
Choice Quantification
in Process Algebra

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301637687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IPA Dissertation Series

2002-04

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics). The author
was employed by the Netherlands Organisation for Scientific Research (NWO;
project 612-33-008; 1996–2000), and by the Centre for Mathematics and Computer
Science (CWI; 2000–2001).

Choice Quantification
in Process Algebra

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. mr. P.F. van der Heijden
ten overstaan van

een door het college voor promoties ingestelde commissie,
in het openbaar te verdedigen

in de Aula der Universiteit
op woensdag 3 april 2002, te 14.00 uur

door

Sebastiaan Pascal Luttik

geboren te Zutphen

Promotoren: prof. dr. J.A. Bergstra
prof. dr. ir. J.F. Groote

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Copyright c© 2002 by Bas Luttik

ISBN 90-90156-24-0
NUGI 855
IPA Dissertation Series 2002-04

Typeset with LATEX 2ε
Printed by Thela Thesis, Amsterdam
Cover design by Simona Orzan

Author’s address:
CWI
P.O. Box 94079
1098 SJ Amsterdam
The Netherlands
Bas.Luttik@cwi.nl

Contents

Preface iii

1 Introduction 1
1.1 Process specification . 1
1.2 Process theory . 7
1.3 Choice quantification . 12

2 Process algebras with infinite sums 17
2.1 Generalised basic process algebras with deadlock 18
2.2 Transition trees . 21
2.3 Free GBPAδ’s . 24

Bibliographic notes . 26

3 The syntax and semantics of pCRL 29
3.1 Data . 31
3.2 The language pCRL . 33
3.3 The semantics of pCRL . 36
3.4 pCRL trees . 38
3.5 Tree forms . 41
3.6 Value-passing CCS . 46

Bibliographic notes . 48

4 A correspondence between pCRL and first-order logic 51
4.1 Boolean expressions and open first-order formulas 53
4.2 The definition of φ . 55
4.3 The definition of η . 61
4.4 A universal fragment . 65

Bibliographic notes . 68

5 A deductive system for pCRL 71
5.1 The deductive system . 73
5.2 Tree forms revisited . 81
5.3 Relative completeness . 83

Bibliographic notes . 99

6 Algebraic pCRL 103

i

ii

6.1 ω-dimensional basic process modules 106
6.2 Comparing formal systems . 112
6.3 Dimension-restricted free basic process modules 123

Bibliographic notes . 139

7 Concluding remarks 143

Bibliography 145

Index of notations 151

Index of subjects 153

Samenvatting (Dutch summary) 157

Preface

When I started work as an onderzoeker in opleiding, affiliated with the CWI and
the University of Amsterdam, my first project was to specify a part of the IEEE
1394 (see Luttik, 1997). It was my first encounter with the process specification
language µCRL, and with the choice quantifier (also referred to as ‘sum opera-
tor’). Syntactically, µCRL is an extension of the algebraic process theory ACP,
which I had come across before, and, indeed, the choice quantifier reminded me of
the notation sometimes used in ACP specifications to abbreviate large alternative
compositions. However, in ACP, this notation is informal, and its use is explicitly
restricted to cases in which the abbreviated alternative composition is finite. In
contrast, the choice quantifier belongs to the official syntax of µCRL, and it may
refer to an infinite alternative composition.

Since my first contact with µCRL, I have been interested in choice quantification,
and especially in its mathematical theory. Jan Friso Groote and I tried to axioma-
tise choice quantification in the context of a finite fragment of µCRL in several
semantic settings. First, we investigated the completeness of a set of equational
axioms with strong bisimulation as a semantics (Groote and Luttik, 1998a). Our
main conclusion was that a complete set of axioms could not be found in general,
because for certain data, the associated notion of bisimulation was too complex to
have an axiomatisation. We also formulated general restrictions on the data, under
which our set of axioms was complete. Then, we extended our results to a setting
with branching bisimulation as a semantics (Groote and Luttik, 1998b), and I
extended this result further, to settings with weak-, delay- and η-bisimulation as
semantics (Luttik, 1999a).

In my view, a drawback of the axiomatisations we had found was that they
treat choice quantification as a binder, a construction that relies on the syntactic
structure of its argument. As such, our axiomatisations could not be viewed at
the same time as an abstract algebraic definition of the mathematical notion that
choice quantification refers to. In other words, choice quantification had in our
theory not the same semantic status as the operations of a purely algebraic theory
such as ACP. Building on the techniques of algebraic logic, I therefore proposed an
alternative treatment of choice quantification, which abstracts from the syntactic
aspect of choice quantification (Luttik, 1999b).

Apart from conducting the above mentioned investigations, I participated in
other research. Eelco Visser and I coauthored a paper on the specification of
rewriting strategies (Luttik and Visser, 1997). Together with Piet Rodenburg
and Rakesh Verma, I wrote a paper on correctness criteria for transformations of
rewrite systems (Luttik et al., 1998). Wan Fokkink and I proved that a finite ω-
complete specification of interleaving is obtained by adding to the algebraic theory

iii

iv Preface

PA of Bergstra and Klop (1985) a well-known axiom for standard concurrency and
the equations generated by a new axiom schema (Fokkink and Luttik, 2000). And
I wrote a short note about unique decomposition of processes with respect to
parallel composition (Luttik, 2000).

When time had come to present a dissertation, I could have chosen to just
put all my papers together. Clearly, given the diversity of subjects, this would
have resulted in a very fragmented account. Instead, I preferred to try and write a
coherent report of my study of choice quantification, the main theme of my research
thus far. One of the things I had learned, was that the mathematical definitions
underlying µCRL are considerably more complex than those underlying, e.g., the
algebraic theory ACP, which is firmly founded on the standard theory of universal
algebra. In fact, I found that the mathematical basis for µCRL had not been
defined in sufficiently precise detail.

This dissertation, then, is concerned with the mathematical theory of choice
quantification, with a bias towards an algebraic approach. It is organised as fol-
lows. Chapter 1 explains the advantages of using choice quantification in a process
specification, and briefly touches on the subjects of the later chapters. Chapter 2
explores the semantic connection between µCRL and ACP, providing an abstract
algebraic definition of infinite sums in basic process algebras with deadlock. Chap-
ter 3 defines the fragment of µCRL which is the main focus of the rest of the book.
It establishes a connection with the structures discussed in Chapter 2; in particu-
lar, it explains how choice quantification relates to alternative composition.

Chapter 4 demonstrates a correspondence between choice quantification in µCRL
and quantification in first-order logic. It considerably improves on the first part of
(Groote and Luttik, 1998a), showing that, with respect to the data inside µCRL
expressions, choice quantification can simulate both universal and existential quan-
tification of first-order logic. We put this in perspective by showing that the input
prefix mechanism of value-passing CCS can only simulate universal quantification.

The results of Chapter 4 motivate the restrictions imposed on the data domain
in later chapters. Chapter 5 discusses a sound and complete deductive system,
and is based on the second part of (Groote and Luttik, 1998a). Chapter 6 is based
on (Luttik, 1999a), and presents an alternative to the deductive system discussed
in Chapter 5; this alternative is more attractive from an algebraic point of view.
It is shown that the systems of Chapters 5 and 6 are equivalent in expressive and
deductive power. Chapter 7 presents the conclusions.

Acknowledgments

My supervisors, Jan Bergstra and Jan Friso Groote, always expressed their confi-
dence in me, for which I am very grateful. Jan had time for me whenever I wanted
to discuss my work or my personal situation. He always gave inspiring and valu-
able advice. Jan Friso made his ‘theme’ at the CWI into a stimulating research
environment, in which I had the freedom to do the research that I wanted to do.
His enthusiasm was of great support to me.

Piet Rodenburg played an invaluable part in my development as a researcher. I
could always drop by his office to ask him a question, to test an idea for a proof, or

Preface v

just to chat about one thing or another. He taught me a lot about logic, algebra,
and science in general. His proof reading ability is superhuman.

My cooperation with Wan Fokkink was most pleasant, and when he succeeded
Jan Friso as theme leader, he turned out to be an excellent boss as well, providing
me, both literally and figuratively, with the room in which I could write this book.
The circumstances in my last six months at the CWI, in my corner on the third
floor, were perfect. I could close my door and concentrate on the writing. But
whenever I felt like it, I could swing it open again, to find in Jaco van de Pol an
enthusiastic neighbour, ready to exchange ideas. He read and commented on large
parts of this dissertation.

I thank the members of the reading committee, Maarten Boasson, Jan van Eijck,
Wan Fokkink, Paul Klint, Kees Middelburg, Piet Rodenburg and Davide Sangiorgi
for reviewing the manuscript and for their comments. A last minute discussion
with Jan van Eijck enabled me to improve the presentation.

I wish to express my gratitude to all the participants of PAM, and especially
to top speakers Sjouke Mauw and Vincent van Oostrom, who were always willing
and able to fill gaps in my program. Vincent was usually there when I spent the
weekend at the CWI, and I have benefited from our long conversations. I wish
to extend my gratitude to all the former colleagues of the CWI, and in particular
to Doeko Bosscher, David Griffioen, Alban Ponse, Michel Reniers, Judi Romijn,
Yaroslav Usenko and Mark van der Zwaag.

Jan Willem Klop and Roel de Vrijer were so kind as to enable me to complete
this book at the VU. My new colleagues there, and especially my new office mate
Mirna Bognar, made me quickly feel at home.

The cooperation with Eelco Visser, at the end of my first year, has meant a lot
to me. He has become a good friend, and has been very encouraging ever since.

The most important source of relaxation in my life is jazz music; I played the
piano in quite a few (big) bands, and I wish to thank my fellow musicians. I
am most grateful to all my friends, and in particular to Anna, Eric, Floortje,
Ingmar, Luuk, Ramin, Rob and Sanne. Simona’s presence and support made a
great difference to me and, indeed, to this book; mulţumesc frumos!

My final words of thanks are for my family: Mama & Jan, Papa & Karin, and
my three sisters Léonie, Tirza and Janine. Jan carefully read the introduction and
suggested many improvements with regard to English usage. I am happy to have
Tir and Nien for my ‘paranimfen’.

Bas Luttik

Amsterdam, January 2002

1

Introduction

We shall conduct a systematic investigation of choice quantification in the context
of process algebra. Choice quantification is used to describe the act of selecting an
instantiation of a process with an arbitrary element from a data domain. This first
chapter is meant to introduce the context in which the above mentioned subjects
play a rôle. We first explain the basics of formal process specification, and why
it is sometimes convenient to give a separate specification of some relevant data.
Then, we shall describe a general method for assigning a mathematical meaning
to formal specifications of processes, and we shall discuss the consequences for
this method if some of the data is to be specified separately. Finally, we shall
briefly mention the results about choice quantification that will be obtained in the
remainder of this thesis.

1.1 Process specification

To start with, here is an informal description of a very simple process. At almost
every street corner in downtown Amsterdam there is a car park ticket dispenser.
This is a quite simple device that translates coins into parking time. When this
thesis was written (on the eve of the introduction of the ‘euro’), the machine
accepted the following Dutch coins: ‘kwartjes’ (Dfl. 0.25), ‘guldens’ (Dfl. 1.00),
‘rijksdaalders’ (Dfl. 2.50) and ‘vijfjes’ (Dfl. 5.00).

A car owner wishing to avoid a wheel clamp will look for the nearest ticket
dispenser —advertised by the capital P— immediately after parking his car. It
presents him with the following options:

1. He can insert a coin.

2. He can press a green button to instruct the machine to produce a ticket.
The dispenser requires the insertion of at least Dfl. 0.50 to print a ticket;
otherwise, pressing the green button has no effect.

3. He can turn a red knob causing the machine to return all the coins that were
inserted since the last time that either the button was pushed or the knob
was turned.

In the city centre, the parking fee is approximately Dfl. 5.00 an hour. (To be
entirely honest, the fee is Dfl. 5.75 per hour between 9am and 7pm, and Dfl. 3.25
between 7pm and 11pm, and outside these hours parking is for free. Further,

1

2 Chapter 1 Introduction

there is obviously a (physical) limit on the amount of money that the car owner
can deposit in the dispenser. We ignore such details so as to guarantee that our
example retains its promised simplicity. Also, we are not sure about the internal
precision of our dispenser when it associates minutes with coins; somewhere in the
process it presumably rounds off to the nearest minute. It is more convenient to
work with a fee of Dfl. 5.00 per hour, so that the number of minutes associated
with each coin is an integer; e.g., a ‘kwartje’ buys 3 minutes of parking time.)

1.1.1 Implicit data

Above, we have informally described the events that may occur in the process of
obtaining a ticket from the ticket dispenser. We assign to each of these events a
formal symbol from the following list

ink, ing, inr, inv,button,print, knob, return. (1.1)

The symbols “ink”, “ing”, “inr” and “inv” respectively refer to the events of the
car owner inserting a ‘kwartje’, a ‘gulden’, a ‘rijksdaalder’ or a ‘vijfje’ into the
ticket dispenser. The symbol “button” refers to the event of him pressing the
green button, and the symbol “knob” refers to the event of him turning the red
knob. The symbol “print” refers to the event of the dispenser printing a ticket,
and the symbol “return” refers to the event of it returning all the recently inserted
coins.

Furthermore, let us attach the number of minutes for which the car owner has
paid as a subscript to the name of the ticket dispenser. This gives us another list
of formal symbols:

P0,P3, . . . ,P3n, . . . (n ≥ 0). (1.2)

The number 3n (n ≥ 0) may be thought of as the state the ticket dispenser got into
when the car owner inserted coins to the equivalent of 3n minutes. The symbol
P3n refers to the behaviour of the ticket dispenser when it is in state 3n.

Inserting a coin, pressing the button and turning the knob will generally have
the effect of changing the state of the ticket dispenser; e.g., inserting a coin will
increase the subscript by the number of minutes associated with that coin, and
turning the knob while the dispenser is in some state 3n (n ≥ 1) will make the
dispenser return all the inserted coins and go back to state 0. We introduce the
symbol “·” to express that things happen consecutively. For instance, we write
“ink ·P3” if we want to say that the insertion of a ‘kwartje’ makes the dispenser go
into state 3, and we write “knob · return ·P0” if we want to say that after turning
the knob the dispenser returns the inserted coins and goes into state 0.

According to our informal descriptions, the car owner may activate a number of
alternative events. To specify this, we introduce the symbol “+”; e.g., to express
that the car owner may choose to insert a ‘kwartje’ to make the dispenser go into
state 3, or to insert a ‘gulden’ to make the dispenser go into state 12, we write
“ink · P3 + ing · P12”. Incidentally, note that the car owner may choose to insert
a coin, press the button or turn the knob irrespective of the actual state of the
ticket dispenser.

1.1 Process specification 3

We can now define the behaviour of our ticket dispenser by simultaneously
specifying the behaviours that it may exhibit in each of its states:

P0 = ink · P3 + ing · P12 + inr · P30 + inv · P60 + button · P0 + knob · P0;
P3 = ink · P6 + ing · P15 + inr · P33 + inv · P63

+ button · P3 + knob · return · P0;

and for all n ≥ 2:

P3n = ink · P3n+3 + ing · P3n+12 + inr · P3n+30 + inv · P3n+60

+ button · print · P0 + knob · return · P0.

The equations above may serve as a formal specification of the behaviour of
any car park ticket dispenser in downtown Amsterdam. Now, suppose that our
car owner did not find a place to park his car in the city centre, and that he was
forced to put it somewhere just outside the city centre. He is still in a part of
Amsterdam where he has to pay, but parking time is twice as cheap: the fee is
Dfl. 2.50 an hour. The car park ticket dispensers in this part of Amsterdam look
very similar to those in the city centre; they carry the same initial (P) and appear
to behave in the same fashion too. The difference only becomes apparent when
one compares the amount of money inserted and the number of minutes allotted
in the two regions.

What should we do to adapt the specification given above in such a way that it
describes the behaviour of a ticket dispenser in this part of Amsterdam? We should
double every number that appears as a subscript, thus obtaining a specification
that assigns a behaviour to the symbols

P0,P6, . . . ,P6n, . . . (n ≥ 0).

The new specification accurately describes the behaviour of a ticket dispenser just
outside the city centre. It is somewhat unfortunate, however, that the intuitively
clear relationship between the new specification and the previous one is obscured
by a computation. If we were to order ticket dispensers for all of Amsterdam, it
would be more convenient if we could give the manufacturer just one specification
of their behaviour, plus the going rates for the different regions.

1.1.2 Explicit data

We started out to say that a car park ticket dispenser is a machine that translates
coins into minutes; coins and minutes are the types of data on which our ticket
dispenser operates. That our specification involves data at all has thus far been
implicit in our suggestive nomenclature for states and events. Let us now proceed
and give explicit definitions of some of the data in our specifications. The accepted
coins are the elements of a set C; in our example

C = {k, g, r, v}.

4 Chapter 1 Introduction

When a car owner inserts a coin c ∈ C into the slot of a ticket dispenser, this has
the effect of increasing the parking time bought by the number of minutes T(c)
associated with c; e.g., in the case of a ticket dispenser in the city centre

T(k) = 3, T(g) = 12, T(r) = 30, and T(v) = 60;

and in the case of a ticket dispenser just outside the city centre

T(k) = 6, T(g) = 24, T(r) = 60, and T(v) = 120.

We are going to consider the set of coins C and the coins-to-minutes translation
T as parameters of a general specification of the behaviour of car park ticket
dispensers.

To emphasize that the data have now come to the fore, we stop pushing them
away in subscripts: we write P(n) to refer to the ticket dispenser after the insertion
of coins to the equivalent of n minutes; and we write in(k), in(g), in(r) and in(v)
to refer to the events of inserting the respective coins. The car owner inserting a
coin, with the dispenser in state n, could then be denoted by

in(k) · P(n+ T(k)) + in(g) · P(n+ T(g))
+ in(r) · P(n + T(r)) + in(v) · P(n + T(v)).

(Caution: the symbol “+” occurs in two different capacities: referring to a choice
between events, and referring to addition of natural numbers.)

This notation abstracts from the particular association between coins and min-
utes, and hence is suitable for the specification of ticket dispensers inside and
outside the city center. But it is quite long, and it contains some redundant in-
formation. That is, which coins the ticket dispensers accept is already clear upon
presenting the parameter C; we can abstract from this information in the speci-
fication of their behaviours. We want to say that the car owner may insert any
member c of the set of coins C, upon which the dispenser updates its state with
the appropriate number of minutes T(c). We give the symbol “c” the status of a
variable that ranges over C, introduce a new formal symbol “

∑
c”, and specify the

event by∑
c in(c) · P(n+ T(c)).

In contrast to the previous notation, the new notation has the additional advan-
tage of being ‘euro proof’: to make the transition from the present Dutch coins to
European currency, the only thing that has to be done is to adapt the parameter
C, replacing the Dutch coins by euros, and to adapt the mapping T accordingly.
Incidentally, the new notation also reflects in a more natural way the physical ap-
pearance of ticket dispensers in Amsterdam: they have only one slot, which takes
all types of coins.

The effect of pressing the green button depends on the state n of the dispenser: if
the car owner has paid for at least 2 times the amount of minutes associated with a
‘kwartje’, i.e., n ≥ 2×T(k), then the dispenser produces a ticket; otherwise nothing

1.1 Process specification 5

happens. To specify this in a concise way, we use the notation “� n ≥ 2× T(k) �”
(in general, read ‘x� b � y’ as ‘then x if b else y’); e.g., we write

button · print · P(0) � n ≥ 2× T(k) � button · P(n)

to abbreviate ‘if n ≥ 2 × T(k), then button · print · P(0) happens, and otherwise
button · P(n) happens’.

We can now specify the behaviour of ticket dispensers in Amsterdam concisely
by means of the following equation:

P(3n) =
∑
c in(c) · P(3n+ T(c))

+ button · print · P(0) � 3n ≥ 2× T(k) � button · P(3n)
+ knob · return · P(0) � 3n ≥ 3 � knob · P(0).

(1.3)

Note that, to make this behaviour specification completely euro proof, we should
eliminate the explicit mention of k in 2×T(k), e.g., by introducing a constant that
represents the minimum number of minutes that can be bought.

Most of the symbols used in (1.3) explicitly refer to specific aspects of ticket
dispensers, denoting specific events associated with such machines or naming spe-
cific behaviour that they may exhibit in a certain state. In contrast, the symbols
“+”, “·”, “

∑
” and “� �” refer to mechanisms that are not specific to ticket

dispensers. They have the kind of generality that one expects of the primitives of
a general purpose specification formalism.

1.1.3 The process specification language µCRL

The previous two subsections serve to illustrate that there is at least a conceptual
advantage in defining some relevant data separately when specifying a process.
Many process specification languages, i.e., specification languages whose principal
purpose is to specify the behaviour of systems, nowadays are accommodated with
facilities to define data separately and with mechanisms to incorporate these in the
actual behaviour specification. Examples of such process specification languages
are, e.g., LOTOS (Bolognesi and Brinksma, 1987), PSF (Mauw and Veltink, 1990)
and µCRL (Groote and Ponse, 1995). In this thesis, we shall elaborate on the
theoretical foundations of the process specification language µCRL (micro Common
Representation Language; for a survey, see Groote and Reniers (2001)).

In a µCRL specification, abstract data types are defined by means of a many-
sorted algebraic specification (see, e.g., Bergstra et al., 1989; Loeckx et al., 1996).
There is a facility to declare basic events that may take the specified data as
parameters, and to aid the description of processes, µCRL includes the mechanisms
symbolised by “+”, “·”, “

∑
” and “� �”. To give some idea of what a µCRL

specification looks like, we present in Table 1.1 a complete formal specification of
a ticket dispenser in the centre of Amsterdam, in µCRL syntax. At this point, two
further remarks about µCRL are in order.

Firstly, one should take our ‘µCRL syntax’ with a pinch of salt. The official
syntax of µCRL was designed to be read by computers; to enhance readability for
humans we deviate slightly from it. We use mathematical symbols (e.g., ≤, +)

6 Chapter 1 Introduction

sort B
func >,⊥ :→ B

≥: M×M→ B
var x, y : M
rew (x ≥ 0) = >

(0 ≥ 3 + x) = ⊥
(3 + x ≥ 3 + y) = (x ≥ y)

sort M
func 0, 3 :→ M

+ : M×M→ M
var x, y, z : M
rew (x+ y) + z = x+ (y + z)

x+ y = y + x
x+ 0 = x

sort C
func k, g, r, v :→ C

T : C→ M
rew T(k) = 3

T(g) = 4× 3
T(r) = 10× 3
T(v) = 20× 3

act button,print, knob, return
in : C

proc P(m : M) =
∑
c:C in(c) · P(m+ T(c))
+ button · print · P(0) �m ≥ 2× T(k) � button · P(m)
+ knob · return · P(0) �m ≥ 3 � knob · P(0)

Table 1.1: A µCRL specification of a car park ticket dispenser. We use an abbre-
viation that ought to be spelled out: if t is a term of sort M and n is a natural
number, then we write n × t to denote the term (· · · (t + t) + · · · + t) + t with n
occurrences of t.

as names of functions declared in func sections and write them infix, whereas the
official µCRL syntax only allows strings of letters from the Latin alphabet as names
for such functions and prescribes that they be written prefix. Also, we write

∑
c:C

instead of sum(c : C,) and � � instead of <| |> .
Our specification in Table 1.1 is, of course, a rather simplistic example, and that

it describes what we intended to describe is a fact that hardly needs additional
justification. But for larger and more complex specifications, it is vital to have
computer support, e.g., to simulate specifications and to verify that they have
certain properties. For µCRL, such computer support is available (see Blom et al.
(2001), or consult http://www.cwi.nl/~mcrl).

Secondly, µCRL has additional mechanisms to facilitate the specification of pro-
cesses; e.g., it includes mechanisms to specify that a process consists of several
components running in parallel, to specify that certain parallel components must

1.2 Process theory 7

synchronise, and to specify that certain events should be considered unobservable.
In this thesis these mechanisms will not play a rôle. Interestingly, one of the
computerised tools for µCRL, the so-called lineariser (see Groote et al., 2001), is
able to translate many µCRL specifications to µCRL specifications without these
additional mechanisms. The other tools operate on the output of this lineariser.

1.2 Process theory

We have introduced a collection of formal symbols to write down µCRL specifica-
tions. Our explanations of the meanings of these symbols are still informal, saying
something to the effect that “+” indicates a choice between alternatives, that “·”
indicates that events occur consecutively, that “� �” indicates a choice that de-
pends on a condition, and that “

∑
” indicates a choice that depends on input.

So far, we got away with such informalities, because we have been specifying a
ticket dispenser and most people already have a pretty good idea of how such slot
machines tend to behave. But it is, of course, an undesirable situation that the
behaviour of the ticket dispenser explains the meaning of its µCRL specification.
It should be the other way around: our µCRL specifications should explain the
behaviours of the systems they are meant to describe.

In other words, we want to give µCRL specifications a meaning that is indepen-
dent of the systems that they intend to describe, preferably as a mathematical
abstraction of the concept of a process. By interpreting µCRL specifications as
mathematical objects, µCRL becomes a mathematical language. A distinct ad-
vantage of this is that we can then prove by mathematical means that a system
behaves (or does not behave) the way it should. Before explaining the approach
taken in this thesis to turn µCRL into a mathematical language, we first discuss
one of our methodological considerations in a more general context.

1.2.1 Process calculi

A mathematical theory about objects that are thought of as mathematical abstrac-
tions of processes, is frequently called a model of concurrency , since, intuitively,
a process consists of a number of activities running in parallel. Such a model of
concurrency together with a formal language to reason about its elements, is what
we call a process calculus. The pioneers of the design of process calculi are Hoare
(1985) and Milner (1980).

Hoare introduced CSP (Communicating Sequential Processes) to reason about a
mathematical model in which a process is viewed as a set of failures. A failure con-
sists of a sequence of events in which the process may engage, together with a set
of events that it subsequently refuses to engage in. Typically, the formal symbols
of CSP are interpreted as operations on the failures model. These operations are
shown to satisfy a set of basic mathematical laws in the form of equations, which
support the mathematical reasoning about them (see Brookes et al. (1984)).

Milner introduced CCS (Calculus of Communicating Systems; see also Milner
(1989, 1999)) to reason about a mathematical model in which a process is viewed as
a labeled transition system modulo observation equivalence. A labeled transition

8 Chapter 1 Introduction

system consists of states, and transitions between states labeled with names of
events; a transition marks the occurrence of the associated event. With each such
labeled transition system one can, intuitively, associate a notion of observable
behaviour. To consider a labeled transition system modulo observation equivalence
means to consider a set consisting of all labeled transition systems that represent
the same observable behaviour.

Again, the formal symbols of CCS are interpreted as operations on the math-
ematical model for which CCS was introduced, i.e., on sets of labeled transition
systems modulo observation equivalence. And again, to support the mathematical
reasoning, these operations are shown to satisfy a set of basic mathematical laws
in the form of equations. We quote Milner (1983):

“These four operators [of CCS] obey (as we show) several algebraic
identities. It is not too much to hope that a class of these identities
may be isolated as axioms of an algebraic ‘concurrency’ theory, anal-
ogous (say) to rings or vector spaces. For the present, however, we
concentrate on an interpretation of the calculus derived from an op-
erational or dynamic understanding of each operator, whereupon the
algebraic identities arise as theorems.”

By using the terms ‘rings’ and ‘vector spaces’, Milner makes a connection with
an established area of mathematics, that of abstract algebra (see, e.g., Hungerford,
1974). It comprehends the study of algebras, structures that consist of a set (uni-
verse) with a sequence of operations defined on it. The desideratum is to abstract
from the nature of the elements of the universe, and to study the fundamental
properties of the operations, conventionally expressed in the form of equations.
Typically, one studies all algebras that satisfy a particular collection of equational
axioms.

1.2.2 Process algebra

In the literature, there is not (yet) an established consensus about what is the ap-
propriate mathematical abstraction of the notion of process, judging by the many
different models of concurrency that are currently in use. However, the languages
associated with these models (if any) often include mechanisms to express

1. that a process consists of a choice between a number of alternative behaviours
(alternative composition);

2. that a process consists of a number of behaviours that are performed con-
secutively (sequential composition); and

3. that a process consists of a number of behaviours that are executed in parallel
(parallel composition).

