate these
constructs without any complications.

Acknowledgements. Steven Klusener and an anonymous referee provided helpful
comments, and Frits Vaandrager suggested the link with timed automata.

6.2 The Syntax and Semantics

This section contains a description of the syntax and semantics for ACP with rel-
ative time and integration, denoted by ACPrI, together with recursion. For the
elimination result it is essential that we restrict the time domain to the rational
numbers. For example, if X = a[1] · X and Y = b[

√
2] · Y , then the merge cannot

be eliminated from X‖Y .

6.2.1 Bounds and conditions

In the sequel, we assume a countably infinite set of time variables TVar.

6.2. The Syntax and Semantics 57

Definition 6.1 The set of bounds, with typical element b, is defined as follows,
where r ∈ Q and v ∈ TVar.

b ::= r | v | b+ b | r · b.

The expression b0 − b1 abbreviates b0 + (−1) · b1.

Definition 6.2 The set of conditions, with typical element φ, is defined by

φ ::= b0 ≤ b1 | φ ∧ φ | ¬φ.

In the sequel, we use the abbreviations φ ∨ ψ for ¬(¬φ ∧ ¬ψ), and tt for ¬(1 ≤ 0),
and ff for 1 ≤ 0, and b0 < b1 for ¬(b1 ≤ b0), and b0 = b1 for b0 ≤ b1 ∧ b1 ≤ b0, and
b0 < v < b1 for b0 < v ∧ v < b1.

6.2.2 Process terms

We assume a countable alphabet A of atomic actions, together with a special
constant δ, representing deadlock. In the sequel, a and α denote elements of
A and A ∪ {δ} respectively. Furthermore, we assume a communication function
| : A× A→ A, which is commutative and associative and has δ as zero element.

Integration enables to express that the behaviour of a process may depend on
the value of a time variable. If a process p depends on the value of v between 1 and
2, then we write

∫

1<v<2
p.

Here, integration is parametrized by conditions, and we deal with prefix integration
∫

φ α[v] ·p. If α 6= δ, then this process can execute the action α[r] under the condition
that φ[r/v] is true, after which the process results to p[r/v].

In ACPrI, process terms are constructed from prefix integration, the alternative
composition x+ y, the merge x‖y and the time shift (b)x, where b is a bound. The
time shift is an auxiliary operator that is needed in the operational semantics of the
merge; the process (b)p denotes the process p that is shifted forward b time units in
time. As binding convention, merge, integration and time shift bind stronger than
alternative composition.

Assume a finite set VE of recursion variables, where each variable X in VE is
supplied with an arity ar(X). The recursive specification E consists of a collection

{X(v1, ..., var(X)) = tX | X ∈ VE},

where v1, ..., var(X) are distinct time variables, and tX is a process term constructed
from integration, the alternative composition, the merge, the time shift, and expres-
sions of the form Y (b1, ..., bar(Y)), where Y ∈ VE and b1, ..., bar(Y) bounds.

Definition 6.3 E is called well-defined if each term tX for X ∈ VE contains only
the time variables v1, ..., var(X).

58 An Elimination Theorem for Regular Behaviours with Integration

The set of process terms, with typical element p, is defined by

p ::=
∫

φ
α[v] |

∫

φ
α[v] · p | p+ p | p‖p | (b)p | 〈X(b1, ..., bar(X))|E〉.

where E is well-defined.
In the sequel,

∫

v=b α[v] is often abbreviated to α[b], and 〈X(b1, ..., bar(X))|E〉 to
X(b1, ..., bar(X)).

6.2.3 Free variables and substitutions

In general, one cannot attach a transition system to a process term that contains
time variables which are not bound by an integral sign. Therefore, we need the
notion of a time-closed process. In the term

∫

φ α[v], occurrences of v in φ are bound,
and in

∫

φ α[v] · p, occurrences of v in φ and in p are bound. A time variable in a
process term is called free if it is not bound by any integral signs. The collection
of free variables in a term p is denoted by fvar(p). A term p is called time-closed
if fvar(p) = ∅. As a model we take the collection T cl of time-closed process terms,
modulo bisimulation.

A substitution is a mapping from time variables to bounds. For b a bound and σ
a substitution, σ(b) denotes the bound that results from substituting σ(v) for time
variables v in b. Substitutions extend to conditions as expected. A substitution
σ : TVar → Q≥0 is called a valuation.

For a process term p, σ(p) is obtained by replacing free occurrences of time
variables v by σ(v). In this definition however, there is one serious complication.
Namely, if a free occurrence of v in p has been replaced by σ(v), then variables w that
occur in σ(v) may suddenly be bound in subterms

∫

φ α[w] ·q of p. A solution for this
problem, which originates from the λ-calculus, is to allow unrestricted substitution
by renaming bound variables. In the sequel, process terms are considered modulo
α-conversion, and when a substitution is applied, bound variables are renamed.
Stoughton [11] presented a simple treatment of this technique.

If for a substitution σ there are finitely many variables v1, ..., vn such that σ(vi) 6=
vi, then often we will use the standard notation p[σ(v1)/v1, ..., σ(vn)/vn] for σ(p).

6.2.4 Operational semantics

Table 6.1 contains an operational semantics for time-closed processes, taken from
[9]. We focus on relative time, i.e. we assume that an expression a[r] denotes an
action a that is executed exactly r time units after the previous action has been
executed. Time starts at zero, which means that actions with negative time stamps
do not display any behaviour.

The timed deadlock δ[r] idles until time r. For example, the process
∫

v<1 a[v]+δ[3]
either executes the a before time 1, or idles until time 3. On the other hand,
the process

∫

v<1 a[v] + δ[1] will always execute the a before time 1. In order to
distinguish processes that only differ in their deadlock behaviour, we introduce the

6.3. An Elimination Theorem 59

delay predicate Ur(p), which holds if p can idle beyond time r. Processes that only
differ in their deadlock behaviour have distinct delays. For example, U2(

∫

v<1 a[v] +
δ[3]), but not U2(

∫

v<1 a[v] + δ[1]).
The rules which define the communication operators are such that the merge

does not result in arbitrary interleavings. For this would result in transitions such

as a[1] ‖ b[2] b[2]−→ (−2)a[1], where (−2)a[1] does not display any behaviour. Such
situations are avoided by a side condition. Namely, if a process p can execute an
action a[r], then p‖q can execute a[r] only if Ur(q).

In the action rules for recursion, the construct 〈tX [r1/v1, ..., rar(X)/var(X)] | E〉 de-
notes tX [r1/v1, ..., rar(X)/var(X)] with each occurrence of expressions Y (b1, ..., bar(Y))
replaced by 〈Y (b1, ..., bar(Y))|E〉.

6.2.5 Bisimulation

Time-closed process terms are considered modulo (strong) bisimulation.

Definition 6.4 Two time-closed process terms p0 and q0 are bisimilar, denoted by
p0 ↔ q0, if there exists a symmetric binary bisimulation relation B on time-closed
process terms such that

- p0Bq0,

- if p
a[r]−→ p′ and pBq, then q a[r]−→ q′ for some process q′ with p′Bq′,

- if p
a[r]−→ √ and pBq, then q a[r]−→ √,

- if Ur(p) and pBq, then Ur(q).
The rules in Table 6.1 can be fit into the congruence format for action rules with
types, data and variable binding of Bloom and Vaandrager [5] (see Chapter 7).
Strong bisimulation defined by transition rules within this format is always a con-
gruence on the algebra of closed terms, which means that if p↔ p′ and q ↔ q′, then
p+ q ↔ p′ + q′ and p‖q ↔ p′‖q′ and ∫

φ α[v] · p ↔
∫

φ α[v] · p′ and (b)p ↔ (b)p′.

6.3 An Elimination Theorem

6.3.1 Regular processes

Usually, a process is called regular if it has a finite number of states. In the present
setting this definition would backfire, since the integral construct causes even finite
processes to have an infinite number of states. In untimed ACP one can prove, for
suitable models, that a process is regular if and only if it is equal to a solution of
a linear recursive specification [10]. Here, we use this property as the definition of
regularity. A recursive specification is linear if its equations are of the form

X(v1, ..., var(X)) =
∑

i

∫

φi

ai[w] · Yi(bi1, ..., biar(Yi)) +
∑

j

∫

ψj

αj[w].

60 An Elimination Theorem for Regular Behaviours with Integration

φ[r/v] r > 0
∫

φ a[v]
a[r]−→ √

φ[r/v] r > 0
∫

φ a[v] · x
a[r]−→ x[r/v]

x
a[r]−→ √

x+ y
a[r]−→ √ a[r]←− y + x

x
a[r]−→ x′

x+ y
a[r]−→ x′

a[r]←− y + x

x
a[r]−→ √ Ur(y)

x‖y a[r]−→ (−r)y a[r]←− y‖x
x

a[r]−→ x′ Ur(y)

x‖y a[r]−→ x′‖(−r)y y‖x a[r]−→ (−r)y‖x′

x
a[r]−→ √ y

a′[r]−→ √

x‖y (a|a′)[r]−→ √
x

a[r]−→ x′ y
a′[r]−→ y′

x‖y (a|a′)[r]−→ x′‖y′

x
a[r]−→ √ y

a′[r]−→ y′

x‖y (a|a′)[r]−→ y′
(a|a′)[r]←− y‖x

x
a[r]−→ √ r + b = s > 0

(b)x
a[s]−→ √

x
a[r]−→ x′ r + b = s > 0

(b)x
a[s]−→ x′

〈tX [r1/v1, ..., rar(X)/var(X)] | E〉
a[r]−→ √

〈X(r1, ..., rar(X)) | E〉
a[r]−→ √

〈tX [r1/v1, ..., rar(X)/var(X)] | E〉
a[r]−→ y

〈X(r1, ..., rar(X)) | E〉
a[r]−→ y

φ[s/v] 0 < r < s

Ur(
∫

φ α[v]) Ur(
∫

φ α[v] · x)
Ur(x)

Ur(x+ y) Ur(y + x)

Ur(x) r + b = s > 0

Us((b)x)

0 < r < b

Ur((b)x)

Ur(x) Ur(y)

Ur(x‖y)
Ur(tX [b1/v1, ..., bar(X)/var(X)])

Ur(X(b1, ..., bar(X)))

Table 6.1: Action rules for ACPrI

6.3. An Elimination Theorem 61

A time-closed process is regular if it is bisimilar to a process 〈X|E〉, where E is
linear.

6.3.2 A counter-example

We want to prove an elimination theorem for a class of regular behaviours. An easy
example will learn that such a theorem does not hold for the full class. This example
uses the following lemma.

Lemma 6.5 Let Q(p) denote the collection of rationals r for which there exists a

transition p
a[r]−→ p′ where p′ can deadlock. If p is regular, then Q(p) consists of a

finite number of intervals.

Proof. Omitted. (It follows from the refinement lemma in Chapter 7.)

The following example shows that the merge of two regular processes is not
always a regular process.

Example 6.6 Define

X =
∫

0<w<1 a[w] · Y (w)

Y (v) =
∫

w=v a[w] · Y (w).

The process X‖a′[1] (with a|a′ = δ) is not regular.

Each trace of the process X is of the form a[r] · a[r] · a[r] · ... with r ∈ 〈0, 1〉. If
r ∈ 〈1/(n+1), 1/n〉 for a natural n, then X‖a′[1] will execute a[r] n times, followed
by a′[1 − nr], then a[(n + 1)r − 1], and after that only a[r]’s. And if r = 1/n,
then X‖a′[1] will get into a deadlock after n− 1 times executing a. So according to
Lemma 6.5, X‖a′[1] is not regular. (End example)

6.3.3 Strongly regular processes

According to Example 6.6, the class of regular processes is too large for an elimi-
nation theorem. On the other hand, if no occurrences of of time dependencies are
allowed, then the collection is too small. Because in this class equivalences such as

∫

0<v<1
a[v] ‖

∫

1<w<2
a′[w] ↔

∫

0<v<1
a[v] ·

∫

1−v<w<2−v
a′[w]

cannot be expressed anymore. Godskesen and Larsen [7] provided a rigorous proof
that time dependencies are essential in order to obtain an expansion theorem in a
timed setting. (Aceto and Murphy [1] proposed the notion of ‘ill-timed’ traces, in
order to obtain an expansion theorem in the absence of time dependencies.)

So, is there an algebra in between, for which an elimination theorem can be
deduced? The answer is yes.

62 An Elimination Theorem for Regular Behaviours with Integration

Definition 6.7 A time-closed process is strongly regular if it is bisimilar to a pro-
cess 〈X0|E〉, where E consists of equations

XI(v1, ..., var(X)) =
∑

k

∫

φk

ak[w] ·XIk(bk1, ..., bkar(Yk)) +
∑

l

∫

ψl

αl[w],

that satisfy the following requirements.

1. The φk and the ψl are in the class of conditions that is defined by

φ ::= w ≤ b | b ≤ w | φ ∧ φ | ¬φ,

where b is of the form r or r − vi.

2. The bounds bkj are of the form r or w + r or vi + w + r.

Lemma 6.8 Each strongly regular process can be described by a linear specification
with the following more restrictive constraints.

1. The bounds b in the φk and the ψl are of the form r or r − vi with r ≥ 0.

2. The bounds bkj are of the form or w or vi + w.

Proof sketch.

1. If a bound b in the φk and the ψl is of the form r or r − vi with r < 0, then r
can be replaced by 0, because actions only occur after time zero.

2. If a bound bkj is of the form r or w + r or vi + w + r, then r can be removed
by introducing a new recursion variable Ỹk(v1, ..., var(Yk)), of which the linear
equation is obtained by replacing expressions s − vj in the conditions of the
equation of Yk(v1, ..., var(Yv)) by (s− r)− vj. 2

We prove an elimination theorem for the algebra of strongly regular processes.

6.3.4 Two counter-examples

First, we present two more examples to show that this elimination result would get
lost if the definition of strong regularity were less restrictive. Example 6.6 already
indicated that this definition cannot be loosened by allowing not only expressions r
and r − vi, but also variables vi as bounds b. The following example indicates that
neither one can allow variables vi as bounds bkj.

Example 6.9 Define

X =
∫

0<w<1 a[w] · Y (w)

Y (v) =
∫

w=1−v a[w] · Y (v).

The process X‖a′[2] (with a|a′ = δ) is not regular.

6.3. An Elimination Theorem 63

Each trace of the process X is of the form a[r] · a[1− r] · a[1− r] · ... with r ∈ 〈0, 1〉.
If r ∈ 〈(n − 2)/(n − 1), (n − 1)/n〉 for some n ≥ 2, then X‖a′[2] will first execute
n+ 1 a’s, then an a′ and then only a’s. And if r = (n− 1)/n, then X‖a′[2] will get
into a deadlock after n+ 1 times executing a. So according to Lemma 6.5, X‖a′[2]
is not regular. (End example)

Finally, the following example indicates that one cannot allow expressions r−svi
as bounds b, where s ∈ Q. This example is more involved than the previous ones.

Example 6.10 Define

X1 =
∫

0<v<1 a[v] ·X2(v) Y1 = a′[1
2
] · Y2

X2(v) =
∫

w= 3
2
− 1

2
v a[w] ·X2(w) Y2 = a′[1] · Y2.

The process X1‖Y1 (with a|a′ = δ) is not regular.

Clearly, the nth a′-action of Y1 is executed at absolute time n − 1/2. An easy
calculation learns that if X1 executes its first action at time r, then its nth action
will be executed at absolute time n− (1− r)tn, where

tn =
n

∑

i=1

(−1

2
)i−1.

So if (1 − r)tn = 1/2 for some n, then X1‖Y1 will get into a deadlock after n − 1
times executing a. The equalities r = 1 − 1/(2tn) for n = 1, 2, ... yield an infinite
partition of the interval 〈0, 1〉, so according to Lemma 6.5 X1‖Y1 is not regular.

(End example)

6.3.5 Orderings on bounds

Before giving the proof of the elimination theorem for strongly regular processes,
first we present some definitions and results on orderings on bounds that shall be
crucial ingredients in this proof.

Assume a finite collection B of bounds. An ordering O on B is determined by a
partition B1, ..., Bn of non-empty subsets of B, where ∪ni=1Bi = B, and Bi ∩Bj = ∅
if i 6= j. The condition O consists of the conjunct of expressions b = b′ for b, b′ ∈ Bi

and b < b′ for b ∈ Bi and b′ ∈ Bj with i < j. We say that two conditions φ and
φ′ are equivalent under O if for each valuation σ, σ(φ ∧ O) is true if and only if
σ(φ′ ∧ O) is true.

Fix a bound bi ∈ Bi for i = 1, ..., n, and fix a variable w which does not occur in
bounds in B. We define conditions ψi which express all possible positions of w with
respect to the bounds bi under the ordering O.