Bergstra and Klop (1984) propose to study these and other process theoretic mech-
anisms through the axiomatic method, instead of via a presupposed model of con-
currency. They coined the term process algebra for their approach.

1.2 Process theory 9

Wholly in the style of the contemporary textbooks on abstract algebra, Bergstra
and Klop present their algebraic theory of processes in a modularised fashion.
They begin with formulating the algebraic theory BPA (Basic Process Algebra)
of alternative and sequential composition, both represented as binary operations.
Then, they consider the algebras that satisfy the axioms of BPA and in which
there is a neutral element for alternative composition that acts as a left zero
for sequential composition. That element stands for deadlock , the process with-
out any behaviour. The algebraic theory of alternative composition, sequential
composition and deadlock is called BPAδ (Basic Process Algebra with deadlock).
Subsequently, they discuss extensions of the theories BPA and BPAδ with a bi-
nary operation for parallel composition. First, they consider parallel composition
without communication, obtaining the theories PA (Process Algebra) and PAδ
(Process Algebra with deadlock). Thereafter, they also consider a form of parallel
composition in combination with mechanisms to express and to require synchro-
nisation between parallel components; the resulting theory is called ACP (Algebra
of Communicating Processes).

What makes the process theories of Bergstra and Klop truly algebraic is that
they are axiomatic, and, moreover, not prescriptive with respect to the objects
that are taken to represent processes (in the same way as group theory does not
prescribe what the elements of a group should be). This has a didactical advantage;
for instance, to understand what alternative composition is, one does not need to
first digest, e.g., the mathematically quite involved definition of labeled transition
system modulo observation equivalence. Furthermore, placing process theoretic
mechanisms in a general algebraic context has the methodological advantage that
they easily make contact with mechanisms studied elsewhere. For instance, it is
at once clear that an algebra satisfying the axioms of BPA is a semilattice with
respect to alternative composition, and that it therefore has a natural partial order
associated with it, defined in terms of alternative composition. This partial order
turns out to be a convenient tool in process algebra.

The algebraic theory BPA of alternative and sequential composition may be used
to give a precise mathematical interpretation of our first formal specification of
the ticket dispenser (the one with implicit data). The most important stipulation
is that the symbols “+” and “·” denote the binary operations of alternative and
sequential composition from the theory BPA. To assign a mathematical object to
our specification, we need to select

1. a particular algebra, say P, that satisfies the axioms of BPA, and

2. interpretations of the symbols listed in (1.1) on p. 2 as elements of P.

Henceforth we shall refer to the combination of 1 and 2 as a model of BPA with
actions. Then, a solution of our specification in P is an assignment of elements of
P to the symbols listed in (1.2) such that all the defining equations are true in P.

To proceed a little more generally we define grammatical categories of

process expressions: (i) each of the symbols in the lists (1.1) and (1.2) are process
expressions; (ii) if p and q are both process expressions, then so are p + q

10 Chapter 1 Introduction

and p · q ; and (iii) every process expression can be obtained by finitely many
applications of (i) and (ii);

process equations: if P is a symbol from the list (1.2), and p is a process expression,
then P = p is a process equation that defines P ; and

process specifications: a set of process equations such that each symbol from the
list (1.2) is defined exactly once.

We see that the symbols in the list (1.1) and those in the list (1.2) have different
grammatical functions in a process specification. To distinguish them, we agree
to call the symbols in the first list action symbols, and those in the second list
process variables.

We can now speak of the solution of an arbitrary process specification in a model
P of BPA with actions. The point of the algebraic approach, however, is that we
do not need to commit ourselves to a particular model of BPA with actions, before
we can start doing calculations. For instance, we can already prove the equivalence
of process specifications by applying the axioms of BPA (the first five axioms in
Table 2.1 on p. 17 below) to the right-hand sides of their process equations, or by
applying other rules that preserve the solutions of recursive specifications in any
model of BPA with actions (see, e.g., Ponse and Usenko, 2001).

Now, let us consider our µCRL specification of the ticket dispenser to see whether
it can also be given a precise mathematical interpretation by means of the theory
BPA. At first sight, it does not fit our definition of a process specification, because
of the occurrences of the symbols “

∑
” and “� �”. However, recall that our

initial motivation for introducing these extra symbols was to be able say things
more succinctly, and not to be able to say new things. Our µCRL specification of
the ticket dispenser was intended to specify in a better way what had already been
specified by our first specification. The latter is, according to our definition above,
a genuine process specification. We could perhaps give a mathematical interpre-
tation to µCRL specifications by first translating them to process specifications.

In our example, the translation may be carried out in three straightforward
steps:

1. Replace the expression
∑
c in(c) ·P(n+ T(c)) by the sum of all the instances

of the expression in(c) · P(n+ T(c)) with a coin for the variable c.

2. Collect in a set all the instantiations of the equation defining P(m : M) with
a natural number of the form 3n for the variable m.

3. Eliminate all occurrences of “� �” from the equations in the set obtained in
the second step. This can be done by replacing the occurrences of expressions
‘button·print·P(0)� 3n ≥ 2× T(k) �button·P(3n)’ by ‘button·print·P(0)’ if
3n ≥ 2×T(k) evaluates to true and by ‘button ·P(3n)’ if it evaluates to false,
and by treating the occurrences of ‘knob ·return ·P(0)� 3n ≥ 0 �knob ·P(0)’
in a similar fashion.

Note that the first two steps of the translation eliminate all occurrences of vari-
ables, and that this guarantees that the evaluation of the middle component of an

1.2 Process theory 11

occurrence of “� �” in the third step can always be done. Further note that the
set of equations generated in the second step is infinite; but this is not a problem
since process specifications consisting of an infinite set of process equations are
allowed according to our definition.

Nevertheless, the recipe does not work in general, and the culprit is in the
first step. The variable associated with an occurrence of the symbol “

∑
” may

range over any of the specified data sorts, and consequently it may range over
an infinite set (e.g., it could range over the sort M in our example specification).
So the syntactic sum that should be associated with a µCRL expression starting
with an occurrence of the symbol “

∑
” may, in general, consist of infinitely many

components. However, such an infinite sum is not a process expression according
to our inductive definition. And with reason: the intended infinite alternative
composition may fail to exist for some models of BPA with actions. That is,
whether a model of BPA with actions is suitable for the interpretation of a certain
µCRL specification, depends on whether it has the right sums.

1.2.3 Infinite sums

Let P be an algebra that satisfies the axioms of BPAδ (in what follows it will be
convenient to assume the presence of the neutral element δ for alternative com-
position). We have already indicated that P, being a semilattice with respect
to alternative composition, has a natural partial order associated with it. Con-
versely, the alternative composition of two elements of P may be defined as their
least upper bound with respect to that partial order. Generalising this definition,
the alternative composition of the empty set is the minimal element δ, and the
alternative composition of a nonempty finite subset P′ of the universe of P is its
least upper bound, say

∑
P′. If P′ is an infinite set, then it may not have a least

upper bound
∑

P′ in the universe of P.
In Chapter 2 of this thesis we shall develop a general theory about infinite sums

in algebras that satisfy the axioms of BPAδ. If P is the universe of such an algebra,
then we define on it an operation∑

: D → P, with D ⊆ {P′ | P′ ⊆ P}.

In the terminology of Rasiowa and Sikorski (1963), the operation
∑

is a “gener-
alised operation”. Assigning an element of P to some (but generally not to all)
subsets of the universe P, it may be thought of as a partial operation with variable
(and possibly infinite) arity. The element

∑
P′ assigned to a subset P′ of P must

satisfy a few requirements. To tie in with process algebraic traditions, we shall
define those requirements by means of axioms in the form of equations. The the-
ory that is obtained by adding these axioms to the axioms of BPAδ we shall refer
to as GBPAδ (Generalised Basic Process Algebra with deadlock); the mechanism
embodied by

∑
we call generalised summation.

To substantiate our definitions, we shall study certain natural extensions with
infinite sums of the algebra of finitely branching transition trees of finite depth
(for which the axioms of BPAδ are known to be sound and complete). In the case
of transition trees, the sum

∑
T of a set T of transition trees is the transition tree

12 Chapter 1 Introduction

that we get by identifying the roots of the trees in T. Clearly,
∑

T is a countably
branching tree provided that the set T is countable and its elements are countably
branching trees. Therefore, on the algebra of countably branching transition trees
the operation

∑
assigns a sum to every countable set of transition trees. In the

same way we can define for every infinite cardinal κ an algebra of transition trees
with branching degree < κ that is closed under sums of cardinality < κ. We shall
prove that the axioms of GBPAδ are sound and complete for each of these algebras
(see Theorem 2.11).

1.3 Choice quantification

The symbol “
∑

” of µCRL refers to a rather special kind of generalised summation.
Let x be a variable that ranges over an arbitrary set D of data values (e.g., asso-
ciated with a sort in the data part of a µCRL specification). If p is an expression
that denotes a process after instantiating its data variables, then∑

x p =
∑
{p[x := d] | d ∈ D}.

In words,
∑
x p is the generalised sum of all the instantiations of p with an element

of D for the variable x. Thus,
∑
x refers to taking the generalised sum of a set that

is obtained by quantification over D; henceforth, we speak of choice quantification,
and call

∑
x a choice quantifier .

From Chapter 3 onwards, we shall study choice quantification in the context
of pCRL (pico Common Representation Language), which is µCRL without paral-
lelism. With respect to its common definition, we shall make two further simplifi-
cations:

1. We restrict our attention to processes that are specified from an alphabet
of actions parametrised with data by means of alternative and sequential
composition, conditional composition and choice quantification; in particu-
lar, we do not consider recursion. Thus, we only consider processes whose
behaviour is finite with respect to the number of actions that they can per-
form consecutively. This is certainly not a minor restriction. Clearly, µCRL
without recursion would not have many applications as a process specifi-
cation language. For all that, we do believe that it is sensible to try and
understand the case without recursion first, since it usually greatly helps the
understanding of the case with recursion as well.

2. We shall only consider choice quantification over a single data domain, which
may be fitted with functions and relations. This is for the sake of clarity of
presentation only; all of our results generalise in the obvious way to choice
quantification over multiple domains and thus fit in with µCRL.

In Chapter 3 we give a semantics to the language pCRL by explaining how
its expressions denote elements of suitable models of GBPAδ, where suitability
depends on the availability of generalised sums. For every particular choice of
a data domain D and an alphabet of parametrised actions A we shall define a
suitable algebra of transition trees that is initial in the class of all suitable models

1.3 Choice quantification 13

of GBPAδ (Theorem 3.15). If the cardinality of D is infinite, then there exist pCRL
expressions whose interpretation in this initial algebra is an infinitely branching
transition tree.

For use in later chapters, we shall establish in Chapter 3 two results regarding
particular syntactic forms of pCRL expressions. The first result states that ev-
ery pCRL expression is semantically equivalent to a tree form, a pCRL expression
whose syntactic structure, intuitively, reflects the structure of the transition tree
that it denotes (Lemma 3.22). The second result makes use of a straightforward
translation of the finite, sequential fragment of value-passing CCS (as discussed,
e.g., by Hennessy and Lin (1996)) into pCRL expressions. Our interest is in the
input prefix mechanism, the translation of which involves choice quantification: if
the translation assigns the pCRL expression p′ to an expression p of value-passing
CCS (let us concisely denote this by p 7→ p′), then

c?x.p 7→
∑
x c(x) · p′.

Note that the variable x of the choice quantifier
∑
x occurs as a parameter of

the action c that immediately follows it. If all choice quantifiers in an expression
have this property, then we shall say that the expression has explicit instantiation.
It turns out that the tree forms associated with (translations of) expressions of
value-passing CCS have explicit instantiation (Lemma 3.26).

1.3.1 Expressiveness

In Chapter 4 we shall investigate the expressiveness of the mechanisms of pCRL by
considering the complexity of pCRL equations. Not surprisingly, the complexity of
a pCRL equation depends on the data that occur in it. The results that we shall
obtain are therefore relative to the complexity of the incorporated data. Precisely,
we prove that any pCRL equation can be effectively transformed into an equivalent
first-order assertion about the data (Theorem 4.10), and that, conversely, any
first-order assertion about the data gives rise to an equivalent pCRL equation
(Theorem 4.17). Hence, pCRL is as expressive as first-order logic, with respect to
the incorporated data.

In particular, we shall see that pCRL owes to a large extent its expressiveness
to choice quantification. It accounts for the simulation of the universal as well
as the existential quantifiers of first-order logic. It turns out that an equation of
pCRL expressions with explicit instantiation has the content of a universal first-
order assertion about the data that occurs in it (Corollary 4.23). Hence, the finite,
sequential fragment of value-passing CCS is as expressive as the universal fragment
of first-order logic, with respect to the incorporated data.

1.3.2 Deductive system

In Chapter 5 we shall present a deductive system for pCRL equations, so that when
doing calculations with pCRL expressions we may proceed entirely syntactically.
The desiderata for the design of our deductive system are

14 Chapter 1 Introduction

1. to separate reasoning about the data inside pCRL expressions from reasoning
about behavioural aspects; and

2. to fit in as much as possible with standard equational reasoning.

A natural question to ask about a deductive system is whether it is complete,
i.e., whether it allows a deduction for every pCRL equation that holds in every
suitable model of GBPAδ. The expressiveness results of Chapter 4 indicate that
such a completeness result cannot be obtained, unless drastic restrictions on the
incorporated data are imposed. We prove that our deductive system is complete
provided that it may ask an oracle to provide deductions of valid first-order asser-
tions about the incorporated data (Theorem 5.20).

1.3.3 Algebraic semantics

The framework developed in Chapters 2, 3 and 5 has a syntactical side and a
semantical side (see Figure 1.1). On the syntactical side we find the formal system
pCRL; it extends the formal system associated with BPAδ with choice quantifiers
and conditionals. On the semantical side we find the algebraic theory GBPAδ;
it extends the algebraic theory BPAδ with generalised summation. The reason
for extending BPAδ differently on both sides is as follows. On the one hand,
generalised summation is an infinitary operation, i.e., it may take infinitely many
arguments. Since is a desirable property of a formal system that its expressions
are finite, an infinitary operation is not a convenient construction to have in such
a system. On the other hand, the choice quantifiers of pCRL are binders, relying
on the syntactic nature of their arguments, while the desideratum of an algebraic
theory is to abstract from the nature of the objects under consideration.

A pCRL expression p together with a valuation that assigns data values to data
variables describes a process, an element of a generalised basic process algebra with
deadlock. The pCRL expression p itself may thus be thought of as the description of
function from the set data values into a universe of processes, i.e. as the description
of a parametrised process. In Chapter 6 we shall propose an algebraic theory of
parametrised processes. It unites the syntactical and the semantical sides of pCRL
in a single purely algebraic theory of basic process modules (BPM). It is obtained
from pCRL by abstracting from the syntactic aspects of choice quantification, and
it is obtained from GBPAδ by adding a notion of dimension. We shall prove that
the (ground) equational theory of basic process modules is equivalent to that of
pCRL (Theorem 6.37).

1.3 Choice quantification 15

from syntax

PROCESSES
PARAMETRISED

choice quantification
conditionals

abstraction

SYNTACTICAL SIDE SEMANTICAL SIDE

generalised summation

dimension

pCRL

BPAδ

GBPAδ

BPM

PROCESSES

Figure 1.1: The process theories in this thesis.

2

Process algebras with infinite sums

A basic process algebra with deadlock is an algebra1 P = 〈P,+, ·, δ〉 that satisfies
for all p, q, r ∈ P the equalities in Table 2.1. The class of all basic process algebras
with deadlock is denoted by BPAδ. The elements of a basic process algebra with
deadlock we shall call processes. Intuitively, a process p ∈ P is a collection of
behaviours that we shall refer to as the alternatives in p.

(A1) p + q = q + p
(A2) p + (q + r) = (p + q) + r
(A3) p + p = p
(A4) (p + q) · r = p · r + q · r
(A5) (p · q) · r = p · (q · r)
(A6) p + δ = p
(A7) δ · p = δ

Table 2.1: The axioms of basic process algebras with deadlock.

The operation + stands for alternative composition (or: choice); if p and q are
processes, then p + q is the process that executes either an alternative in p or an
alternative in q. According to (A1)–(A3), the structure 〈P,+〉 is a semilattice.
According to (A6), this semilattice has a neutral element δ that we call deadlock ;
it is the process with no alternatives.

The operation · stands for sequential composition. If p and q are processes,
then p · q is the process that starts with executing an alternative in p, and if
this execution terminates, then it proceeds with executing an alternative in q.
Sequential composition is associative by (A5), and it distributes from the right
over alternative composition by (A4). The process δ is a left zero for sequential
composition by (A7). Note that we do not require that sequential composition
distributes from the left over alternative composition. The underlying idea is that
the choices in a process are not resolved beforehand, but in the course of execution.
We shall illustrate this by means of an example.

1We shall assume that the reader is familiar with the basic definitions of set theory (see, e.g.,
Halmos, 1974) and universal algebra (see, e.g., Burris and Sankappanavar, 1981; McKenzie et al.,
1987).

17

18 Chapter 2 Process algebras with infinite sums

Example 2.1 Let us consider a simple protocol for the acknowledged transmis-
sion of a message from a sender S to a receiver R through an unreliable medium M
(see Figure 2.1). The sender has a connection to the medium that we call c1 and

c1 c2S M R

Figure 2.1: A simple protocol for the acknowledged transmission of messages.

the receiver has a connection to the medium that we call c2. The sender sends a
message m into the medium along c1. In the medium the contents of m may get
corrupted; we assume that the receiving party has the means to verify the validity
of a message. After the receiver has received m or a corrupted version, it responds
by sending an acknowledgment to the sender through the medium (to keep the
example simple we assume that the medium does not corrupt acknowledgments):
it sends a positive acknowledgment (1) to the sender if it has received a valid mes-
sage; otherwise it sends a negative acknowledgment (0). The sending party may
be modeled as the following process:

S = s1(m) · (r1(0) + r1(1)),

where s1(m) denotes the action of sending m along c1, r1(0) denotes the action
of receiving 0 along c1 and r1(1) denotes the action of receiving 1 along c1. It
is understood here that an action r1(a) (a ∈ {0, 1}) synchronises with an action
s1(a) from the medium. Thus, the choice between r1(0) or r1(1) is not made by the
sender. It is determined by the medium, and it is not made before the action s1(m)
has occurred. So, we want that s1(m) · (r1(0)+r1(1)) 6= s1(m) · r1(0)+s1(m) · r1(1).

2.1 Generalised basic process algebras with deadlock

Since 〈P,+〉 is a semilattice, we may associate with every basic process algebra
with deadlock a partial order ≤ defined for p, q ∈ P by

p ≤ q if, and only if, q = q + p.

Deadlock is the least element with respect to this partial order and any two pro-
cesses p and q have a least upper bound p + q. Thus, in a basic process algebra
with deadlock any finite set {p1, . . . , pn} of processes has a least upper bound
p1 + · · ·+ pn.

In Example 2.1 we have modeled the action of receiving an acknowledgment as
the alternative composition of the actions of receiving a negative acknowledgment
and receiving a positive acknowledgment. Similarly, if D = {d1, . . . , dn} is any
arbitrary finite data domain, then we may model the receipt of an arbitrary element
of D as the process r(d1) + · · · + r(dn), i.e., as the least upper bound of the set
of actions that stand for the receipt of a particular element of D. Taking this a

2.1 Generalised basic process algebras with deadlock 19

(Ga1) p ≤
∑

P′, for all p ∈ P′;
(Ga2) if p ≤ q for all p ∈ P′, then

∑
P′ ≤ q; and

(Ga3)
∑

P′ · q =
∑
{p · q | p ∈ P′}.

Table 2.2: The axioms for generalised summation.

little further, if D happens to be an infinite set, then the process that models the
receipt of an arbitrary element from D would be the least upper bound of the set of
processes that represent the receipt of any particular element of D. Thus, in order
to be able to model the receipt of an arbitrary element from an infinite domain,
we need to generalise the operation for alternative composition.

Rasiowa and Sikorski (1963) give a treatment of first-order logic from the point
of view of the theory of abstract algebras. To deal with existential and univer-
sal quantifications, which coincide with certain infinite joins and meets in the
Boolean algebra of first-order formulas, they propose to generalise the notion of
operations in an algebra. Let A be a set; a generalised operation O on A is a
partial mapping from the subsets of A to A. That is, O : D → A, where D is a
set of subsets of A. The class D is called the domain of the generalised operation
O and the sets in D are called the admissible sets of the operation O. Then Ra-
siowa and Sikorski proceed to define a generalised (abstract) algebra as a structure
〈A, o1, . . . , om,O1, . . . ,On〉, where A is a set, o1, . . . , om is a sequence of finitary
operations on A and O1, . . . ,On is a sequence of generalised operations on A. We
shall adapt their definitions to our setting.

We shall be interested in process algebras in which certain infinite sets of pro-
cesses have a least upper bound. Therefore, we equip our BPAδ with a generalised
operation∑

: D → P,

where D ⊆ {P′ | P′ ⊆ P} is a set of (finite or infinite) subsets of P.
Suppose that P′ is admissible for

∑
. If

∑
satisfies (Ga1) of Table 2.2, then∑

P′ is an upper bound of P′ with respect to ≤. If
∑

also satisfies (Ga2) of
Table 2.2, then

∑
P′ is the least upper bound of P′ with respect to ≤. If (Ga1)

and (Ga2) hold for all admissible P′, then we say that
∑

generalises +. We have
the following lemma.

Lemma 2.2 If
∑

generalises +, then
∑
{p1, . . . , pn} = p1 + · · ·+ pn for all finite

sets {p1, . . . , pn} that are admissible for
∑

.

We see that there is only one way to define
∑

on a finite set of processes in such
a way that it generalises +. This property extends to infinite sets, so, in general,
if
∑

generalises + in a basic process algebra with deadlock, then it is uniquely
determined by its domain D.

Note that if P′ = {p1, . . . , pn} and {p · q | p ∈ P′} are both admissible for
∑

,

20 Chapter 2 Process algebras with infinite sums

then by (A4) and Lemma 2.2∑
P′ · q = (p1 + · · ·+ pn) · q = p1 · q + · · ·+ pn · q =

∑
{p · q | p ∈ P′}.

We want this equation to hold for infinite sums too, but this is not automatic.

Example 2.3 Let Ω be the first uncountable ordinal; then 〈Ω,∪,×, 0〉 is a basic
process algebra with deadlock. Indeed, set-theoretic union is commutative, as-
sociative and idempotent, and the binary operation × (ordinal multiplication) is
associative and distributes from the right over ∪. Furthermore, the ordinal 0 is a
neutral element for ∪ and a left zero for ×.

The set Ω is closed under countable unions (see, e.g., Halmos, 1974), so that we
may define a generalised operation⋃

: {Γ ⊆ Ω | |Γ| ≤ ℵ0} → Ω.

Clearly,
⋃

generalises ∪, but × does not distribute from the right over ∪; e.g.,⋃
ω × 2 = ω × 2 6= ω =

⋃
{n× 2 | n ∈ ω}.

We shall consider extensions of basic process algebras with deadlock with an
operation

∑
that generalises + in such a way that · distributes from the right

over
∑

. Distributivity from the right of · over
∑

is formulated as (Ga3) in
Table 2.2, which is to be interpreted in the sense that if one side of the equality is
defined, then so is the other.

Definition 2.4 A generalised basic process algebra with deadlock is a generalised
algebra P = 〈P,+, ·, δ,

∑
〉 such that

(i) 〈P,+, ·, δ〉 is a basic process algebra with deadlock;

(ii) P′ ⊆ P is admissible if, and only if, {p ·q | p ∈ P′} is admissible for all q ∈ P;

(iii) (Ga1)–(Ga3) of Table 2.2 hold for all admissible P′ ⊆ P and for all q ∈ P.

We denote by GBPAδ the class of generalised basic process algebras with deadlock.

Suppose that P = 〈P,+, ·, δ〉 is an arbitrary basic process algebra with deadlock.
If we want to extend it with a generalised operation

∑
that satisfies the axioms

in Table 2.2, then we have some freedom with respect to the specification of the
admissible sets of D (in fact, as we have seen above, this is the only freedom we
have). For instance, we may define

∑
as having no admissible sets at all (the

trivial generalisation of P), or as having as admissible sets precisely the finite
subsets of P (the finitary generalisation of P). But mostly, we shall be interested
in the maximal generalisation of P in which the domain of

∑
is the largest set

of subsets of P such that 〈P,+, ·, δ,
∑
〉 is a generalised basic process algebra with

deadlock.

2.2 Transition trees 21

Example 2.5 Suppose that the messages of Example 2.1 are drawn from a (pos-
sibly infinite) set M, and that the receiving party can determine whether received
messages are valid. Then, the receiving party may be modeled as the following
process:

R =
∑

({r2(m) · s2(1) | m ∈ M & m is valid}∪
{r2(m) · s2(0) | m ∈ M & m is not valid}).

We have specified processes by explaining how they are obtained from certain
simpler processes —we have called them actions— through applications of the
fundamental operations of generalised basic process algebras with deadlock. In
Example 2.1 we have specified the process S by explaining how it is obtained
from the actions s1(m), r1(0) and r1(1) by means of the operations for sequential
and alternative composition. In Example 2.5 we have specified the process R by
explaining how it is obtained from the actions r2(m), s2(0) and s2(1) by means
of the operations of sequential composition and generalised choice. Let us now
generalise a few more standard definitions from abstract algebra.

A subset Q ⊆ P is closed under the generalised operation
∑

if
∑

P′ ∈ Q for
every P′ ⊆ Q that is admissible for

∑
in P. A generalised basic process algebra

with deadlock Q = 〈Q,+, ·, δ,
∑
〉 is a subalgebra of P if:

(i) 〈Q,+, ·, δ〉 is a subalgebra of 〈P,+, ·, δ〉;

(ii) Q is closed under
∑

; and

(iii)
∑

in Q is the restriction to Q of
∑

in P.

A set P0 ⊆ P is a set of generators for P if the least subalgebra of P that contains
P0 is P itself. Let P = 〈P,+, ·, δ,

∑
〉 be a generalised basic process algebra with

deadlock, and let us fix a set A ⊆ P of actions. The least subalgebra that contains
A contains precisely those elements of P that can be obtained from the actions
in A by means of applications of the fundamental operations of generalised basic
process algebras with deadlock. Hence, if A is a set of generators for P, then every
process can be obtained from actions by means of applications of the fundamental
operations of generalised basic process algebras with deadlock.

2.2 Transition trees

We shall now construct a collection of generalised basic process algebras with
deadlock in which certain infinite alternative compositions exist. We start from
an infinite cardinal κ and a non-void set L of urelements2 that we shall call labels
and we define the set Tκ(L) of transition trees with branching degree < κ as the
least set such that

(i) {`} ∈ Tκ(L) for all ` ∈ L;
2Urelements (see, e.g., Shoenfield, 1967) are elements that are not sets themselves and do not

involve sets in their construction; we work with a set theory based on urelements to rule out
confusion between labels and trees.

22 Chapter 2 Process algebras with infinite sums

(ii) if ` ∈ L and t ∈ Tκ(L), then {〈`, t〉} ∈ Tκ(L); and

(iii) if T′ ⊆ Tκ(L) and |T′| < κ, then
⋃

T′ ∈ Tκ(L).

The elements of a tree we shall call branches. Clearly, if b is a branch, then either
b ∈ L or there exists a label ` and a tree t such that b = 〈`, t〉. If t ∈ Tκ(L), then
t has less than κ branches. The elements of Tℵ0(L) we shall call finitely branching
(ℵ0 denotes the cardinality of ω); they may be pictured as in Figure 2.2.

(ii)(i) (iii)

`

t1 tnt

`

Figure 2.2: The finitely branching transition trees as constructed in (i)–(iii).

Henceforth we shall denote the empty transition tree ∅ with the symbol δ; if t
and u are transition trees, then t + u is their union; and we define t · u by:

t · u =
⋃

b∈t(b� u),
where 〈`, t′〉 � u = 〈`, t′ · u〉 and `� u = 〈`, u〉 (` ∈ L, t′ ∈ Tκ(L)).