ψ1 denotes w < b1
ψ2i denotes w = bi for i = 1, ..., n
ψ2i+1 denotes bi < w < bi+1 for i = 1, ..., n− 1
ψ2n+1 denotes bn < w

64 An Elimination Theorem for Regular Behaviours with Integration

Note that O ∧ ψi determines an ordering on B ∪ {w}.
Consider the class C of conditions defined by

φ ::= b ≤ w | w ≤ b | φ ∧ φ | ¬φ,

where b ∈ B.

Lemma 6.11 Under O, each condition in C is equivalent to a condition ∨i∈Iψi.

Proof sketch. Let φ be in C. We apply induction on the size of φ. If φ is of the
form b ≤ w with b ∈ Bi, then φ is equivalent to ψ2i ∨ · · · ∨ ψ2n+1 under O. If φ is of
the form w ≤ b with b ∈ Bi, then φ is equivalent to ψ1 ∨ · · · ∨ ψ2i under O.

Next, let φ be of the form φ0 ∧ φ1, where φ0 is equivalent to ∨i∈I0ψi and φ1 is
equivalent to ∨i∈I1ψi under O. Then φ is equivalent to ∨i∈I0∩I1ψi under O.

Finally, let φ be of the form ¬φ0, where φ0 is equivalent to ∨i∈Iψi under O. Then
φ is equivalent to ∨i∈{1,...,2n+1}\Iψi under O. 2

Hence, for each φ ∈ C we can calculate a condition u(φ ∧ O) which describes the
ultimate delay of

∫

φ∧O α[w] as follows.

Definition 6.12 Let φ be equivalent to ∨i∈Iψi under O.

- If I = ∅, then put u(φ ∧ O) is ff.

- If I has maximum 2i − 1 or 2i for some i = 1, ..., n, then put u(φ ∧ O) is
w < bi.

- If I has maximum 2n+ 1, then put u(φ ∧ O) is tt.

For B a finite set of bounds, and r ∈ Q and N ∈ N, let Br,N (B) denote the finite
set of bounds

{kr, kr − b | k = 0, ..., N, b ∈ B}.

Lemma 6.13 For each ordering O of B = Br,N (v1, ..., vn)∪{w}, there is an ordering
Õ of B̃ = Br,N (w, v1 +w, ..., vn+w) such that if σ(O) is true for a valuation σ, then
σ(Õ) is true.

Proof sketch. Assume an ordering O on B. We construct the desired ordering Õ
on B̃ by rewriting each possible relation in B̃ to a relation in B.

- The Õ-order of kr − (vi + w) and lr − (vj + w) is the O-order of kr − vi and
lr − vj.

- The Õ-order of kr − (vi + w) and lr − w is the O-order of kr − vi and lr.

- If k ≥ l, then the Õ-order of kr− (vi+w) and lr is the O-order of (k− l)r−vi
and w. Otherwise, if k < l, then kr − (vi + w) <Õ lr.

6.3. An Elimination Theorem 65

- The Õ-order of kr − w and lr − w is the O-order of kr and lr.

- If k ≥ l, then the Õ-order of kr − w and lr is the O-order of (k − l)r and w.
Otherwise, if k < l, then kr − w <Õ lr.

- The Õ-order of kr and lr is the O-order of kr and lr.

It follows immediately from the construction of Õ that if σ(O) is true, then σ(Õ) is
true. 2

6.3.6 The main theorem

Theorem 6.14 For each pair of strongly regular processes p0 and p1, there exists a
strongly regular process q such that p0‖p1 ↔ q.

Proof sketch. According to Lemma 6.8, p0 and p1 are bisimilar to processes 〈X0|E0〉
and 〈X1|E1〉, where the equations in E0 and E1 are of the form

XI(vI1, ..., vIn(I)) =
∑

k∈KI

∫

φk

ak[w] ·XIk(bk1, ..., bkn(Ik)) +
∑

l∈LI

∫

φ′
l

αl[w],

such that

- the φk and the φ′l are constructed from w ≤ b and b ≤ w and ∧ and ¬, where
b is of the form r or r − vIi with r ≥ 0,

- the bounds bkj are of the form w or vIi + w.

We construct a suitable linear specification which describes the behaviour of p0‖p1.
First, we introduce for each I a fresh recursion variable YI(v, vI1, ..., vIn(I)). Its

linear equation is obtained from the equation of XI(vI1, ..., vIn(I)) by replacing con-
ditions in φk and φ′l of the form w ≤ r or r ≤ w by w ≤ r − v or r − v ≤ w
respectively. Let φ̃k and φ̃′l denote the resulting conditions, and put

YI(v, vI1, ..., vIn(I)) =
∑

k∈KI

∫

φ̃k

ak[w] ·XIk(bk1, ..., bkn(Ik)) +
∑

l∈LI

∫

φ̃′
l

αl[w].

For v ≥ 0, YI(v, vI1, ..., vIn(I)) yields the behaviour of (−v)XI(vI1− v, ..., vIn(I)− v).
Next, we introduce a fresh recursion variable ZIJ(v, vI1, ..., vIn(I), vJ1, ..., vJn(J))

for each I and J , and construct its linear equation such that it describes the be-
haviour of YI(v, vI1, ..., vIn(I))‖XJ(vJ1, ..., vJn(J)). Only, it turns out that this be-
haviour cannot be described by a single linear equation, so we introduce a collection
of variables ZOIJ , where O ranges over the orderings on a collection of bounds B.

This collection B is defined as follows. Ensure, by means of α-conversion, that v
and the vIi and the vJi are distinct variables. Let R denote the finite collection of
rationals that occur in E0 or in E1. Define N = max{r/r0 | r ∈ R}, where r0 is the
greatest rational such that r/r0 is a natural number for each r ∈ R. Put

B = Br0,N(v, vI1, ..., vIn(I), vJ1, ..., vJn(J)).

66 An Elimination Theorem for Regular Behaviours with Integration

Fix an ordering O on B. The bounds b in the φk, φ
′
l, φ̃k, φ̃

′
l are of the form kr0

or kr0 − v or kr0 − vIi or kr0 − vJi with k = 0, ..., N , so they are all in B. Hence,
according to Definition 6.12, we can define conditions uI and ũI which yield the
ultimate delays of XI(vI1, ..., vIn(I)) and YI(v, vI1, ..., vIn(I)) under O respectively,
namely

uI = u((∨k∈KI
φk ∨ ∨l∈LI

φ′l) ∧ O),

ũI = u((∨k∈KI
φ̃k ∨ ∨l∈LI

φ̃′l) ∧ O).

We construct the linear equation of ZOIJ . The behaviour of YI‖XJ originates from

(a) executing an initial action from YI ,

(b) executing an initial action from XJ ,

(c) executing a communication of initial actions from these two processes.

We describe these behaviours separately, under the ordering O, which is determined
by a partition B1, ..., Bn of B. Fix bi ∈ Bi for i = 1, ..., n, and let ψ1, ..., ψ2n+1 denote
the conditions w < b1, w = b1, b1 < w < bn, ..., bn < w respectively.
(a) Recall that a process p‖q can only execute an initial action from p before the
ultimate delay of q. So initial actions from YI(v, vI1, ..., vIn(I)) under O can only be
executed under the condition uJ . After executing such an initial action ak[w] for
some k ∈ KI under the condition φk ∧ uJ , the resulting state is

XIk(bk1, ..., bkn(Ik))‖(−w)XJ(vJ1, ..., vJn(J)).

This process is described by ZÕJIk(w, vJ1 + w, ..., vJn(J) + w, bk1, ..., bkn(Ik)) for some

ordering Õ on B̃ = Br0,N(w, vJ1 + w, ..., vJn(J) + w, bk1, ..., bkn(Ik)). This ordering Õ
can be determined as follows. The ordering O on B together with a condition ψi
for i = 1, ..., 2n + 1 determine an ordering Oi on B ∪ {w}. Since bk1, ..., bkn(Ik) ∈
{w, vI1 + w, ..., vIn(I) + w}, Lemma 6.13 says that there is an ordering Õi on B̃
such that if σ(Oi) is true for a valuation σ, then σ(Õi) is true. Hence, we add the
following subterms to the equation of ZOIJ .

2n+1
∑

i=1

∫

φ̃k∧uJ∧ψi

ak[w] · ZÕi

JIk
(w, vJ1 + w, ..., vJn(J) + w, bk1, ..., bkn(Ik)).

After executing an initial αl[w] for some l ∈ LI under the condition φ̃′l∧uJ , the result-
ing state is (−w)XJ(vJ1, ..., vJn(J)), which is described by YJ(w, vJ1 +w, ..., vJn(J) +
w). So we add the following subterm to the equation of ZOIJ .

∫

φ̃′
l
∧uJ

αl[w] · YJ(w, vJ1 + w, ..., vJn(J) + w).

(b) Next, we construct the subterm that originates from executing an initial action
of XJ(vJ1, ..., vJn(J)). Such initial actions can only be executed under the condition

6.3. An Elimination Theorem 67

ũI . After executing an initial action ak[w] for some k ∈ KJ under the condition
φk ∧ ũI , the resulting state is

(−w)YI(v, vI1, ..., vIn(I))‖XJk
(bk1, ..., bkn(Jk)),

which is described by ZÕIJk
(v + w, vI1 + w, ..., vIn(I) + w, bk1, ..., bkn(Jk)). Again, the

ordering O on B together with a condition ψi for i = 1, ..., 2n + 1 determine an
ordering Õi on Br0,N(v + w, vI1 + w, ..., vIn(I) + w, bk1, ..., bkn(Jk)). So we add the
following subterms to the equation of ZOIJ .

2n+1
∑

i=1

∫

φk∧ũI∧ψi

ak[w] · ZÕi

IJk
(v + w, vI1 + w, ..., vIn(I) + w, bk1, ..., bkn(Jk)).

After executing an initial αl[w] for some l ∈ LJ under the condition φ′l ∧ ũI , the
resulting state is (−w)YI(v, vJ1, ..., vJn(J)), which is described by YI(v + w, vJ1 +
w, ..., vJn(J) + w). So we add the following subterm to the equation of ZOIJ .

∫

φ′
l
∧ũI

αl[w] · YI(v + w, vJ1 + w, ..., vJn(J) + w).

(c) Finally, we construct the subterms that originate from executing the communi-
cation of initial actions of YI and XJ .

Let k ∈ KI and k′ ∈ KJ . After executing the action (ak|ak′)[w] under the con-
dition φ̃k ∧φk′ , the resulting state is XIk(bk1, ..., bkn(Ik))‖XJk′

(bk′1, ...bk′n(Jk′)
). Again,

the ordering O on B together with a condition ψi for i = 1, ..., 2n+ 1 determine an
ordering Õi. So we add the following subterms to the equation of ZOIJ .

2n+1
∑

i=1

∫

φ̃k∧φk′∧ψi

(ak|ak′)[w] · ZÕi

IkJk′
(0, bk1, ..., bkn(Ik), bk′1, ..., bk′n(Jk′)

).

For k ∈ KI and l ∈ LJ we add the subterm
∫

φ̃k∧φ
′
l

(ak|αl)[w] · YIk(0, bk1, ..., bkn(Ik)).

For l ∈ LI and k ∈ KJ we add the subterm
∫

φ̃′
l
∧φk

(αl|ak)[w] · YJk
(0, bk1, ..., bkn(Jk)).

Finally, for l ∈ LI and l′ ∈ LJ , we add the subterm
∫

φ̃′
l
∧φ′

l′

(αl|αl′)[w].

This finishes the construction of the linear equation of ZOIJ .

Let E denote the recursive specification that consists of the linear equations
of the YI and the ZOIJ . Note that E satisfies the constraints in Definition 6.7 for
strongly regular processes. Consider the strongly regular process 〈ZO01(0)|E〉, where
the ordering O on Br0,N(v) is true under the valuation that maps v to 0. The
construction ensures that this process is bisimilar to 〈X0|E0〉‖〈X1|E1〉, which finishes
the proof of the elimination theorem. 2

68 An Elimination Theorem for Regular Behaviours with Integration

6.3.7 An example

We present an example of a merge of two simple strongly regular processes, which
itself can only be described by a much more complicated linear specification.

Example 6.15 Define

X =
∫

0<v<1
a[v] ·X.

Let p = X‖a′[k] (with a|a′ = δ), where k ∈ N.

The behaviour of p can be described by the following linear specification.

X0 =
∫

0<v<1 a[v] ·X1(v)

Xi(v) =
∫

0<w≤i−v a[w] ·Xi(v + w) +
∫

i−v<w<1 a[w] ·Xi+1(v + w)

i = 1, ..., k − 1

Xk(v) =
∫

0<w<k−v a[w] ·Xk(v + w) +
∫

w=k−v a
′[w] · Y (w)

Y (v) =
∫

0<w<1−v a[w] ·X

X =
∫

0<v<1 a[v] ·X.

The idea behind this specification is quite easy. Process p will execute X until it
reaches (absolute) time k, when it executes a′, after which it continues with X. The
process p has the possibility of executing a′ or at time k if it has executed an a after
time k−1. So if this is the case, then the linear specification must take into account
the execution of a′ at k. Similarly, p can execute an a after k − 1 if it has executed
an a after k−2. So if this is the case, the linear specification must take into account
the execution of a after k − 1, etc.

The equations of the Xi for i = 1, ..., k − 1 register whether a is executed after
time i or not. If so, then Xi+1 is triggered, and otherwise Xi is repeated. Finally,
Xk takes into account the execution of a′. (End example)

6.4 Timed Automata

An automaton consists of a set of states S, a set of start states S0 ⊆ S, a set of labels
A and a set of transitions E ⊆ S×A×S. The language accepted by the automaton
consists of all traces s0

a0−→ s1
a1−→ s2

a2−→ ... such that (si, ai, si+1) ∈ E for i =
0, 1, 2, ... Furthermore, the trace may have to satisfy certain fairness requirements,
e.g. that it reaches a specific state an infinite number of times.

In the extension of automata with time from Alur and Dill [2], the elements
of E are supplied with time constraints on ‘clock variables’. Such constraints are

References 69

disjunctions of expressions of the form x2r, with x a clock variable and r ∈ Q>0

and 2 ∈ {<,>,≤,≥}. Moreover, there is a construct x := 0, which denotes that
while executing a transition, clock x is set back to zero. A trace is only accepted by
a timed automaton if its transitions are performed at times that all clocks satisfy
their constraints. Furthermore, accepted traces must satisfy the required fairness
constraints. Finally, Zeno behaviour is excluded from timed automata, i.e. traces
are only accepted if they progress beyond any moment in time.

The algebra of strongly regular processes can be linked to the class of timed
automata. The fairness restrictions and the non-Zeno requirement are obstacles for
the translation between timed automata and strongly regular processes, since ACPrI
does not take into account such semantic restrictions. However, if these restrictions
are discarded, then the classes of strongly regular processes and of timed automata
turn out to be equivalent.

A strongly regular process can be translated to the setting of timed automata
as follows. A strongly regular processes executes an action a[w] under restrictions
of the form w2r or w2(r − vi), with r > 0 and 2 ∈ {<,>,≤,≥}. These last
inequalities can be rewritten to the form (vi+w)2r. The vi and w can be regarded
as clocks, where w has been set back to zero by w := 0 in the previous transition.
The state that results after the execution of a[w] is a recursive expression of the
form X(w, v1 +w, ..., vk +w). The vi+w and w store the actual times of the clocks
at the moment of the transition a[w].

By means of the converse translation, it is easy to see that the language accepted
by a timed automaton (without semantic restrictions) can always be described by a
strongly regular process. We give a simple example.

Example 6.16 Consider a timed automaton with states s0, s1, with start state s0,
and clock variables x, y, which is defined by the following two transitions:

- (s0, a, s1) with time constraints x < 2, y := 0,

- (s1, a
′, s0) with time constraints x < 3, y < 2, x := 0.

This timed automaton executes alternately a and a′. Define

X =
∫

0<w≤1 a[w] · Y1 +
∫

1≤w<2 a[w] · Y2(w)

Y1 =
∫

0<w<2 a
′[w] ·X

Y2(v) =
∫

0<w<3−v a
′[w] ·X.

The process X describes the behaviour of the automaton. (End example)

References

[1] L. Aceto and D. Murphy. On the ill-timed but well-caused. In E. Best,
editor, Proceedings 4th Conference on Concurrency Theory (CONCUR’93),
Hildesheim, LNCS 715, pages 97–111. Springer-Verlag, 1993.

70 An Elimination Theorem for Regular Behaviours with Integration

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[3] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3(2):142–188, 1991.

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[5] B. Bloom and F.W. Vaandrager. SOS rule formats for parametrized and state-
bearing processes. Unpublished manuscript, 1994.

[6] W.J. Fokkink. Regular processes with rational time and silent steps. Report
CS-R9231, CWI, Amsterdam, 1992.