Let us denote by Dκ the subsets of Tκ(L) with cardinality < κ, i.e., let

Dκ = {T′ ⊆ Tκ(L) | |T′| < κ};

we define on Tκ(L) a generalised operation∑
: Dκ → Tκ(L) such that T′ 7→

⋃
T′.

Proposition 2.6 The algebra Tκ(L) = 〈Tκ(L),+, ·, δ,
∑
〉 is a generalised basic

process algebra with deadlock, for every infinite cardinal κ.

Proof. It is immediate that 〈Tκ(L),+〉 is a semilattice. The partial order
associated with it is set inclusion, and clearly, with respect to set inclusion, ∅ = δ
is the least element in Tκ(L) and

⋃
T′ =

∑
T′ is the least upper bound of any

admissible T′ ⊆ Tκ(L). Hence (A1)–(A3), (A6), (Ga1) and (Ga2) hold in Tκ(L).
It is immediate from the definitions that (Ga3) holds. Since

∑
∅ = ∅ = δ, (A7) is

a special case of (Ga3). Since
∑

generalises + and every two-element set of trees
is admissible for

∑
, it follows from Lemma 2.2 that (A4) is also a special case of

2.2 Transition trees 23

(Ga3). So, it remains to show that (A5) holds, i.e., that (t · u) · v = t · (u · v) for
all t, u and v; we proceed by induction on the rank of t:

(t · u) · v = ({〈`, t′ · u〉 | 〈`, t′〉 ∈ t} ∪ {〈`, u〉 | ` ∈ t}) · v
= {〈`, (t′ · u) · v〉 | 〈`, t′〉 ∈ t} ∪ {〈`, u · v〉 | ` ∈ t}
= {〈`, t′ · (u · v)〉 | 〈`, t′〉 ∈ t} ∪ {〈`, u · v〉 | ` ∈ t} by (IH)
= ({〈`, t′〉 | 〈`, t′〉 ∈ t} ∪ {` | ` ∈ t}) · (u · v)
= t · (u · v).

�

If ` ∈ L, then we shall call the singleton {`} a tree action. Clearly, there is a
one-to-one correspondence between the actions and the labels, and between the
sequential compositions of the form a · t, where a is an action, and the branches
of the form 〈`, t〉. Hence, when we picture trees, it will not give rise to confusion
if we label the edges with actions instead of with the corresponding labels. See
Figure 2.3 for an example that proves that in Tκ(L) sequential composition does
not distribute from the left over alternative composition, provided that there are
at least two distinct actions (it is required that b and c are distinct).

a

c b

a a

cb

a · (b + c) a · b + a · c

6=

Figure 2.3: In Tκ(L), sequential composition does not distribute from the left over
alternative composition.

In the following lemma we list a few elementary properties of tree actions.

Lemma 2.7 If a and b are tree actions, then

(i) a 6≤ δ, and a · t 6≤ δ for all trees t;

(ii) for all trees t, u and v:

(a) a ≤ t + u if, and only if, a ≤ t or a ≤ u, and

(b) a · t ≤ u + v if, and only if, a · t ≤ u or a · t ≤ v;

(iii) for all admissible T′ ⊆ Tκ(L):

(a) a ≤
∑

T′ if, and only if, there exists t′ ∈ T′ such that a ≤ t′, and

24 Chapter 2 Process algebras with infinite sums

(b) a · t ≤
∑

T′ if, and only if, there exists t′ ∈ T′ such that a · t ≤ t′;

(iv) a 6≤ b · t and a · t 6≤ b, for all trees t;

(v) a ≤ b if, and only if, a = b; and

(vi) a · t ≤ b · u if, and only if, a = b and t = u, for all trees t and u.

2.3 Free GBPAδ’s

Let P = 〈P,+, ·, δ,
∑
〉 be a generalised basic process algebra with deadlock. Some-

times, we want to use the processes of P to specify processes of another generalised
basic process algebra with deadlock, say Q = 〈Q,+, ·, δ,

∑
〉. Then, we define

h : P→ Q

and we require that it preserves the fundamental operations of generalised basic
process algebras with deadlock. Let h(P′) = {h(p) | p ∈ P′}; if for all P′ ⊆ P
admissible for

∑
in P

(i) h(P′) is admissible for
∑

in Q and

(ii) h(
∑

P′) =
∑
h(P′),

then we say that h preserves
∑

. A homomorphism of generalised basic process
algebras with deadlock is a homomorphism of basic process algebras with deadlock
that preserves

∑
; if h is a homomorphism from P into Q, then we shall write

h : P → Q. Suppose that we start from a designated set A ⊆ P of actions and a
mapping

f : A→ Q.

If A is a set of generators for P and f extends to a homomorphism, then this
extension is unique. However, f does not necessarily extend to a homomorphism
from P to Q.

Example 2.8 Suppose that L is a set of labels; we denote by L∗ the set of finite
sequences of elements of L. A language over L is any subset of L∗; let L be
the set of all languages over L. We denote the empty language by δ; we define
X + Y = X ∪ Y and X · Y = {xy | x ∈ X and y ∈ Y } for all X,Y ∈ L; and we
define

∑
L′ =

⋃
L′ for all L′ ⊆ L. The generalised algebra L = 〈L,+, ·, δ,

∑
〉 is

a generalised basic process algebra with deadlock and it is generated by the set
L0 = {{`} | ` ∈ L}. Moreover, in L sequential composition is left-distributive over
alternative composition, so, in particular,

{`1} · ({`2}+ {`3}) = {`1} · {`2}+ {`1} · {`3}.

Consequently, if Q = 〈Q,+, ·, δ,
∑
〉 is a generalised basic process algebra with

deadlock and every mapping f : L0 → Q extends to a homomorphism h : L→ Q,

2.3 Free GBPAδ’s 25

then

f({`1}) · (f({`2}) + f({`3})) = h({`1} · ({`2}+ {`3}))
= h({`1} · {`2}+ {`1} · {`3})
= f({`1}) · f({`2}) + f({`1}) · f({`3}),

which allows us to conclude that sequential composition distributes from the left
over alternative composition in Q. But then, since this is not so in Tκ(L) (see
Figure 2.3), it follows that not every mapping f : L0 → Tκ(L) extends to a
homomorphism h : L→ Tκ(L).

Suppose that K is any subclass of GBPAδ and let P0 be a set of generators for
P; then P is free for K over P0 if every mapping f : P0 → Q from P0 into the
universe Q of an element Q of K can be extended to a homomorphism h : P→ Q.
We say that P is free in K over P0 if P ∈ K and P is free for K over P0. If P is
free in K over P0, then P0 is called a free generating set for P, and P is said to be
freely generated by P0.

In abstract algebra, the elements of the free generating set for a free algebra
in a particular class K of algebras of the same type satisfy, intuitively, no other
conditions than the identities that hold for every element in every other algebra
in K (e.g., Example 2.8 shows that the algebra L is not free in any class that also
contains the algebra Tκ(L)). For generalised algebras we get an extra require-
ment: every admissible set of the free generalised algebra must correspond to an
admissible set of any other generalised algebra in the class.

Example 2.9 Let a be an action of Tℵ1(L) (ℵ1 denotes the cardinality of Ω,
the smallest uncountable ordinal number). We define an (n ≥ 1) inductively as
follows: a1 = a and an+1 = a · an. Clearly, the set

T′ = {an | n ≥ 1}

is admissible for
∑

in Tℵ1(L). With Lemma 2.7 and induction on m and n it
is easily verified that am = an implies m = n, so |T′| = ℵ0. Consequently, T′ is
not admissible for

∑
in Tℵ0(L), so if f is the identity mapping on the actions of

Tℵ1(L), f does not extend to a homomorphism from Tℵ1(L) to Tℵ0(L). Hence,
the algebra Tℵ1(L) is not free in any class of algebras that also contains Tℵ0(L).

In abstract algebra, the most interesting classes of algebras are the varieties, the
classes that consist precisely of all algebras that satisfy a particular set of identi-
ties. We see from Example 2.9 that a free algebra in the class of all generalised
basic process algebras with deadlock should not have too many admissible sets;
in fact, one can show that it has no admissible sets at all. Our interest is in the
operation

∑
, but in a free generalised basic process algebra with deadlock it is not

defined. Hence, we shall mostly be interested in particular classes of generalised
basic process algebras with deadlock that satisfy an extra requirement with respect
to the admissible sets. For instance, the domain of the generalised operation

∑
of

Tκ(L) consists precisely of the subsets of Tκ(L) that have cardinality less than κ.

26 Chapter 2 Process algebras with infinite sums

Definition 2.10 A generalised basic process algebra with deadlock with universe
P is κ-complete if every P′ ⊆ P such that |P′| < κ is admissible for

∑
.

We shall now prove that Tκ(L) is a free κ-complete generalised basic process
algebra with deadlock, freely generated by its actions.

Theorem 2.11 For every infinite cardinal κ, Tκ(L) is free in the class of κ-
complete generalised basic process algebras with deadlock, with free generating
set T0 = {{`} | ` ∈ L}.

Proof. Clearly, Tκ(L) is κ-complete, and it is generated by T0. Let P be any
κ-complete generalised basic process algebra, and suppose f : T0 → P. We define
a mapping h : Tκ(L)→ P by induction on the rank of transition trees:

h(t) =
∑
{g(b) | b ∈ t}, where g(〈`, t′〉) = f({`}) · h(t′) and g(`) = f({`}) .

Since t has less than κ branches, the set {g(b) | b ∈ t} is admissible for
∑

in P.
Note that h(δ) =

∑
∅ = δ. It is clear that h preserves

∑
, whence, by Lemma 2.2,

h also preserves +. To prove that h(t ·u) = h(t) ·h(u) we do induction on the rank
of t:

h(t · u)
= h({〈`, t′ · u〉 | 〈`, t′〉 ∈ t} ∪ {〈`, u〉 | ` ∈ t})
=
∑

({f({`}) · h(t′ · u) | 〈`, t′〉 ∈ t} ∪ {f({`}) · h(u) | ` ∈ t})
=
∑

({f({`}) · h(t′) · h(u) | 〈`, t′〉 ∈ t} ∪ {f({`}) · h(u) | ` ∈ t}) by (IH)
=
∑

({f({`}) · h(t′) | 〈`, t′〉 ∈ t} ∪ {f({`}) | ` ∈ t}) · h(u)
= h(t) · h(u).

Hence, h is the (unique) homomorphism that extends f . �

Bibliographic notes

Milner (1983) explains how his value-passing CCS (see Section 3.6), with input as a
primitive construct, can be reduced to pure CCS, without the input construct, but
with summations of the form

∑
i∈I pi, where I is a possibly infinite set. The input

mechanism of Milner’s value-passing CCS is a variable binding construct; his pure
CCS, on the other hand, has no binders, and therefore it is more suitable for an
algebraic treatment. It inspired Bergstra and Klop (1984) when they introduced
their algebras of processes. They replaced Milner’s infinitary operation

∑
with

a binary operation +, noting that the “algebraic specification [of infinite sums]
is much less obvious than that of finite sums”. The definition of basic process
algebras with deadlock, which we have extended with an infinitary operation

∑
,

is due to Bergstra and Klop (1984).
Baeten and Weijland (1990) provide an introduction to process algebra with an

emphasis on the axiomatic approach. They present the axiom systems of Bergstra
and Klop, and discuss for each of these axiom systems several models, i.e., con-
crete process algebras that satisfy the axioms. A nowadays standard technique

2.3 Free GBPAδ’s 27

to obtain concrete process algebras is to associate a transition relation with a set
of process terms by assigning a structural operational semantics (see Aceto et al.,
2001) to the operations, and to subsequently divide out a behavioural equivalence.
Fokkink (2000), in his introduction to process algebra, puts more emphasis on
that particular construction, using bisimulation as behavioural equivalence. He
considers the axiom systems as tools to reason about concrete process algebras,
rather than as the definition of a class of process algebras.

Incidentally, that labeled trees give rise to concrete process algebras is well-
known (see, e.g., Milner, 1980; Baeten and Weijland, 1990). The particular defini-
tion of the algebras Tκ(L) and the proof that they are free κ-complete generalised
basic process algebras with deadlock (Theorem 2.11) generalise a definition and a
proof of Rodenburg (2000). (Rodenburg defines an algebra of finitely branching
transition trees and proves that it is a free (basic) process algebra.) Note that
Theorem 2.11 also generalises the completeness theorem for BPAδ (see Baeten and
Weijland (1990)). Namely, it is not hard to see that Tℵ0(L) is isomorphic to the
algebra of finite acyclic process graphs modulo bisimulation. Since, by Lemma 2.2,
the operation

∑
is a defined operator in Tℵ0(L), it must also be a free algebra

in BPAδ. Hence, it is isomorphic to the initial algebra of BPAδ-terms with actions
from T0.

3

The syntax and semantics of pCRL

In the previous chapter we have acknowledged the fact that in some process al-
gebras certain infinite sums exist, and that they play a role when we want to
model input over some infinite domain. We have proposed generalised basic pro-
cess algebras with deadlock to allow an explicit treatment of infinite sums. In
this chapter, we put forward a formal framework to describe elements of gener-
alised basic process algebras with deadlock. Our framework is called pCRL (pico
Common Representation Language) as it consists of the core of the specification
formalism µCRL. We defer the technicalities of pCRL to Section 3.2 and first give
an informal introduction.

Let P = 〈P,+, ·, δ,
∑
〉 be a generalised basic process algebra with deadlock. The

development of our formal framework begins with the hypothesis that associated
with P is a set A of action symbols (e.g., s1(m), r1(0)) and a mapping

act : A→ P

that interprets these action symbols as elements of P. To describe other elements of
P we may use the fundamental operations of basic process algebras with deadlock.
For instance, given an interpretation of s1(m), r1(0) and r1(1) as actions of P, we
may describe another element of P with the expression s1(m) · (r1(0) + r1(1)) (see
Example 2.1). Similarly, if we already have an expression for each element of
P′ ⊆ P and P′ is a finite set, then we could describe the least upper bound of the
elements in P′ writing the symbol

∑
and listing the expressions for the elements

of P′ between brackets. For instance, we could describe the least upper bound of
the set consisting of three actions denoted by r(m1), r(m2) and r(m3) with the
expression

∑
{r(m1), r(m2), r(m3)}.

When P′ is an infinite set, listing the expressions for the elements of P′ is not an
option. We need a method to denote the least upper bound of an infinite set P′

with a finite expression. Recall our motivation for treating infinite sums as first-
class citizens of our process algebras: the process that inputs an arbitrary element
from a set D can be modeled as the least upper bound of the set of actions that
model the receipt of a particular element of D, i.e., as the process

∑
{r(d) | d ∈ D}.

Note how we make use of the intuitive structure of the expression r(d) to explain
which process we mean. The key step towards pCRL is to make this structure
explicit: we presuppose a nonempty set A of parametrised action symbols with
fixed arities, and we assume that the set of action symbols is of the form

A = {a(d1, . . . , dn) | a ∈ A of arity n and d1, . . . , dn ∈ D}. (3.1)

29

30 Chapter 3 The syntax and semantics of pCRL

Then, certain infinite sums are expressible using quantification over D. Let x be
a variable that ranges over D; we denote the process

∑
{r(d) | d ∈ D} with the

expression
∑
x r(x).

We further enhance the expressiveness of our language by allowing that D too
has some structure. To describe processes that perform calculations on a received
value, we equip D with operations that represent these calculations.

Example 3.1 Let N be the set of natural numbers and suppose that we want to
describe the process that inputs a natural number and subsequently outputs its
square. If sqr : N→ N is such that n 7→ n2, then∑

x in(x) · out(sqr(x)) =
∑
{in(n) · out(n2) | n ∈ N}.

To describe processes in which choices depend on a received value, we include a
conditional in our language and we equip D with relations.

Example 3.2 Consider the receiving party R of the protocol described in the
previous chapter (see Example 2.5): which acknowledgment is to be sent, depends
on the contents of the received message. Let V be a unary relation on the set
of messages M such that V(m) holds if, and only if, m is valid. Writing r2(x) ·
s2(1) � V(x) � r2(x) · s2(0) for the set

{r2(m) · s2(1) | m ∈ M & V(m)} ∪ {r2(m) · s2(0) | m ∈ M & not V(m)},

we may denote the receiving party R with the expression∑
x(r2(x) · s2(1) � V(x) � r2(x) · s2(0)).

data

choice quantifiers

functions

parametrised actions

relations

conditionals

P

DB

Figure 3.1: Introducing a formal framework to describe elements of generalised
basic process algebras with deadlock.

We shall model relations as functions from D into a two-element set B = {>,⊥}
of Booleans. A domain together with functions and relations we shall refer to as
data. Figure 3.1 outlines the framework that was informally introduced above.
We now turn to the technicalities.

3.1 Data 31

3.1 Data

We assume that data are given as a two-sorted algebra.

Definition 3.3 A data algebra D is a two-sorted algebra that consists of

(i) an algebra 〈D,F〉: D is a set and F is a set of operations on D, i.e., each
F ∈ F is a mapping

F : Dn → D for some n ∈ ω;

(ii) the two-element Boolean algebra 〈B,∨,∧,¬,>,⊥〉, i.e., B = {⊥,>} (⊥ 6= >),
¬ is a unary operation on B defined by ¬⊥ = > and ¬> = ⊥, and ∧ and ∨
are binary operations on B defined by the following tables:

∧ ⊥ >
⊥ ⊥ ⊥
> ⊥ >

∨ ⊥ >
⊥ ⊥ >
> > >

(iii) a set R of operations from D to B, i.e., each R ∈ R is a mapping

R : Dn → B for some n ∈ ω.

The set D we call the domain of D; the elements of F we call functions and the
elements of R we call relations.

Remark 3.4 Note that, by definition, a data algebra does not have operations
from B to D. So it may be thought of as a model in the sense of first-order model
theory (see, e.g., Chang and Keisler, 1990).

Example 3.5 The set R of real numbers gives rise to a data algebra

R = 〈R,+, ·,−, 0, 1,≤〉

with domain R, real addition (+) and real multiplication (·) as binary functions,
the real numbers 0 and 1 as nullary functions, and a binary relation ≤ defined by

(r1 ≤ r2) = > if, and only if, r1 is at most r2.

Note that in the above example we have implicitly introduced a symbolism.
For instance, we wrote the symbol “+” to denote a certain binary function on
the real numbers (instead of writing the intended set of ordered triples), and we
wrote the symbol “0” for a certain real number (instead of, e.g., the left side of
a Dedekind cut with the rational number 0 as least upper bound). Henceforth,
we shall assume that every data algebra D comes with a fixed set of symbols
that denote the functions and relations of D, one for every function and one for
every relation of D. A symbol that corresponds to an n-ary function of D, i.e.,
an operation from Dn into D, we shall call a function symbol of arity n. A symbol

32 Chapter 3 The syntax and semantics of pCRL

that corresponds to an n-ary relation of D, i.e., an operation from Dn into B, we
shall call a relation symbol of arity n. The collection of all function symbols and
relation symbols, together with their arities, we call the language of D. For the
rest of this thesis we assume that the language associated with D is countable.

Let us fix for the remainder of this thesis a countably infinite set X of (data)
variables. With respect to the language of a data algebra D, we now define two
sets of expressions. The set D of data expressions associated with D consists of
all terms built from the variables in X and the function symbols in the language
of D; i.e., D is generated by

d ::= x | f(d , . . . , d), (3.2)

where x is a variable, f is a function symbol of arity n and d , . . . , d is a sequence
of length n. The set B of Boolean expressions associated with D is generated by

b ::= r(d1, . . . , dn) | > | ⊥ | ¬ b | b ∨ b | b ∧ b, (3.3)

where r is a relation symbol of arity n and d1, . . . , dn are data expressions. (On
the very few occasions that we actually write data expressions —this will mainly
be in examples— we adopt the standard notational conventions; e.g., whenever
appropriate we use infix notation for binary function symbols or binary relation
symbols and we leave out parentheses if this does not lead to confusion.)

A valuation is a mapping from the set of variables X into the domain D of a
data algebra D. Let us fix a valuation ν : X → D; we denote by ν̄ its unique
extension to a homomorphism from the two-sorted algebra of data and Boolean
expressions into D. That is, ν̄ associates with every data expression an element
of D such that

ν̄(x) = ν(x) and
ν̄(f(d1, . . . , dn)) = F (ν̄(d1), . . . , ν̄(dn)),

where F is the n-ary function of D denoted by the function symbol f. Furthermore,
ν̄ associates with every Boolean expression an element of B such that

ν̄(>) = >,
ν̄(⊥) = ⊥,
ν̄(¬ b) = ¬ ν̄(b),
ν̄(b ∧ c) = ν̄(b) ∧ ν̄(c),
ν̄(b ∨ c) = ν̄(b) ∨ ν̄(c) and
ν̄(r(d1, . . . , dn)) = R(ν̄(d1), . . . , ν̄(dn)),

where R is the n-ary relation of D denoted by the relation symbol r.

Remark 3.6 Note that we are using “⊥”, “>”, “¬”, “∧” and “∨” both to refer to
semantic objects (viz., to elements and operations of the Boolean algebra that is
contained in a data algebra) and to syntactic objects (viz., to symbols that occur
in Boolean expressions).

3.2 The language pCRL 33

A data equation is a formula of the form d ≈ e, where d and e are data ex-
pressions; if ν̄(d) = ν̄(e), then we say that ν satisfies d ≈ e in D (notation:
D, ν |= d ≈ e); and if every valuation satisfies d ≈ e, then we say that d ≈ e is
valid in D (notation: D |= p ≈ q). Likewise, a Boolean equation is a formula of
the form b ≈ c, where b and c are Boolean expressions; if ν̄(b) = ν̄(c), then we
say that ν satisfies b ≈ c in D (notation: D, ν |= b ≈ c); and if every valuation
satisfies b ≈ c, then we say that b ≈ c is valid in D (notation: D |= b ≈ c).

3.2 The language pCRL

Now, suppose that A is a nonempty countable set of parametrised action symbols
with fixed arities. The set P of pCRL expressions is generated by the following
grammar:

p ::= a(d1, . . . , dn) | δ | p + p | p · p | p � b � p |
∑
x p (3.4)

where a is a parametrised action symbol of arity n, d1, . . . , dn are data expressions,
x is a variable and b is a Boolean expression.

Most of the time we shall write pq instead of p ·q . We assign syntactic precedence
to the constructs according to the following order:

+ <
∑
x < � b � < · ,

i.e., + binds weakest and · binds strongest. The construct � b � is called a con-
ditional , and the Boolean expression b is sometimes called its condition. The
construct

∑
x we shall call a choice quantifier ; it binds the variable x in its argu-

ment. An occurrence of a variable x is free in a pCRL expression if it is not in the
scope of a

∑
x; otherwise it is bound . The set of variables with a free occurrence

in p we denote by FV(p). A pCRL expression without free variables is closed .
We need to exercise some prudence when applying substitutions to pCRL ex-

pressions. Suppose that d is substituted for x in p; then only the free occurrences
of x should be replaced by d , and an occurrence of a variable y in d should not
become bound by this replacement. A substitution σ : X → D is correct for p if,
for all x ∈ FV(p), no free occurrence of a variable y in σ(x) is in the scope of a

∑
y

when x is replaced by σ(x) in p. A substitution σ is extended to a partial mapping
σ̄ from expressions to expressions: σ̄ is defined only for expressions for which σ is
correct, and it distributes over all the constructs of the language, except that

σ̄(
∑
x p) =

∑
x σ̄
′(p), where σ′(y) =

{
y if y = x; and
σ(y) otherwise.

Let ~x = x1, . . . , xn be a sequence of variables, and let ~d = d1, . . . , dn be a sequence
of data expressions. If σ is a correct substitution for p that is the identity on all
variables, except that σ(xi) = di for all i = 1, . . . , n, then, we shall frequently
write p[~x := ~d] to designate σ̄(p). Moreover, if p designates a pCRL expression,
then by writing p[~x := ~d] we shall always mean the pCRL expression obtained
from p in the manner just described; in particular, it will be tacitly assumed that
the involved substitution is correct.

34 Chapter 3 The syntax and semantics of pCRL

Suppose that p is a pCRL expression with a subexpression of the form
∑
x p′;

then we may replace this subexpression by
∑
y p′[x := y], where y 6∈ FV(p′); p

and q are α-congruent if q can be obtained from p by a series of replacements of
this kind. Although a substitution σ may not be correct for p, there is always an
element in [p]α = {q | q is α-congruent with p} for which σ is correct. Moreover, if
σ is correct for both p and q and [p]α = [q]α, then also [σ̄(p)]α = [σ̄(q)]α. Hence,
there exists a unique total mapping on α-congruence classes such that [p]α 7→
[σ̄(p)]α; let us denote it by σ̄/α. In general, a partial mapping f on expressions
induces a unique total mapping f/α on α-congruence classes of expressions such
that [p]α 7→ [f(p)]α, provided that

1. for every p there exists an α-congruent q for which f is defined; and

2. if f is defined for α-congruent p and q , then f(p) = f(q).

In the remainder, we shall leave the proof that there exists a unique mapping f/α
to the reader, and we shall adopt the following convention (similar to the ‘variable
convention’ of the λ-calculus (Barendregt, 1984)).

Convention 3.7 We identify expressions and their respective congruence classes;
i.e., we use p also to denote the set [p]α. Whenever we define a partial mapping
f on expressions that gives rise to a unique total mapping f/α on α-congruence
classes of expressions, we identify f and f/α; i.e., we use f also to denote f/α.

The syntax of pCRL suggests a correspondence with the operations of generalised
basic process algebras with deadlock. When we use pCRL expressions to denote
elements of a generalised basic process algebra with deadlock, then we want that
p + q denotes the alternative composition of the elements denoted by p and q ,
that p · q denotes their sequential composition, and that the pCRL expression δ
refers to deadlock. If we want to make a similar remark about the correspondence
between choice quantification and generalised summation, then we need to fix a
domain of values for the variables.

Example 3.8 Suppose that variables range over the set R of real numbers. Ac-
cording to our remarks at the beginning of this chapter, with the expression∑
x in(x) we mean the process that inputs an arbitrary real number. This is

the infinite sum∑
{in(r) | r ∈ R}

in a generalised basic process algebra with deadlock with for every real number r
a process that is denoted with the action name in(r) and that models the action of
inputting r. There may not be a pCRL expression to denote the process in(r); e.g.,
with respect to the language of R in Example 3.5,

√
2 is not a data expression, and

hence in(
√

2) is not a pCRL expression. Also note that the set of pCRL expressions
associated with R is countable, while the pCRL expression

∑
x in(x) refers to the

least upper bound of a continuum of alternatives (there is an action in(r) for every
real number r ∈ R).

3.2 The language pCRL 35

Let us now fix a data algebra D, and let us assume that variables range over
the domain D of D. The above example illustrates that, in general, the expression∑
x p does not refer to a generalised sum of pCRL expressions. Intuitively, it

refers to
∑
{p[x := d] | d ∈ D}, where p[x := d] is obtained by replacing the free

occurrences of x in p by the element d ∈ D. To get a formalisation that reflects our
intuition, we introduce expressions of the form p[x := d] as an auxiliary notion.

The set PolD(D) of data polynomials is generated by

dpol ::= x | d | f(dpol , . . . , dpol),

where x is a variable, d is an element of D, f is a function symbol of arity n and
dpol , . . . , dpol is a sequence of length n (cf. (3.2)).

Example 3.9 With respect to the data algebra R of Example 3.5, a data ex-
pression d(x1, . . . , xn) is a polynomial in n indeterminates over R with natural
coefficients, while a data polynomial dpol(x1, . . . , xn) is a polynomial in n inde-
terminates over R with real coefficients. Note that the set of data expressions
associated with R is countable, whereas the set of data polynomials associated
with R is uncountable.

The set PolB(D) of Boolean polynomials is generated by the grammar in (3.3) by
letting d1, . . . , dn range over data polynomials instead of over data expressions.
The set PolP(D) of pCRL polynomials is generated by the grammar in (3.4) by
letting d1, . . . , dn range over data polynomials and b over Boolean polynomials.
The set PolP(D) is the universe of a generalised algebra similar to generalised basic
process algebras with deadlock:

Pol(A,D) = 〈PolP(D),+, ·, δ,
∑
〉;

a set P ⊆ PolP(D) is admissible for
∑

in Pol(A,D) if there exists a pCRL poly-
nomial p and a free variable x such that

P = {p[x := d] | d ∈ D}, (3.5)

and we define∑
P =

∑
x p.

Remark 3.10 Examples 3.8 and 3.9 illustrate why we have taken pCRL expression
as the fundamental notion in our language and treat polynomial as auxiliary: we
wish to reason about the least upper bound of a continuum of alternatives (e.g.,
the pCRL expression

∑
x in(x) refers to the least upper bound of a continuum

of pCRL polynomials) without reverting to an uncountable language. In this way,
the integration operation of real time process algebra (Baeten and Bergstra, 1991),
which is used to specify that an action occurs somewhere within a time interval,
is a special form of choice quantification.

Groote and Ponse (1995) require in their original definition of µCRL that data
algebras are minimal (i.e., every element is denoted by a data expression), and

36 Chapter 3 The syntax and semantics of pCRL

they let variables range over data expressions. Thus, they escape the introduc-
tion of polynomials, but at the same time exclude uncountable domains as data.
Consequently, the integration operation is not a special instance of their choice
quantifier. In the timed version of µCRL of Groote et al. (2000) it is no longer
required that the data algebra is minimal.

Remark 3.11 In µCRL, data is defined with a many-sorted algebraic specifica-
tion, which must at least include the specification of a sort Bool (a Boolean alge-
bra). Furthermore, µCRL has choice quantification over every sort (including the
sort Bool). In this thesis, we shall only consider two-sorted data algebras and we
assume that choice quantification is not over the Booleans. This restriction is only
to simplify notation; it is not essential for our results.

3.3 The semantics of pCRL

We are now going to establish an interpretation of pCRL expressions as elements
of a generalised basic process algebra with deadlock P. A closed pCRL expression
should denote a unique element of P. In general, a pCRL expression may contain
free variables, and then it should denote a unique element of P for every assign-
ment of values to its free variables. We shall define the interpretation ι of pCRL
expressions as elements of P as a family

ι = {ιν | ν a valuation}

of mappings that interpret each pCRL expression p as an element ιν(p) of P.
Clearly, the interpretation ι should reflect the relation that we have established
between the syntax of pCRL and the operations of generalised basic process alge-
bras with deadlock, so we require that each

ιν : Pol(A,D)→ P

is a homomorphism from the algebra of pCRL polynomials Pol(A,D) into P; we
call it the interpretation homomorphism generated by ν.

We began with the hypothesis that associated with every generalised basic pro-
cess algebra with deadlock P is a set of action names A and a mapping act : A→ P
that interprets action names as elements of P. The action names in A, we have
argued, should be thought of as having a particular structure (see (3.1)). We
have, as we may now observe, assumed that A consists of a special kind of pCRL
polynomial. The elements of A are of the form a(d1, . . . , dn), with a ∈ A and
d1, . . . , dn ∈ D. Henceforth, we call such polynomials pCRL actions. The mapping

act : A→ P

that interprets pCRL actions as elements of P we call the A-interpretation asso-
ciated with P. We require that each interpretation homomorphism ιν of pCRL
polynomials into P extends the A-interpretation associated with P.

In accordance with McKenzie et al. (1987), we denote by Sg(A) the subuniverse
of Pol(A,D) generated by A (i.e., Sg(A) is the least set that contains A and is

3.3 The semantics of pCRL 37

closed under the operations of generalised basic process algebras with deadlock);
we define

Act(A,D) = 〈Sg(A),+, ·, δ,
∑
〉.

The A-interpretation associated with P does not necessarily extend to a homomor-
phism from Act(A,D) to P, since the image of a set of pCRL actions admissible
in Act(A,D) may not be admissible in P. Let act : Sg(A) ⇀ P be the maximal
extension of act to a partial mapping from Sg(A) to P that respects the operations
of generalised basic process algebras with deadlock. Since A generates Sg(A), act
is unique.

Definition 3.12 Let P be a generalised basic process algebra with deadlock with
an associated A-interpretation act. We say that P is pCRL-complete with respect
to act if the following closure condition holds for all pCRL polynomials p(x) in one
variable:

if act(p(d)) is defined for all d ∈ D, then the set {act(p(d)) | d ∈ D} is
admissible in P.

Example 3.13 The algebra Tκ(L) of transition trees with branching degree < κ
is pCRL-complete under any interpretation of the pCRL actions, provided that the
domain of D has cardinality < κ. For example, if D has a finite domain, then
Tℵ0(L) is pCRL-complete; if D has a countably infinite domain, then Tℵ1(L) is
pCRL-complete, but Tℵ0(L) is not.

Clearly, our requirement that ιν must be a homomorphism that extends act, can
only be satisfied if P is pCRL-complete. On the other hand, if P is pCRL-complete,
then act uniquely extends to a homomorphism

act : Act(A,D)→ P.

Now, to complete the definition of ιν , it suffices to explain how, given a valuation
ν, arbitrary pCRL polynomials should be interpreted as elements of Act(A,D).
To this end, we associate with every valuation ν a particular homomorphism

[[]]ν : Pol(A,D)→ Act(A,D).

Henceforth, let ν̄ denote the extension of ν to a homomorphism from the two-
sorted algebra of data and Boolean polynomials into D (this is an extension of our
earlier definition of ν̄, given on p. 32); we define [[]]ν as follows:

[[a(dpol1, . . . , dpoln)]]ν = a(ν̄(dpol1), . . . , ν̄(dpoln));
[[δ]]ν = δ;
[[p + q]]ν = [[p]]ν + [[q]]ν ;
[[p · q]]ν = [[p]]ν · [[q]]ν ;

[[p � bpol � q]]ν =
{

[[p]]ν if ν̄(bpol) = >
[[q]]ν if ν̄(bpol) = ⊥; and

[[
∑
x p]]ν =

∑
{[[p[x := d]]]ν | d ∈ D}.

38 Chapter 3 The syntax and semantics of pCRL

The homomorphic image of Pol(A,D) under [[]]ν is the subalgebra of Pol(A,D)
generated by A. We define the interpretation homomorphism ιν generated by the
valuation ν as the composition of act and [[]]ν :

Pol(A,D)

[[]]ν ιν = act ◦ [[]]ν

Act(A,D) P.act

A pCRL equation is a formula of the form p ≈ q , where p and q are pCRL
expressions. If ιν(p) = ιν(q), then we say that ν satisfies p ≈ q in P (notation:
P, ν |= p ≈ q). If every valuation satisfies p ≈ q in P, then we say that p ≈ q
is valid in P, and we write P |= p ≈ q . A pCRL summand inclusion is a formal
expression of the form p 4 q , where p and q are pCRL expressions. If ιν(p) ≤ ιν(q),
then we say that ν satisfies p 4 q in P (notation: P, ν |= p 4 q). If every valuation
satisfies p 4 q in P, then we say that p 4 q is valid in P, and we write P |= p 4 q .
Note that it follows from the definition of ≤ on p. 18 that

P, ν |= p 4 q if, and only if, P, ν |= q ≈ q + p.

3.4 pCRL trees

Consider the algebra Tκ(L) with an injective A-interpretation

act : A→ T0 = {{`} | ` ∈ L}

that associates with every pCRL action a unique tree action, and suppose that the
domain of D has cardinality < κ. The homomorphism

act : Act(A,D)→ Tκ(L)

induced by this A-interpretation allows us to picture certain closed pCRL polyno-
mials as transition trees with actions as labels.

Example 3.14 If we take as data the additive group of integers ordered by ≤,
then the pCRL expression∑

x r(x)s(x) � 0 ≤ x� r(x)s(−x),

may be pictured as the tree in Figure 3.2.

Their interpretation as transition trees induces an equivalence on the pCRL
polynomials. We apply a standard technique in universal algebra to construct from
Act(A,D) a generalised basic process algebra with deadlock, with as universe the
set of pCRL polynomials modulo this equivalence. First, we need to generalise
the notion of congruence. Suppose that ϑ is a congruence of an algebra 〈P,+, ·, δ〉
similar to basic process algebras with deadlock. As usual, with p/ϑ we shall denote

3.4 pCRL trees 39

r(−1) r(1)

s(1)

r(2)

s(2)
s(0)s(1)

s(2)

r(0)
r(−2)

Figure 3.2: The transition tree associated with the expression of Example 3.14.

the congruence class with respect to ϑ that contains p, i.e., p/ϑ = {q | 〈q, p〉 ∈ ϑ},
and if P′ ⊆ P, then

P′/ϑ = {p/ϑ | p ∈ P′}.

The relation ϑ is a congruence of the algebra P = 〈P,+, ·, δ,
∑
〉 similar to gener-

alised basic process algebras with deadlock if it is a congruence of 〈P,+, ·, δ〉 and
it satisfies the following substitution property with respect to

∑
:

if P′,P′′ ⊆ P are admissible for
∑

and P′/ϑ = P′′/ϑ, then 〈
∑

P′,
∑

P′′〉 ∈ ϑ.

If ϑ is a congruence of P, then we may define on P/ϑ the operations +, ·, and δ
as usual, and we may also define a generalised operation

∑
by∑

(P′/ϑ) = (
∑

P′)/ϑ (P′/ϑ is admissible if P′ is admissible for
∑

in P);

we get a generalised quotient algebra P/ϑ = 〈P/ϑ,+, ·, δ,
∑
〉.

Now, consider the homomorphism act : Act(A,D) → Tκ(L), induced by the
bijection act. The kernel of this homomorphism is the relation

ϑ = {〈p, q〉 ⊆ Sg(A)× Sg(A) | act(p) = act(q)};

it is a congruence on Act(A,D).1 We denote the generalised quotient algebra by
TD(A), i.e.,

TD(A) = Act(A,D)/ϑ = 〈Sg(A)/ϑ,+, ·, δ,
∑
〉.

Clearly, TD(A) is a generalised basic process algebra with deadlock, and we asso-
ciate with it an A-interpretation defined by

a(d1, . . . , dn) 7→ a(d1, . . . , dn)/ϑ.

With respect to this A-interpretation TD(A) is pCRL-complete. An element of
TD(A) we call a pCRL tree.

1We use a generalised version of the Homomorphism Theorem (see (McKenzie et al., 1987,
p.28) or (Burris and Sankappanavar, 1981, p.46)); the generalisation is straightforward.

40 Chapter 3 The syntax and semantics of pCRL

Recall that our definition of the interpretation homomorphisms ιν hinges on a
presupposed interpretation act of pCRL actions as elements of P. Moreover, P
should be pCRL-complete with respect to act. The set of pCRL actions and the
associated definition of pCRL-completeness are relative to a particular choice of
A and D. Henceforth, we shall denote by GBPAδ(A,D) the class of all suitable
combinations of a generalised basic process algebra with deadlock P and an inter-
pretation of the pCRL actions, given the specific instance of pCRL with A and D.
Formally, GBPAδ(A,D) consists of all pairs 〈P, act〉 of a generalised basic process
algebra with deadlock P and an interpretation act of pCRL actions as elements of
P such that P is pCRL complete. Par abus de language, if 〈P, act〉 ∈ GBPAδ(A,D),
then we shall often just say that P is in GBPAδ(A,D), leaving act implicit.

Let P and Q be generalised basic process algebras with deadlock, and with A-
interpretations actP and actQ, respectively; a homomorphism h : P → Q is said
to preserve A if actQ = h◦actP. A generalised basic process algebra with deadlock
P together with an associated A-interpretation is initial for GBPAδ(A,D) if for
every element Q of GBPAδ(A,D) there is a unique A-preserving homomorphism
h : P→ Q.

Theorem 3.15 The algebra TD(A) is initial in GBPAδ(A,D).

Proof. Consider a generalised basic process algebra with deadlock Tκ(L) with
|D| < κ and a bijective A-interpretation act : A → T0. Within Tκ(L) we find an
isomorphic copy of TD(A); it is the subalgebra generated by T0 of the algebra
that is obtained by restricting the admissible sets of Tκ(L) to those denoted by a
pCRL polynomial with one free variable (see (3.5)). So, that TD(A) is an element
of GBPAδ(A,D) is immediate. That TD(A) is initial for GBPAδ(A,D) can be seen
as follows.

There is a unique f from T0 into the universe of a generalised basic process
algebra with deadlock P with A-interpretation act′ such that act′ = f ◦ act. By a
straightforward adaptation of our proof of Theorem 2.11 we get that f extends to
an A-preserving homomorphism h from the isomorphic copy of TD(A) in Tκ(L)
to P, provided that P is pCRL-complete with respect to act′. Clearly, h is unique.
Hence TD(A) is initial for GBPAδ(A,D). �

Let us write GBPAδ(A,D), ν |= p ≈ q if P, ν |= p ≈ q for all P in GBPAδ(A,D).
Then, Theorem 3.15 has the following corollary.

Corollary 3.16 For all pCRL expressions p and q ,

GBPAδ(A,D), ν |= p ≈ q if, and only if, TD(A), ν |= p ≈ q .

Proof. The implication from left to right is immediate; we prove the impli-
cation from right to left. Let P be an arbitrary element of GBPAδ(A,D). By
Theorem 3.15 there exists a unique homomorphism h : TD(A) → P that pre-
serves A. So, if we denote by act the A-interpretation associated with TD(A),
then actP = h ◦ act is the A-interpretation associated with P. The mapping act
extends uniquely to a homomorphism act : Act(A,D)→ TD(A), so

h ◦ act : Act(A,D)→ P

3.5 Tree forms 41

is a homomorphism. Clearly, the mapping h◦act extends h◦act, so actP = h◦act.
From TD(A), ν |= p ≈ q it follows that

actP([[p]]ν) = h(act([[p]]ν)) = h(act([[q]]ν)) = actP([[q]]ν),

and hence P, ν |= p ≈ q . This concludes the proof of the implication from right
to left and of the corollary. �

3.5 Tree forms

We shall now associate with every pCRL expression an equivalent pCRL expres-
sion in a certain special form, with a close resemblance to the transition tree it
describes.

An action expression is a pCRL expression of the form a(d1, . . . , dn), where a is an
n-ary parametrised action symbol and d1, . . . , dn is a sequence of data expressions.
By a simple pCRL expression we shall understand an expression of the form∑

~x a � b� δ or of the form
∑
~x ap � b� δ, (3.6)

where
∑
~x abbreviates the sequence

∑
x1
· · ·
∑
xn

for a sequence ~x = x1, . . . , xn
of variables, a is an action expression, b is a Boolean expression and p is a pCRL
expression. If in (3.6) the sequence ~x is empty, then the simple pCRL expression
has no leading choice quantifiers. We call p the continuation of the simple pCRL
expression

∑
~x ap � b� δ.

Definition 3.17 The set T of tree forms is generated by

t ::= δ |
∑
~x a � b � δ |

∑
~x at � b � δ | t + t ,

where a is an action expression, b is a Boolean expression, and ~x is a (possibly
empty) sequence of variables.

Example 3.18 With the pCRL expression of Example 3.2 we may associate the
tree form∑

x r2(x)s2(1) � V(x) � δ +
∑
x r2(x)s2(0) � ¬V(x) � δ.

With the pCRL expression of Example 3.14 we may associate the tree form∑
x r(x)s(x) � 0 ≤ x� δ +

∑
x r(x)s(−x) � ¬(0 ≤ x) � δ;

the first simple expression describes the right half of the transition tree in Fig-
ure 3.2 and that the second simple expression describes the left half.

Below, we shall define a function θ : P → T that associates with every pCRL
expression p an equivalent tree form θ(p). First, we give the definitions of three
auxiliary functions:

42 Chapter 3 The syntax and semantics of pCRL

The function θseq : T × T → T is recursively defined by

θseq(δ, t) = δ;
θseq(

∑
~x a � b � δ, t) =

∑
~x a · t � b � δ ({~x} ∩ FV(t) = ∅);

θseq(
∑
~x a · t � b � δ, u) =

∑
~x a · θseq(t , u) � b � δ ({~x} ∩ FV(u) = ∅);

θseq(t + u, v) = θseq(t , v) + θseq(u, v).

Suppose t and u are tree forms; θseq(t , u) is defined provided that the bound
variables in t are distinct from the free variables in u. The function θseq induces
a total function on α-congruence classes of tree forms which is by Convention 3.7
also denoted by θseq.

Lemma 3.19 GBPAδ(A,D) |= θseq(t , u) ≈ t · u.

Proof. Without loss of generality, we may assume that the bound variables in t
are distinct from the free variables in u. Our proof is by induction on the structure
of t . Let ν be an arbitrary valuation, and let ιν be interpretation homomorphism
generated by ν from Pol(A,D) into an arbitrary element of GBPAδ(A,D); we
show that ιν(θseq(t , u)) = ιν(t · u).
If t = δ, then, with an application of (A7), ιν(θseq(t , u)) = δ = δ · ιν(u) = ιν(t ·u).
Suppose t =

∑
~x a � b � δ, with ~x = x1, . . . , xn. By our assumption on the

variables in t and u, {~x} ∩ FV(u) = ∅, so u[~x := ~d] = u for all ~d = d1, . . . , dn ∈ D.
Hence, by (Ga3)

ιν(θseq(t , u))

=
∑
{ιν(a · u[~x := ~d]) | ~d = d1, . . . , dn ∈ D s.t. ν̄(b[~x := ~d]) = >}

=
∑
{ιν(a[~x := ~d]) | ~d = d1, . . . , dn ∈ D s.t. ν̄(b[~x := ~d]) = >} · ιν(u)

= ιν(t · u).

Suppose t =
∑
~x a · t ′ � b � δ, with ~x = x1, . . . , xn. By the induction hypothesis

we get that, for all ~d = d1, . . . , dn ∈ D,

ιν(θseq(t ′, u)[~x := ~d]) = ιν(t ′[~x := ~d]) · ιν(u[~x := ~d])

Hence, since our assumption on the variables in t and u implies u[~x := ~d] = u,

ιν(θseq(t ′, u)[~x := ~d]) = ιν(t ′[~x := ~d]) · ιν(u).

We now obtain by (A5) and (Ga3) that

ιν(θseq(t , u))

=
∑
{ιν(a[~x := ~d]) · ιν(θseq(t ′, u)[~x := ~d]) |
~d = d1, . . . , dn ∈ D s.t. ν̄(b[~x := ~d]) = >}

=
∑
{ιν(a[~x := ~d]) · ιν(t ′[~x := ~d]) |
~d = d1, . . . , dn ∈ D s.t. ν̄(b[~x := ~d]) = >} · ιν(u)

= ιν(t · u).

3.5 Tree forms 43

If t = t ′ + t ′′, then by the induction hypothesis and (A4)

ιν(θseq(t , u)) = ιν(θseq(t ′, u)) + ιν(θseq(t ′′, u))
= ιν(t ′ · u) + ιν(t ′′ · u)
= ιν(t ′ + t ′′) · ιν(u)
= ιν(t · u).

The proof of the lemma is complete. �

The function θcnd : T × B → T is recursively defined by

θcnd(δ, b) = δ;
θcnd(

∑
~x a � c � δ, b) =

∑
~x a � b ∧ c � δ ({~x} ∩ FV(b) = ∅);

θcnd(
∑
~x a · t � c � δ, b) =

∑
~x a · t � b ∧ c � δ ({~x} ∩ FV(b) = ∅);

θcnd(t + u, b) = θcnd(t , b) + θcnd(u, b).

Suppose t is a tree form and b is a boolean expression; θcnd(t , b) is defined provided
that the bound variables in t are distinct from the (free) variables in b. The
function θcnd induces a total function on α-congruence classes of tree forms which
is by Convention 3.7 also denoted by θcnd.

Lemma 3.20 GBPAδ(A,D) |= θcnd(t , b) ≈ t � b � δ.

Proof. Without loss of generality we may assume that the bound variables in
t do not occur in b. Our proof is by induction on the structure of t . Let ν be
an arbitrary valuation, and let ιν be the interpretation homomorphism generated
by ν from Pol(A,D) into an arbitrary element of GBPAδ(A,D); we show that
ιν(θcnd(t , b)) = ιν(t � b � δ).
If t = δ, then ιν(θcnd(t , b)) = δ = ιν(δ � b � δ) = ιν(t � b � δ).
Suppose that t =

∑
~x t∗ � c � δ, with ~x = x1, . . . , xn. By our assumption on the

variables in t and b, {~x} ∩ FV(b) = ∅, so ν̄(b[~x := ~d]) = ν̄(b) for all sequences
~d = d1, . . . , dn ∈ D; there are two cases:

1.If ν̄(b[~x := ~d]) = ν̄(b) = >, then

ιν(θcnd(t , b))

=
∑
{ιν(t∗[~x := ~d]) |

~d = d1, . . . , dn s.t. ν̄(b[~x := ~d]) ∧ ν̄(c[~x := ~d]) = >}

=
∑
{ιν(t∗[~x := ~d]) | ~d = d1, . . . , dn s.t. ν̄(c[~x := ~d]) = >}

= ιν(t)

and ιν(t � b � δ) = ιν(t), so ιν(θcnd(t , b)) = ιν(t � b � δ).

44 Chapter 3 The syntax and semantics of pCRL

2.If ν̄(b[~x := ~d]) = ν̄(b) = ⊥, then, with applications of (A6) and (Ga2),

ιν(θcnd(t , b))

=
∑
{ιν(t∗[~x := ~d]) |

~d = d1, . . . , dn s.t. ν̄(b[~x := ~d]) ∧ ν̄(c[~x := ~d]) = >}
=
∑
∅ = δ

and also ιν(t � b � δ) = δ, so ιν(θcnd(t , b)) = ιν(t � b � δ).

If t = t ′ + t ′′, then by the induction hypothesis

ιν(θcnd(t , u)) = ιν(θcnd(t ′, u)) + ιν(θcnd(t ′′, u))
= ιν(t ′ � b � δ) + ιν(t ′′ � b � δ).

So, if ν̄(b) = >, then ιν(θcnd(t , u)) = ιν(t ′ + t ′′) = ιν(t � b � δ); and if ν̄(b) = ⊥,
then, with an application of (A3), ιν(θcnd(t , u)) = δ + δ = δ = ιν(t � b � δ). �

The function θsum : X × T → T is recursively defined by

θsum(x, δ) = δ;
θsum(x,

∑
~x a � b � δ) =

∑
x,~x a � b � δ;

θsum(x,
∑
~x a · t � b � δ) =

∑
x,~x a · t � b � δ; and

θsum(x, t + u) = θsum(x, t) + θsum(x, u).

Lemma 3.21 GBPAδ(A,D) |= θsum(x, t) ≈
∑
x t .

Proof. Our proof is by induction on the structure of t .
Let ν be an arbitrary valuation, and let ιν be the interpretation homomorphism
generated by ν from Pol(A,D) into an arbitrary element of GBPAδ(A,D); we
show that ιν(θsum(x, t)) = ιν(

∑
x t).

If t = δ, then, since δ[x := d] = δ and by (Ga1) and (Ga2)

ιν(θsum(x, t)) = ιν(δ) = δ =
∑
{ιν(δ[x := d]) | d ∈ D} = ιν(

∑
x t).

If t is a simple expression, then θsum(x, t) =
∑
x t by definition.

If t = t ′ + t ′′, then by the induction hypothesis

ιν(θsum(x, t)) = ιν(
∑
x t ′) + ιν(

∑
x t ′′)

=
∑
{ιν(t ′[x := d]) | d ∈ D}+

∑
{ιν(t ′′[x := d]) | d ∈ D},

and

ιν(
∑
x t) =

∑
{ιν(t ′[x := d]) + ιν(t ′′[x := d]) | d ∈ D}.

On the one hand, we get by (Ga1) that

ιν(t ′[x := d]), ιν(t ′′[x := d]) ≤ ιν(
∑
x t),

3.5 Tree forms 45

so by (Ga2)

ιν(
∑
x t ′) ≤ ιν(

∑
x t) and ιν(

∑
x t ′′) ≤ ιν(

∑
x t);

hence ιν(θsum(x, t)) ≤ ιν(
∑
x t).

On the other hand, we get by (Ga1) that

ιν(t ′[x := d]) ≤ ιν(
∑
x t ′) ≤ ιν(θsum(x, t)),

and similarly,

ιν(t ′′[x := d]) ≤ ιν(θsum(x, t)),

so that

ιν(t ′[x := d]) + ιν(t ′′[x := d]) ≤ ιν(θsum(x, t));

hence, by (Ga2), ιν(
∑
x t) ≤ ιν(θsum(x, t)). �

Now, we define θ as follows:

θ(δ) = δ;
θ(a) = a �>� δ;
θ(p + q) = θ(p) + θ(q);
θ(p · q) = θseq(θ(p), θ(q));
θ(p � b � q) = θcnd(θ(p), b) + θcnd(θ(q),¬ b);
θ(
∑
x p) = θsum(x, θ(p)).

Lemma 3.22 (Tree forms) The function θ : P → T associates with every pCRL
expression p a tree form θ(p) such that GBPAδ(A,D) |= θ(p) ≈ p.

Proof. Clearly, θ(p) is a tree form for every pCRL expression p. To prove
that GBPAδ(A,D) |= p ≈ θ(p), we fix an arbitrary valuation ν and an inter-
pretation homomorphism ιν generated by ν from Pol(A,D) into some element of
GBPAδ(A,D), and we show that ιν(p) = ιν(θ(p)) by structural induction.
If p = δ, then ιν(θ(p)) = ιν(p) by definition.
If p is an action expression, then, since ν̄(>) = >,

ιν(θ(p)) = ιν(p �>� δ) = ιν(p).

If p = p′ + p′′, then by the induction hypothesis

ιν(θ(p)) = ιν(θ(p′)) + ιν(θ(p′′)) = ιν(p′) + ιν(p′′) = ιν(p).

If p = p′ · p′′, then

ιν(θ(p)) = ιν(θ(p′)) · ιν(θ(p′′)) by Lemma 3.19
= ιν(p′) · ιν(p′′) = ιν(p) by (IH).

46 Chapter 3 The syntax and semantics of pCRL

If p = p′ � b � p′′, then

ιν(θ(p)) = ιν(θ(p′) � b � δ) + ιν(θ(p′′) � ¬ b � δ) by Lemma 3.20
= ιν(p′ � b � δ) + ιν(p′′ � ¬ b � δ) by (IH).

We now distinguish cases: if ν̄(b) = >, then ιν(θ(p)) = ιν(p′)+δ = ιν(p) by (A6);
otherwise, if ν̄(b) = ⊥, then by (A1) and (A6) ιν(θ(p)) = δ + ιν(p′′) = ιν(p).
If p =

∑
x p′, then by Lemma 3.21 ιν(θ(p)) = ιν(

∑
x θ(p′)), and from the induction

hypothesis we get ιν(θ(p′)[x := d]) = ιν(p′[x := d]) for all d ∈ D; hence,

ιν(θ(p)) =
∑
{ιν(θ(p′)[x := d]) | d ∈ D}

=
∑
{ιν(p′[x := d]) | d ∈ D} = ιν(

∑
x p′).

This completes the proof of the lemma. �

For technical purposes it is convenient to impose some extra restrictions on how
a tree form is written down. Let t be a tree form; t is ordered if

t = t1 + · · ·+ tm + tm+1 + · · ·+ tn, (3.7)

where ti is a simple tree form with an ordered continuation for all 1 ≤ i ≤ m and
ti is a simple tree form without continuation for all m < i ≤ n. By convention, if
m = 0 then t = tm+1 + · · ·+ tn; if m = n, then t = t1 + · · ·+ tm; and if m = n = 0,
then t = δ. We denote the set of ordered tree forms by To.

Modulo the commutativity and the associativity of + and using that δ is a
neutral element for +, any tree form can be written as an ordered tree form.
Hence, θ is easily modified so that it yields only ordered tree forms; let θo be the
recursive function that results from this modification.

Corollary 3.23 The recursive function θo : P → To associates with every pCRL
expression p an ordered tree form θo(p) such that GBPAδ(A,D), ν |= p ≈ θo(p).

3.6 Value-passing CCS

Instead of introducing choice quantifiers and using them to model input, one may
choose to add the input mechanism directly, as a special kind of action. This
latter approach is taken in, e.g., value-passing CCS (Milner, 1989). To enable a
comparison of both approaches later on, we now define a simple language, which
roughly corresponds to the finite, sequential fragment of value-passing CCS. We
give a translation of the expressions of this language to pCRL expressions. And
we show that the tree forms associated with these pCRL expressions have a special
form.