[7] J.C. Godskesen and K.G. Larsen. Real time calculi and expansion theorems.
In R. Shyamasundar, editor, Proceedings 12th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 12), New
Delhi, LNCS 652, pages 302–315. Springer-Verlag, 1992.

[8] J.A. Hillebrand. The ABP and the CABP – a comparison of performances
in real time process algebra. In A. Ponse, C. Verhoef, and S.F.M. van Vlij-
men, editors, Proceedings 1st Workshop on Algebra of Communicating Processes
(ACP’94), Utrecht, Workshops in Computing, pages 124–147. Springer-Verlag,
1994.

[9] A.S. Klusener. Completeness in real time process algebra. In J.C.M. Baeten
and J.F. Groote, editors, Proceedings 2nd Conference on Concurrency Theory
(CONCUR’91), Amsterdam, LNCS 527, pages 376–392. Springer-Verlag, 1991.

[10] R. Milner. A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences, 28:439–466, 1984.

[11] A. Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–
325, 1988.

7

An Effective Axiomatization for
Real Time ACP

Wan Fokkink & Steven Klusener

Baeten and Bergstra added real time to ACP, and introduced the notion of
integration, which expresses the possibility of an action happening within a
time interval. In order to axiomatize this feature, they needed an ‘uncount-
able’ axiom. This chapter deals with prefix integration, and integration is
parametrized by conditions, which are inequalities between linear expressions
of variables. We present an axiomatization for process terms, and propose a
strategy to decide bisimulation equivalence between process terms, by means
of this axiomatization.

7.1 Introduction

In recent years, many process algebras have been extended with some notion of time.
This chapter is based on the approach of Baeten and Bergstra [3], who extended
ACP with real time. Their algebra concerns (closed) process terms, constructed
from timed actions a(t), which denote the process that executes action a at time t.
This results in identities that do not hold in untimed ACP, such as

a(2) · (b(1) + c(3)) = a(2) · c(3).
After the execution of a, time has passed 2, so in the remaining subterm b(1)+ c(3)
the first alternative is lost.

In [3], the notion of integration was introduced, which expresses the possibility
that an action occurs somewhere within a time interval. The construct

∫

v∈V p exe-
cutes the process p, where the behaviour of p may depend on the value of v in the
time interval V . In [3], an axiomatization was proposed for processes that are time-
closed, which means that if a process depends on a variable v, then it is guarded by
some integral sign

∫

v∈V . One of their axioms considerably hampers reasoning within
the algebra, since in order to apply it one needs to check infinitely many equalities.

71

72 An Effective Axiomatization for Real Time ACP

Namely, this axiom says that two processes
∫

v∈V p and
∫

v∈V q are equal if p and q
are equal for all possible values for v in the interval V .

In this chapter, we show how to get rid of this axiom. We restrict to prefix inte-
gration, and integration is parametrized by conditions, which consist of inequalities
between linear expressions of variables. Furthermore, the notion of a conditional
term is introduced, which is of the form φ :→ p, where φ is a condition. The process
φ :→ p executes p under the condition that φ is true. We present an axiomatization
for time-closed conditional terms, which allows to mix conditions through terms by
the following two equations:

∫

φ a(v) · p =
∫

φ a(v) · (φ :→ p),

φ :→ ∫

ψ a(v) · p =
∫

φ∧ψ a(v) · p if v does not occur in φ.

Moreover, we present axiomatizations for bounds and for conditions.

Conditional terms can be reduced to a normal form, using the axioms, such
that if two time-closed processes are bisimilar, then they have the same normal
form. Hence, the axiom system decides bisimulation equivalence between time-
closed processes.

Sections 7.2 and 7.4 originate from [13], which introduces, among other things,
the notion of a conditional term together with its axiomatization. Section 7.3 origi-
nates from [9], which contains the decidability result. See [14, 15] how to deal with
abstraction in our setting. A thorough treatment of real time ACP is provided in
[16]. Section 7.5.2 provides a comparison of our results with related timed process
algebras, which incorporate some integral construct which allows to express time
dependencies.

Acknowledgements. A great number of people provided useful comments. Special
thanks go to Jos Baeten, Frits Vaandrager and an anonymous referee, who suggested
many substantial improvements.

7.2 The Syntax and Semantics

This section contains a description of the syntax and semantics for BPAδ with real
time and prefix integration and conditions.

7.2.1 Bounds and conditions

In the sequel, we assume a countably infinite set of time variables TVar. Further-
more, we assume a set of time numbers Time, which is a field. So Time is closed
under the binary operations addition and multiplication, which are associative and
commutative and satisfy the distributivity laws. Moreover, it contains distinct units
0 and 1 for addition and multiplication respectively, and for each time number t 6= 0,

7.2. The Syntax and Semantics 73

there are time numbers −t and t−1 such that t + (−t) = 0 and t · t−1 = 1. We as-
sume a (reflexive and transitive) total ordering ≤ on Time, which is preserved under
addition and multiplication with time numbers greater than 0.

The full domain of time numbers will only be used in the operational semantics of
process terms. In order to build the syntax of process terms from a finite signature,
this syntax uses a countable sub-field Time0 of Time, which is defined as follows.
Fix functions fi : Timemi → Time for i = 1, ..., k, and let Time0 be the field that
is generated by f1, ..., fk, i.e. Time0 is the smallest sub-field of Time such that if
r1, ..., rmi

∈ Time0, then fi(r1, ..., rmi
) ∈ Time0.

1 We assume that for each pair of
time numbers r0 and r1 in Time0 it can be decided whether or not r0 ≤ r1 holds.

Let r ∈ Time0 and v ∈ TVar . The set of bounds, with typical element b, is
defined by

b ::= r | v | b+ b | r · b.
The set of time variables that occur in a bound b is denoted by var(b). The expres-
sion b0 − b1 abbreviates b0 + (−1) · b1.

A condition is constructed from conjunctions and negations of inequalities be-
tween bounds. So the set of conditions, with typical element φ, is defined by

φ ::= b0 ≤ b1 | φ ∧ φ | ¬φ.
The set of time variables that occur in a condition φ is denoted by var(φ). In the
sequel, we use the abbreviations φ∨ψ for ¬(¬φ∧¬ψ), and tt for ¬(1 ≤ 0), and ff for
1 ≤ 0, and b0 < b1 for ¬(b1 ≤ b0), and b0 = b1 for b0 ≤ b1 ∧ b1 ≤ b0, and b0 < v < b1
for b0 < v ∧ v < b1.

7.2.2 Process terms

Assume a countable alphabet A of atomic actions, together with a special constant
δ, representing deadlock. In the sequel, a and α denote elements of A and A ∪ {δ}
respectively.

Integration enables to express that the behaviour of a process may depend on
the value of a time variable. If a process p depends on the value of v between 1 and
2, then we write

∫

1<v<2
p.

Here, integration is parametrized by conditions, and we deal with prefix integration
∫

φ α(v)·p. If α 6= δ, then this process can execute the action α(t) under the condition
that φ[t/v] is true, after which the process results to p[t/v].

In BPAδρI, process terms are constructed from prefix integration, the alternative
composition p + q, and the time shift b À p, where b is a bound.2 The time shift

1In the examples, Time0 will consist of the rational numbers.
2We do not incorporate sequential composition p · q from untimed BPA in BPAδρI, because

this construct can be eliminated from the syntax by a straightforward set of axioms, see [13].

74 An Effective Axiomatization for Real Time ACP

is an auxiliary operator that is needed in the operational semantics of integration;
the process b À p displays the behaviour of p after time b. Finally, we introduce
the conditional construct φ :→ p, where φ is a condition. This process displays the
behaviour of p under the condition that φ is true. Thus, the set of process terms,
with typical element p, is defined by

p ::=
∫

φ
α(v) |

∫

φ
α(v) · p | p+ p | bÀ p | φ :→ p.

As binding convention, integration and time shift bind stronger than alternative
composition. Often α(b) will abbreviate

∫

v=b α(v), where v 6∈ var(b).

7.2.3 Free variables and substitutions

In general, one cannot attach a transition system to a process term that contains
time variables which are not bound by an integral sign. Therefore, we need the
notion of a time-closed process. In the term

∫

φ α(v), occurrences of v in φ are
bound, and in

∫

φ α(v) · p, occurrences of v in φ and in p are bound. A time variable
in a process term is called free if it is not bound by any integral signs. The collection
of free variables in a term p is denoted by fvar(p). A term p is called time-closed if
fvar(p) = ∅. As a model we will take the collection T cl of time-closed process terms,
modulo bisimulation (see Section 7.2.5).

A substitution is a mapping from time variables to bounds. For b a bound and σ
a substitution, σ(b) denotes the bound that results from substituting σ(v) for each
time variable v in b. Substitutions extend to conditions as expected. A substitution
σ : TVar → Time0 is called a valuation. For a condition φ and a valuation σ, σ(φ)
results to either true or false. In the sequel, [φ] denotes the collection of valuations
for which σ(φ) is true.

For a process term p, σ(p) is obtained by replacing free occurrences of time
variables v in p by σ(v). In this definition however, there is one serious complication.
Namely, if a free occurrence of v in p has been replaced by σ(v), then variables w that
occur in σ(v) may suddenly be bound in subterms

∫

φ α(w) ·q of p. A solution for this
problem, which originates from the λ-calculus, is to allow unrestricted substitution
by renaming bound variables. In the sequel, process terms are considered modulo
α-conversion, and when a substitution is applied, bound variables are renamed.
Stoughton [20] presented a simple treatment of this technique.

If for a substitution σ there is only one variable v such that σ(v) 6= v, then often
we will use the standard notation p[σ(v)/v] for σ(p).

7.2.4 Operational semantics

Table 7.1 contains an operational semantics for the collection T cl of time-closed
processes, in the style of Plotkin. In this operational semantics, we need a more
general notion of bounds (and thus of conditions and process terms), which may

7.2. The Syntax and Semantics 75

φ[t/v]
∫

φ a(v)
a(t)−→ √ ∫

φ a(v) · x
a(t)−→ tÀ x[t/v]

x
a(t)−→ √

x+ y
a(t)−→ √ y + x

a(t)−→ √
x

a(t)−→ x′

x+ y
a(t)−→ x′ y + x

a(t)−→ x′

b < t x
a(t)−→ √

bÀ x
a(t)−→ √

b < t x
a(t)−→ x′

bÀ x
a(t)−→ x′

φ x
a(t)−→ √

φ :→ x
a(t)−→ √

φ x
a(t)−→ x′

φ :→ x
a(t)−→ x′

φ[s/v] t < s

Ut(
∫

φ α(v)) Ut(
∫

φ α(v) · x)
Ut(x)

Ut(x+ y) Ut(y + x)

Ut(x)

Ut(sÀ x)

t < s

Ut(sÀ x)

φ Ut(x)

Ut(φ :→ x)

Table 7.1: Action rules for time-closed terms

contain time numbers from Time instead of Time0. That is, the BNF grammar of
a bound in this section is b ::= t | v | b+ b | r · b, where t is allowed to be in Time.

In most timed process algebras, the passing of time is expressed by idle transi-
tions. For example, the process a(1) can do an idle transition to time t for t < 1,
meaning that the process has reached time t. Finally, at time 1, it executes action
a. Such an operational semantics can be found for timed CCS [22], timed CSP [19]
and timed ACP [3]. We abstract from idle transitions, so here a(1) only executes
the a at time 1. A similar operational semantics can be found in [12].

The timed deadlock δ(t) idles until time t. For example, the process
∫

v<1 a(v) +
δ(3) either executes a before time 1, or idles until time 3. On the other hand, the
process

∫

v<1 a(v) + δ(1) will always execute a before time 1. In order to distin-
guish processes that only differ in their deadlock behaviour, we introduce the delay
predicate Ut(p), which holds if p can idle beyond time t. (Moller and Tofts [18] in-
troduced a similar construct.) Processes that only differ in their deadlock behaviour
have distinct delays. For example, U2(

∫

v<1 a(v)+ δ(3)), but not U2(
∫

v<1 a(v)+ δ(1)).

7.2.5 Bisimulation

Time-closed process terms are considered modulo (strong) bisimulation, which takes
into account delays.

76 An Effective Axiomatization for Real Time ACP

Definition 7.1 Two time-closed process terms p0, q0 are strongly bisimilar, nota-
tion p0 ↔ q0, if there exists a symmetric binary bisimulation relation B on time-
closed process terms such that

- p0Bq0,

- if p
a(t)−→ p′ and pBq, then q a(t)−→ q′ for some process q′ with p′Bq′,

- if p
a(t)−→ √ and pBq, then q a(t)−→ √,

- if pBq and Ut(p), then Ut(q).

The rules in Table 7.1 can be fitted into the congruence format for action rules
with types, data and variable binding of Bloom and Vaandrager [4].3 Strong bisim-
ulation defined by transition rules within this format is always a congruence on the
algebra of closed terms, which means that if p↔ p′ and q ↔ q′, then p+ q ↔ p′+ q′

and
∫

φ α(v) · p ↔
∫

φ α(v) · p′ and bÀ p ↔ bÀ p′.

7.2.6 Axioms for bounds and conditions

Table 7.2 contains an axiomatization BA for bounds. It is assumed that BA in-
corporates the equalities r0 + r1 = r2 and r0 · r1 = r2 between time numbers in
Time0. We consider bounds modulo AC, that is, modulo associativity and commu-
tativity of the +. Using the axioms of BA, bounds can be reduced to a normal form
r1 ·v1+ ...+rn ·vn+r, where v1, ..., vn are distinct variables and r1, ..., rn are unequal
to zero. Using these normal forms, it is easy to deduce the following proposition.

Proposition 7.2 b0 = b1 ⇔ σ(b0) and σ(b1) result to the same time number for
each valuation σ.

Table 7.3 contains an axiom system CA for conditions. The construct φ ⇒ ψ,
which is used in two of the axioms, abbreviates φ∧ ψ = φ. The six Boolean axioms
are complete for the algebra generated by tt and ∧ and ¬ (see e.g. [17]), and the
four ordering axioms for bounds characterize a linear ordered field (see e.g. [6]). It
is assumed that CA incorporates the axiom system BA for bounds, that is, bounds
in a condition may be manipulated by axioms in BA. In the sequel, φ = ψ denotes
that this equality between conditions can be derived from CA.

The following lemma will be crucial in several constructions. Note that it would
not hold if we had allowed bounds of the form v2.

3The action rule for integration has to be adapted in order to fit it in the congruence format.
Let Bool denote the type of Booleans and Proc the type of process terms. Integration is a function
∫

(λv.φ, a, λv.p), where
∫

: (Time → Bool) × A × (Time → Proc) −→ Proc. The action rule for
integration takes the form

pick t : Time φ t
∫

(φ, a, x)
〈a,t〉−→ tÀ (x t)

.

7.2. The Syntax and Semantics 77

b0 + b1 = b1 + b0
(b0 + b1) + b2 = b0 + (b1 + b2)
b+ 0 = b
1 · b = b
0 · b = 0
r · (b0 + b1) = r · b0 + r · b1
r0 · b+ r1 · b = (r0 + r1) · b
r0 · (r1 · b) = (r0 · r1) · b

Table 7.2: Axioms BA for bounds

φ ∧ ψ = ψ ∧ φ b0 + b ≤ b1 + b = b0 ≤ b1
(φ0 ∧ φ1) ∧ φ2 = φ0 ∧ (φ1 ∧ φ2) r · b0 ≤ r · b1 = b0 ≤ b1 if r > 0
φ ∧ (ψ0 ∨ ψ1) = (φ ∧ ψ0) ∨ (φ ∧ ψ1) b0 ≤ b ∧ b ≤ b1 ⇒ b0 ≤ b1
φ ⇒ φ ∨ ψ b0 ≤ b1 ∨ b1 ≤ b0 = tt
φ ∧ ¬φ = ff
¬¬φ = φ

Table 7.3: Axioms CA for conditions

Lemma 7.3 (refinement lemma) Fix a time variable v. Each condition φ is prov-
ably equal to a condition of the form ∨i(φi ∧ φ′i), where

- var(φi) ⊆ var(φ)\{v},

- φ′i is of the form v = b or v < b or b < v or b < v < b′, with var(b + b′) ⊆
var(φ)\{v}.

The axiom system CA is sound and complete in the following sense.

Proposition 7.4 φ = φ′ ⇔ [φ] = [φ′].

Soundness of CA can be verified by checking it for each axiom separately.

The proofs of the refinement lemma and of the completeness for CA are technical
and do not contain any surprises. Hence, outlines of these proofs are provided in
the appendix.