Suppose that a ∈ A is an n-ary parametrised action symbol. An input prefix is
an expression of the form

a?x1, . . . , xn, where x1, . . . , xn is a sequence of variables.

An output prefix is an expression of the form

a!d1, . . . , dn, where d1, . . . , dn is a sequence of data expressions.

3.6 Value-passing CCS 47

The set IO of input/output expressions is defined by

io ::= nil | a?x1, . . . , xn.io | a!d1, . . . , dn.io | io + io | b → io,

where a is an n-ary parametrised action symbol, x1, . . . , xn is a sequence of vari-
ables, d1, . . . , dn is a sequence of data expressions and b is a Boolean expression.
As usual we shall abbreviate a?x1, . . . , xn.nil by a?x1, . . . , xn and a!d1, . . . , dn.nil
by a!d1, . . . , dn.

Example 3.24 We consider again the simple protocol that we described in Chap-
ter 2. The sending party (see Example 2.1) may be denoted by the input/output
expression

S = c1!m.c1?x.

The receiving party (see Examples 2.5 and 3.2, and also Example 3.18) may be
denoted by the input/output expression

R = c2?x.(V(m)→ c2!1 + ¬V(m)→ c2!0).

To provide them with a semantics, we inductively associate a pCRL expression
with every input/output expression:

nil 7→ δ;
if io 7→ p, then a?x1, . . . , xn.io 7→

∑
x1,...,xn

a(~x)p;

if io 7→ p, then a!d1, . . . , dn.io 7→ a(d1, . . . , dn)p;
if io1 7→ p1 and io2 7→ p2, then (io1 + io2) 7→ p1 + p2; and
if io 7→ p, then (b → io) 7→ p � b � δ.

We shall generally not make the distinction between input/output expressions
and the pCRL expressions associated with them; in particular, we shall often call
a pCRL expression p an input/output expression if there is one associated with it.

If p is an input/output expression, then in θo(p), the ordered tree form associated
with p, the construct

∑
x only occurs in a special way.

Definition 3.25 Let t = t1 + · · ·+ tm + tm+1 + · · ·+ tn be an ordered tree form
with

ti =
{ ∑

~xi
ait ′i � bi � δ 1 ≤ i ≤ m;∑

~xi
ai � bi � δ m < i ≤ n.

We say t has explicit instantiation if its continuations t ′i (1 ≤ i ≤ m) have explicit
instantiation, and for all 1 ≤ i ≤ n such that |~xi| > 0:

ai = ai(~xi) for some parametrised action symbol ai of arity |~xi|

(|~xi| denotes the length of the sequence ~xi).

48 Chapter 3 The syntax and semantics of pCRL

Lemma 3.26 If p is an input/output expression, then the ordered tree form θo(p)
associated with p has explicit instantiation.

Proof. The proof is by induction on the structure of input/output expressions;
we treat two of the five cases.

1. Suppose p is associated with a?x1, . . . , xn.io, i.e., suppose that p′ is the pCRL
expression associated with io and let

p =
∑
x1,...,xn

a(x1, . . . , xn)p′.

By the induction hypothesis, the ordered tree form θo(p′) associated with p′

has explicit instantiation; hence

θo(p) =
∑
x1,...,xn

a(x1, . . . , xn)θo(p′) �>� δ

has explicit instantiation.

2. Suppose p is associated with b → io and let p′ be the pCRL expression
associated with io; then

θo(p) = θcnd(θo(p′), b) + θcnd(θo(δ),¬ b) = θcnd(θo(p′), b) + δ.

From the induction hypothesis we get that the tree form θo(p′) has explicit
instantiation. Moreover, it is easily shown by induction on the structure of
tree forms that then also θcnd(θo(p′), b) has explicit instantiation. It follows
that θo(p) has explicit instantiation. �

Thus, value-passing CCS gives rise to a proper subfragment of pCRL. In the next
chapter, where we study the complexity of choice quantification, we shall see that
this subfragment is essentially less complex than full pCRL, due to the restricted
form of choice quantification.

Bibliographic notes

After Milner’s proposal to provide value-passing CCS with a semantics via a trans-
lation into pure CCS (Milner, 1983), research was focused for a while on the pure
variant. The 1990’s showed a renewed interest in the input mechanism with a
series of papers on value-passing CCS started by Hennessy (1991), and with the
introduction of the π-calculus by Milner et al. (1992).

In retrospect, the transition from pure CCS to value-passing CCS consists of
distinguishing input and output actions, and giving input actions binding param-
eters. It is essential for this transition that actions are prefixes. In languages with
an associative binary operation for sequential composition a scoping ambiguity has
to be solved; e.g., since

a?x · (p · q) ≈ (a?x · p) · q ,

a?x cannot bind x in q . Baeten and Bergstra (1994) propose to circumvent the
scoping ambiguity by adding prefixes as primitive constructs to ACP.

3.6 Value-passing CCS 49

In the process specification languages PSF (Mauw and Veltink, 1990) and µCRL
(Groote and Ponse, 1995), which are also based on ACP, the scoping ambiguity is
solved by means of choice quantifiers; e.g., in the expression

∑
x a(x)p the choice

quantifier establishes a link between the variable x in a(x) and possible occurrences
of x in p. Thus, the binding aspect of the input mechanism is detached from the
action of receiving input. This accounts for greater expressiveness compared to
when the input mechanism is included as a prefix. For instance, in µCRL we can
specify

• restricted input : if x ranges over natural numbers and the predicate even(x)
holds if, and only if, x is even, then the expression∑

x in(x) · p � even(x) � δ

specifies the process that inputs an even natural number n and proceeds as
the process p[x := n]; and

• nondeterministic output : if N′ ⊆ N is a finite subset of the set N of natural
numbers, then the recursion equation

X(N′) =
∑
x out(x) ·X(N′ − {x}) � x ∈ N′ � δ

specifies the process that outputs the elements of N′ in random order.

Both features have proved to be useful for the specification and verification of
protocols (see, e.g., Shankland and Van der Zwaag, 1998), which is the main
application area of µCRL. Note that the displayed occurrences of choice quantifiers
are compatible with the requirement of explicit instantiation (Definition 3.25).

We see a similar phenomenon in the fusion calculus of Parrow and Victor (1998),
which is a generalisation of the π-calculus. Also there, input actions have no bind-
ing effect themselves; the binding effect is achieved by means of scope operators.
Furthermore, there is a special kind of actions, called fusion actions, which keep
track of certain identifications of names. Fusion actions and scope operators to-
gether are used to express the passing of names between components. In addition,
delayed input, which cannot be specified directly in the π-calculus, has a straight-
forward specification in the fusion calculus.

4

A correspondence between pCRL
and first-order logic

The language pCRL is parametrised with a data algebra D. As explained in Sec-
tion 3.4, its expressions correspond with certain infinitely branching trees. Which
trees correspond with pCRL expressions depends in part on D. For instance, for
the infinitely branching tree pictured in Figure 3.2 on p. 39 we need that the do-
main of D consists of integers, and that D has a relation ≤ or a function | | that
computes the absolute value.

It is to be expected that the validity in TD(A) of pCRL equations also depends
in some way on D. For instance, if d and e are closed data expressions and a is a
unary parametrised action, then

TD(A) |= a(d) ≈ a(e) if, and only if, D |= d ≈ e.

Also, if b is a closed Boolean expression and p and q are closed pCRL expressions,
then

TD(A) |=
{

p � b � q ≈ p if D |= b ≈ >; and
p � b � q ≈ q if D |= b ≈ ⊥.

And even if the validity of data equations and Boolean equation in D is decidable,
the validity of a pCRL equation in TD(A) may still be undecidable.

Example 4.1 Suppose that we take as data the natural numbers with Kleene’s
T -predicate: if z is the encoding (i.e., Gödel number) of Turing machine Z, then

T (z, x, y) = > if, and only if, y encodes a computation1 of Z on x.2

Kleene’s T -predicate is known to be primitive recursive. Now, consider the pCRL
expression

p(z, x) =
∑
y c � T (z, x, y) � δ, where c is any closed action expression.

1A computation is a sequence of pairs consisting of a state and a string that represents the
contents of the tape, such that the last state in the sequence is a final state.

2In the recursion theory literature (e.g., Davis, 1982; Rogers, Jr., 1992) one finds the predicates
Tn(z, x1, . . . , xn, y), where Z takes the sequence x1, . . . , xn as input; we shall only use T1 and
drop the subscript.

51

52 Chapter 4 A correspondence between pCRL and first-order logic

If Z has a successful computation on input x, then TD(A) |= p(z, x) ≈ c; otherwise
TD(A) |= p(z, x) ≈ δ. So p(z, x) ≈ c holds in TD(A) if, and only if, the first-order
formula

(∃y)T (z, x, y)

holds in D. This formula defines an undecidable relation on the natural numbers
—it corresponds to the halting problem (Turing, 1936)— so validity in TD(A) is
undecidable.

Although existential quantifiers are not part of our definition of Boolean expres-
sions, they pop up when we consider validity in TD(A). Example 4.1 shows that
the validity in TD(A) of a pCRL equation may be undecidable if there exist unde-
cidable first-order assertions about the data. We shall see below that it is necessary
and sufficient for the decidability of validity in TD(A) that all first-order assertions
about the data are decidable.

The set Φ of first-order formulas is generated by

ϕ ::= r(d1, . . . , dn) | ¬ϕ | ϕ ∨ ϕ | (∃x)ϕ,

where d1, . . . , dn are data expressions, r is a relation symbol of arity n, and x is
a variable. The construct (∃x) binds the variable x in its argument; we adopt
Convention 3.7 also for first-order formulas. For a given valuation ν : X → D we
define the satisfaction relation D, ν |= ϕ inductively as follows:

1. D, ν |= r(d1, . . . , dn) if, and only if, R(ν̄(d1), . . . , ν̄(dn)) = >, where R is the
n-ary relation of D corresponding to the relation symbol r;

2. D, ν |= ¬ϕ if, and only if, D, ν 6|= ϕ;

3. D, ν |= ϕ ∨ ψ if, and only if, D, ν |= ϕ or D, ν |= ψ; and

4. D, ν |= (∃x)ϕ if, and only if, there exists d ∈ D such that D, ν[x := d] |= ϕ,
where ν[x := d] is the valuation such that

ν[x := d](y) =
{

d if y = x; and
ν(y) otherwise.

If D, ν |= ϕ for all valuations ν, then we write D |= ϕ. The first-order theory of
D is the set of all formulas ϕ such that D |= ϕ.

We also define the pCRL theory of D, as the set of all pCRL equations p ≈ q
such that TD(A) |= p ≈ q . We shall reveal the following intimate relationship
between the pCRL theory of D and the first-order theory of D:

The pCRL theory of D and the first-order theory of D are recursively
isomorphic.

That is, there exists a recursive bijection between both theories (see Rogers, Jr.,
1992). To prove this, it is by a theorem of Myhill (1955) enough to show that
the pCRL theory of D and the first-order theory of D have the same degree of
unsolvability with respect to one-one reducibility (Rogers, Jr., 1992). That is, it
suffices to define two one-one recursive functions:

4.1 Boolean expressions and open first-order formulas 53

1. a one-one recursive function φ : P × P → Φ such that for every valuation ν

TD(A), ν |= p ≈ q if, and only if, D, ν |= φ(p, q); and

2. a one-one recursive function η : Φ→ P ×P such that for every valuation ν

D, ν |= ϕ if, and only if, TD(A), ν |= p ≈ q , where η(ϕ) = 〈p, q〉.

The function φ will be defined in Section 4.2 (see Theorem 4.10). The function η
will be defined in Section 4.3 (see Theorem 4.17). First, however, it is convenient
to devote a preliminary section on discussing the precise connection between the
Boolean expressions used as conditions in pCRL expressions, and certain first-order
formulas.

4.1 Boolean expressions and open first-order formulas

Following, e.g., Shoenfield (1967) and Chang and Keisler (1990), we call a first-
order formula is open if it contains no quantifiers. Syntactically, every open first-
order formula is also a Boolean expression, and the following proposition provides
the semantical justification for this ambiguity.

Proposition 4.2 If ϕ is an open first-order formulas, then

D, ν |= ϕ if, and only if, D, ν |= ϕ ≈ >

for every valuation ν.

Proof. We proceed by induction on the structure of ϕ.
If ϕ = r(d1, . . . , dn) and r denotes the n-ary relation R of D, then

D, ν |= ϕ⇔ R(ν̄(d1), . . . , ν̄(dn)) = > ⇔ D, ν |= ϕ ≈ >

If ϕ = ¬ψ, then, according to the definition of ν̄ on p. 32,

ν̄(ϕ) = > if, and only if, ν̄(ψ) 6= >;

hence, with an application of the induction hypothesis,

D, ν |= ϕ⇔ D, ν 6|= ψ ⇔ D, ν 6|= ψ ≈ > ⇔ D, ν |= ϕ ≈ >.

If ϕ = ψ ∨ χ, then, according to the definition of ν̄ on p. 32,

ν̄(ϕ) = > if, and only if, ν̄(ψ) = > or ν̄(χ) = >;

hence, with an application of the induction hypothesis,

D, ν |= ϕ⇔ D, ν |= ψ or D, ν |= χ

⇔ D, ν |= ψ ≈ > or D, ν |= χ ≈ > ⇔ D, ν |= ϕ ≈ >.

The proof is complete. �

54 Chapter 4 A correspondence between pCRL and first-order logic

Our definition of first-order formula deviates slightly from that of Shoenfield
(1967); Shoenfield presupposes a binary relation symbol with a fixed interpretation
as equality. The reason for our deviation is that, for the rest of this chapter, it is
convenient to have that every open first-order formula is automatically a Boolean
expression, whence may be used as a condition in a pCRL expression. If we now add
equality as a special requirement on data algebras, then, of course, this property
is maintained.

Definition 4.3 We say that a data algebra D has equality if, among the relations
of D, there is a binary relation denoted by the relation symbol eq such that for
every valuation ν:

D, ν |=
{

eq(x, y) ≈ > if ν(x) = ν(y); and
eq(x, y) ≈ ⊥ if ν(x) 6= ν(y).

Note that, syntactically, Boolean expressions are open first-order formula, unless
they contain occurrences of the symbols >, ⊥ or ∧. But it is well-known that ∧ is
definable with ¬ and ∨, and with equality as a binary relation in D, > and ⊥ turn
out to be definable as well. We get that every Boolean expression is semantically
equivalent to a first-order formula.

Proposition 4.4 If D has equality, then for every Boolean expression b there
exists an open first-order formula ϕ such that D |= b ≈ ϕ.

Proof. We make three observations.
Firstly, according to Definition 4.3, for every variable x ∈ X

D |= eq(x, x) ≈ >, (4.1)

so if b = >, then we can select x ∈ X and put ϕ = eq(x, x).
Secondly, since ¬> = ⊥ by definition,

D |= ¬> ≈ ⊥, (4.2)

so if b = ⊥, then we can put ϕ = ¬ eq(x, x).
Thirdly, suppose that b = ψ ∧ χ and ψ and χ are open first-order formulas. Then,
since b ∧ c = ¬(¬ b ∨ ¬ c) for all b, c ∈ B,

D |= ψ ∧ χ ≈ ¬(¬ψ ∨ ¬χ), (4.3)

so we can put ϕ = ¬(¬ψ ∨ ¬χ).
With these observations the proposition follows by structural induction on b. �
For the most part, we shall be working with Boolean expressions modulo semantic
equivalence, and with a data algebra that has equality. Then, according to the
above proposition, every Boolean expression may be conceived as an open first-
order formula: by (4.1)–(4.3) we may interpret occurrences of >, ⊥ and ϕ ∧ ψ as
abbreviations of eq(x, x), ¬>, and ¬(¬ϕ ∨ ¬ψ), respectively.

We introduce a few more standard abbreviations: ϕ → ψ abbreviates ¬ϕ ∨ ψ;
ϕ ↔ ψ abbreviates (ϕ → ψ) ∧ (ψ → ϕ); and (∀x)ϕ abbreviates ¬(∃x)¬ϕ. Fur-
thermore, if m ≥ 1 and n ≥ 0, then we define the formula

∨
m≤i≤n ϕi inductively

as follows:

4.2 The definition of φ 55

1. if n = 0, then
∨
m≤i≤n ϕi = ⊥; and

2. if n ≥ m, then
∨
m≤i≤n ϕi =

∨
m≤i≤n−1 ϕi ∨ ϕn.

4.2 The definition of φ

We start with an analysis of when a valuation ν satisfies t 4 u in TD(A), where t
and u are ordered tree forms. Our analysis will lead to the definition of a recursive
function φ4 : To × To → Φ such that for all ordered tree forms t and u

D, ν |= φ4(t , u) if, and only if, TD(A), ν |= t 4 u.

We shall then obtain φ from φ4 and the function θ that assigns to every pCRL
expression an equivalent ordered tree form.

First, we distinguish cases according to the form of t :
Suppose that t = δ. Since δ is the least element with respect to ≤ in every
generalised basic process algebra with deadlock,

TD(A), ν |= δ 4 u. (4.4)

Suppose that t = t ′+ t ′′, then, since an alternative composition is the least upper
bound of its components in every generalised basic process algebra with deadlock,

TD(A), ν |= t ′ + t ′′ 4 u if, and only if, TD(A), ν |= t ′ 4 u, t ′′ 4 u. (4.5)

Suppose t is a simple tree form, say t =
∑
~x t∗ � b � δ. We need some notation:

if ~x = x1, . . . , xn is a sequence of variables, and ~d = d1, . . . , dn is a sequence of
elements of D, then with [~x := ~d] we shall mean the sequence

[xn := dn] · · · [x1 := d1].

(The inversion is for convenience of notation; e.g., we have, for a sequence of
variables ~x = x1, . . . , xn, that ιν(

∑
~x p) =

∑
{ιν(p[~x := ~d]) | ~d = d1, . . . , dn ∈ D},

also if some variable occurs more than once in ~x.)

Lemma 4.5 Suppose that ~x = x1, . . . , xn is a sequence of variables such that
{~x} ∩ FV(u) = ∅; then

TD(A), ν |=
∑
~x t∗ � b � δ 4 u if, and only if,

for all sequences ~d = d1, . . . , dn ∈ D

D, ν[~x := ~d] |= b ≈ > implies TD(A), ν[~x := ~d] |= t∗ 4 u. (4.6)

Proof. Let t =
∑
~x t∗ � b � δ, and let ιν be the interpretation homomorphism

from Pol(A,D) into TD(A) generated by ν; then

ιν(t) =
∑
{ιν(t∗[~x := ~d]) | ~d = d1, . . . , dn ∈ D s.t. ν̄(b[~x := ~d]) = > }.

56 Chapter 4 A correspondence between pCRL and first-order logic

If TD(A), ν |= t 4 u, then, by (Ga1),

ιν(t∗[~x := ~d]) ≤ ιν(u) for all sequences ~d such that D, ν[~x := ~d] |= b ≈ >.

Since xi 6∈ FV(u) for all 1 ≤ i ≤ n,

ιν(u) = ιν(u[~x := ~d]).

Hence TD(A), ν[~x := ~d] |= t∗ 4 u.
Conversely, suppose

D, ν[~x := ~d] |= b ≈ > implies TD(A), ν[~x := ~d] |= t∗ 4 u for all ~d.

By (Ga2),

TD(A), ν[~x := ~d] |= t 4 u.

Hence, since ιν(u) = ιν(u[~x := ~d]), TD(A), ν |= t 4 u. �

So, if t = t1 + · · · + tn and ti is simple for all 1 ≤ i ≤ n, then, by (4.4) and
(4.5), whether a statement of the form TD(A), ν |= t 4 u is true is determined
by whether statements of the form TD(A), ν |= ti 4 u are true. Furthermore,
if ti =

∑
~x t∗i � b � δ, then, by (4.6), whether the statement TD(A), ν |= ti 4 u

is true is determined by whether a statement of the form TD(A), ν |= t∗i 4 u is
true. Note that if ti is simple, then t∗i is either an action expression or a sequential
composition that starts with an action expression.

Let us fix an action expression a and a tree form t ′, and suppose that t∗ = a
or t∗ = at ′. We shall now analyse when ν satisfies t∗ 4 u in TD(A); again we
distinguish cases, this time according to the form of u:
Suppose that u = δ; then, by Lemma 2.7(i),

if t∗ = a or t∗ = at ′, then TD(A), ν 6|= t∗ 4 δ. (4.7)

Suppose that u = u ′ + u ′′; then, by Lemma 2.7(ii),

if t∗ = a or t∗ = at ′, then
TD(A), ν |= t∗ 4 u ′ + u ′′ if, and only if,

TD(A), ν |= t∗ 4 u ′ or TD(A), ν |= t∗ 4 u ′. (4.8)

For the case that u is a simple expression, we first prove a lemma.

Lemma 4.6 Suppose t∗ = a or t∗ = at ′, and let ~x = x1, . . . , xn be a sequence of
variables such that {~x} ∩ FV(t∗) = ∅; then

TD(A), ν |= t∗ 4
∑
~x u∗ � b � δ if, and only if,

there is a sequence ~d = d1, . . . , dn ∈ D such that

D, ν[~x := ~d] |= b ≈ > and TD(A), ν[~x := ~d] |= t∗ 4 u∗. (4.9)

4.2 The definition of φ 57

Proof. Let u =
∑
~x u∗� b � δ, and let ιν be the interpretation homomorphism

from Pol(A,D) into TD(A) generated by ν; then

ιν(u) =
∑
{ιν(u∗[~x := ~d]) | ~d = d1, . . . , dn ∈ D s.t. D, ν[~x := ~d] |= b ≈ > }.

Since ιν(t∗) = ιν(a) or ιν(t∗) = ιν(a) · ιν(t ′) and ιν(a) is a tree action, we find by
Lemma 2.7(iii) that ιν(t∗) ≤ ιν(u) if, and only if, there exists ~d = d1, . . . , dn ∈ D

such that D, ν[~x := ~d] |= b ≈ > and ιν(t∗) ≤ ιν(u∗[~x := ~d]); the lemma follows. �
Now, suppose that u is a simple expression, say u =

∑
~x u∗� b �δ with u∗ = a ′

or u∗ = a ′u ′; we conclude our analysis by distinguishing cases according to the
forms of t∗ and u∗:
if t∗ = a and u∗ = a ′, then, by Lemma 2.7(v),

TD(A), ν |= t∗ 4 u∗ if, and only if, TD(A), ν |= t∗ ≈ u∗; (4.10)

if t∗ = at ′ and u∗ = a ′u ′, then, by Lemma 2.7(vi),

TD(A), ν |= t∗ 4 u∗ if, and only if, TD(A), ν |= a ≈ a ′, t ′ ≈ u ′; (4.11)

if t∗ = at ′ and u∗ = a ′, or t∗ = a and u∗ = a ′u ′, then, by Lemma 2.7(iv),

TD(A), ν 6|= t∗ 4 u∗. (4.12)

Our analysis shows that a statement TD(A), ν |= t 4 u is equivalent to a
first-order combination of statements of the form

1. D, ν |= b ≈ >, with b a Boolean expression;

2. TD(A), ν |= a ≈ a ′, where a and a ′ are action expressions; and

3. TD(A), ν |= t ′ 4 u ′ and TD(A), ν |= u ′ 4 t ′, where t ′ and u ′ are continua-
tions of simple expressions in t and u, respectively.

It is straightforward to associate an appropriate first-order formula with a state-
ment of the first form: conceive b as an open first-order formula (cf. Proposition 4.4
and the remarks directly following its proof).

Definition 4.7 Suppose that D has equality; we associate with every two ac-
tion expressions a = a(d1, . . . , dm) and a ′ = a′(e1, . . . , en) a Boolean expression
eq(a, a ′) as follows:

eq(a, a ′) =
{

eq(d1, e1) ∧ · · · ∧ eq(dm, en) if a = a′ and m = n; and
⊥ otherwise

If we take eq(a, a ′) as a first-order formula, then we have the following lemma.

Lemma 4.8 If D has equality, then

TD(A), ν |= a ≈ a ′ if, and only if, D, ν |= eq(a, a ′).

58 Chapter 4 A correspondence between pCRL and first-order logic

Proof. We have

TD(A), ν |= a ≈ a ′

⇔ a(ν̄(d1), . . . , ν̄(dm)) = a′(ν̄(e1), . . . , ν̄(en))
⇔ a = a′, m = n and ν̄(di) = ν̄(ei) for all 1 ≤ i ≤ n
⇔ a = a′, m = n and D, ν |= eq(di, ei) for all 1 ≤ i ≤ n
⇔ a = a′, m = n and D, ν |= eq(d1, e1) ∧ · · · ∧ eq(dn, en)
⇔ D, ν |= eq(a, a ′),

by which the lemma is proved. �

Thus, we associate with a statement of the second form the first-order formula
eq(a, a ′). With statements of the third form we are going to deal recursively.
First, we associate with every tree form t a natural number |t |:

|δ| = 0; |
∑
~x a � b � δ| = 1;

|t ′ + t ′′| = |t ′|+ |t ′′|; |
∑
~x at ′ � b � δ| = |t ′|+ 1.

If t ′ is the continuation of a simple expression in t , then |t ′| < |t |. Consequently,
if t ′ and u ′ are continuations of simple expressions in t and u, respectively, then

|t ′|+ |u ′| < |t |+ |u|.

Hence, by induction on |t |+ |u| it follows that the expression TD(A), ν |= t 4 u is
equivalent to a first-order combination of expressions of the first two forms. The
recursive algorithm in Table 4.1 reflects our analysis, except that it applies (4.6)
and (4.9) without verifying the provisos of Lemmas 4.5 and 4.6. Let us say that
the algorithm in Table 4.1 is correct for t and u if for every variable x

(i) if
∑
x occurs in t , then x does not occur at all in u; and

(ii) if
∑
x occurs in u, then x does not occur at all in t .

Proposition 4.9 Suppose that D has equality. If the algorithm in Table 4.1 is
correct for t and u, then it associates with t and u a first-order formula φ4(t , u)
such that

TD(A), ν |= t 4 u if, and only if, D, ν |= φ4(t , u).

Proof. The proof is by induction on |t | + |u|. If |t | + |u| = 0, then t = δ, so
TD(A), ν |= t 4 u by (4.4) and D, ν |= φ4(t , u) since φ4(t , u) = >. Suppose
that |t | + |u| > 0; we proceed by distinguishing cases according to the form of
t . We shall only treat the cases that involve an application of the induction
hypothesis.
First, suppose that t =

∑
~x at ′� b � δ. Since the algorithm is correct for t and u,

{~xi} ∩ FV(at ′) = ∅ for all 1 ≤ i ≤ m, so by (4.9) and (4.11)

TD(A), ν |= at ′ 4 ui if, and only if, there exists a sequence ~d such that

D, ν[~xi := ~d] |= bi ≈ >, and TD(A), ν[~xi := ~d] |= a ≈ ai, t ′ ≈ u ′i.

4.2 The definition of φ 59

compute φ4(t , u):

let u = u1 + · · ·+ um + um+1 + · · ·+ un,

where ui =
{ ∑

~xi
ai · u ′i � bi � δ 1 ≤ i ≤ m;∑

~xi
ai � bi � δ m < i ≤ n.

case

t = δ:
return >.

t =
∑
~x a � b � δ:

return

(∀~x)

b →
∨

m<i≤n

(∃~xi) (bi ∧ eq(a, ai))

 .

t =
∑
~x a · t ′ � b � δ:

compute φ4(t ′, u ′i) for all 1 ≤ i ≤ m;
compute φ4(u ′i, t

′) for all 1 ≤ i ≤ m;
return

(∀~x)

b →
∨

1≤i≤m

(∃~xi) (bi ∧ eq(a, ai) ∧ φ4(t ′, u ′i) ∧ φ4(u ′i, t
′))

 .

t = t ′ + t ′′:
compute φ4(t ′, u);
compute φ4(t ′′, u);
return φ4(t ′, u) ∧ φ4(t ′′, u).

end.

Table 4.1: The algorithm that computes φ4.

60 Chapter 4 A correspondence between pCRL and first-order logic

By Lemma 4.8

TD(A), ν[~xi := ~d] |= a ≈ ai if, and only if, D, ν[~xi := ~d] |= eq(a, ai),

so with two applications of the induction hypothesis, using that TD(A), ν |= p ≈ q
if, and only if, TD(A), ν |= p 4 q and TD(A), ν |= q 4 p, we get

TD(A), ν[~xi := ~d] |= t ′ ≈ u ′i if, and only if,

D, ν[~xi := ~d] |= φ4(t ′, u ′i) ∧ φ4(u ′i, t
′).

Hence

TD(A), ν |= at ′ 4 ui if, and only if,
D, ν |= (∃~xi) (bi ∧ eq(a, ai) ∧ φ4(t ′, u ′i) ∧ φ4(u ′i, t

′)) .

Consequently, by (4.8) and (4.12)

TD(A), ν |= at ′ 4 u if, and only if,

D, ν |=
∨

1≤i≤m

(∃~xi) (bi ∧ eq(a, ai) ∧ φ4(t ′, u ′i) ∧ φ4(u ′i, t
′)) .

Also since the algorithm is correct for t and u, {~x} ∩ FV(u) = ∅, so by (4.6)

TD(A), ν |=
∑
~x at ′ � b � δ 4 u if, and only if,

D, ν[~x := ~d] |=
∨

m<i≤n

(∃~xi) (bi ∧ eq(a, ai) ∧ φ4(t ′, u ′i) ∧ φ4(u ′i, t
′))

for all sequences ~d such that D, ν[~x := ~d] |= b ≈ >.

Hence TD(A), ν |= t 4 u if, and only if, D, ν |= φ4(t , u).
Next, suppose that t = t ′ + t ′′; by the induction hypothesis

TD(A), ν |= t ′ 4 u if, and only if, D, ν |= φ4(t ′, u),

and

TD(A), ν |= t ′′ 4 u if, and only if, D, ν |= φ4(t ′′, u),

so by (4.5), TD(A), ν |= t 4 u if, and only if, D, ν |= φ4(t , u). �

The algorithm in Table 4.1 yields a partial recursive function φ4 : To × To → Φ
that is defined on t and u if the algorithm is correct for t and u. It induces a
total function on α-congruence classes of tree forms which is by Convention 3.7
also denoted by φ4; we have that

TD(A), ν |= t 4 u if, and only if, D, ν |= φ4(t , u).

Since TD(A), ν |= p ≈ q if, and only if, TD(A), ν |= p 4 q and TD(A), ν |= q 4 p,
and by Corollary 3.23, we get that

TD(A), ν |= p ≈ q if, and only if, D, ν |= φ4(θo(p), θo(q)) ∧ φ4(θo(q), θo(p)).

4.3 The definition of η 61

Thus, we have a candidate for φ, except that it is not one-one. (If t is an ordered
tree form, then θo(t + δ) = t , so φ4(θo(t), θo(q)) = φ4(θo(t + δ), θo(q)) for all
q .) We obtain a one-one function as follows. Let p q : P → (ω − {0}) be any
recursive injection of P into the set of positive natural numbers (any recursive
coding of strings over the set of symbols used to write pCRL expressions will
do; it is well-known that such codings exist for finite strings over a countable
alphabet). For n ≥ 1 we define (⊥)n by (⊥)1 = ⊥ and (⊥)n+1 = (⊥)n ∨ ⊥; note
that D, ν |= ϕ ∨ (⊥)n if, and only if, D, ν |= ϕ, for all formulas ϕ. Now, let
φ : P × P → Φ be such that for all p and q

〈p, q〉 7→ (φ4(θo(p), θo(q)) ∧ φ4(θo(q), θo(p))) ∨ (⊥)ppq ∨ (⊥)pqq

Then, φ is the one-one recursive function we needed to define; we have proved

Theorem 4.10 Suppose that D has equality. Then there exists a one-one recur-
sive function φ : P × P → Φ such that for all pCRL expressions p and q

TD(A), ν |= p ≈ q if, and only if, D, ν |= φ(p, q).

4.3 The definition of η

We shall now associate with every first-order formula ϕ a pair of pCRL expressions
η(ϕ) = 〈p, q〉 such that D, ν |= ϕ if, and only if TD(A), ν |= p ≈ q . Recall that an
open first-order formula may be viewed as a Boolean expression (cf. Section 4.1).

Lemma 4.11 If ϕ is an open first-order formula and c is a closed action expres-
sion, then

TD(A), ν |= c � ϕ� δ ≈ c if, and only if, D, ν |= ϕ.

Proof. By Proposition 4.2, D, ν |= ϕ if, and only if, D, ν |= ϕ ≈ >. If
D, ν |= ϕ, then ιν(c � ϕ� δ) = ιν(c); otherwise ιν(c � ϕ� δ) = δ. Since ιν(c) 6= δ
the lemma follows. �

A formula ϕ is in prenex form if it has the form

(Qx1) . . . (Qxn)ψ

where each (Qxi) is either (∃xi) or (∀xi), the variables x1, . . . , xn are all distinct,
and ψ is open. We call (Qx1) . . . (Qxn) the prefix of ϕ and ψ the matrix.

Lemma 4.12 There exists a recursive function π : Φ → Φ that associates with
every first-order formula ϕ a prenex form π(ϕ) such that

D, ν |= π(ϕ) if, and only if, D, ν |= ϕ.

Proof. See Shoenfield (1967) or Rogers, Jr. (1992). �

62 Chapter 4 A correspondence between pCRL and first-order logic

Lemma 4.11 shows how an open first-order formula can be expressed as a pCRL
equation. We shall prove now that universal and existential quantifiers can be
expressed as transformations on pairs of pCRL expressions. Then, we shall conclude
that every prenex form is expressible as a pCRL equation, and we shall define the
function η using π (with a similar trick as in the definition of φ to ensure that η
is one-one).

Since universal quantification generalises conjunction, it is instructive to see how
conjunction is expressible.

Example 4.13 Suppose that t1, t2, u1 and u2 are trees. We wish to construct
trees t and u such that t = u if, and only if, t1 = u1 and t2 = u2. Let a1 and a2

be distinct tree actions; we define t = a1 · t1 + a2 · t2 and u = a1 · u1 + a2 · u2 (see
Figure 4.1).

t u

a1 a2 a1 a2

t2t1 u1 u2

Figure 4.1: t = u if, and only if, t1 = u1 and t2 = u2.

By Lemma 2.7(vi) a1 · t1 = a1 ·u1 if, and only if, t1 = u1, and also, since a1 6= a2,
a1 ·t1 6= a2 ·u2. Hence by Lemma 2.7(ii) a1 ·t1 ≤ u if, and only if, t1 = u1. Similarly
it follows that a2 · t2 ≤ u if, and only if, t2 = u2, so t ≤ u if, and only if, t1 = u1

and t2 = u2. By a symmetric argument it also follows that u ≤ t if, and only if,
t1 = u1 and t2 = u2; we get t = u if, and only if, t1 = u1 and t2 = u2.

Let a be a unary parametrised action symbol; we define

(∀x)1〈p, q〉 =
∑
x a(x)p; and

(∀x)2〈p, q〉 =
∑
x a(x)q .

Intuitively, a(x) pairs a particular instance of p with the same instance of q : if
d1, d2 ∈ D are distinct, then it is possible that ιν(p[x := d1]) = ιν(q [x := d2]) for
some valuation ν, while ιν(a(d1)) 6= ιν(a(d2)) implies that

ιν(a(d1)) · ιν(p[x := d1]) 6= ιν(a(d2)) · ιν(q [x := d2]).

Compare this to the use of a1 and a2 in Figure 4.1: it follows from a1 6= a2 that
a1 · t1 6= a2 · u2.

4.3 The definition of η 63

Lemma 4.14 (∀-introduction) If p and q are pCRL expressions, then

TD(A), ν |= (∀x)1〈p, q〉 ≈ (∀x)2〈p, q〉 if, and only if,
TD(A), ν[x := d] |= p ≈ q for all d ∈ D.

Proof.

(⇒) If TD(A), ν |= (∀x)1〈p, q〉 ≈ (∀x)2〈p, q〉, then∑
{ιν(a(d1)) · ιν(p[x := d1]) | d1 ∈ D} =∑

{ιν(a(d2)) · ιν(q [x := d2]) | d2 ∈ D},

so by, Lemma 2.7(iii,vi), for every d1 ∈ D there exists d2 ∈ D such that
a(d1) = a(d2) and ιν(p[x := d1]) = ιν(q [x := d2]). Since a(d1) = a(d2)
implies d1 = d2, it follows that

ιν(p[x := d]) = ιν(q [x := d]) for all d ∈ D;

hence TD(A), ν[x := d] |= p ≈ q .

(⇐) If TD(A), ν[x := d] |= p ≈ q for all d ∈ D, then

ιν(a(d)) · ιν(p[x := d]) = ιν(a(d)) · ιν(q [x := d]),

so TD(A), ν |= (∀x)1〈p, q〉 ≈ (∀x)2〈p, q〉. �

Existential quantification generalises disjunction; the following example explains
how disjunction is expressible.

Example 4.15 Suppose that t1, t2, u1 and u2 are trees. We wish to construct
trees t and u such that t = u if, and only if, t1 = u1 or t2 = u2. Let a1, a2 and c
be distinct tree actions; we define t = c · (a1 · t1 + a2 · u2) + c · (a1 · u1 + a2 · t2) and
u = c · (a1 · t1 + a2 · u2) + c · (a1 · u1 + a2 · t2) + c · (a1 · t1 + a2 · t2) (see Figure 4.2).

Clearly, t ≤ u and c · (a1 · t1 + a2 · u2) + c · (a1 · u1 + a2 · t2) ≤ t; so t = u if, and
only if, c · (a1 · t1 + a2 · t2) ≤ t. Hence, by Lemma 2.7(ii,vi), t = u if, and only if,
t1 = u1 or t2 = u2.

Let c be a closed action expression and let a be a unary parametrised action
symbol; we define

(∃x)1〈p, q〉 =
∑
x c (

∑
x a(x)p + a(x)q) ; and

(∃x)2〈p, q〉 = (∃x)1〈p, q〉+ c (
∑
x a(x)p) .

Note that in the definition of (∃x)1〈p, q〉 the first (i.e., left-most) occurrence of
∑
x

binds the variable x in a(x)q , while the second occurrence binds the variable x in
a(x)p. Intuitively, by executing c an instance a(d) · q [x := d] of a(x)q is fixed, but
from the execution of c it cannot be seen which particular element of D is selected.
Compare this to the function of the tree action c in Figure 4.2: by executing c a
choice is made between ai · ti and ai · ui for i = 1, 2.

64 Chapter 4 A correspondence between pCRL and first-order logic

t

c

u

a1 a2

c ccc

a1 a2

t1 u2

a1 a2

u1 t2

a1 a2

t1 u2 u1 t2

a1 a2

t2t1

Figure 4.2: t = u if, and only if, t1 = u1 or t2 = u2.

Lemma 4.16 (∃-introduction) If p and q are pCRL expressions, then

TD(A), ν |= (∃x)1〈p, q〉 ≈ (∃x)2〈p, q〉 if, and only if,
there exists d ∈ D such that TD(A), ν[x := d] |= p ≈ q .

Proof. Note that

TD(A), ν |= (∃x)1〈p, q〉 ≈ (∃x)2〈p, q〉
⇔ TD(A), ν |= c(

∑
x a(x)p) 4

∑
x c(
∑
x a(x)p + a(x)q)

⇔ there exists d ∈ D such that
TD(A), ν[x := d] |=

∑
x a(x)p ≈

∑
x a(x)p + a(x)q

⇔ there exists d ∈ D such that TD(A), ν[x := d] |= a(x)q 4
∑
x a(x)p

and, since a(d1) = a(d2) if, and only if, d1 = d2,

⇔ there exists d ∈ D such that TD(A), ν[x := d] |= p ≈ q . �

Theorem 4.17 There exists a one-one recursive function η : Φ → P × P such
that for every first-order formula ϕ

D, ν |= ϕ if, and only if, TD(A), ν |= p ≈ q , where η(ϕ) = 〈p, q〉

(provided there are at least a closed action expression and a parametrised action
symbol with arity > 0).

Proof. Let ϕ be a prenex form; we define pCRL expressions P(ϕ) and Q(ϕ) as
follows:

4.4 A universal fragment 65

1. if the prefix of ϕ is empty, i.e., ϕ is an open formula, then P(ϕ) = c � ϕ� δ
and Q(ϕ) = c, where c is a closed action expression;

2. if the prefix of ϕ begins with a universal quantifier, say ϕ = (∀x)ψ, then

P(ϕ) = (∀x)1〈P(ψ),Q(ψ)〉 and Q(ϕ) = (∀x)2〈P(ψ),Q(ψ)〉; and

3. if the prefix of ϕ begins with an existential quantifier, say ϕ = (∃x)ψ, then

P(ϕ) = (∃x)1〈P(ψ),Q(ψ)〉 and Q(ϕ) = (∃x)2〈P(ψ),Q(ψ)〉.

By Lemmas 4.11, 4.14 and 4.16 and an easy induction on the length of the prefix
of ϕ it follows that

D, ν |= ϕ if, and only if, TD(A), ν |= P(ϕ) ≈ Q(ϕ).

To ensure that η is one-one, we use a recursive injection p q : Φ→ (ω − {0}) of Φ
into the set of positive natural numbers; we define the function η : Φ→ P×P by

ϕ 7→ 〈P(π(ϕ)) + (δ)pϕq,Q(π(ϕ))〉,
where (δ)1 = δ and (δ)n+1 = δ · δn for n ≥ 1.

Clearly, η satisfies the requirements of the theorem, so the proof is complete. �

By Theorem 4.10 the pCRL theory of D is one-one reducible to the first-order
theory of D, and Theorem 4.17 proves the converse. Hence, the pCRL theory and
the first-order theory of D have the same degree of unsolvability with respect to
one-one reducibility. By a theorem of Myhill (see Rogers, Jr., 1992) we get the
following corollary.

Corollary 4.18 If D has equality, then the pCRL theory of D and the first-order
theory of D are recursively isomorphic (provided there are at least a closed action
expression and a parametrised action symbol with arity > 0).

4.4 A universal fragment

The choice quantifier is a powerful construct: it may be used to simulate both the
universal and the existential quantifier of first-order logic. Indeed, the algorithm
of Table 4.1 yields an open formula when applied to tree forms t and u without
choice quantifiers, and with any open formula Lemma 4.11 associates a pCRL
expression without choice quantifiers. The main application of choice quantifiers
is to model input. We shall now investigate how much of the expressiveness of
choice quantifiers persists if we only use it to model input.

In Section 3.6 we have introduced a fragment of value-passing CCS. We have as-
sociated with every process expression of that language a pCRL expression. Thus,
value-passing CCS gives rise to a fragment of pCRL; a pCRL expression that is
associated with some process expression of value-passing CCS we have called an

66 Chapter 4 A correspondence between pCRL and first-order logic

input/output expression. The input/output theory of D consists of all pCRL equa-
tions p ≈ q , with p and q input/output expressions, such that TD(A) |= p ≈ q .
We shall see below that the input/output theory of D is essentially less com-
plex than the full pCRL theory of D: it is recursively isomorphic to the universal
fragment of the first-order theory of D. We easily get a variant of Lemma 4.11.

Lemma 4.19 Suppose that ϕ is an open first-order formula, and let c be a closed
output action. Then TD(A), ν |= (ϕ→ c) ≈ c if, and only if, D, ν |= ϕ.

If p and q are input/output expressions, then (∀x)1〈p, q〉 and (∀x)2〈p, q〉 are also
input/output expressions:

(∀x)1〈p, q〉 = a?x.p; and
(∀x)2〈p, q〉 = a?x.q .

Hence, we have the following lemma.

Lemma 4.20 (∀-introduction) If p and q are input/output expressions, then

TD(A), ν |= (∀x)1〈p, q〉 ≈ (∀x)2〈p, q〉 if, and only if,
TD(A), ν[x := d] |= p ≈ q for all d ∈ D.

A first-order formula is universal if it is in prenex form and all quantifiers in
its prefix are universal; we denote by ΦU the set of universal formulas. From
Lemmas 4.19 and 4.20 we straightforwardly get a variant of Theorem 4.17.

Theorem 4.21 There exists a one-one recursive function ηio : ΦU → IO × IO
such that for every universal first-order formula ϕ

D, ν |= ϕ if, and only if, TD(A), ν |= p ≈ q , where ηio(ϕ) = 〈p, q〉

(provided there is a closed output action and a parametrised action symbol with
arity > 0).

The transformation 〈(∃x)1, (∃x)2〉 defined in Section 4.3 uses a distinct feature
of the choice quantifier that is not expressible by means of an input prefix: the
variable x, bound by the left-most choice quantifier in∑

x c(
∑
x a(x)p + a(x)q)

does not occur in the action expression c that immediately follows it. Recall that,
intuitively, by executing c an instance a(d) · q [x := d] of a(x)q is fixed, but from
the execution of c it cannot be seen which particular element of D is selected.

From Lemma 3.26 on p. 48 we get that if p is an input/output expression, then
the ordered tree form θo(p) associated to p has explicit instantiation. We shall now
prove that all existential quantifiers can be eliminated from the formula φ4(t , u)
if t and u are ordered tree forms with explicit instantiation.

4.4 A universal fragment 67

Theorem 4.22 Suppose that D has equality, and let t and u be ordered tree
forms with explicit instantiation. Then there exists a universal first-order formula
ϕ such that D |= φ4(t , u)↔ ϕ.

Proof. We shall apply a few elementary results of first-order logic that are
proved, e.g., by Shoenfield (1967); in particular we need the following results on
quantifiers:

((∀x)ϕ ∧ ψ)↔ (∀x)(ϕ ∧ ψ), provided that x 6∈ FV(ψ); (4.13)
((∀x)ϕ ∨ ψ)↔ (∀x)(ϕ ∨ ψ), provided that x 6∈ FV(ψ); (4.14)
(ϕ→ (∀x)ψ)↔ (∀x)(ϕ→ ψ), provided that x 6∈ FV(ϕ); (4.15)
(∃x)(eq(x, d) ∧ ϕ)↔ ϕ[x := d]. (4.16)

The proof is by induction on |t |+ |u|; we shall only do the induction step. Suppose
|t |+ |u| > 0; we distinguish cases according to the form of t .
If t = δ, then φ4(t , u) = >, which is a universal formula.
If t = t ′ + t ′′, then by the induction hypothesis φ4(t ′, u) and φ4(t ′′, u) are equiv-
alent to universal first-order formulas, say (∀x1) . . . (∀xk)ϕ′ and (∀y1) . . . (∀yl)ϕ′′.
Without loss of generality we may assume that xi 6= yj , xi 6∈ FV(ϕ′′) and yj 6∈
FV(ϕ′), for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. Hence by (4.13)

φ4(t , u) = φ4(t ′, u) ∧ φ4(t ′′, u)
↔ (∀x1) . . . (∀xk)ϕ′ ∧ (∀y1) . . . (∀yl)ϕ′′

↔ (∀x1) . . . (∀xk)(∀y1) . . . (∀yl)(ϕ′ ∧ ϕ′′).

In the two cases that remain t is a simple expression; we shall only treat the case
that t has a continuation. Suppose t =

∑
~x at ′� b � δ and let u = u1 + · · ·+ um +

um+1 + · · ·+ un with

ui =
{ ∑

~xi
ai · u ′i � bi � δ 1 ≤ i ≤ m;∑

~xi
ai � bi � δ m < i ≤ n.

Then

φ4(t , u) = (∀~x)

b →
∨

1≤i≤m

(∃~xi) (bi ∧ eq(a, ai) ∧ φ4(t ′, u ′i) ∧ φ4(u ′i, t
′))

 .

Now consider the subformula

(∃~xi) (bi ∧ eq(a, ai) ∧ φ4(t ′, u ′i) ∧ φ4(u ′i, t
′)) .

By (4.14) and (4.15) it suffices to prove that it is equivalent to a universal formula.
By the induction hypothesis φ4(t ′, u ′i) and φ4(u ′i, t

′) are equivalent to universal
formulas, say (∀x1) . . . (∀xk)ϕ and (∀y1) . . . (∀yl)ψ. If |~xi| = 0, then the theorem
follows immediately from (4.13), and if eq(a, ai) = ⊥, then the theorem follows
since (∃x)⊥ ↔ ⊥. Otherwise a and ai are instances of the same parametrised

68 Chapter 4 A correspondence between pCRL and first-order logic

action symbol and, since u has explicit instantiation, ai = a(~xi). Let a = a(~d),
where ~d is a sequence of data expressions with |~xi| = |~d |. Then,

eq(a, ai) = eq(xi1, d1) ∧ · · · ∧ eq(xik, dk),

whence by (4.16)

(∃~xi) (bi ∧ eq(a, ai) ∧ ϕ ∧ ψ)↔ (bi[~xi := ~d] ∧ ϕ[~xi := ~d] ∧ ψ[~xi := ~d]).

From this the theorem follows, since by (4.13) the right-hand side is equivalent to
a universal formula. �

Hence, the universal fragment of the first-order theory of D is one-one reducible
to the input-output theory of D, and from Lemma 3.26 and Theorem 4.22 we get
the converse. Hence, the input/output theory of D and the universal fragment of
the first-order theory of D have the same degree of unsolvability with respect to
one-one reducibility. Consequently, by a theorem of Myhill (see Rogers, Jr., 1992)
we get the following

Corollary 4.23 If D has equality, then the input/output theory of D and the
universal fragment of the first-order theory of D are recursively isomorphic (pro-
vided there exist a closed output action and a parametrised action symbol with
arity > 0).

Bibliographic notes

Ponse (1996) investigated the complexity of another fragment of µCRL. He consid-
ers data algebras with recursive functions and relations, and, with respect to our
fragment, he omits the choice quantifiers and includes data-parametric recursion.
For (pairs of) specifications in this fragment he classifies a number of properties in
the Arithmetical Hierarchy. In particular, he shows that, restricting to computable
data, equivalence between two recursive specifications in his fragment is complete
in Π0

1. So, approximately, the contribution of data-parametric recursion to µCRL
corresponds to the contribution of universal quantifiers to first-order logic.

Hennessy and Lin (1995) have already proved part of Corollary 4.23 for value-
passing CCS, giving an algorithm that associates to each pair of finite value-passing
processes a universal formula that holds if, and only if, the processes are bisimilar.
Theorem 4.21 extends their result with the converse, that the universal quantifiers
introduced by their algorithm cannot be eliminated.

There is a vast literature exploring the connection between process theory and
modal logic (see Bradfield and Stirling (2001) and Stirling (2001) for recent ac-
counts). The connection proceeds via labeled transition systems: a process can be
viewed as a labeled transition system modulo bisimulation, a modal formula can
be viewed as the specifation of a property of a state in a labeled transition system.
Incidentally, a labeled transition system may be conceived as a first-order model,
interpreting the transition relation as a family of binary relations indexed by the
labels. This point of view gives rise to a correspondence between process theory

4.4 A universal fragment 69

and first-order logic quite different from the one considered in this chapter. In this
context, Hollenberg (1998) studies which operations on labeled transition systems
are first-order definable, i.e., definable through a set of first-order formulas.

5

A deductive system for pCRL

Let us call a pCRL equation p ≈ q valid if GBPAδ(A,D) |= p ≈ q ; e.g., the
equations θ(p) ≈ p, where θ is the function of Section 3.5 which associates a tree
form with every pCRL expression, are valid (cf. Lemma 3.22). To prove that a pCRL
equation is valid, can be quite a laborious enterprise. The general technique is to
presuppose an arbitrary valuation ν and an arbitrary element P of GBPAδ(A,D),
and prove by means of the axioms of GBPAδ’s that ιν(p) = ιν(q), where ιν is
the interpretation homomorphism from Pol(A,D) into P generated by ν. We
illustrate this in the following example.

Example 5.1 Suppose that p denotes the pCRL expression∑
x r(x)s(x) � 0 ≤ x� r(x)s(−x)

from Example 3.14, and let q be the tree form∑
x r(x)s(x) � 0 ≤ x� δ +

∑
x r(x)s(−x) � ¬(0 ≤ x) � δ

that we associated with it in Example 3.18. We want to prove that p ≈ q is
valid. To this end, we fix an arbitrary valuation ν and an arbitrary element P of
GBPAδ(A,D); then,

ιν(p) =
∑

({ιν(r(n)s(n)) | n ≥ 0} ∪ {ιν(r(n)s(−n)) | n < 0}), and
ιν(q) =

∑
{ιν(r(n)s(n)) | n ≥ 0}+

∑
{ιν(r(n)s(−n)) | n < 0}.

By (Ga1),

ιν(r(n)s(n)) ≤ ιν(p) for all n ≥ 0, and
ιν(r(n)s(−n)) ≤ ιν(p) for all n < 0;

so by (Ga2),∑
{ιν(r(n)s(n)) | n ≥ 0} ≤ ιν(p), and∑
{ιν(r(n)s(−n)) | n < 0} ≤ ιν(p);

hence, by (A2), ιν(q) ≤ ιν(p).
On the other hand, by (Ga1),

ιν(r(n)s(n)) ≤
∑
{ιν(r(n)s(n)) | n ≥ 0} for all n ≥ 0, and

ιν(r(n)s(−n)) ≤
∑
{ιν(r(n)s(−n)) | n < 0} for all n < 0;

71

72 Chapter 5 A deductive system for pCRL

so, by (A1) and (A2),

ιν(r(n)s(n)) ≤ ιν(q) for all n ≥ 0, and
ιν(r(n)s(−n)) ≤ ιν(q) for all n < 0;

hence, by (Ga2), ιν(p) ≤ ιν(q).
From ιν(q) ≤ ιν(p) and ιν(p) ≤ ιν(q), we conclude, by (A1), that ιν(p) = ιν(q).

Hence, p ≈ q is valid.

It is easily verified that the specific form of the subexpressions r(x)s(x) and
r(x)s(−x) is not relevant for the calculations in the above example. We have
actually proved for all pCRL expressions p and q the validity of∑

x p � b � q ≈
∑
x p � b � δ +

∑
x q � ¬ b � δ. (5.1)

This equation, in turn, is a consequence of two more general equations, which are
also valid:

p � b � q ≈ p � b � δ + q � ¬ b � δ; and (5.2)∑
x(p + q) ≈

∑
x p +

∑
x q . (5.3)

To get (5.1), we first apply (5.2) to the subexpression p � b � q of the left-hand
side and replace it by p � b �δ+q � ¬ b �δ to obtain

∑
x(p � b �δ+q � ¬ b �δ);

to justify this replacement, we postulate that for pCRL expressions p and q

p ≈ q implies
∑
x p ≈

∑
x q . (5.4)

Subsequently, we apply (5.3) to the expression
∑
x(p � b � δ+ q � ¬ b � δ) to get

the right-hand side of (5.1). If for all pCRL expressions p, q and r

p ≈ q and q ≈ r implies p ≈ r , (5.5)

then we may conclude (5.1).
Starting from (5.2) and (5.3), we have deduced (5.1) using (5.4) and (5.5). Of

course, to conclude from this deduction that the pCRL expressions of Example 5.1
are equivalent under any interpretation in any element of GBPAδ(A,D), we still
need to apply the technique of Example 5.1 to verify that (5.2) and (5.3) are indeed
valid, and that the validity of the antecedents of the implications (5.4) and (5.5)
implies the validity of the conclusions. However, a verification of (5.2)–(5.5) has a
much wider applicability than the verification in Example 5.1. It follows that not
only (5.1) is valid for all pCRL expressions p and q , but also any other equation
that can be deduced with (5.2)–(5.5).

In Chapter 3, we have introduced the language pCRL to describe elements of
generalised basic process algebras with deadlock. In this chapter, we associate
with it a deductive system to facilitate formal proofs of valid equations. We shall
designate particular valid equations as axioms (e.g., (5.3)), and certain valid impli-
cations between equations as inference rules (e.g., (5.4) and (5.5)). Our inference
rules correspond to the elementary steps of equational reasoning; e.g., (5.5) says

5.1 The deductive system 73

that ≈ is a transitive relation on pCRL expressions. Each of our axioms expresses
a property of a construct or a combination of constructs of pCRL that we consider
basic; e.g., (5.3) expresses that choice quantifiers distribute over alternative com-
positions. From the axioms we require a certain degree of generality. For instance,
we shall see that (5.2) can be deduced from more general valid equations, and we
shall take this as an argument not to include it as an axiom.