7.2.7 Axioms for process terms

From now on, occurrences of time numbers in bounds are restricted to Time0 again.
Table 7.4 contains an axiomatization for BPAδρI. The construct P (v) represents

78 An Effective Axiomatization for Real Time ACP

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
TA3

∫

φ P (v) +
∫

ψ P (v) =
∫

φ∨ψ P (v)

TA4
∫

φ P (v) +
∫

φ δ(v) =
∫

φ P (v)
TA5

∫

φ δ(v) · x =
∫

φ δ(v)
TA6

∫

ff P (v) =
∫

ff δ(v)
TA7 v 6∈ var(b)

∫

v<b δ(v) = δ(b)

TS1
∫

φ α(v) · x =
∫

φ α(v) · (v À x)
TS2 v 6∈ var(b) bÀ ∫

φ P (v) =
∫

φ∧b<v P (v) + δ(b)
TS3 bÀ (x+ y) = bÀ x+ bÀ y

TC1
∫

φ α(v) · x =
∫

φ α(v) · (φ :→ x)
TC2 v 6∈ var(φ) φ :→ ∫

ψ P (v) =
∫

φ∧ψ P (v)
TC3 φ :→ (x+ y) = (φ :→ x) + (φ :→ y)

Table 7.4: Axioms for BPAδρI

expressions of the form α(v) and α(v) · x. The equational theory for BPAδρI incor-
porates the axiomatizations CA of conditions and BA of bounds. That is, conditions
in terms can be manipulated by means of axioms in CA and BA.

For each axiom p = q, and for each valuation σ, we have σ(p) ↔ σ(q). Hence,
it is easy to see that the following proposition holds, which says that the axioms
respect bisimulation equivalence between time-closed process terms. In the sequel,
p = q will mean that this equality between the terms p and q can be derived from
the equational theory of BPAδρI.

Proposition 7.5 ∀p, q ∈ T cl, p = q =⇒ p ↔ q.

The rest of this chapter is devoted to proving that the equational theory for
BPAδρI is complete for time-closed process terms, i.e. if for p, q ∈ T cl we have
p ↔ q, then p = q. We present an algorithm, based on the axioms, which decides
bisimulation equivalence between time-closed process terms.

7.2.8 Basic terms

Definition 7.6 A term is basic if it is in the class defined by

p ::=
∫

φ
α(v) |

∫

φ
α(v) · p | p+ p,

and for each subterm
∫

φ α(v) · p we have σ(v À p) ↔ σ(p) for all valuations σ.

7.3. Unique Normal Forms 79

Proposition 7.7 For each term p there is a basic term p′ such that p = p′.

Proof. First, we show how the axioms can be applied in order to get rid of time
shifts and conditions. Let p0 denote a term that does not contain time shifts nor
conditions. Suppose that p is of the form bÀ p0. We delete the time shift from p as
follows, by induction on the size of p0 (i.e. the number of function symbols in p0).
Ensure by means of α-conversion that v 6∈ var(b).

bÀ ∫

φ P (v)
TS2
=

∫

φ∧b<v P (v) + δ(b),

bÀ (q + q′)
TS3
= bÀ q + bÀ q′.

Next, suppose that p is of the form φ :→ p0. We delete the condition from p
as follows, by induction on the size of p0. Ensure by means of α-conversion that
v 6∈ var(φ).

φ :→ ∫

ψ P (v)
TC2
=

∫

φ∧ψ P (v),

φ :→ (q + q′)
TC3
= (φ :→ q) + (φ :→ q′).

If p contains several time shifts and conditions, then these operators can be deleted
one by one, by considering subterms of p which contain only one time shift or one
condition.

Finally, we show that p equals a basic term, by induction on size. A term
∫

φ α(v)
is already basic, and if p and p′ are basic, then p + p′ is basic too. Since we have
deleted time shifts and conditions, this only leaves the case

∫

φ α(v) · p, where p is
basic.

∫

φ α(v) ·
∑

i

∫

ψi
Pi(w)

TS1
=

∫

φ α(v) · v À
∑

i

∫

ψi
Pi(w)

TS2,3
=

∫

φ α(v) ·
∑

i(
∫

ψi∧v<w
Pi(w) + δ(v)).

This last term is basic. 2

7.3 Unique Normal Forms

We shall describe a strategy which reduces each basic term p to a term which is called
the normal form of p. All steps in the algorithm can be deduced from the axioms,
so p is equal to its normal form. Next, we will show that if two time-closed normal
forms are bisimilar, then they are equal modulo AC, i.e. modulo associativity and
commutativity of the +. This will imply completeness of the axiom system. From
now on, terms are considered modulo AC, and this equivalence is denoted by =AC.

In the following sections, we will present several equations between closed terms,
that will be used in the construction of normal forms. These equations can all
be deduced from the axioms. Finally, Section 7.3.6 provides a description of the
construction of normal forms.

80 An Effective Axiomatization for Real Time ACP

7.3.1 Some basic equations

The following equations for closed conditional terms can be deduced from the ax-
ioms.

Equation 7.8 φ :→ (ψ :→ p) = φ ∧ ψ :→ p.

Equation 7.9 (φ :→ p) + (ψ :→ p) = φ ∨ ψ :→ p.

Equation 7.10 p+
∫

ff δ(v) = p.

Equation 7.11 tt :→ p = p.

Equation 7.12 ff :→ p =
∫

ff δ(v).

In order to prove these equalities, it is sufficient to prove them for terms p and q of
the form

∑k
i=1

∫

φi
Pi(v) (with k ≥ 1), because in the previous section we got rid of

time shifts and conditions in closed terms. As an example, we prove Equations 7.9
and 7.10.

Proof of Equation 7.9. Ensure by means of α-conversion that v 6∈ var(φ ∨ ψ).
(φ :→ ∑k

i=1

∫

φi
Pi(v)) + (ψ :→ ∑k

i=1

∫

φi
Pi(v))

TC2,3
=

∑k
i=1

∫

φ∧φi
Pi(v) +

∑k
i=1

∫

ψ∧φi
Pi(v)

TA3
=

∑k
i=1

∫

(φ∨ψ)∧φi
Pi(v)

TC2,3
= φ ∨ ψ :→ ∑k

i=1

∫

φi
Pi(v). 2

Proof of Equation 7.10.
∑k
i=1

∫

φi
Pi(v) +

∫

ff δ(v)
TA6
=

∑k
i=1

∫

φi
Pi(v) +

∫

ff P1(v)
TA3
=

∑k
i=1

∫

φi
Pi(v). 2

7.3.2 Reducing conditions to intervals

A finite collection of conditions is called a partition if for each valuation σ there is
exactly one condition φ in this collection such that σ ∈ [φ].

Equation 7.13 (lifting equation) If {φ1, ..., φn} is a partition, then
∫

φ
α(v) ·

n
∑

i=1

(φi :→ pi) =
n

∑

i=1

∫

φ∧φi

α(v) · pi.

Proof. In this deduction we implicitly apply Equation 7.8.
∫

φ α(v) ·
∑n
i=1(φi :→ pi)

TA3
=

∑n
j=1

∫

φ∧φj
α(v) ·∑n

i=1(φi :→ pi) because ∨jφj = tt

TC1,3
=

∑n
j=1

∫

φ∧φj
α(v) ·∑n

i=1(φi ∧ φj :→ pi)

Eq 7.10
=

∑n
j=1

∫

φ∧φj
α(v) · (φj :→ pj) because φi ∧ φj = ff if i 6= j

TC1
=

∑n
j=1

∫

φ∧φj
α(v) · pj. 2

7.3. Unique Normal Forms 81

The constraint in the lifting equation that {φ1, ..., φn} is a partition is an essential
ingredient, because without it we would get equalities like

∫

φ α(v) ·
∫

ff δ(v) =
∫

ff δ(v),
∫

φ α(v) · (p+ q) =
∫

φ α(v) · p+
∫

φ α(v) · q.

The following equation enables to reduce the collection of conditions {φi} in a term
∑

i(φi :→ pi) to a partition.

Equation 7.14 (φ :→ p) + (ψ :→ q) =

(φ ∧ ψ :→ p+ q) + (φ ∧ ¬ψ :→ p) + (¬φ ∧ ψ :→ q) + (¬φ ∧ ¬ψ :→ ∫

ff δ(v)).

Proof . (φ :→ p) + (ψ :→ q)
Eq 7.9
= (φ ∧ ψ :→ p) + (φ ∧ ¬ψ :→ p) + (φ ∧ ψ :→ q) + (¬φ ∧ ψ :→ q)

TC3
= (φ ∧ ψ :→ p+ q) + (φ ∧ ¬ψ :→ p) + (¬φ ∧ ψ :→ q).

According to Equation 7.10, we can add
∫

ff δ(v)
TC2
= ¬φ ∧ ¬ψ :→ ∫

ff δ(v). 2

We will use the lifting equation and the refinement lemma (see Section 7.2.1) to
reduce conditions that parametrize integrals to the form tt or ff or v = b or v < b or
b < v or b < v < b′, with v 6∈ var(b + b′). In the sequel, such conditions will often
be denoted by v ∈ V , where V represents an interval. For example, tt is denoted by
v ∈ 〈−∞,∞〉, and ff by v ∈ ∅, and b ≤ v < b′ by v ∈ [b, b′〉, etc.

7.3.3 Adapting deadlocks

Using the refinement lemma, conditions in deadlocks can be reduced to either tt or
ff or v = b by means of TA7 and the following two equations. Let v 6∈ var(b+ b′).

Equation 7.15
∫

b<v δ(v) =
∫

tt δ(v).

Proof .
∫

b<v δ(v)
TA3
=

∫

b<v δ(v) +
∫

v=b+1 δ(v)

TA7
=

∫

b<v δ(v) +
∫

v<b+1 δ(v)
TA3
=

∫

tt δ(v). 2

Equation 7.16
∫

b<v<b′ δ(v) = b < b′ :→ δ(b′).

This last equality can be deduced from TA3,7 and TC2.

Redundant deadlocks can be removed by means of TA4 and Equation 7.10 and
the following equation, which can be deduced from TA3,4 and TC2.

Equation 7.17 b ≤ sup(V) :→ (
∫

v∈V P (v) + δ(b)) = b ≤ sup(V) :→ ∫

v∈V P (v).

82 An Effective Axiomatization for Real Time ACP

7.3.4 Removing redundant variables

In a process term
∫

v=b a(v) · p (with v 6∈ var(b)), the time variable v is ‘redundant’
in p, in the sense that it can only attain the value b. Occurrences of such redundant
variables in p can be removed by the following equation.

Equation 7.18
∫

v=b α(v) · p =
∫

v=b α(v) · p[b/v].
This equation can be deduced from TC1-3 by induction on the depth of p (i.e. the
length of the longest execution trace of p).

7.3.5 Removing double terms

In the reduction to normal form, we will delete double terms. Let V ∼ W denote
the condition that V ∪W is an interval. Axiom TA3 induces the following equation.

Equation 7.19 V ∼ W :→ (
∫

v∈V P (v) +
∫

v∈W P (v)) = V ∼ W :→ ∫

v∈V ∪W P (v).

Equation 7.19 is not always sufficient to reduce double terms. Namely, the equality
∫

v<b
a(v) · p+

∫

φ
a(v) · q =

∫

v≤b
a(v) · p+

∫

φ
a(v) · q

with v 6∈ var(b), is sound if φ[b/v] = tt and p[b/v] ↔ q[b/v]. However, this equation
cannot be deduced from Equation 7.19, because p and q need not be of the same
form. We introduce an extra equation to deal with this example.

In the reduction to normal form, this equation is only needed in case p[b/v]
and q[b/v] are of the same form, which can be expressed by a condition as follows.
Consider a term σ(p). Reduce its bounds to normal form, using the axioms from
BA, and replace subterms of the form

∫

v=b a(v) ·p′ by
∫

v=b a(v) ·p′[b/v]. The resulting
process term will be denoted by σ(p)∗. For p, q terms, let ψ(p, q) denote a condition
such that σ ∈ [ψ(p, q)] if and only if σ(p)∗ =AC σ(q)∗. Note that such a condition
exists.

For p, q terms and b a bound with v 6∈ var(b), the first example can be reduced
by the following equation.

Equation 7.20 φ[b/v] ∧ ψ(p[b/v], q[b/v]) :→ (
∫

v<b a(v) · p+
∫

φ a(v) · q)

= φ[b/v] ∧ ψ(p[b/v], q[b/v]) :→ (
∫

v≤b a(v) · p+
∫

φ a(v) · q).
We also have a symmetric version of this equation, in order to reduce the process
term

∫

b<v a(v) · p+
∫

φ a(v) · q. We have two more symmetric equations to deal with
the term

∫

b0<v<b1
a(v) · p + ∫

φ a(v) · q. These equations can be deduced from TA3
and TC2,3 and Equation 7.18.

There is one more example which cannot be reduced neither by Equation 7.19
nor by Equation 7.20.

∫

v=b a(v) · p +
∫

φ a(v) · q ↔ ∫

φ a(v) · q
if φ[b/v] = tt and p ↔ q[b/v]. This second example can be reduced by the following
equation.

7.3. Unique Normal Forms 83

Equation 7.21 φ[b/v] ∧ ψ(p, q[b/v]) :→ (
∫

v=b a(v) · p+
∫

φ a(v) · q)

= φ[b/v] ∧ ψ(p, q[b/v]) :→ ∫

φ a(v) · q.

7.3.6 Construction of normal forms

We define an algorithm which reduces a basic term to a term which is called its
normal form. This normal form is of the form

∑

i(φi :→ pi), where {φi} is a partition
and the pi are basic terms. The algorithm uses the equations that have been deduced
in the previous sections. Some of these equations are of the form φ :→ p = φ :→ q.
In the algorithm, such equations are applied in the form p = (φ :→ q) + (¬φ :→ p).

We apply induction on depth. So suppose that we have already constructed
normal forms for basic terms of depth ≤ n, and let p be a basic term of depth n+1,
of the form

∑

i∈I

∫

φi

αi(v) · pi +
∑

j∈J

∫

φj

αj(v).

(In the basic induction step the sum over I is empty.) The pi have depth ≤ n,
so by induction we already have constructed their normal forms

∑

k∈Ki
(φ′k :→ qk).

Replace the pi by their normal forms and apply the lifting equation to obtain

∑

(i,k)∈I×Ki

∫

φi∧φ′k

αi(v) · qk +
∑

j∈J

∫

φj

αj(v).

According to the refinement lemma, φi∧φ′k is equivalent to a condition ∨l∈Lk
ψl∧v ∈

Vl, and φj is equivalent to a condition ∨l∈Lj
ψl ∧ v ∈ Vl, where var(ψl) ∪ var(Vl) ⊆

var(p)\{v}, and the Vl are either open or of the form [b, b]. Using TC2, we can
reduce p to the form

∑

(i,k,l)∈I×Ki×Lk

(ψl :→
∫

v∈Vl

αi(v) · qk) +
∑

j∈J l∈Lj

(ψl :→
∫

v∈Vl

αj(v)).

Reduce the conditions ψl to a partition by means of Equation 7.14. Reduce the
bounds in the Vl to normal form, using the axioms in BA.

Next, we remove redundant variables. If a Vl is of the form [b, b] and v ∈ fvar(qk),
then apply Equation 7.18 to

∫

v∈Vl
ai(v) · qk. Reduce the bounds in qk[b/v] to normal

form again.
Next, we reduce deadlocks. We use the fact that the Vl are either open or of the

form [b, b].

- Reduce deadlocks
∫

v∈V δ(v) · q to the form
∫

v∈V δ(v).

- Apply TA7 and Equations 7.15 and 7.16 in order to reduce conditions in
deadlocks to either tt or ff or v ∈ [b, b].

- Reduce terms
∫

ff P (v) to
∫

ff δ(v).

84 An Effective Axiomatization for Real Time ACP

- Remove redundant deadlocks using TA4 and Equations 7.10 and 7.17.

Finally, we remove double terms. First apply Equation 7.20, and then Equations
7.19 and 7.21 to each pair

∫

v∈V a(v) · q +
∫

v∈W a(v) · q′ and ∫

v∈V a(v) +
∫

v∈W a(v).
The result is the normal form of p.

7.3.7 The main theorem

Since each term is equal to a basic term, it follows that each term is equal to a
normal form. Let p ∈ T cl have normal form Σi(φi :→ pi). The construction of
normal forms ensures that var(φi) ∪ fvar(pi) ⊆ fvar(p) = ∅. In particular, each φi
is equal to either tt or ff, so we can reduce the normal form of p to a time-closed
term by applying Equations 7.11 and 7.12.

We prove that bisimilar time-closed normal froms are equal modulo AC. First,
we formulate two lemmas which are needed in the proof of the main theorem.

Lemma 7.22 Let p and q be subterms of normal forms. If p[r/v]∗ =AC q[r/v]∗ for
infinitely many r ∈ Time0, then p =AC q.

The proof of this lemma, which is technical and straightforward, is presented in the
appendix.