Intuitively, the proof that an equation p ≈ q is valid consists of three parts: a
part that establishes some necessary properties of D; a part that describes how
these properties prove the validity of pCRL equations; and a part that involves
reasoning about the constructs of pCRL, independent of any data occurring in p
and q . The design of our deductive system reflects this trichotomy. Reasoning
about data is delegated to a subsidiary deductive system S for data equations and
for Boolean equations. Two simple laws explain how the provable equations of
S give rise to valid pCRL equations: if S proves the data equation d ≈ e and a
pCRL expression q is obtained from another pCRL expression p by replacing an
occurrence of d by e, then p ≈ q is valid; and if S proves the Boolean equation
b ≈ c, then p � b � q ≈ p � c � q is valid.

The remaining axioms and rules of our deductive system are independent of
specific properties of the data; they express certain fundamental properties of
the constructs of pCRL. A deduction within our deductive system may thus be
thought of as the explanation of a valid equation in terms of these fundamental
properties, with an occasional reference to the subsidiary deductive system S for
the explanation of a property of the data. Then, the question naturally arises
whether every valid pCRL equation may be explained in this way, i.e., whether
our deductive system is complete. Clearly, this depends to a large extent on the
deductive power of the subsidiary system S for the data. We shall investigate
completeness under the assumption that D is fixed and that S is powerful enough
to infer any property of D that may be needed to establish the validity of a pCRL
equation. Such a powerful enough S acts as an oracle for D, and the result that we
shall prove may be called relative completeness: our deductive system is complete
if it may consult an oracle that answers any question about the data.

5.1 The deductive system

In the process specification language µCRL, on which the language pCRL is based,
abstract data types are defined by means of many-sorted algebraic specifications.
We wish to stay close to this, so we take many-sorted equational logic as a basis
for our subsidiary deductive system for the data.

Definition 5.2 A data specification S is a two-sorted equational specification

S = 〈∆ ∪ ΣB, ED, EB〉

with sorts D and B that consists of

(i) the language ∆ of a data algebra, extended with the signature of Boolean

74 Chapter 5 A deductive system for pCRL

(Ba1) a ∨ (b ∨ c) ≈ (a ∨ b) ∨ c
(Ba2) b ∨ c ≈ c ∨ b
(Ba3) b ∨ (b ∧ c) ≈ b
(Ba4) a ∨ (b ∧ c) ≈ (a ∨ b) ∧ (a ∨ c)
(Ba5) b ∨ ¬ b ≈ >

(Ba1′) a ∧ (b ∧ c) ≈ (a ∧ b) ∧ c
(Ba2′) b ∧ c ≈ c ∧ b
(Ba3′) b ∧ (b ∨ c) ≈ b
(Ba4′) a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c)
(Ba5′) b ∧ ¬ b ≈ ⊥

Table 5.1: The Boolean axioms that are included in every data specification.

algebras

ΣB = {∨,∧: B× B→ B, ¬ : B→ B, >,⊥ :→ B};

(ii) a sequence ED = (d1 ≈ e1), (d2 ≈ e2), . . . of data equations; and

(iii) a sequence EB = (b1 ≈ c1), (b2 ≈ c2), . . . of Boolean equations such that EB

at least contains all the instances of the axiom schemata in Table 5.1 with
Boolean expressions for the meta variables a, b and c.

We shall call ∆ the language of S, the equations in ED are called the data axioms
of S and the equations in EB are called the Boolean axioms of S.

We write S ` d ≈ e if the data equation d ≈ e can be deduced from the
equations in ED and EB by means of many-sorted equational logic (cf., e.g., Goguen
and Meseguer, 1985); and similarly, we write S ` b ≈ c if the Boolean equation
b ≈ c can be deduced from the equations in ED and EB. It is easily verified from
Definition 3.3 on p. 31 that the Boolean axioms generated by the schemata in
Table 5.1 hold in every data algebra D. Whenever S is a two-sorted equational
specification with language ∆, D is a data algebra with the same language ∆, and
all the axioms of S hold in D, then D is called a model of S. If D is a model of
S, then it follows from the soundness of many-sorted equational logic that

1. S ` d ≈ e implies D |= d ≈ e for all data expressions d and e; and

2. S ` b ≈ c implies D |= b ≈ c for all Boolean expressions b and c.

If also the converses of 1 and 2 hold, then we say that S is a complete (equational)
specification of D.

We define a deductive system Π(A,S), parametrised with a set of parametrised
action symbols A and a data specification S, as follows: the axioms of Π(A,S) are
the instances of the axiom schemata listed in Table 5.2 with pCRL expressions for

5.1 The deductive system 75

S-independent axiom schemata:

(A1) p + q ≈ q + p
(A2) p + (q + r) ≈ (p + q) + r
(A3) p + p ≈ p
(A4) (p + q) · r ≈ p · r + q · r
(A5) (p · q) · r ≈ p · (q · r)
(A6) p + δ ≈ p
(A7) δ · p ≈ δ

(C1) p �>� q ≈ p
(C2) p � b � q ≈ q � ¬ b � p
(C3) (p � b � q) � c � q ≈ p � b ∧ c � q
(C4) (p + q) � b � (r + s) ≈ p � b � r + q � b � s
(C5) p � b ∨ c � δ ≈ p � b � δ + p � c � δ
(C6) (p � b � q) · (r � b � s) ≈ p · r � b � q · s

(Cq1)
∑
x p ≈ p if x 6∈ FV(p)

(Cq2)
∑
x p ≈

∑
y p[x := y] if y 6∈ FV(p)

(Cq3)
∑
x p ≈

∑
x p + p[x := d]

(Cq4)
∑
x(p + q) ≈

∑
x p +

∑
x q

(Cq5) (
∑
x p) · q ≈

∑
x p · q if x 6∈ FV(q)

(Cq6)
∑
x p � b �

∑
x q ≈

∑
x(p � b � q) if x does not occur in b

S-induced axiom schemata:

(Data) p[x := d] ≈ p[x := e] if S ` d ≈ e
(Bool) p � b � q ≈ p � c � q if S ` b ≈ c

Inference rule schemata:

(Refl)
p ≈ p

(Sym)
p ≈ q
q ≈ p

(Trans)
p ≈ q , q ≈ r

p ≈ r

(Cong(+))
p1 ≈ q1, p2 ≈ q2

p1 + p2 ≈ q1 + q2
(Cong(·))

p1 ≈ q1, p2 ≈ q2

p1 · p2 ≈ q1 · q2

(Cong(�b�))
p1 ≈ q1, p2 ≈ q2

p1 � b � p2 ≈ q1 � b � q2
(Cong(

∑
x))

p ≈ q∑
x p ≈

∑
x q

Table 5.2: The deductive system for pCRL with respect to a data specification S;
p, q and r range over pCRL expressions; x is a data variable, d and e range over
data expressions and b and c range over Boolean expressions.

76 Chapter 5 A deductive system for pCRL

the meta variables p, q , etc.; the inference rules are the instances of the inference
rule schemata listed in Table 5.2. Formally, a deduction (within Π(A,S)) is a finite
sequence of pCRL equations

(p1 ≈ q1), (p2 ≈ q2), . . . , (pn ≈ qn)

such each pi ≈ qi is either an axiom of Π(A,S) or the conclusion of an inference
rule of which the premisses occur earlier in the sequence. We call the last equation
pn ≈ qn of a deduction its conclusion, and we write Π(A,S) ` p ≈ q if the axioms
and the inference rules in Table 5.2 permit a deduction that has the equation p ≈ q
as conclusion; we shall then also say that p and q are provably equivalent. If it
holds that p and q are provably equivalent only if p ≈ q is valid, then Π(A,S) is
called sound with respect to GBPAδ(A,D). Before we prove that our deductive
system is sound with respect to GBPAδ(A,D) whenever D is a model of S, we
make a few comments about the axioms and the inference rules, and we give a few
deductions to illustrate their use.

The inference rules are the well-known laws of equational reasoning, adapted to
our setting. Namely, (Refl)–(Trans) ensure that provable equivalence is indeed
an equivalence relation on pCRL expressions, and (Cong(+))–(Cong(

∑
x)) allow

the inference of p ≈ q if q can be obtained from p by replacing a subexpression of
p by a provably equivalent expression.

Remark 5.3 Our presentation is nonstandard in that it omits the so-called “sub-
stitution rules.” Note, however, that our definition of pCRL expression does not
involve a notion of “variable” for which one might want to substitute another
pCRL expression. It is folklore that, in general, if one is only interested in “ground”
terms, i.e., in terms without this kind of variables, then it is possible to do without
substitution rules by taking all instances with ground terms of the axioms.

By (A1)–(A7), the set of pCRL expressions modulo provable equivalence is a
BPAδ (cf. Table 2.1 on p. 17); we write Π(A,S) ` p 4 q for Π(A,S) ` q ≈ q + p.

Lemma 5.4 Π(A,S) ` p ≈ q if, and only if, Π(A,S) ` p 4 q , q 4 p.

Proof. To prove the implication from left to right, consider a deduction

(p1 ≈ q1), . . . , (pn ≈ qn) = (p ≈ q) (5.6)

that justifies writing Π(A,S) ` p ≈ q . We append to it the sequence

(p ≈ p), (p + p ≈ p + q), (p + p ≈ p), (p ≈ p + p), (p ≈ p + q). (5.7)

Since p ≈ p by (Refl), p+p ≈ p+q can be inferred with (Cong(+)). Furthermore,
by (A3), p + p ≈ p, so, by (Sym), p ≈ p + p, and, subsequently, p ≈ p + q can be
inferred with (Trans). Hence, the concatenation of (5.6) and (5.7) is a deduction
that justifies Π(A,S) ` q 4 p. If we interchange p and q in the sequence (5.7)
and moreover prefix it with the equation q ≈ p, which can be inferred from p ≈ q
by (Sym), we get a deduction that justifies Π(A,S) ` p 4 q . We conclude that
Π(A,S) ` p ≈ q implies Π(A,S) ` p 4 q and Π(A,S) ` q 4 p.

5.1 The deductive system 77

To prove the implication from right to left, suppose there are deductions with
conclusions p ≈ p + q and q ≈ q + p. We concatenate these deductions and
subsequently append the sequence

(p + q ≈ q + p), (p ≈ q + p), (q + p ≈ q), (p ≈ q).

From p ≈ p + q and the equation p + q ≈ q + p, which is by (A1), we infer
p ≈ q + p by (Trans). From q ≈ q + p we get q + p ≈ q by (Sym). Hence, by
(Trans), p ≈ q . We conclude that Π(A,S) ` p 4 q and Π(A,S) ` q 4 p implies
Π(A,S) ` p ≈ q . �

We have given a very detailed proof of Lemma 5.4 to demonstrate a precise
application of our deductive system. Henceforth, we shall sacrifice some detail
for the sake of succinctness, leaving out all references to applications of inference
rules; e.g., to prove the implication from right to left of Lemma 5.4 we confine
ourselves to assuming (*) p ≈ p + q and (†) q ≈ q + p, and giving the following
derivation:

p ≈ p + q by (*)
≈ q + p by (A1)
≈ q by (†).

Note that we have proved that Π(A,S) ` p 4 q , q 4 p implies Π(A,S) ` p ≈ q
without using any special properties of the deductions of p 4 q and q 4 p. That
is, the implication may be considered as a derived inference rule, sanctioned by
the axioms and inference rules of Π(A,S). Later, we shall add axioms to Π(A,S),
and then it is convenient to know that we may still deduce p ≈ q from p 4 q and
q 4 p. We write

Π(A,S), p1 ≈ q1, . . . , pn ≈ qn ` p ≈ q

if p ≈ q may be deduced in the deductive system that consists of the axioms and
inference rules of Π(A,S) with p1 ≈ q1, . . . , pn ≈ qn added as axioms.

(C1)–(C5) are adapted from a paper by Manes (1985) about the equational
theory of abelian monoids extended with an if-then-else construct (every gener-
alised basic process algebra with deadlock is an abelian monoid with + as binary
operation and δ as neutral element). These axioms express fundamental relations
between the conditional on the one hand, and the Boolean operations >, ¬, ∧ and
∨, and the operations + and δ on the other hand. We have added (C6), which
defines the interaction between conditionals and sequential composition. We shall
now derive (5.2), which we used in the deduction following Example 5.1, with these
axioms; the deduction is due to Manes.

Lemma 5.5 Π(A,S) ` p � b � q ≈ p � b � δ + q � ¬ b � δ.

Proof. The proof is by the following deduction:

p � b � q ≈ (p + δ) � b � (δ + q) by (A1), (A6)
≈ p � b � δ + δ � b � q by (C4)
≈ p � b � δ + q � ¬ b � δ by (C2). �

78 Chapter 5 A deductive system for pCRL

Conditionals of the form p� b �δ correspond to Dijkstra’s “guarded commands”
(see Dijkstra, 1976); in such a conditional the Boolean expression b may be viewed
as a guard for p. Guards distribute over alternative and sequential compositions.

Lemma 5.6 (i) Π(A,S) ` (p + q) � b � δ ≈ (p � b � δ) + (q � b � δ); and

(ii) Π(A,S) ` p · q � b � δ ≈ (p � b � δ) · (q � b � δ).

Proof. By (A6), (p + q) � b � δ ≈ (p + q) � b � (δ+ δ), so (i) follows by (C4).
The proof of (ii) is similar, using (A7) and (C6). �

(Cq1)–(Cq6) reflect a few properties of quantification in general, and of choice
quantification in particular. If x does not occur free in p, then the quantifier

∑
x

has no effect on p; this is expressed by (Cq1). By (Cq2) we may rename the
bound variable x in the expression

∑
x p to y if y does not already occur free in

p. Data expressions refer to elements of the domain over which
∑
x quantifies, so

(Cq3) reflects the intuition that any instance p[x := d] of p is a summand of
∑
x p

(cf. (Ga1) in Table 2.2 on p. 19). According to (Cq4), a choice quantifier dis-
tributes over alternative composition. According to (Cq5) sequential composition
distributes from the right over choice quantification, provided

∑
x has no effect

on the second argument of the sequential composition (cf. (Ga3) in Table 2.2).
According to (Cq6), a choice quantifier

∑
x distributes over conditionals if x does

not occur free in the condition.

Lemma 5.7 Π(A,S), p 4 q `
∑
x p 4

∑
x q .

Proof. If (*) p ≈ p + q , then we have the deduction∑
x p ≈

∑
x(p + q) by (*)

≈
∑
x p +

∑
x q by (Cq4);

this proves the lemma. �

(Data) and (Bool) import into our deductive system for pCRL all the data
equations and all the Boolean equations that can be deduced from the subsidiary
data specification S. If q can be obtained from p by replacing an occurrence in p
of the data expression d by another data expression e such that S ` d ≈ e, then,
according to (Data), p ≈ q is an axiom. According to (Bool), conditionals are
equivalent if S proves the conditions equivalent. The proof of the following lemma
shows an application of (Bool).

Lemma 5.8 Π(A,S) ` p � b � p ≈ p.

Proof. Since S ` b ∨ ¬ b ≈ > (it is an instance of Ba5 of Table 5.1), we have
the following deduction:

p � b � p ≈ p � b � δ + p � ¬ b � δ by Lem. 5.5
≈ p � b ∨ ¬ b � δ by (C5)
≈ p �>� δ by (Bool)
≈ p by (C1);

this proves the lemma. �

5.1 The deductive system 79

We may use the above lemma to prove that sequential compositions distribute
from the right over guarded commands.

Lemma 5.9 Π(A,S) ` p · q � b � δ ≈ (p � b � δ) · q .

Proof. Since S ` b ∨ ¬ b ≈ > (it is an instance of Ba5 of Table 5.1), we have
the following deduction:

p · q � b � δ ≈ p · q � b � δ · q by (A7)
≈ (p � b � δ) · (q � b � q) by (C6)
≈ (p � b � δ) · q by Lem. 5.8;

this proves the lemma. �

We shall now show that if pCRL expressions p and q are provably equivalent,
then p ≈ q is valid. We need the following lemma.

Lemma 5.10 The relation

ϑ = {〈p, q〉 ∈ PolP(D)× PolP(D) | GBPAδ(A,D) |= p ≈ q}

respects the constructs of pCRL.

Proof. Since the interpretation mappings ιν are homomorphisms from
Pol(A,D) into elements of GBPAδ(A,D), it is routine to show that ϑ is a congru-
ence on Pol(A,D). So, it remains to prove that ϑ preserves choice quantifiers and
conditionals. Suppose p ϑ q . Then p[x := d] ϑ q [x := d] for all d ∈ D, so∑

x p =
∑
{p[x := d] | d ∈ D} ϑ

∑
{q [x := d] | d ∈ D} =

∑
x q .

Hence, ϑ preserves choice quantifiers.
To prove that ϑ preserves conditionals, suppose that p1 ϑ q1 and p2 ϑ q2. Let

ν be a valuation and let ιν be the interpretation homomorphism from Pol(A,D)
into an arbitrary element of GBPAδ(A,D); it suffices to show that

ιν(p1 � bpol � p2) = ιν(q1 � bpol � q2).

We distinguish cases:
If ν̄(bpol) = >, then ιν(p1 � bpol � p2) = ιν(p1) = ιν(q1) = ιν(q1 � bpol � q2).
If ν̄(bpol) = ⊥, then ιν(p1 � bpol � p2) = ιν(p2) = ιν(q2) = ιν(q1 � bpol � q2).
Hence, ϑ respects conditionals. �

We are now in a position to prove the soundness of our deductive system.

Theorem 5.11 Let S be a data specification, and let D be a model of S. Then,
for all pCRL expressions p and q , Π(A,S) ` p ≈ q implies GBPAδ(A,D) |= p ≈ q .

Proof. Consider the relation

ϑ = {〈p, q〉 ∈ PolP(D)× PolP(D) | GBPAδ(A,D) |= p ≈ q}.

80 Chapter 5 A deductive system for pCRL

By Lemma 5.10 it preserves the constructs of pCRL, so it is closed under the
rules in Table 5.2. Therefore, it remains to prove that 〈p, q〉 ∈ ϑ if p ≈ q is an
instance of an axiom in Table 5.2. For this we fix an arbitrary valuation ν and
the interpretation homomorphism ιν associated with ν from Pol(A,D) into an
arbitrary element of GBPAδ(A,D), and we prove that ιν(p) = ιν(q).

Since every element of GBPAδ(A,D) is a generalised basic process algebra with
deadlock, it is clear that ιν(p) = ιν(q) if p ≈ q is an instance of one of (A1)–(A7).

To show that ιν(p) = ιν(q) if p ≈ q is an instance of one of (C1)–(C6), one
distinguishes cases according to whether the conditions evaluate to > or to ⊥
under ν. We consider, by way of example, the instances of (C5) and (C6):

(C5) If ν̄(b) = > and ν̄(c) = >, then ν̄(b ∨ c) = >; hence, since + is idempotent
in every generalised basic process algebra with deadlock,

ιν(p � b ∨ c � δ) = ιν(p)
= ιν(p) + ιν(p)
= ιν(p � b � δ + p � c � δ).

If ν̄(b) = > and ν̄(c) = ⊥, then ν̄(b ∨ c) = >; hence, since ιν(δ) = δ
is a neutral element for + in every generalised basic process algebra with
deadlock,

ιν(p � b ∨ c � δ) = ιν(p)
= ιν(p) + ιν(δ)
= ιν(p � b � δ + p � c � δ).

The case where ν̄(b) = ⊥ and ν̄(c) = > is symmetric to the previous case.

If ν̄(b) = ⊥ and ν̄(c) = ⊥, then ν̄(b ∨ c) = ⊥; hence, since + is idempotent
in every generalised basic process algebra with deadlock,

ιν(p � b ∨ c � δ) = ιν(δ) = ιν(δ) + ιν(δ) = ιν(p � b � δ+ p � c � δ).

(C6) If ν̄(b) = >, then

ιν((p � b � q) · (r � b � s)) = ιν(p) · ιν(r)
= ιν(p · r)
= ιν(p · r � b � q · s).

If ν̄(b) = ⊥, then

ιν((p � b � q) · (r � b � s)) = ιν(q) · ιν(s)
= ιν(q · s)
= ιν(p · r � b � q · s).

To show that ιν(p) = ιν(q) if p ≈ q is an instance of one of (Cq1)–(Cq6),
one employs the axioms (Ga1)–(Ga3) of generalised basic process algebras with
deadlock. Again by way of example, we consider the instances of (Cq3) and
(Cq5):

5.2 Tree forms revisited 81

(Cq3) We get by induction on the structure of pCRL polynomials that

(∗) ιν(p[x := ν̄(d)]) = ιν(p[x := d]).

It enables us to make the following derivation:

ιν(
∑
x p) =

∑
{ιν(p[x := d]) | d ∈ D}

=
∑
{ιν(p[x := d]) | d ∈ D}+ ιν(p[x := ν̄(d)]) by (Ga1)

(ν̄(d) is, after all, an element of D)

=
∑
{ιν(p[x := d]) | d ∈ D}+ ιν(p[x := d]) by (*)

= ιν(
∑
x p + p[x := d]).

(Cq5) If x 6∈ FV(q), then (*) ιν(q [x := d]) = ιν(q) for all d ∈ D, so

ιν((
∑
x p) · q) =

∑
{ιν(p[x := d]) | d ∈ D} · ιν(q)

=
∑
{ιν(p[x := d]) · ιν(q) | d ∈ D} by (Ga3)

=
∑
{ιν(p[x := d]) · ιν(q [x := d]) | d ∈ D} by (*)

= ιν(
∑
x p · q).

For (Data), suppose that d and e are data expressions such that S ` d ≈ e; then,
since D is a model of S, ν̄(d) = ν̄(e), and hence

ιν(p[x := d]) = ιν(p[x := ν̄(d)]) = ιν(p[x := ν̄(e)] = ιν(p[x := e]).

For (Bool), suppose that b and c are Boolean expressions such that S ` b ≈ c;
we distinguish cases: if ν̄(b) = >, then, since D is a model of S, also ν̄(c) = >, so

ιν(p � b � q) = ιν(p) = ιν(p � c � q);

otherwise ν̄(b) = ⊥, whence also ν̄(c) = ⊥, so

ιν(p � b � q) = ιν(q) = ιν(p � c � q).

The proof is of the theorem is now complete. �

5.2 Tree forms revisited

By Theorem 5.11, the deductive system Π(A,S) may be used to circumvent the
technique of Example 5.1, and to give a formal proof of the validity of a pCRL
equation. We shall now illustrate this by giving a formal proof of the result,
obtained in Section 3.5, that each pCRL expression is equivalent to the tree form
associated to it by the function θ. First, we present three lemmas in which we
derive the correctness of the auxiliary functions θseq, θcnd and θsum.

Lemma 5.12 Π(A,S) ` θseq(t , u) ≈ t · u for all tree forms t and u.

82 Chapter 5 A deductive system for pCRL

Proof. By (Cq2) we may assume, without loss of generality, that the bound
variables in t are distinct from the free variables in u1; we show by induction on
t that θseq(t , u) ≈ t · u is derivable.
If t = δ, then θseq(t , u) = δ ≈ t · u by (A7).
If t =

∑
~x t∗� b �δ, with t∗ = a or t∗ = at ′ for some action expression a and some

tree form t ′, then, by the induction hypothesis and (A5), a · θseq(t ′, u) ≈ (at ′) · u;
hence

θseq(t , u) ≈
∑
~x t∗u � b � δ

≈
∑
~x(t∗ � b � δ)u by Lem. 5.9

≈ t · u by (Cq5).

If t = t ′ + t ′′, then θseq(t , u) ≈ t · u by the induction hypothesis and (A4). �

Lemma 5.13 Π(A,S) ` θcnd(t , b) ≈ t � b � δ for every tree form t and every
Boolean expression b.

Proof. By (Cq2) we may assume, without loss of generality, that the bound
variables in t are distinct from the variables in b; we show by induction on t that
θcnd(t , b) ≈ t � b � δ is derivable.
If t = δ, then θcnd(t , b) = δ ≈ δ � b � δ by Lemma 5.8.
If t =

∑
~x t∗ � c � δ, then

θcnd(t , b) ≈
∑
~x(t∗ � c � δ) � b � δ by (C3)

≈ t � b �
∑
~x δ by (Cq6)

≈ t � b � δ by (Cq1).

If t = t ′ + t ′′, then

θcnd(t , b) ≈ t ′ � b � δ + t ′′ � b � δ by (IH)
≈ (t ′ + t ′′) � b � (δ + δ) by (C4)
≈ t � b � δ by (A6).

This completes the proof of the lemma. �

Lemma 5.14 Π(A,S) ` θsum(x, t) ≈
∑
x t for every tree form t and variable x.

Proof. We show by induction on t that θsum(x, t) ≈
∑
x t is derivable.

If t = δ, then θsum(x, t) = δ ≈
∑
x t by (Cq1).

If t is a simple tree form, then θsum(x, t) =
∑
x t by definition.

If t = t ′ + t ′′, then θsum(x, t) ≈
∑
x t by the induction hypothesis and (Cq4). �

1Strictly speaking, the renamings that are needed to achieve this ought to be incorporated in
the definition of θseq, and (Cq2) justifies such a modification.

5.3 Relative completeness 83

Now, we can also derive the correctness of θ.

Lemma 5.15 (Tree forms) Π(A,S) ` θ(p) ≈ p for every pCRL expression p.

Proof. We prove the lemma by structural induction on p.
If p = δ, then θ(p) = p by definition.
If p is an action expression, then θ(p) = p �>� δ ≈ p by (C1).
If p = p′ + p′′, then θ(p) = θ(p′) + θ(p′′) ≈ p by the induction hypothesis.
If p = p′ · p′′, then θ(p) ≈ p by Lemma 5.12 and the induction hypothesis.
If p = p′ � b � p′′, then

θ(p) ≈ θ(p′) � b � δ + θ(p′′) � ¬ b � δ by Lem. 5.13
≈ p′ � b � δ + p′′ � ¬ b � δ by (IH)
≈ p′ � b � p′′ by Lem. 5.5.

If p =
∑
x p′, then θ(p) ≈ p by Lemma 5.14 and the induction hypothesis. �

5.3 Relative completeness

The main purpose of our deductive system Π(A,S) is to formalise those parts
of validity proofs that are independent of specific properties of D. Reasoning
about D is entirely delegated to the subsidiary system S, and incorporated in
a straightforward manner via (Data) and (Bool). The previous section shows
a typical application of Π(A,S): the lion’s share of the deduction consists of
applications of S-independent axioms; in the deduction of Lemma 5.9, which is
used in Lemma 5.12, a property of D is needed, namely that b ∨ ¬ b ≈ > for every
Boolean expression b, and it is incorporated via (Bool). Mindful of its particular
purpose, we shall now analyse the adequacy of our deductive system.

5.3.1 Data requirements

First, we formulate three requirements on S and D, which together ensure that S
is sufficiently powerful to infer all the properties of D needed to establish that a
pCRL equation is valid.

Clearly, if a is a unary parametrised action symbol and d and e are data ex-
pressions such that D |= d ≈ e, then a(d) ≈ a(e) is valid. Similarly, if a is an
action expression and b and c are Boolean expressions such that D |= b ≈ c, then
a � b � δ ≈ a � c � δ is valid. This brings us to the first requirement:

(I) S must be a complete specification of D.

Note that if S and S ′ are both complete specifications of D, then the deductive
systems Π(A,S) and Π(A,S ′) are equally powerful; i.e., they prove exactly the
same equations. To abstract from the particular choice of axioms for D, we shall
henceforth write Π(A,D) to refer to some instance Π(A,S) of our deductive system
with a complete specification S of D; in deductions of Π(A,D), we shall write
D |= d ≈ e and D |= b ≈ c instead of S ` d ≈ e and S ` b ≈ c, respectively.