Lemma 7.23 Let
∫

v∈V a(v) · p be a normal form. Then p[r/v]∗ is a normal form
for all r ∈ V ∩ Time0.

This lemma can be proved by showing that the construction to normal form reduces
p[t/v] to p[t/v]∗. It is left to the reader to check that this is indeed the case.

Theorem 7.24 If time-closed normal forms p and q are bisimilar, then p =AC q.

Proof. We apply induction on the depth of p and q. First, let

p =AC

∑

i∈I

∫

v∈Vi

αi(v), q =AC

∑

j∈J

∫

v∈Wj

α′j(v).

Fix an i ∈ I. First, let αi ∈ A. Then for t ∈ Vi we have p
αi(t)−→ √. Since p ↔ q,

for each t ∈ Vi there is a j(t) ∈ J with t ∈ Wj(t) and αi = α′j(t). In the reduction
to normal form Equation 7.19 has been applied, so the intervals Wj(t) for t ∈ Vi
have been united to one interval. Hence, there is a unique j ∈ J with Vi ⊆ Wj

and αi = α′j. Similarly, for this j there is a unique i(j) ∈ I with Wj ⊆ Vi(j) and
α′j = αi(j). Since Vi ⊆ Wj ⊆ Vi(j) and αi = α′j = αi(j), Equation 7.19 yields i(j) = i,
so Vi and Wj coincide.

Next, let αi = δ. The adaptation of deadlocks in the reduction of normal forms
ensures that v ∈ Vi is of the form v < r or tt. Since Equation 7.17 has been applied in
the reduction to normal form, the ultimate delay of p is determined by the summand
∫

v<r δ(v) or
∫

tt δ(v). Since p and q are bisimilar, it follows that q must contain this
same summand.

7.3. Unique Normal Forms 85

Suppose that the theorem has been proved for depth ≤ n. Let

p =AC

∑

i∈I

∫

v∈Vi

ai(v) · pi + p′, q =AC

∑

j∈J

∫

v∈Wj

a′j(v) · qj + q′,

where the pi and qj have depth n and p′ and q′ have depth ≤ n. Since p ↔ q, it
follows that p′ ↔ q′ and thus by the induction hypothesis p′ =AC q

′.
Fix an i ∈ I. The terms p and q are bisimilar and are basic terms, so for each t ∈

Vi there is a j(t) ∈ J with t ∈ Wj(t) and ai = a′j(t) and tÀ pi[t/v] ↔ tÀ qj(t)[t/v].
Since normal forms are basic terms, which means that they have ascending time
stamps, it follows that pi[t/v] ↔ tÀ pi[t/v] ↔ tÀ qj(t)[t/v] ↔ qj(t)[t/v]

First, assume that Vi contains more than one point. Let J ′ ⊆ J be the collection
of j for which a′j = ai and qj =AC pi, and define WJ ′ := ∪j∈J ′Wj. We show that
Vi\WJ ′ is empty.

1. Vi\WJ ′ contains only a finite number of time numbers in Time0.

Suppose not. For each t ∈ Vi\WJ ′ we have j(t) 6∈ J ′, so then there is an
infinite subset R of (Vi\WJ ′) ∩ Time0 and a j0 ∈ J\J ′ such that j(r) = j0 for
all r ∈ R. Since pi[r/v] ↔ qj0 [r/v], the induction hypothesis together with
Lemma 7.23 yield pi[r/v]∗ =AC qj0 [r/v]∗ for r ∈ R. Since R is infinite, Lemma
7.22 implies pi =AC qj0 . Then j0 ∈ J ′, which is a contradiction.

2. Vi\WJ ′ does not contain time numbers in Time\Time0.

Suppose that Vi\WJ ′ does contain a time number t 6∈ Time0. Since Vi\WJ ′

consists of intervals that have bounds in Time0, apparently it contains the
time numbers in an interval 〈r, s〉 with r, s ∈ Time0 and r < t < s. Then the
time numbers (r+(n− 1)s)/n are distinct in 〈r, s〉 ∩Time0 for n = 1, 2, ..., so
Vi\WJ ′ contains infinitely many time numbers in Time0; contradiction.

3. Vi\WJ ′ is empty.

Suppose not, so there exists an r ∈ (Vi\WJ ′) ∩ Time0. Since this set is finite,
and since Vi contains more than one point, there is a j ∈ J ′ such that Wj

has lower bound or upper bound r. Since qj =AC pi and pi[r/v] ↔ qj(r)[r/v],
it follows that qj[r/v] ↔ qj(r)[r/v]. Then the induction hypothesis together
with Lemma 7.23 yield qj[r/v]∗ =AC qj(r)[r/v]∗. Since Equation 7.20 has been
applied to the pair

∫

v∈Wj(r)

ai(v) · qj(r) +
∫

v∈Wj

ai(v) · qj,

we have r ∈ Wj, which is a contradiction.

Hence, Vi\WJ ′ = ∅, or in other words, Vi ⊆ WJ ′ . Then Equation 7.19 implies that
there is a unique j ∈ J ′ with Vi ⊆ Wj.

86 An Effective Axiomatization for Real Time ACP

Similarly for this j there is an i(j) ∈ I with a′j = ai(j) and qj =AC pi(j) and
Wj ⊆ Vi(j). Since Equation 7.19 has been applied, it follows that i(j) = i. Hence,
Vi coincides with Wj.

Next, assume that Vi equals [t, t]. If Wj(t) contains more than one point, then we
have just proved that there is an i(t) ∈ I with ai(t) = a′j(t), and Vi(t) and Wj(t) coin-
cide, and pi(t) =AC qj(t). Since Vi(t) and Wj(t) coincide, it follows that t ∈ Vi(t). And
pi(t) =AC qj(t) together with pi[t/v]↔ qj(t)[t/v] implies that pi(t)[t/v]↔ pi[t/v]. Then
the induction hypothesis together with Lemma 7.23 give pi(t)[t/v]∗ =AC pi[t/v]∗.
Since Equation 7.21 has been applied to the pair

∫

v∈Vi(t)

ai(v) · pi(t) +
∫

v∈Vi

ai(v) · pi,

the term
∫

v∈Vi
ai(v) · pi should not be there at all. This is a contradiction, so it

follows that Wj(t) equals [t, t].

Since Equation 7.18 has been applied, pi =AC pi[t/v]∗ and qj(t) =AC qj(t)[t/v]∗.
Induction and Lemma 7.23 yield pi[t/v]∗ =AC qj(t)[t/v]∗, so pi =AC qj(t). 2

Corollary 7.25 The axiomatization of BPAδρI is complete for time-closed pro-
cesses modulo bisimulation equivalence.

Proof. Let p, q ∈ T cl be bisimilar. Each step in the reduction to normal form can
be deduced from the axioms, so p = p ↓ and q = q ↓. Then p ↓ ↔ p ↔ q ↔ q ↓, so
Theorem 7.24 yields p↓ =AC q↓. Hence p = q. 2

Corollary 7.26 Bisimulation equivalence between time-closed processes in BPAδρI
is decidable.

7.3.8 An example

The normal form of a process term can be much larger than the term itself. For
example, consider the term

∫

0<v<5
a(v) · (

∫

7−4v<w<5−v
b(w) +

∫

3<w< 17
6

+ 1
3
v
b(w)).

7.4. Parallelism and Synchronization 87

Its normal form can be deduced from Figure 7.1. The lines that are drawn there
intersect for v ∈ { 1

2
, 2

3
, 25

26
, 1, 7

5
, 13

8
, 2, 5

2
, 3, 17

4
}. Thus we get the following normal form:

∫

0<v≤ 1
2
a(v) · δ(v) +

∫

1
2
<v≤ 2

3
a(v) · ∫3<w< 17

6
+ 1

3
v b(w)

+
∫

2
3
<v≤ 25

26
a(v) · (∫3<w< 17

6
+ 1

3
v b(w) +

∫

7−4v<w<5−v b(w))

+
∫

25
26
<v≤1 a(v) ·

∫

3<w<5−v b(w) +
∫

1≤v≤ 7
5
a(v) · ∫7−4v<v<5−v b(w)

+
∫

7
5
≤v≤ 13

8
a(v) · ∫v<w<5−v b(w) +

∫

13
8
≤v<2 a(v) ·

∫

v<w< 17
6

+ 1
3
v b(w)

+
∫

2≤v< 5
2
a(v) · (∫v<w<5−v b(w) +

∫

3<w< 17
6

+ 1
3
v b(w))

+
∫

5
2
≤v≤3 a(v) ·

∫

3<w< 17
6

+ 1
3
v b(w) +

∫

3≤v< 17
4
a(v) · ∫v<w< 17

6
+ 1

3
v b(w)

+
∫

17
4
≤v<5 a(v) · δ(v).

W
 =

 5
 -

 V

W
 =

 3

W
 =

 1
7

/ 6
 +

 V
 /

3

1
0

W
 =

 7
 -

 4
 V

V
-A

X
IS

W
-A

X
IS

Figure 7.1: Graphical description of a process term

7.4 Parallelism and Synchronization

We introduce parallelism, synchronization and encapsulation, resulting in the theory
ACPρI. We extend the syntax with the parallel merge ‖, and we add the auxiliary

88 An Effective Axiomatization for Real Time ACP

operators left merge and communication merge |, which allow the definition of ‖
in finitely many axioms. Moreover, we add the encapsulation operator ∂H .

Assume a commutative communication function | : A∪{δ}×A∪{δ} −→ A∪{δ}
which is commutative and associative and has δ as zero element. Communication
between timed actions can only take place if they happen simultaneously. So if
a|a′ = c, then

a(1)|a′(1) = c(1),
a(1)|a′(2) = δ(1).

In untimed ACP, a p = a · p. However, in the real-time setting this definition
would cause the process a(1)‖a′(2) to have a deadlock:

a(1)‖a′(2) = a(1) a′(2) + a′(2) a(1) = a(1) · a′(2) + a′(2) ·
∫

ff
δ(v).

In order to avoid such deadlocks, the definition of the left merge is adapted in such
a way that a process p q can only idle as long as both p and q can idle. So for
example:

a(1) a′(2) = a(1) · a′(2),
a′(2) a(1) = δ(1).

Note that this definition induces a(1)‖a′(2) = a(1) · a′(2).
For each subset H of A, the encapsulation operator ∂H is defined on A∪ {δ} by

∂H(α) = δ if α ∈ H ∪ {δ} and ∂H(a) = a if a ∈ A\H.

The constructs ‖ and and | and ∂H are added to the notion of a process term,
that is, the BNF grammar is extended with

p‖p | p p | p|p | ∂H(p).

The notions free variables and substitutions extend to these operators as expected.

7.4.1 Operational semantics for ACPρI

Table 7.5 contains the action rules for the operators ‖, |, and ∂H , taken from [13].
Once more, bounds may contain time numbers t from Time. The rules are within
the format of Bloom and Vaandrager, so bisimulation equivalence is a congruence
for the added operators as well.

Furthermore, ACPρI is a conservative extension of BPAρδI, which means that
the operational semantics of BPAρδI terms is not influenced by the extra action
rules for communication and encapsulation. This follows from the fact that the
action rules of BPAρδI are all source-dependent, and that the extra action rules of
ACPρI all have a new function symbol in the left-hand side of their conclusion. See
[10] for the definitions and a proof of this result.

7.4. Parallelism and Synchronization 89

x
a(t)−→ x′ Ut(y)

x‖y a(t)−→ x′‖(tÀ y) y‖x a(t)−→ (tÀ y)‖x′ x y
a(t)−→ x′‖(tÀ y)

x
a(t)−→ √ Ut(y)

x‖y a(t)−→ tÀ y y‖x a(t)−→ tÀ y x y
a(t)−→ tÀ y

If a|a′ = c 6= δ, then

x
a(t)−→ x′ y

a′(t)−→ y′

x‖y c(t)−→ x′‖y′ x|y c(t)−→ x′‖y′
x

a(t)−→ √ y
a′(t)−→ √

x‖y c(t)−→ √ x|y c(t)−→ √

x
a(t)−→ √ y

a′(t)−→ y′

x‖y c(t)−→ y′ y‖x c(t)−→ y′ x|y c(t)−→ y′ y|x c(t)−→ y′

x
a(t)−→ √ a 6∈ H
∂H(x)

a(t)−→ √
x

a(t)−→ x′ a 6∈ H
∂H(x)

a(t)−→ ∂H(x
′)

Ut(x) Ut(y)

Ut(x‖y) Ut(x y) Ut(x|y)
Ut(x)

Ut(∂H(x))

Table 7.5: Additional action rules for ACPρI

7.4.2 Axioms for ACPρI

The axiomatization for ACPρI consists of the (old) axioms in Table 7.4, together
with the (new) axioms in Table 7.6. Some of these new axioms contain the construct
Ub(p), which represents a condition which results to true under a valuation σ if and
only if Uσ(b)(σ(p)). At the end of Table 7.6, three axioms U1-3 are added which
enable to reduce the construct Ub(p) to a condition of the form as defined in Section
7.2.1. Table 7.6 uses the abbreviation Uv(φ) for Uv(

∫

φ δ(v)).

In the sequel, p = q means that equality between these terms can be derived
from the equational theory of ACPρI. We extend our decidability result to ACPρI
by showing how to eliminate the new operators from the syntax, using these axioms.

Similarly as in Proposition 7.5 we can deduce that if two time-closed terms are
provably equal in the conditional axiom system, then they are bisimilar.

The following Proposition 7.27 says that the axioms of ACPρI are sufficient to
eliminate the communication and encapsulation operators from the syntax. Godske-
sen and Larsen [11] provided a rigorous proof that time dependencies are essential
in order to obtain such a theorem in a timed setting. (Aceto and Murphy [1] pro-

90 An Effective Axiomatization for Real Time ACP

CM1 x‖y = x y + y x+ x|y

TCM2 v 6∈ fvar(y)
∫

φ α(v) y =
∫

φ∧Uv(y) α(v) · y +
∫

Uv(φ)∧Uv(y) δ(v)

TCM3 v 6∈ fvar(y) (
∫

φ α(v) · x) y =
∫

φ∧Uv(y) α(v) · (x‖y) +
∫

Uv(φ)∧Uv(y) δ(v)

CM4 (x+ y) z = x z + y z

TCF
∫

φ α(v)|
∫

ψ α
′(v) =

∫

φ∧ψ(α|α′)(v) +
∫

Uv(φ)∧Uv(ψ) δ(v)

TCM5 (
∫

φ α(v) · x)|
∫

ψ α
′(v) =

∫

φ∧ψ(α|α′)(v) · x+
∫

Uv(φ)∧Uv(ψ) δ(v)

TCM6
∫

φ α(v)|
∫

ψ α
′(v) · y =

∫

φ∧ψ(α|α′)(v) · y +
∫

Uv(φ)∧Uv(ψ) δ(v)

TCM7 (
∫

φ α(v) · x)|
∫

ψ α
′(v) · y =

∫

φ∧ψ(α|α′)(v) · (x‖y)
+

∫

Uv(φ)∧Uv(ψ) δ(v)

CM8 (x+ y)|z = x|z + y|z
CM9 x|(y + z) = x|y + x|z

TD1 ∂H(
∫

φ α(v)) =
∫

φ ∂H(α)(v)
TD2 ∂H(

∫

φ α(v) · x) =
∫

φ ∂H(α)(v) · ∂H(x)
D3 ∂H(x+ y) = ∂H(x) + ∂H(y)

U1 Ub(
∫

v∈V P (v)) = b < sup(V)
U2 Ub(x+ y) = Ub(x) ∨ Ub(y)
U3 Ub(φ :→ x) = φ ∧ Ub(x)

Table 7.6: Axioms for ACPρI

posed the notion of ‘ill-timed’ traces, in order to obtain an expansion theorem for
the merge in the absence of time dependencies.)

Proposition 7.27 For each ACPρI term p, there is a BPAδρI term p′ such that
p = p′.

Proof. Let p0 and p1 denote two BPAδρI terms. First, suppose that p is of the form
p0 p1. We show how to eliminate from this term, by induction on the sizes of p0

and p1. Previously, we have shown for terms that do not contain communication nor
encapsulation operators, that time shifts can be deleted. Hence, only the following
cases need to be considered.

∫

φ α(v) p1 =
∫

φ∧Uv(p1) α(v) · p1 +
∫

Uv(φ)∧Uv(p1) δ(v) v 6∈ fvar(p1)

(
∫

φ α(v) · q) p1 =
∫

φ∧Uv(p1) α(v) · (q‖p1) +
∫

Uv(φ)∧Uv(p1) δ(v) v 6∈ fvar(p1)

(q + q′) p1 = q p1 + q′ p1.

Similarly, we can delete | from p0|p1, using the TCM axioms from Table 7.6. Since
p0‖p1 = p0 p1 + p1 p0 + p0|p1, the case p0‖p1 reduces to the previous two cases.
Finally, the ∂H can be deleted from ∂H(p0) by means of the TD axioms.

7.5. Related Work 91

Next, we deal with the general case, where may p contain several communica-
tion and encapsulation operators. These operators can be deleted one by one, by
considering subterms of p of the form p0‖p1 or p0 p1 or p0|p1 or ∂H(p0). 2

In the previous section we have seen that by means of the axioms in Table
7.4 we can decide bisimulation equivalence between time-closed terms that do not
contain communication nor encapsulation operators. Together with Proposition
7.27, it follows that the equational theory of ACPρI decides bisimulation equivalence
between time-closed terms.

Corollary 7.28 The equational theory of ACPρI is complete for time-closed pro-
cesses modulo bisimulation equivalence.

Corollary 7.29 Bisimulation equivalence between time-closed processes in ACPρI
is decidable.

7.5 Related Work

Recently, many process algebras have been extended with some notion of time. Most
timed process algebras are based on relative time, in which the time stamp of an
action refers to the point in time when the previous action was executed. This
chapter focused on absolute time, which means that the time stamp of an action
a(t) refers to the start time of the entire process (time zero). A real time version of
ACP with relative time was proposed in [3], in which square brackets are used to
denote relative time; so a[1] · b[2] corresponds with the (absolute time) expression
a(1) · b(3). Without any complications our results can be translated to ACP with
relative time

We consider timed process algebras with a notion of integration and time depen-
dencies. For example, we do not consider the work of Holmer, Larsen and Wang [12]
on decidability in real time CCS, because their algebra does not incorporate time
dependencies.

7.5.1 Timed CCS

Wang [23] introduced the construct a@v.p, which executes a at some time t, after
which it evolves into p[t/v]. His calculus is based on relative time, and unlike timed
ACP, consecutive actions can be executed at the same point in time. The construct
a@v.p is equivalent to the expression

∫

0≤v a[v] · p in BPA with relative time.

Chen [7] presented a generalization of Wang’s construct a@v.p, namely a(v)|b′b .p,
which executes a at some point in time t ∈ [b, b′], after which it evolves into p[t/v].
This construct is similar to the expression

∫

b≤v≤b′ a[v] · p in BPA with relative time.
The bounds b and b′ allow to express time dependencies.

Chen obtained a decidability result by introducing for every pair of processes
p, q a first order formula WC(p, q) which is the least condition such that p and q are

92 An Effective Axiomatization for Real Time ACP

bisimilar. Decidability follows from the decidability of the first order theory of the
underlying time domain, according to Tarski [21].

In [8], Chen introduced an axiom system with conditions. Derivations are relative
to some condition; if two process terms p, q, possibly containing free time variables,
are equal under the condition φ, then φ ` p = q. He shows that WC(p, q) can be
expressed by a condition, and thatWC(p, q) ` p = q is derivable, which induces that
his axiom system is effective. In Chen’s setting it is not possible to mix conditions
through the terms. In order to explain the difference with our axiomatization, we
rephrase axiom TC1 as a conditional proof rule:

φ ` x = y

tt ` ∫

φ α(v) · x =
∫

φ α(v) · y
A derivation starting from a term

∫

φ α(v) · x where φ is used ‘deep down’ in x, gives
rise to a proof tree, while in our setting derivations are always equational.

7.5.2 Timed automata

Alur and Dill [2] proposed an extension of Büchi and Muller automata with time.
Transitions are supplied with time constraints on ‘clock variables’, and while exe-
cuting a transition, a clock can be set back to zero. A trace is accepted by a timed
automaton if its transitions are performed at times that all clocks satisfy their con-
straints. Furthermore, accepted traces have to satisfy required fairness constraints,
and Zeno behaviour is excluded from timed automata, i.e. traces are only accepted
if they progress beyond any moment in time. The fairness restrictions, the non-Zeno
requirement and the fact that only infinite traces are considered, are obstacles for the
translation between timed automata and real time ACP with recursion. However, if
these restrictions are discarded, then the classes of timed automata corresponds with
a subalgebra of real time ACP with recursion which allows an elimination theorem
for the merge, see Chapter 6.

Čerāns [5] introduced a more general notion of timed automata, which he calls
timed graphs. For example, in his setting edges of automata are painted a color, red
or black, which determines whether or not idling is allowed when the edge becomes
enabled. Čerāns proved that bisimulation equivalence is decidable for timed graphs.
This result is incomparable with ours, because his timed algebra is so different.

7.6 Appendix: Three Proofs

Refinement Lemma. Fix a time variable v. Each condition φ is equal to a
condition of the form ∨i(φi ∧ φ′i), where

- var(φi) ⊆ var(φ)\{v},

- φ′i is of the form v = b or v < b or b < v or b < v < b′, with var(b + b′) ⊆
var(φ)\{v}.

7.6. Appendix: Three Proofs 93

Proof sketch. First, rewrite φ to a condition of the form ∨iψi, with each ψi of the
form ∧j(bj < b′j) ∧ ∧k (ck = c′k). Reduce the bounds in ψi to normal form, i.e. to the
form r1 · v1 + ...+ rl · vl+ s. In each (in)equality, collect factors r · v at one side, and
collect the remaining summands of the bounds on the other side, such that either v
is deleted from the (in)equality, or it takes the form r · v = b or r · v < b, with r 6= 0
and v 6∈ var(b). In the latter case, replace the (in)equality by v = (1/r) · b or by
v < (1/r) · b if r > 0 or by (1/r) · b < v if r < 0. Thus we can reduce each ψi to an
equivalent condition ψ′i of the form

ψ ∧
∧

j∈J

bj < v ∧
∧

k∈K

v < ck ∧
∧

l∈L

v = dl

where v does not occur in ψ, bj, ck, dl. We show that such a ψ′i is equivalent to a
condition of the form ∨j(φ′j ∧ v ∈ Vj), with v 6∈ var(φ′j) ∪ var(Vj).

First, suppose L 6= ∅. Fix an l0 ∈ L and put d = dl0 . The following condition is
equivalent to ψ′i.

(ψ ∧
∧

j∈J

bj < d ∧
∧

k∈K

d < ck ∧
∧

l∈L

d = dl) ∧ v = d.

So we may assume L = ∅. If J 6= ∅ and K 6= ∅, then the following condition is
equivalent to ψ′i.

∨

(j,k)∈J×K

(ψ ∧
∧

j′∈J

bj′ ≤ bj ∧
∧

k′∈K

ck ≤ ck′ ∧ bj < v < ck).

Similarly, we can find suitable conditions equivalent to ψ ′i if J or K is empty. 2

Completeness of CA. If [φ] = [φ′], then φ = φ′.

Proof sketch. We apply induction on the number of variables that occur in φ and
φ′. If this number is zero, then the proposition is trivial, since then both φ and φ′

reduce to either tt or ff. So assume that we have proved the case for n variables,
and let φ and φ′ contain n+ 1 variables. Fix a variable v that occurs in φ or in φ′.
According to the refinement lemma, we have

φ =
∨

i

ψi ∧ (v ∈ Vi1 ∨ ... ∨ v ∈ Vimi
) φ′ =

∨

i

ψi ∧ (v ∈ Wi1 ∨ ... ∨ v ∈ Wini
)

where v does not occur in the ψi, Vij, Wij, and {ψi} is a partition. Furthermore,
ensure that under condition ψi both the Vij and the Wij are pairwise disjoint and
non-empty. Moreover, ensure that if σ ∈ [ψi], then the elements in σ(Vij) and in
σ(Wij) are smaller than the elements in σ(Vij+1) and in σ(Wij+1) respectively.

Consider a ψi, and suppose that σ ∈ [ψi]. Since σ(φ) = σ(φ′), and since {ψi} is a
partition, it follows that σ(v ∈ Vi1∨ ...∨v ∈ Vimi

) = σ(v ∈Wi1∨ ...∨v ∈Wini
). The

σ(Vij) and the σ(Wij) are pairwise disjoint and of increasing order, so mi = ni and
σ(Vij) = σ(Wij) for all j. So if Vij has lower bound bj and upper bound b′j, and let
Wij have lower bound cj and upper bound c′j, then σ(ψi∧ bj = cj ∧ b′j = c′j) = σ(ψi).
This equality holds as well if σ(ψi) results to false, so the induction hypothesis yields

94 An Effective Axiomatization for Real Time ACP

(ψi ∧ bj = cj ∧ b′j = c′j) = ψi. Hence, ψi ∧ v ∈ Vij = ψi ∧ v ∈ Wij. This holds for
all i and j, so

∨

i

ψi ∧ (v ∈ Vi1 ∨ ... ∨ v ∈ Vimi
) =

∨

i

ψi ∧ (v ∈ Wi1 ∨ ... ∨ v ∈ Wini
). 2

Lemma 7.22. Let p and q be subterms of normal forms. If p[r/v]∗ =AC q[r/v]∗ for
infinitely many r ∈ Time0, then p =AC q.

Proof. For a bound b, let b ↓ be its normal form. Note that if b0 ↓6=AC b1 ↓, then
there is at most one r ∈ Time0 such that b0[r/v] ↓ =AC b1[r/v] ↓. Let /b0, b1. ↓
denote /b0 ↓, b1 ↓ ..

We use induction on the depth of p and q. Let

p =AC

∑

i

∫

w∈Vi

ai(w) · pi +
∑

j

∫

w∈Wj

αj(w),

q =AC

∑

k

∫

w∈V ′
k

a′k(w) · qk +
∑

l

∫

w∈W ′
l

α′l(w).

Assume that p 6=AC q; we show that p[r/v]∗ =AC q[r/v]∗ for only finitely many
r ∈ Time0. We distinguish two cases.

1. There is a j such that for all l we have
∫

w∈Wj
αj(w) 6=AC

∫

w∈W ′
l
α′l(w).

Fix an l. If αj 6= α′l, then clearly
∫

w∈Wj [r/v]↓
αj(w) 6=AC

∫

w∈W ′
l
[r/v]↓ α

′
l(w) for all

r.

So assume that αj = α′l. Then Wj 6=AC W ′
l , so there is no more than one

r ∈ Time0 such that Wj[r/v]↓=AC W
′
l [r/v]↓.

It follows that the set {r ∈ Time | p[r/v]∗ =AC q[r/v]∗} is smaller or equal to
the number of l’s (and thus finite).

2. There is an i such that for all k we have
∫

w∈Vi
ai(w) · pi 6=AC

∫

w∈V ′
k
a′k(w) · qk.

Fix a k with ai = a′k. If Vi 6=AC V ′k , then it follows as in 1 that there is no
more than one r such that

(
∫

w∈Vi

ai(w) · pi)[r/v]∗ =AC (
∫

w∈V ′
k

a′k(w) · qk)[r/v] ∗ .

So assume that pi 6=AC qk. Then by the induction hypothesis there is only a
finite number of r such that pi[r/v]∗ =AC qk[r/v]∗. Furthermore, if Vi or V

′
k is

not of the form [b, b], then there is no more than one r such that Vi[r/v] ↓ or
V ′k [r/v]↓ does have this form respectively.

It follows that {r ∈ V ∩ Time0 | p[r/v]∗ =AC q[r/v]∗} is finite. 2

References 95

References

[1] L. Aceto and D. Murphy. On the ill-timed but well-caused. In E. Best,
editor, Proceedings 4th Conference on Concurrency Theory (CONCUR’93),
Hildesheim, LNCS 715, pages 97–111. Springer-Verlag, 1993.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[3] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3(2):142–188, 1991.

[4] B. Bloom and F.W. Vaandrager. SOS rule formats for parametrized and state-
bearing processes. Unpublished manuscript, 1994.

[5] K. Čerāns. Decidability of bisimulation equivalence for processes with parallel
timers. Technical report, University of Latvia, Riga, 1992.

[6] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 1990.

[7] L. Chen. An interleaving model for real-time systems. In A. Nerode and M. Tait-
slin, editors, Proceedings 2nd Symposium on Logical Foundations of Computer
Science, Tver, Russia, LNCS 620, pages 81–92. Springer-Verlag, 1992.

[8] L. Chen. Axiomatising real-timed processes. In S. Brooks, M. Main, A. Melton,
M. Mislove and D. Schmidt, editors, Proceedings 9th Conference on Mathemat-
ical Foundations of Programming Semantics (MFPS’93), New Orleans, LNCS
802, pages 215–229. Springer-Verlag, 1993.

[9] W.J. Fokkink. Normal forms in real time process algebra. Report CS-R9149,
CWI, Amsterdam, 1991.

[10] W.J. Fokkink and C. Verhoef. Unpublished manuscript on conservative exten-
sions in operational semantics with types and variable binding.

[11] J.C. Godskesen and K.G. Larsen. Real time calculi and expansion theorems.
In R. Shyamasundar, editor, Proceedings 12th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 12), New
Delhi, LNCS 652, pages 302–315. Springer-Verlag, 1992.

[12] U. Holmer, K.G. Larsen, and Y. Wang. Deciding properties of regular real timed
processes. In K.G. Larsen and A. Skou, editors, Proceedings 3rd Workshop on
Computer Aided Verification (CAV’91), Aalborg, LNCS 575, pages 432–442.
Springer-Verlag, 1991.

[13] A.S. Klusener. Completeness in real time process algebra. In J.C.M. Baeten
and J.F. Groote, editors, Proceedings 2nd Conference on Concurrency Theory
(CONCUR’91), Amsterdam, LNCS 527, pages 376–392. Springer-Verlag, 1991.

96 An Effective Axiomatization for Real Time ACP

[14] A.S. Klusener. Abstraction in real time process algebra. In J.W. de Bakker, C.
Huizing, W.P. de Roever and G. Rozenberg, editors, Proceedings REX Work-
shop “Real Time: Theory in Practice”, Mook, LNCS 600, pages 325–352.
Springer-Verlag, 1991.

[15] A.S. Klusener. The silent step in time. In W.R. Cleaveland, editor, Proceedings
3rd Conference on Concurrency Theory (CONCUR’92), Stony Brook, LNCS
630, pages 421–435. Springer-Verlag, 1992.

[16] A.S. Klusener. Models and Axioms for a Fragment of Real Time Process Alge-
bra. PhD thesis, Eindhoven University of Technology, 1993.

[17] S. Koppelberg. General theory of Boolean algebras. In J.D. Monk, editor,
Handbook of Boolean Algebras, Volume 1. North-Holland, 1989.

[18] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, Proceedings 1st Conference on Concur-
rency Theory (CONCUR’90), Amsterdam, LNCS 458, pages 401–415. Springer-
Verlag, 1990.

[19] S.A. Schneider. An operational semantics for timed CSP. Report TR1-91,
Oxford University, 1991. To appear in Information and Computation.

[20] A. Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–
325, 1988.

[21] A. Tarski. A New Decision Method for Elementary Algebra. University of Cal-
ifornia Press, 1951.

[22] Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings 1st Conference on Concurrency Theory
(CONCUR’90), Amsterdam, LNCS 458, pages 502–520. Springer-Verlag, 1990.

[23] Y. Wang. CCS + time = an interleaving model for real time systems. In
J. Leach Albert, B. Monien, and M. Rodŕıguez, editors, Proceedings 18th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’91),
Madrid, LNCS 510, pages 217–228. Springer-Verlag, 1991.

8

Complete Axioms for Timed Regular
Processes with Silent Steps

Wan Fokkink

First, we consider BPAδ with recursion, extended with relative time. It is
proved that the axioms for BPAδ with time, together with two standard
axioms for (untimed) recursion, are complete for regular processes modulo
bisimulation.
Next, the syntax is extended with the silent step τ , and a timed version of
branching bisimulation is defined. We add one axiom for the silent step to
the axiom system, and prove that this axiomatization is complete for regular
processes modulo timed branching bisimulation.

8.1 Introduction

Over the years, process algebras such as CCS, CSP and ACP have been extended
with a notion of time. This chapter is based on the approach of Baeten and Bergstra
[2], which extends ACP with real time.

The first part of this chapter considers BPAδr, which denotes Basic Process
Algebra with deadlock and relative time. Terms are constructed from timed atoms
α[r], the alternative composition x+y and the sequential composition x·y. Processes
are considered in relative time, i.e. a timed action a[r] executes action a exactly r
time units after the previous action has been executed. In this chapter, the algebra
BPAδr is extended with a notion of recursion.

We consider the two axioms R1,2 for regular processes from Bergstra and Klop
[5]. In that paper it is proved that R1,2 together with the standard axioms for
BPAδ are complete for the algebra of (untimed) regular processes modulo strong
bisimulation. In this chapter, we prove that R1,2 together with the standard axioms
for the algebra BPAδr are complete for the algebra of timed regular processes. This
completeness result is obtained by means of an algorithm which reduces bisimilar
terms to the same normal form.

97

98 Complete Axioms for Timed Regular Processes with Silent Steps

Milner [15] derived completeness of an axiomatization for regular behaviours in
the untimed case, with respect to strong bisimulation. Chen [7] deduced a similar
result for his extension of CCS with real time. Aceto and Jeffrey [1], deduced a
similar result for the regular subcalculus of Wang Yi’s timed CCS [20, 11]. Their
setting incorporates abstraction in the setting of strong bisimulation.

Next, we extend the syntax with the silent step τ . The semantics for abstraction
is based on the untimed branching bisimulation of van Glabbeek and Weijland [9].
This equivalence preserves the branching structure of processes; a τ -transition is
silent if and only if it does not lose possible behaviours. Klusener [12] introduced
a timed version of branching bisimulation. Again, τ [r]-transitions may be omitted
under the condition that they do not lose possible behaviours. However, this same
intuition in the timed setting gives rise to quite a different mathematical interpre-
tation than in the untimed case. As always, the definition of bisimulation with
abstraction in the setting of time becomes deplorably complicated, cf weak bisimu-
lation in [17, 6, 18, 10]. However, its axiomatization is crystal clear. In our setting,
one simple axiom from Klusener [14] is sufficient to describe equivalences that in-
volve abstraction. Hence, performing calculations in the algebra is quite feasible, in
spite of the complicated definition of its semantics.

We deduce a completeness result for our algebra of timed regular processes with
abstraction. Milner [16] and Bergstra and Klop [5] have deduced similar results for
the untimed case. In that last paper, no less than three extra axioms were needed
to deal with complications regarding recursion in the presence of abstraction. This
is mainly due to the fact that τ is not a ‘guard’ for recursion; the recursive equation
X = τ · X has infinitely many solutions τ · p for X. However, this complication
disappears in the presence of time; the recursive equation X = τ [r] · X has only
one solution τ [r] · δ[∞] for X. A similar observation was already made by Reed and
Roscoe [19], in a setting of timed CSP with topological models. As a consequence
of this phenomenon, no extra axioms are needed for recursion in the timed setting.
To obtain a complete axiomatization, we only have to add the characterizing axiom
for abstraction to the axiom system.

To cut down notational overhead as much as possible, we leave out the com-
munication operators and the encapsulation operator from ACP. Although these
operators are important for the expressive power of the formalism, they are not
essential for presenting the main ideas of this paper. A straightforward collection
of axioms from [2], together with axioms R1,2, suffice to eliminate these operators
from the syntax, see [8].1

Acknowledgements. Steven Klusener and Frits Vaandrager provided helpful com-
ments.

1For this elimination result it is essential that our time domain consists of the rationals, instead
of the reals. For example, if X = a[1] ·X and Y = b[

√
2] · Y , then the merge cannot be eliminated

from X‖Y .

8.2. Timed Regular Processes 99

8.2 Timed Regular Processes

We study the formalism BPAδr, which stands for Basic Process Algebra with dead-
lock, extended with relative time. We assume an alphabet A of atomic actions,
together with the special constant δ to represent deadlock. In the sequel, a and
α denote elements of A and A ∪ {δ} respectively. A timed action is of the form
α[r] with r ∈ Q ∪ {∞}. Here, ∞ denotes a special time element ‘infinity’ that is
greater than any rational. Moreover, we assume the binary operators alternative
composition + and sequential composition ·.

The timed deadlock δ[r] can only idle until time r. For example, the process
a[1]+ δ[2] can either execute the a at time 1 or idle until time 2. On the other hand,
the process a[1] + δ[1] will always execute the a at time 1.

8.2.1 Recursion

A recursive specification E is a finite set of equations {Xi = ti| i = 1, ..., n}, where
the Xi are recursion variables, and the ti are process terms constructed from timed
actions, the alternative composition, the sequential composition and the variables
Xj for j = 1, ..., n.

A solution of the recursive specification E, in a certain model of BPAδr, is a
collection of processes {pi| i = 1, ..., n} such that the equations Xi = ti become true
(in the model) if the pi are substituted for the Xi.

The syntactic construct 〈X|E〉 denotes a solution of X with respect to E. It can
be regarded as some kind of variable, ranging over the collection of solutions of X.
By abuse of notation 〈X|E〉 is often abbreviated by X.

In the sequel, we only consider linear recursive specifications, which consist of
equations of the form

X =
∑

i

αi[ri] · Yi +
∑

j

βj[sj].

8.2.2 Operational semantics

Table 8.1 contains the action rules that define the operational semantics for BPAδr
with recursion. This operational semantics, taken from [13], does not yield any
idle transitions; a process a[r] only executes the a at time r. A similar operational
semantics can be found in [11].

Processes are considered in relative time. This means that an action a[r] executes
a exactly r time units after the previous action has been executed. For example, the
process a[1] · b[2] first executes a at time 1, and then b at (absolute) time 3. Note
that time starts at zero and never reaches infinity, so actions a[r] with r ≤ 0 and
r =∞ do not display any behaviour.

The expression E in the two action rules for recursion represents a linear recursive
specification. Moreover, 〈t1|E〉 denotes t1 with occurrences of variables Xi replaced
by 〈Xi|E〉.

100 Complete Axioms for Timed Regular Processes with Silent Steps

a[r]
a[r]−→ √ if 0 < r <∞

x
a[r]−→ √

x+ y
a[r]−→ √ a[r]←− y + x

x
a[r]−→ x′

x+ y
a[r]−→ x′

a[r]←− y + x

x
a[r]−→ √

x · y a[r]−→ y

x
a[r]−→ x′

x · y a[r]−→ x′ · y

〈t1|E〉
a[r]−→ √

〈X1|E〉
a[r]−→ √

〈t1|E〉
a[r]−→ y

〈X1|E〉
a[r]−→ y

Table 8.1: Action rules for BPAδr

8.2.3 Strong bisimulation

The ultimate delay U(p) is the latest moment in time up to which process p can idle
without executing an initial action. It is defined inductively as follows:

U(α[r]) = max{r, 0}
U(p+ q) = max{U(p), U(q)}
U(p · q) = U(p)
U(〈Xi|E〉) = U(〈ti|E〉).

U(p) enables to distinguish processes that only differ in their deadlock behaviour,
such as a[1] + δ[1] and a[1] + δ[2].

Definition 8.1 Two process expressions p0, q0 are (strongly) bisimilar, notation
p0 ↔ q0, if there exists a symmetric, binary bisimulation relation B on processes
such that

1. p0Bq0.

2. If p
a[r]−→ p′ and pBq, then q a[r]−→ q′ for some process q′ with p′Bq′.

3. If p
a[r]−→ √ and pBq, then q a[r]−→ √.

4. If pBq, then U(p) = U(q).

8.2.4 Regular processes

As a model for BPAδr with recursion we take the collection R of regular process
terms, modulo bisimulation. Regular terms are constructed from the timed actions,

8.2. Timed Regular Processes 101

expressions 〈X|E〉 with E a linear recursive specification, and the alternative and
the sequential composition. Process terms in R are considered modulo bisimulation
equivalence.

The terminology ‘regular’ is justified by the following observation. For each pro-
cess p, let Trans(p) be the smallest collections of transitions such that the following
statements are true, where r ranges over Q>0.

p ↔ p+ a[r] · q =⇒ (p, a[r], q) ∈ Trans(p),

p ↔ p+ a[r] =⇒ (p, a[r]) ∈ Trans(p),

(p, a[r], q) ∈ Trans(p) =⇒ Trans(q) ⊆ Trans(p).

For each p ∈ R the collection Trans(p) is finite, if bisimilar terms are identified (cf
[4] for the untimed case).

8.2.5 An axiom system

Strong bisimulation is a congruence on R, which means that if p ↔ p′ and q ↔ q′,
then p+ q ↔ p′+ q′ and p · q ↔ p′ · q′. This property follows from the path format of
Baeten and Verhoef [3]. They proved that if a collection of transition rules is within
this format, then the strong bisimulation equivalence it induces on the algebra of
closed terms is always a congruence. We can extend our operational semantics with
rules that define predicates U(p) = r for r ∈ Q>0 ∪ {∞}. Our extended operational
semantics fits the path format, and Definition 8.1 yields exactly the definition for
strong bisimulation in the setting with the ultimate delay predicates.

Table 8.2 contains an axiom system for BPAδr with recursion. Axioms A1-5
are the standard axioms from BPA, and the axioms TA6-9 are taken from [13]. In
that paper it is proved that the axioms constitute a complete proof system for the
model of closed terms (i.e. process terms not containing recursion variables) modulo
bisimulation. Finally, the axioms R1,2 for recursion stem from [5]. R1 induces
equalities like 〈X|X = a[r] ·X〉 = a[r] · 〈X|X = a[r] ·X〉, and R2 (or the Recursive
Specification Principle) says that each linear recursive specification has only one
solution. In both axioms, E denotes a linear recursive specification of the form
{Xi = ti| i = 1, ..., n}.

8.2.6 Completeness

Consider the model R. It is easy to see that the axioms A1-5 and TA6-9 and R1
are sound with respect to bisimulation. A detailed proof of the soundness of R2 can
be found in [8]. We now prove that these axioms together constitute a complete
axiomatization for R. Namely, we shall present a strategy to reduce each solution of
a linear specification to normal form, by means of the axioms. Next, we shall show
that if two normal forms are bisimilar, then they are syntactically equal modulo
α-conversion (i.e. modulo renaming of variables). This proves completeness.

102 Complete Axioms for Timed Regular Processes with Silent Steps

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A4 (x+ y) · z = x · z + y · z
A5 (x · y) · z = x · (y · z)

TA6 s ≤ r =⇒ α[r] + δ[s] = α[r]
TA7 δ[r] · x = δ[r]
TA8 r ≤ 0 =⇒ α[r] = δ[0]
TA9 a[∞] = δ[∞]

R1 pi = 〈Xi|E〉 i = 1, ..., n =⇒ p1 = t1[p1/X1, ..., pn/Xn]
R2 pi = ti[p1/X1, ..., pn/Xn] i = 1, ..., n =⇒ p1 = 〈X1|E〉

Table 8.2: Axioms for timed regular processes

Let E = {Xi = ti| i = 1, ..., n} be a linear specification. In order to reduce the
process 〈X1|E〉 to normal form, we reduce E in several steps.

Step 1: Removal of redundant deadlocks

- First, replace each expression in ti of the form α[r] with r ≤ 0 by δ[0] and each
expression of the form a[∞] by δ[∞].

- Next, replace each expression in ti of the form δ[r] ·X by δ[r].

- Finally, remove each expression δ[r] from ti for which there is an expression
a[s] ·X or α[s] in ti with r ≤ s.

Step 2: Identification of bisimilar variables

If 〈Xj|E〉 ↔ 〈Xk|E〉 with j < k, then rename Xk in the ti into Xj.

Step 3: Removal of double edges

If an expression a[r] or a[r] · Xj occurs in ti more than once, then remove all but
one of the occurrences of this expression in ti.

8.2. Timed Regular Processes 103

Step 4: Removal of redundant variables

Let the collection dep(X1) of variables in E that occur in the ‘dependency graph’ of
X1 be defined as follows:

X1 ∈ dep(X1),
Xi ∈ dep(X1) and Xj occurs in ti =⇒ Xj ∈ dep(X1).

If Xj 6∈ dep(X1), then remove the equation Xj = tj from E.

Thus we have constructed the normal form of 〈X1|E〉. Step 1 is provable from
R1,2 and TA6-9, Step 3 from R1,2 plus A3, and Step 4 from R1,2. We show that
Step 2 can be proved from R1,2+A3. Let Ẽ be the specification that results after
identifying bisimilar variables in E. Let Xi(j) denote the bisimilar variable that has

been substituted for Xj in Ẽ, for j = 1, ..., n.

Proposition 8.2 R1, 2 + A3 ` 〈X1|E〉 = 〈X1|Ẽ〉.

Proof. Let Tj denote the process tj[〈Xi(1)|Ẽ〉/X1, ..., 〈Xi(n)|Ẽ〉/Xn]. It is easy to see
that 〈Xj|E〉 ↔ Tj for j = 1, ..., n. Since 〈Xj|E〉 ↔ 〈Xi(j)|E〉, this implies Tj ↔ Ti(j)
for j = 1, ..., n.

So if Tj has a subterm a[r] · 〈Xk|Ẽ〉, then Ti(j) has a subterm a[r] · 〈Xl|Ẽ〉 with
〈Xk|Ẽ〉 ↔ 〈Xl|Ẽ〉. Bisimilar variables have been identified in Ẽ, so k = l. By
the same argument, each subterm a[r] · 〈Xk|Ẽ〉 of Ti(j) is also a subterm of Tj.
Similarly, Tj has a subterm a[r] if and only if Ti(j) has a subterm a[r]. Finally, since
U(Tj) = U(Ti(j)), Step 1 in the reduction to normal form ensures that Tj has a
subterm δ[r] if and only if Ti(j) has a subterm δ[r]. Thus A3 ` Tj = Ti(j).

Then 〈Xi(j)|Ẽ〉 R1
= Ti(j)

A3
= Tj. This holds for all j, so 〈Xi(1)|Ẽ〉, ..., 〈Xi(n)|Ẽ〉 is

a solution for E. Then R2 implies 〈Xj|E〉 = 〈Xi(j)|Ẽ〉 for j = 1, ..., n. 2

The next theorem implies that A1-5+TA6-9+R1,2 constitutes a complete ax-
iomatization for regular processes modulo strong bisimulation.

Theorem 8.3 If two normal forms 〈X1|E〉 and 〈Y1|E ′〉 are bisimilar, then they are
syntactically equivalent modulo α-conversion.

Proof. Let

E = {Xi = ti| i = 1, ...,m},
E ′ = {Yj = sj| j = 1, ..., n}.

We construct inductively a mapping φ from the variables of E to the variables of
E ′, such that 〈Xi|E〉 ↔ 〈φ(Xi)|E ′〉 for each i, and if φ(Xi) = Yj, then φ ◦ ti yields
sj.

Put φ(X1) = Y1. Now suppose that we have defined φ(Xi) = Yj for some i. Let

ti =
∑

k

ak[rk] ·Xik +
∑

l

αl[sl].

104 Complete Axioms for Timed Regular Processes with Silent Steps

Since 〈Xi|E〉 ↔ 〈Yj|E ′〉, sj has a subterm αl[sl] for each l, and a subterm ak[rk] ·Yjk
with 〈Xik |E〉 ↔ 〈Yjk |E ′〉 for each k.

If φ(Xik) has already been defined, then 〈φ(Xik)|E ′〉 ↔ 〈Xik |E〉 ↔ 〈Yjk |E ′〉 by
induction. Since bisimilar variables have been identified in Step 2, it follows that
φ(Xik) = Yjk . If φ(Xik) has not yet been defined, then put φ(Xik) = Yjk .

In Step 3 double edges have been removed, so subterms αl[sl] and ak[rk] · Xik

and ak[rk] · Yjk occur in ti and sj only once. Hence, φ ◦ ti yields sj.
By Step 4 each variable is in the dependency graph of X1, so in the end φ is

defined for all variables in E. It is easy to see that φ is bijective, since by a symmetric
construction one can define its inverse. 2

Corollary 8.4 A1-5+TA6-9+R1,2 form a complete axiomatization for R modulo
strong bisimulation.

8.3 Abstraction

The previous section treated the model R modulo strong bisimulation. In this
section we extend the syntax with the special constant τ , and we consider the model
Rτ , where processes are considered modulo rooted branching bisimulation.

8.3.1 The time shift

In order to define branching bisimulation, we need the time shift operator (r)p, which
takes a rational r and a process term p. The process (r)p denotes the behaviour of
p that is shifted forward r units in time. Its operational semantics and axioms are
given in Table 8.3. We extend the syntax with this construct. It is easy to see that,
using axioms TS1-4, the time shift can be eliminated from all process terms.

x
a[r]−→ √ r + s > 0

(s)x
a[r+s]−→ √

x
a[r]−→ x′ r + s > 0

(s)x
a[r+s]−→ x′

TS1 s > 0 =⇒ (r)α[s] = α[r + s]
TS2 (r)δ[0] = δ[r]
TS3 (r)(x+ y) = (r)x+ (r)y
TS4 (r)(x · y) = (r)x · y

Table 8.3: Action rules and axioms for the time shift

8.3. Abstraction 105

8.3.2 Branching bisimulation

We add the silent step τ to the alphabet. In the sequel, a and α will represent
elements from A ∪ {τ} and A ∪ {δ, τ} respectively. The operational semantics still
consists of the action rules from Table 8.1. Only, the definition of strong bisimulation
is adapted to that of branching bisimulation from [14].

In untimed branching bisimulation, a τ -transition is invisible if it does not lose
possible behaviours, or in other words, τp+ q is equivalent to p if q is semantically
included in p. The same intuition is used to define timed branching bisimulation. In

timed branching bisimulation a transition p
τ [r]−→ p′ may be matched with the passing

of time in q if U(q) > r and p′ ↔b (−r)q. Because this implies that executing the
τ [r]-transition in p and idling beyond r in q result in equivalent behaviours. However,
this same intuition gives rise to a mathematical interpretation that is quite different
from the untimed case. This is shown by the following examples.

Example 8.5 In the untimed setting, τ(a+ b) + a ↔b a+ b. However,

τ [1] · (a[1] + b[1]) + a[2] 6↔b a[2] + b[2].

Not executing the τ at 1 in the process on the left means a decision that the a, and
not the b, will be executed at 2.

Example 8.6 In the untimed setting, τa+ b 6↔b a+ τb. However,

τ [1] · a[1] + b[2] ↔b a[2] + τ [1] · b[1].

In both processes it is decided at time 1 whether the a or the b will be executed at 2.

In the definition of timed branching bisimulation, we need an auxiliary definition.
Suppose that two processes p and q are branching bisimilar, and that p can execute
an a-action. Unlike strong bisimulation, it may not be the case that q can execute
the same initial a-action. Possibly, q will first execute a number of τ -actions, which
can all be matched with idling in p. Finally, the resulting state q ′ can execute the
a-action. We say that q ⇒ q′ is equivalent with p.

Definition 8.7 Let B be a binary relation on processes. For p a process and r ≥ 0,
we inductively define the relation ‘q ⇒r q

′ B-equivalent with p’.

1. If U(q) ≥ r, and (−t)pB(−t)q for 0 ≤ t ≤ r, then q ⇒r (−r)q B-equivalent
with p.

2. If q
τ [s]−→ q′, and (−t)pB(−t)q for 0 ≤ t < s, and q′ ⇒r−s q

′′ B-equivalent with
(−s)p, then q ⇒r q

′′ B-equivalent with p.

Definition 8.8 Two process terms p0 and q0 are branching bisimilar, denoted by
p0 ↔b q0, if there exists a symmetric binary relation B on processes such that

1. p0Bq0.

106 Complete Axioms for Timed Regular Processes with Silent Steps

2. If pBq and p
a[r]−→ p′, then q ⇒s q

′ B-equivalent with p for some s < r, such
that

- either q′
a[r−s]−→ q′′ with p′Bq′′,

- or a = τ and U(p′) > 0 and p′B(s− r)q′.

3. If pBq and p
a[r]−→ √, then q ⇒s q

′ B-equivalent with p such that q′
a[r−s]−→ √.

4. If pBq and U(p) > r, then q ⇒r q
′ B-equivalent with p.

Branching bisimulation is not a congruence. For example, a[2]↔b τ [1] ·a[1], but
a[2] + b[2] 6↔b τ [1] · a[1] + b[2]. We need a rootedness condition.

Definition 8.9 Two process terms p and q are rooted branching bisimilar, denoted
by p ↔rb q, if

1. p
a[r]−→ p′ if and only if q

a[r]−→ q′ with p′ ↔b q
′.

2. p
a[r]−→ √ if and only if q

a[r]−→ √.
Rooted branching bisimulation is a congruence on Rτ .

8.3.3 One axiom for abstraction

Using the intuition for branching bisimulation, we can express rooted branching
bisimulation equivalence in one axiom TT, from [14]. Surprisingly, we obtain a
complete axiomatization for Rτ by adding only this axiom to the axiom system.

TT U(x) ≤ r ∧ U(y) > 0 =⇒ a[s] · (x+ τ [r] · y) = a[s] · (x+ (r)y)

8.3.4 Completeness

Consider the model Rτ . As before, we can deduce that the axioms A1-5 and TA6-9
and R1,2 and TT and TS1-4 are sound with respect to rooted branching bisimula-
tion. This section is devoted to proving that these axioms are complete.

We reduce each solution of a linear specification to a normal form and show
that if two normal forms are bisimilar, then they are syntactically equivalent. Let
E = {Xi = ti| i = 1, ..., n} be a linear specification. We reduce 〈X1|E〉 to normal
form in several steps.

Step 1: Removal of redundant deadlocks

Replace expressions of the form α[r] with r ≤ 0 in ti by δ[0] and expressions of the
form a[∞] by δ[∞]. Next, replace expressions of the form δ[r] ·X by δ[r]. Finally,
remove expressions δ[r] from ti for which there is an expression a[s] ·X or α[s] in ti
with r ≤ s.

8.3. Abstraction 107

Step 2: Root unwinding

Add an equation Xroot = t1 to E, where Xroot does not yet occur in E.

Step 3: Adding τ-steps

Consider the equation for a variable X 6= Xroot in E:

X =
∑

j

aj[rj] ·Xj +
∑

k

αk[sk].

Let t0 be the smallest time number that occurs in this equation. If there is an rj or
sk greater than t0, then replace this equation in E by the following two equations:

X =
∑

{j|rj=t0}

aj[t0] ·Xj +
∑

{k|sk=t0}

αk[t0] + τ [t0] · Y,

Y =
∑

{j|rj>t0}

aj[rj − t0] ·Xj +
∑

{k|sk>t0}

αk[sk − t0],

where Y is a variable that does not yet occur in E. Repeat this procedure until the
equations in E for variables unequal to Xroot have all become of the form

X =
∑

j

aj[r] ·Xj +
∑

k

αk[r].

Step 4: Identification of bisimilar variables

If 〈X|E〉 ↔b 〈X ′|E〉 with X 6= X ′ and X,X ′ 6= Xroot, then rename all occurrences
of X ′ at the right-hand side of equations from E into X.

Step 5: Removal of double edges

If an expression α[r] or a[r] ·X ′ occurs more than once at the right-hand side of an
equation in E, then remove all but one of these occurrences.

Step 6: Removal of τ-loops

If for a variable X 6= Xroot its equation in E is of the form X = τ [r] ·X, then replace
this equation in E by X = δ[∞].

Step 7: Removal of redundant τ-steps

Suppose that there is an equation of the form X = τ [r] ·X ′ in E with X 6= X ′, Xroot.
Let the equation for X ′ in E be of the form

X ′ =
∑

j

ak[s] ·Xj +
∑

k

αk[s].

Then replace the equation for X in E by

X =
∑

j

aj[s+ r] ·Xj +
∑

k

αk[s+ r].

108 Complete Axioms for Timed Regular Processes with Silent Steps

Step 8: Removal of redundant variables

If a variable X in E is not in dep(Xroot), then remove its equation from E.

Thus we have constructed the normal form 〈Xroot|Ẽ〉 of 〈X1|E〉. Step 1 can be proved
by R1,2+TA6-9, Steps 2 and 8 by R1,2, Steps 3, 6 and 7 by R1,2+TT+TS1-4, and
Step 5 by R1,2+A3. We show that Step 4 is provable. Let Ẽ be the specification
that results after identifying bisimilar variables in E.

Proposition 8.10 R1, 2 + A3 + TT + TS1− 4 ` 〈Xroot|E〉 = 〈Xroot|Ẽ〉.

Proof. Let Q be the collection of positive rationals that occur as a time stamp in
E. Since Q is finite, and since it contains only rational numbers, there is a greatest
rational t0 such that t/t0 is a natural number for all t ∈ Q.

Let Ẽ be the specification that results after identifying bisimilar variables in E.
We reduce the specifications E and Ẽ as follows. Consider an equation

X =
∑

j

aj[r] ·Xj +
∑

k

αk[r],

with X 6= Xroot. If r =∞, then replace this equation by

X = τ [t0] ·X.
If t0 < r <∞, then replace it by the following two equations:

X = τ [t0] · Y,

Y =
∑

j

aj[r − t0] ·Xj +
∑

k

αk[r − t0].

where the variable Y does not yet occur in E nor in Ẽ. Repeat this procedure until
all equations in E and Ẽ for variables unequal to Xroot have become of the form

X =
∑

j

aj[t0] ·Xj +
∑

k

αk[t0] or X =
∑

j

δ[0].

The resulting specifications are denoted by E∗ and Ẽ∗. It is easy to see that the
axioms TT+TS1-4 induce 〈Xroot|E〉 = 〈Xroot|E∗〉 and 〈Xroot|Ẽ〉 = 〈Xroot|Ẽ∗〉.

Since 〈Xroot|E〉 ↔rb 〈Xroot|Ẽ〉, it follows that 〈Xroot|E∗〉 ↔rb 〈Xroot|Ẽ∗〉. The
rooted branching bisimulation relation between 〈Xroot|E∗〉 and 〈Xroot|Ẽ∗〉 is a strong
bisimulation relation. Namely, the rootedness condition compels that initial transi-

tions 〈Xroot|E∗〉
a[r]−→ p are matched with initial transitions 〈Xroot|Ẽ∗〉

a[r]−→ q, and vice
versa. Moreover, the construction of E∗ and Ẽ∗ ensures that non-initial transitions
in the transitions systems of 〈Xroot|E∗〉 and 〈Xroot|Ẽ∗ have labels of the form a[t0],

so such transitions p
a[t0]−→ p′ in the one transition system are matched with transi-

tions q
a[t0]−→ q′ in the other. Hence, 〈Xroot|E∗〉 ↔ 〈Xroot|Ẽ∗〉. Then the completeness

result from the previous section yields 〈Xroot|E∗〉 = 〈Xroot|Ẽ∗〉, so finally

〈Xroot|E〉 = 〈Xroot|E∗〉 = 〈Xroot|Ẽ∗〉 = 〈Xroot|Ẽ〉. 2

References 109

Theorem 8.11 If two normal forms 〈Xroot|E〉 and 〈Yroot|E ′〉 are rooted branching
bisimilar, then they are syntactically equivalent modulo α-conversion.

Proof. Similar to the proof of Theorem 8.3.

Corollary 8.12 A1-5+TA6-9+TT+TS1-4+R1,2 is a complete axiomatization for
Rτ modulo rooted branching bisimulation.

References

[1] L. Aceto and A.S.A. Jeffrey. A complete axiomatization of timed bisimulation
for a class of timed regular behaviours. Report 4/94, University of Sussex, 1994.

[2] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3(2):142–188, 1991.

[3] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, editor, Proceedings 4th Conference on
Concurrency Theory (CONCUR’93), Hildesheim, LNCS 715, pages 477–492.
Springer-Verlag, 1993.

[4] J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and
the algebra of regular processes. In J. Paredaens, editor, Proceedings 11th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’84),
Antwerp, LNCS 172, pages 82–95. Springer-Verlag, 1984.

[5] J.A. Bergstra and J.W. Klop. A complete inference system for regular processes
with silent moves. In F.R. Drake and J.K. Truss, editors, Proceedings Logic
Colloquium 1986, Hull, pages 21–81. North-Holland, 1988.

[6] L. Chen. A model for real-time process algebras. In A.M. Borzyszkowski and S.
SokoÃlowski, editors, Proceedings 18th Symposium on Mathematical Foundations
of Computer Science (MFCS’93), Gdansk, LNCS 711, pages 372–381. Springer-
Verlag, 1993.

[7] L. Chen. Axiomatising real-timed processes. In S. Brooks, M. Main, A. Melton,
M. Mislove and D. Schmidt, editors, Proceedings 9th Conference on Mathemat-
ical Foundations of Programming Semantics (MFPS’93), New Orleans, LNCS
802, pages 215–229. Springer-Verlag, 1993.

[8] W.J. Fokkink. Regular processes with rational time and silent steps. Report
CS-R9231, CWI, Amsterdam, 1992.

[9] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics. In G.X. Ritter, editor, Information Processing 89,
Proceedings of the 11th IFIP World Computer Congress, San Francisco, pages
613–618. North-Holland, 1989. Under revision for Journal of the ACM.

110 Complete Axioms for Timed Regular Processes with Silent Steps

[10] C. Ho-Stuart, H.S.M. Zedan, and M. Fang. Congruent weak bisimulation with
dense real-time. Information Processing Letters, 46:55–61, 1993.

[11] U. Holmer, K.G. Larsen, and Y. Wang. Deciding properties of regular real timed
processes. In K.G. Larsen and A. Skou, editors, Proceedings 3rd Workshop on
Computer Aided Verification (CAV’91), Aalborg, LNCS 575, pages 432–442.
Springer-Verlag, 1991.

[12] A.S. Klusener. Abstraction in real time process algebra. In J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proceedings REX
workshop “Real Time: Theory in Practice”, Mook, LNCS 600, pages 325–352.
Springer-Verlag, 1991.

[13] A.S. Klusener. Completeness in real time process algebra. In J.C.M. Baeten
and J.F. Groote, editors, Proceedings 2nd Conference on Concurrency Theory
(CONCUR’91), Amsterdam, LNCS 527, pages 376–392. Springer-Verlag, 1991.

[14] A.S. Klusener. The silent step in time. In W.R. Cleaveland, editor, Proceedings
3rd Conference on Concurrency Theory (CONCUR’92), Stony Brook, LNCS
630, pages 421–435. Springer-Verlag, 1992.

[15] R. Milner. A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences, 28:439–466, 1984.

[16] R. Milner. A complete axiomatisation for observational congruence of finite-
state behaviours. Report ECS-LFCS-86-8, University of Edinburgh, 1986.

[17] F. Moller and C. Tofts. Behavioural abstraction in TCCS. In W. Kuich, editor,
Proceedings 19th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’92), Vienna, LNCS 623, pages 559–570. Springer-Verlag,
1992.

[18] J. Quemada, D. de Frutos, and A. Azcorra. TIC: A TImed Calculus. Formal
Aspects of Computing, 5(3):224–252, 1993.

[19] M. Reed and A.W. Roscoe. A timed model for communicating sequential pro-
cesses. Theoretical Computer Science, 58:249–261, 1988.

[20] Y. Wang. A Calculus of Real Time Systems. PhD thesis, Chalmers University
of Technology, Göteborg, 1991.

Samenvatting

Dit proefschrift omvat zeven artikelen op het gebied van de procesalgebra.
In de eerste twee hoofdstukken wordt de compleetheid bewezen van axiomati-

zeringen voor twee verschijningsvormen van iteratie. In Hoofdstuk 2 wordt aange-
toond dat basic CCS uitgebreid met prefix iteratie a∗x compleet geaxiomatizeerd is
door de vier standaardaxioma’s voor basic CCS tezamen met twee extra axioma’s:

a · a∗x+ x = a∗x
a∗(a∗x) = a∗x

Ruim een jaar geleden stelden Bergstra, Bethke en Ponse de vraag of BPA uitgebreid
met binaire iteratie x∗y compleet geaxiomatizeerd is door de vijf standaardaxioma’s
voor BPA tezamen met drie extra axioma’s:

x · x∗y + y = x∗y
x∗y · z = x∗(yz)

x∗(y · (x+ y)∗z + z) = (x+ y)∗z

In Hoofdstuk 3 wordt deze vraag bevestigend beantwoord.
Groote and Vaandrager definieerden het tyft/tyxt formaat voor transitieregels,

en zij toonden aan dat transitiesystemen voortgebracht door ‘well-founded’ tyft/tyxt
regels altijd een congruentie opleveren voor sterke bisimulatie. In Hoofdstuk 4 wordt
aangetoond dat de restrictie van well-foundedness overbodig is voor dit congru-
entieresultaat. Namelijk, het blijkt dat er voor iedere collectie transitieregels in
tyft/tyxt formaat een equivalente collectie transitieregels in het restrictievere tree-
formaat is. Tree-regels zijn well-founded, dus de congruentiestelling van Groote en
Vaandrager is van toepassing op dit formaat.

Een bekende stelling uit de unificatietheorie zegt dat iedere eindige, unificeer-
bare collectie vergelijkingen een idempotente, meest algemene unificator heeft. In
Hoofdstuk 5 wordt aangetoond dat deze stelling ook opgaat voor oneindige collecties
vergelijkingen.

Baeten and Bergstra hebben een uitbreiding van ACP gedefinieerd met reële tijd
en integratie, waardoor het mogelijk is het gedrag van een proces af te laten hangen
van het tijdstip waarop een eerdere actie is uitgevoerd. De laatste drie hoofdstukken
nemen deze algebra onder de loep.

In Hoofdstuk 6 wordt aangetoond dat er een deelalgebra van de reguliere pro-
cessen in ACP met reële tijd en recursie bestaat waarvoor de merge geëlimineerd

kan worden. Deze deelalgebra is gelijk aan de klasse van automaten met tijd van
Alur and Dill.

In Hoofdstuk 7 wordt bewezen dat sterke bisimulatie beslisbaar is voor ACP met
reële tijd en prefix integratie. Dit resultaat is gebaseerd op de axiomatizering voor
conditionele termen van Klusener.

Hoofdstuk 8 presenteert een complete axiomatizering voor BPAδτ met recursie
en tijd, maar zonder integratie, modulo branching bisimulatie.