84 Chapter 5 A deductive system for pCRL

In Chapter 4 we established a correspondence between the pCRL theory of D
(i.e., the set of valid pCRL equations) and the first-order theory of D. The other
two data requirements serve to upgrade the set of Boolean expressions so that it
has full first-order expressiveness.

Example 5.16 We take as data the natural numbers with a binary operation
〈m, n〉 7→ mn for exponentiation, a binary operation 〈m, n〉 7→ m mod n, which
yields the remainder of m on division by n, and a unary relation P such that
P(n) = > if, and only if, n is prime. Then

a(xy mod y) � P(y) � δ ≈ a(xmod y) � P(y) � δ

is valid by Fermat’s Little Theorem: if p is prime, then np ≡ n (mod p). If we
assume that there is also a binary relation eq(m, n) such that eq(m, n) = > if,
and only if, m = n, then we may express Fermat’s Little Theorem by the Boolean
expression

¬P(y) ∨ eq(xy mod y, xmod y).

Our second requirement is:

(II) D must have equality (cf. Definition 4.3, p. 54).

Example 5.17 In the data algebra R of Example 3.5 an equality relation eq is
definable as eq(r1, r2) = r1 ≤ r2 ∧ r2 ≤ r1.

In Chapter 4 we proved that, for every first-order assertion ϕ about D, there is
a pCRL equation p ≈ q such that D |= ϕ if, and only if, GBPAδ(A,D) |= p ≈ q (cf.
Theorem 4.17). That is, for every true first-order assertion about D there exists a
valid pCRL equation that essentially depends on it. In the light of our stance that
reasoning about D should be entirely delegated to the subsidiary system S, every
such first-order assertion about D should be expressible within S. We now give a
criterion that ensures that every first-order assertion about D is equivalent to a
Boolean expression.

Definition 5.18 A data algebra D has quantifier elimination if there exists for
every first-order formula ϕ an open formula ψ such that FV(ϕ) = FV(ψ) and

D |= ϕ↔ ψ.

Recall that every open first-order formula is a Boolean expression. If D has quan-
tifier elimination, then, in view of Proposition 4.2, there exists a mapping

β : Φ→ B

that associates with every first-order formula ϕ a Boolean expression β(ϕ) such
that

D, ν |= ϕ if, and only if, D, ν |= β(ϕ) ≈ >.

Our third requirement reads:

5.3 Relative completeness 85

(Eq) a(d1, . . . , dn) � eq(d1, e1) ∧ · · · ∧ eq(dn, en) � δ
≈ a(e1, . . . , en) � eq(d1, e1) ∧ · · · ∧ eq(dn, en) � δ

(Qe)
∑
x p � b � δ ≈ p � β((∃x)b) � δ if x 6∈ FV(p)

Table 5.3: Extra axioms for a data algebra with equality and quantifier elimination

(III) D must have quantifier elimination.

Example 5.19 By a classical result of Tarski (1951) the algebra R of Example 3.5
has quantifier elimination.

5.3.2 Completeness

Requirements (II) and (III) demand a certain additional expressiveness of the
Booleans. To make use of this additional expressiveness in deductions, we need to
add axioms for conditionals according to the schemata in Table 5.3.

We denote by Π(A,D)eq
∃ the deductive system that consists of Π(A,D) with

the axioms of Table 5.3 added. It is complete in the following sense.

Theorem 5.20 If D has equality and quantifier elimination, then

Π(A,D)eq
∃ ` p ≈ q if, and only if, GBPAδ(A,D) |= p ≈ q

for all pCRL expressions p and q .

Let us first prove the implication from left to right:

Lemma 5.21 If D has equality and quantifier elimination, then

Π(A,D)eq
∃ ` p ≈ q implies GBPAδ(A,D) |= p ≈ q

for all pCRL expressions p and q .

Proof. In view of Theorem 5.11 it suffices to verify the validity of the axioms
induced by (Eq) and (Qe). Let us fix again an arbitrary valuation ν and the inter-
pretation homomorphism ιν associated with ν from Pol(A,D) into an arbitrary
element of GBPAδ(A,D). We prove the soundness of (Eq) by a case distinction
on ν̄(eq(d1, e1)) ∧ · · · ∧ ν̄(eq(dn, en)):
If ν̄(eq(d1, e1) ∧ · · · ∧ eq(dn, en)) = >, then ν̄(di) = ν̄(ei) for all 1 ≤ i ≤ n, so

ιν(a(d1, . . . , dn) = a(ν̄(d1), . . . , ν̄(dn))
= a(ν̄(e1), . . . , ν̄(en))
= ιν(a(e1, . . . , en)),

86 Chapter 5 A deductive system for pCRL

and hence

ιν(a(d1, . . . , dn) � eq(d1, e1) ∧ · · · ∧ eq(dn, en) � δ) =
ιν(a(e1, . . . , en) � eq(d1, e1) ∧ · · · ∧ eq(dn, en) � δ);

On the other hand, if ν̄(eq(d1, e1) ∧ · · · ∧ eq(dn, en)) = ⊥, then

ιν(a(d1, . . . , dn) � eq(d1, e1) ∧ · · · ∧ eq(dn, en) � δ) = ιν(δ) =
ιν(a(e1, . . . , en) � eq(d1, e1) ∧ · · · ∧ eq(dn, en) � δ).

For (Qe) note that if x 6∈ FV(p), then ιν(p[x := d]) = ιν(p) for all d ∈ D, and
hence

ιν(
∑
x p � b � δ) =

∑
{ιν(p) | d ∈ D such that ν̄(b[x := d]) = >}.

If ν̄(β((∃x)b)) = >, then the set on the right-hand side is {ιν(p)}, so that

ιν(
∑
x p � b � δ) = ιν(p) = ιν(p � β((∃x)b) � δ);

otherwise, the set on the right-hand side is empty, so that

ιν(
∑
x p � b � δ) = ιν(δ) = ιν(p � β((∃x)b) � δ).

So Π(A,D)eq
∃ is sound with respect to GBPAδ(A,D). �

The other implication of Theorem 5.20 we prove by induction on the depth of
sequential nesting in p and q ; we inductively define a mapping # from pCRL
expressions to natural numbers by

#(δ) = 0;
#(a(d1, . . . , dn)) = 1 if a is a parametrised action symbol of arity n;
#(p · q) = #(p) + #(q);
#(p + q) = #(p � b � q) = max{#(p),#(q)}; and
#(
∑
x p) = #(p).

It is easily deduced from the definition of θ on p. 45 that #(p) ≥ #(θ(p)) for
every pCRL expression p. Moreover, sequential nesting depth is preserved under
applications of (A1), (A2) and (A6) (i.e., if there is a deduction with p ≈ q as
conclusion that merely consists of applications of these axioms, then #(p) = #(q)).
Hence, and by Lemma 5.15, we may throughout the proof always replace a pCRL
expression by a provably equivalent ordered tree form (cf. (3.7) on p. 46).

Lemma 5.22 For every pCRL expression p there exists an ordered tree form t
such that Π(A,D) ` p ≈ t and #(p) ≥ #(t).

In particular, it suffices to prove the implication from right to left of Theorem 5.20
only for ordered tree forms. Furthermore, by (A1) and since GBPAδ(A,D) |= p ≈ q

5.3 Relative completeness 87

implies GBPAδ(A,D) |= p 4 q , q 4 p, it is enough to show that for all ordered
tree forms t and u

GBPAδ(A,D) |= t 4 u implies Π(A,D)eq
∃ ` t 4 u. (5.8)

If t = δ, then (5.8) is immediate by (A6).
If t = t1 + · · ·+ tm for some m > 0, then GBPAδ(A,D) |= ti 4 u for all 1 ≤ i ≤ m.
If we would know in addition that Π(A,D)eq

∃ ` ti 4 u for all 1 ≤ i ≤ m, then we
may conclude (5.8) by (A2).
Therefore, we shall now concentrate on proving (5.8) in the case that t is a simple
tree form; suppose

t =
∑
~x t∗ � b � δ and u = u1 + · · ·+ un (ui simple for all 1 ≤ i ≤ n).

A crucial step in our proof consists of splitting t into n simple tree forms t1, . . . , tn
such that Π(A,D) ` t ≈ t1 + · · ·+ tn and GBPAδ(A,D) |= ti 4 ui for all 1 ≤ i ≤ n.
This is illustrated in the following example.

Example 5.23 We take as data the algebra R from Example 3.5 and consider
the following pCRL expressions:

p =
∑
x in(x)out(x2) �−2 ≤ x ≤ 1 � δ, 2 and

q = q1 + q2, where q1 =
∑
x,y in(x)out(y) � y ≤ −2x� δ and

q2 =
∑
x,y in(x)out(y) � y ≤ x� δ.

Note that x2 ≤ −2x if, and only if, −2 ≤ x ≤ 0, and x2 ≤ x if, and only if,
0 ≤ x ≤ 1 (see Figure 5.1 on the next page). We now split p into two pCRL
expressions

p1 =
∑
x in(x)out(x2) �−2 ≤ x ≤ 0 � δ, and

p2 =
∑
x in(x)out(x2) � 0 ≤ x ≤ 1 � δ.

Then, since ν̄(−2 ≤ x ≤ 0) = > implies GBPAδ(A,D), ν |= in(x)out(x2) 4 q1,

GBPAδ(A,D) |= p1 4 q1

and, since ν̄(0 ≤ x ≤ 1) = > implies GBPAδ(A,D), ν |= in(x)out(x2) 4 q2,

GBPAδ(A,D) |= p2 4 q2.

Since R |= (−2 ≤ x ≤ 1) ≈ (−2 ≤ x ≤ 0 ∨ 0 ≤ x ≤ 1), Π(A,D) has the following
deduction:

p ≈
∑
x in(x)out(x2) �−2 ≤ x ≤ 0 ∨ 0 ≤ x ≤ 1 � δ by (Bool)

≈
∑
x

 in(x)out(x2) �−2 ≤ x ≤ 0 � δ
+

in(x)out(x2) � 0 ≤ x ≤ 1 � δ

 by (C5)

≈ p1 + p2 by (Cq4).
2r ≤ s ≤ t abbreviates the Boolean expression r ≤ s ∧ s ≤ t , and x2 abbreviates x · x.

88 Chapter 5 A deductive system for pCRL

y

y = x2 ∧ −2 ≤ x ∧ x ≤ 1

y ≤ x

y ≤ −2x

x

Figure 5.1: Graphical rendering of the correlations between input (x) and output
(y) as defined by the pCRL expressions p, q1 and q2 of Example 5.23.

The pCRL expression p of the preceding example has been split by means of
the Boolean expressions −2 ≤ x ≤ 0 and 0 ≤ x ≤ 1. These Boolean expressions
characterise precisely the sets of real numbers r such that in(r)out(r2) ≤ q1, and
such that in(r)out(r2) ≤ q2, respectively. In general, to split a simple tree form
t =

∑
~x t∗ � b � δ into n simple tree forms t1, . . . , tn given the hypothesis that

GBPAδ(A,D) |= t 4 u1+· · ·+un, we shall use Boolean expressions b1, . . . , bn which
respectively characterise the valuations ν such that GBPAδ(A,D), ν |= t∗ 4 ui.

Definition 5.24 Let p and q be pCRL expressions; a p-simulation condition for
q is a Boolean expression b such that, for every valuation ν,

D, ν |= b ≈ > if, and only if, GBPAδ(A,D), ν |= p 4 q .

Example 5.25 In the setting of Example 5.23, the Boolean expression

−2 ≤ x ≤ 0

is an in(r)out(r2)-simulation condition for q1, and the Boolean expression

0 ≤ x ≤ 1

is an in(r)out(r2)-simulation condition for q2.

5.3 Relative completeness 89

That there exist t∗-simulation conditions b1, . . . , bn for u1, . . . , un, respectively,
follows from Theorem 4.10 on p. 61 in combination with our assumption that D
has equality and quantifier elimination.3

Theorem 5.26 If D has equality and quantifier elimination, then, for any two
pCRL expressions p and q , there exists a p-simulation condition for q .

Proof. Since D has equality there exists, by Theorem 4.10, a first-order formula
ϕ such that D, ν |= ϕ if, and only if, GBPAδ(A,D), ν |= p 4 q , and since D has
quantifier elimination there exists a mapping β from first-order formulas to Boolean
expressions such that D, ν |= β(ϕ) ≈ > if, and only if, D, ν |= ϕ; this proves the
theorem. �

By the theorem above, each of the properties (4.4)–(4.12) that we have derived
in Section 4.2 may be reformulated as properties of simulation conditions: (4.4)
says that > is a δ-simulation condition for u; (4.5) says that if b′ is a t ′-simulation
condition for u and b′′ is a t ′′-simulation condition for u, then b′ ∧ b′′ is a t ′+ t ′′-
simulation condition for u; etc. Henceforth, we shall frequently validate properties
of simulation conditions by referring to (4.4)–(4.12). For the remainder, it is
convenient to introduce an abbreviation: for Boolean expressions b and c we write
D |= b 4 c if

D, ν |= b ≈ > implies D, ν |= c ≈ >, for every valuation ν.

Then we have the following lemma.

Lemma 5.27 For all Boolean expressions b and c,

D |= b 4 c if, and only if, D |= c ≈ c ∨ b if, and only if, D |= b ≈ b ∧ c. (5.9)

Proof. The second “if, and only if,” is a well-known property of lattices (see,
e.g., McKenzie et al., 1987), and every Boolean algebra is a lattice. We prove the
first “if, and only if,”.

“if” Suppose D |= b 4 c, and let ν be an arbitrary valuation. Then, if ν̄(c) = >,
also ν̄(c) ∨ ν̄(b) = >, and conversely, if ν̄(c) = ⊥, then also ν̄(b) = ⊥, since
ν̄(b) = > implies ν̄(c) = >, so ν̄(c) ∨ ν̄(b) = ⊥.

“only if” Suppose D |= c ≈ c ∨ b, and let ν be a valuation such that ν̄(b) = >;
then also ν̄(c) = > since ν̄(c) = ν̄(c) ∨ ν̄(b). �

3Strictly speaking, the results of Chapter 4 are about the algebra TD(A), and we ought to ap-
ply Corollary 3.16 to translate them into results about GBPAδ(A,D); we leave such applications
of Corollary 3.16 implicit.

90 Chapter 5 A deductive system for pCRL

The following lemma is a straightforward consequence of Lemma 4.5.

Lemma 5.28 Suppose that p =
∑
~x p∗ � b � δ and q are pCRL expressions, and

suppose that {~x} ∩ FV(q) = ∅. If b∗ is a p∗-simulation condition for q , then

GBPAδ(A,D) |= p 4 q if, and only if, D |= b 4 b∗.

Lemma 5.29 (Split Lemma) Suppose D has equality and quantifier elimina-
tion.
If t and u1, . . . , un are simple tree forms such that GBPAδ(A,D) |= t 4 u1+· · ·+un,
then there exist simple tree forms t1, . . . , tn such that #(t) ≥ #(ti),

Π(A,D) ` t ≈ t1 + · · ·+ tn, and GBPAδ(A,D) |= ti 4 ui (1 ≤ i ≤ n).

Proof. Suppose t =
∑
~x t∗ � b � δ, with t∗ = a or t∗ = at ′.

If n = 0, then u1 + · · · + un = δ by convention, so it is enough to show that
Π(A,D) ` t ≈ δ. Since ⊥ is a t∗-simulation condition for δ (cf. (4.7) on p. 56),
we get by Lemma 5.28 that D |= b ≈ ⊥. This justifies the following deduction:

t ≈
∑
~x t∗ �⊥� δ by (Bool)

≈
∑
~x δ �>� t∗ by (C2)

≈
∑
~x δ by (C1)

≈ δ by (Cq1).

For the remainder of the proof we assume n > 0 and {~x} ∩ FV(ui) = ∅ for all
1 ≤ i ≤ n. Let b1, . . . , bn be t∗-simulation conditions for u1, . . . , un, respectively;
we define

ti =
∑
~x t∗ � b ∧ bi � δ (1 ≤ i ≤ n).

Clearly, #(t) ≥ #(ti). Since D |= b ∧ bi ≈ (b ∧ bi) ∧ bi, we may conclude
by (5.9) that D |= (b ∧ bi) 4 bi, so, by Lemma 5.28, GBPAδ(A,D) |= ti 4 ui
for all 1 ≤ i ≤ n. It remains to show that Π(A,D) ` t ≈ t1 + · · · + tn. Since
b1 ∨ · · · ∨ bn is a t∗-simulation condition for u1 + · · ·+ un (cf. (4.8) on p. 56) and
GBPAδ(A,D) |= t 4 u1 + · · ·+ un, we obtain by Lemma 5.28 and (5.9) that

D |= b ≈ b ∧ (b1 ∨ · · · ∨ bn) ≈ (b ∧ b1) ∨ · · · ∨ (b ∧ bn).

Consequently, we have the following derivation:

t ≈
∑
~x t∗ � (b ∧ b1) ∨ · · · ∨ (b ∧ bn) � δ by (Bool)

≈
∑
~x(t∗ � b ∧ b1 � δ + · · ·+ t∗ � b ∧ bn � δ) by (C4)

≈ t1 + · · ·+ tn by (Cq4).

This completes the proof of the lemma. �

5.3 Relative completeness 91

By means of the Split Lemma we have reduced the proof obligation for (5.8) to
the case where both t and u are simple expressions. As an illustration, let us first
finish the proof that we began in Example 5.23.

Example 5.30 Let p, p1, p2, q , q1 and q2 be as in Example 5.23.
We want to prove Π(A,D) ` p 4 q ; for this it is, by (A1) and (A2), enough to show
Π(A,D) ` pi 4 qi for i = 1, 2. For i = 1 we use that D |= −2 ≤ x ≤ 0 ≈ x2 ≤ −2x
(see Figure 5.1), and we derive

p1 ≈
∑
x in(x)out(x2) � x2 ≤ −2x� δ by (Bool)

4
∑
x,y in(x)out(y) � y ≤ −2x� δ = q1 by (Cq3), Lemma 5.7.

For i = 2 a similar deduction can be given, using that D |= 0 ≤ x ≤ 1 ≈ x2 ≤ x.

Actually, that D |= −2 ≤ x ≤ 0 ≈ x2 ≤ −2x is not essential for the first step
of the above deduction. According to the following lemma, it would have been
enough that D |= −2 ≤ x ≤ 0 4 x2 ≤ −2x.

Lemma 5.31 If D |= b 4 c, then Π(A,D) ` p � b � δ 4 p � c � δ.

Proof. If D |= b 4 c, then, by (5.9), D |= c ≈ c ∨ b, so that we may derive

p � c � δ ≈ p � c ∨ b � δ by (Bool)
≈ p � c � δ + p � b � δ by (C5);

this proves the lemma. �

For the application of (Cq3) in the second step of the deduction in Example 5.30
it is crucial that the pCRL expression in(x)out(x2) � x2 ≤ −2x� δ is obtained
from the pCRL expression in(x)out(y) � y ≤ −2x� δ by substitution of a data
expression (x2) for a variable (y). In general, there may not be an appropriate
data expression to facilitate an application of (Cq3).

Example 5.32 We take, again, as data the algebra R of Example 3.5, and con-
sider the pCRL expressions

p =
∑
x in(x)out(x) � 0 ≤ x� δ, and

q =
∑
x,y in(x)out(y2) � y2 ≤ x� δ,

That GBPAδ(A,R) |= p 4 q essentially follows from the fact that r = (
√

r)2 for
every nonnegative real number r. To give a formal deduction of p 4 q similar to
the one in Example 5.30, we would need a data expression

√
x that satisfies

ν̄(
√
x) =

√
ν(x) for every valuation ν such that 0 ≤ ν(x). (5.10)

Given the language of R, it is clear that if ν : X → R is a valuation that assigns
an integer to each variable, then ν̄(d) is also an integer. Hence, since, e.g.,

√
2 is

not an integer, a data expression d that satisfies (5.10) does not exist.

92 Chapter 5 A deductive system for pCRL

Nevertheless, the “result of substituting
√
x for y” in a pCRL expression r is, in

a semantical sense, expressible; we define

r{|y :=
√
x|} =

∑
y r � eq(y2, x) � δ.

Note that, since D |= eq(y2, x) 4 (y2 ≤ x), by (C3), (5.9) and (Bool)

(in(x)out(y2)� y2 ≤ x�δ){|y :=
√
x|} ≈

∑
y in(x)out(y2)� eq(y2, x) �δ. (5.11)

Hence, since D |= (0 ≤ x) ≈ β((∃y)eq(y2, x)), we get

Π(A,D)eq
∃ ` p ≈

∑
x(in(x)out(y2) � y2 ≤ x� δ){|y :=

√
x|}

from the deduction

p ≈
∑
x in(x)out(x) � β((∃y)eq(y2, x)) � δ by (Bool)

≈
∑
x,y in(x)out(x) � eq(y2, x) � δ by (Qe)

≈
∑
x,y in(x)out(y2) � eq(y2, x) � δ by Lem. 5.6(ii) and (Eq)

≈
∑
x(in(x)out(y2) � y2 ≤ x� δ){|y :=

√
x|} by (5.11).

Since D |= eq(y2, x) 4 (y2 ≤ x), we get, by Lemma 5.31, that

Π(A,D)eq
∃ `

∑
x(in(x)out(y2) � y2 ≤ x� δ){|y :=

√
x|} 4 q ,

so it follows that Π(A,D)eq
∃ ` p 4 q .

Note that, in the above example, eq(y2, x) is an in(x)out(x)-simulation condition
for in(x)out(y2), and β((∃y)eq(y2, x)) is an in(x)out(x)-simulation condition for q .
Intuitively, we use these simulation conditions to prove p equivalent to a semantical
substitution instance of

∑
x in(x)out(y2) � y2 ≤ x� δ. We shall now generalise

this technique so that it proves (5.8) for all simple expressions t and u. Suppose
that GBPAδ(A,D) |= t 4 u with

t =
∑
~x t∗ � b � δ and u =

∑
~y u∗ � c � δ.

We proceed in two steps: we shall first prove that Π(A,D)eq
∃ ` t 4 u under the

hypothesis that Π(A,D)eq
∃ ` t∗� b∗ �δ ≈ u∗� b∗ �δ, where b∗ is a t∗-simulation

condition for u∗ (Lemma 5.34), and subsequently we shall prove the hypothesis
(Lemma 5.39). We need a lemma about conditionals.

Lemma 5.33 If D |= b 4 c, then

Π(A,D), p � c � δ ≈ q � c � δ ` p � b � δ ≈ q � b � δ.

Proof. If D |= b 4 c, then, by (5.9), D |= b ≈ b ∧ c, so if

(∗) p � c � δ ≈ q � c � δ,

then we have the following derivation

p � b � δ ≈ (p � c � δ) � b � δ by (Bool), (C3)
≈ (q � c � δ) � b � δ by (*)
≈ q � b � δ by (C3), (Bool);

this proves the lemma. �

5.3 Relative completeness 93

Lemma 5.34 Suppose that t =
∑
~x t∗ � b � δ and u =

∑
~y u∗ � c � δ are simple

tree forms such that GBPAδ(A,D) |= t 4 u, and let b∗ be a t∗-simulation condition
for u∗; then

Π(A,D)eq
∃ , t

∗ � b∗ � δ ≈ u∗ � b∗ � δ ` t 4 u.

Proof. There is no loss of generality in assuming that

{~x} ∩ (FV(u) ∪ {~y}) = ∅ and {~y} ∩ (FV(t) ∪ {~x}) = ∅

(otherwise we first do some renamings of variables by means of (Cq2)).
By Lemma 4.6 on p. 56, β((∃~y)(b∗ ∧ c)) is a t∗-simulation condition for u, so,

by Lemma 5.28, D |= b 4 β((∃~y)(b∗ ∧ c)). Hence, if (*) t∗� b∗ � δ ≈ u∗� b∗ � δ,
then

t 4
∑
~x t∗ � β((∃~y)(b∗ ∧ c)) � δ by Lem. 5.31, Lem. 5.7

≈
∑
~x

∑
~y t∗ � b∗ ∧ c � δ by (Qe)

≈
∑
~x

∑
~y u∗ � b∗ ∧ c � δ by (*), Lem. 5.33

4
∑
~x

∑
~y u∗ � c � δ by Lem. 5.31, Lem. 5.7

≈
∑
~y u∗ � c � δ by (Cq1);

this proves the lemma. �

It remains to prove that Π(A,D)eq
∃ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ if b∗ is a t∗-

simulation condition for u∗. Let us first deal with the case that t∗ and u∗ are
both action expressions. Recall that with every two action expressions a and a ′

we have associated a Boolean expression eq(a, a ′) (see Definition 4.7 on p. 57); it
is an a-simulation condition for a ′.

Lemma 5.35 Let a and a ′ be action expressions; then

Π(A,D)eq
∃ ` a � eq(a, a ′) � δ ≈ a ′ � eq(a, a ′) � δ.

Proof. Let a = a(d1, . . . , dm) and a ′ = a′(e1, . . . , en); there are two cases:
If a = a′ and m = n, then eq(a, a ′) = eq(d1, e1) ∧ · · · ∧ eq(dn, em); hence,

a � eq(a, a ′) � δ

= a(d1, . . . , dm) � eq(d1, e1) ∧ · · · ∧ eq(dn, em) � δ

≈ a′(e1, . . . , em) � eq(d1, e1) ∧ · · · ∧ eq(dn, em) � δ by (Eq)
= a ′ � eq(a, a ′) � δ.

Otherwise eq(a, a ′) = ⊥, so that we get

a � eq(a, a ′) � δ ≈ δ ≈ a ′ � eq(a, a ′) � δ

by (Bool), (C1) and (C2). �

94 Chapter 5 A deductive system for pCRL

Next, suppose that t∗ and u∗ are both sequential compositions, say t∗ = at ′

and u∗ = a ′u ′; we want to prove that

Π(A,D)eq
∃ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ.

By Lemma 5.6(ii), we may distribute the simulation condition b∗ over the se-
quential compositions, and since D |= b∗ 4 eq(a, a ′), we get by Lemma 5.35 and
Lemma 5.33 that

Π(A,D)eq
∃ ` a � b∗ � δ ≈ a ′ � b∗ � δ.

It remains to prove that

Π(A,D)eq
∃ ` t ′ � b∗ � δ ≈ u ′ � b∗ � δ;

we shall see that this can be established by means of the induction hypothesis.
However, before we may apply the induction hypothesis, we need to establish that

GBPAδ(A,D) |= t ′ � b∗ � δ ≈ u ′ � b∗ � δ.

The following definition is helpful in this respect.

Definition 5.36 Let p and q be pCRL expressions; a bisimulation condition for
p and q is a Boolean expression b such that, for every valuation ν,

D, ν |= b ≈ > if, and only if, GBPAδ(A,D), ν |= p ≈ q .

Clearly, if b is a p-simulation condition for q and c is a q-simulation condition for
p, then b ∧ c is a bisimulation condition for p and q , so we get as an immediate
corollary to Theorem 5.26 that there exists a bisimulation condition for every two
pCRL expressions.

Corollary 5.37 If D has equality and quantifier elimination, then, for any two
pCRL expressions p and q , there exists a bisimulation condition for p and q .

Lemma 5.38 If b is a bisimulation condition for p and q , then

GBPAδ(A,D) |= p � b � δ ≈ q � b � δ.

Proof. Let ν be a valuation and let ιν be the interpretation homomorphism
associated with ν from Pol(A,D) into an arbitrary element of GBPAδ(A,D).
If ν̄(b) = >, then, since b is a bisimulation condition for p and q , ιν(p) = ιν(q);
hence ιν(p � b � δ) = ιν(p) = ιν(q) = ιν(q � b � δ).
On the other hand, if ν̄(b) = ⊥, then ιν(p � b � δ) = ιν(δ) = ιν(q � b � δ). �

5.3 Relative completeness 95

So, if b′ is a bisimulation condition for t ′ and u ′, then, by the preceding lemma,
we may apply the induction hypothesis to obtain

Π(A,D)eq
∃ ` t ′ � b′ � δ ≈ u ′ � b′ � δ.

In the next lemma we show how Π(A,D)eq
∃ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ then

follows.

Lemma 5.39 Let b∗ be a t∗-simulation condition for u∗.

(i) If t∗ and u∗ are action expressions, then

Π(A,D)eq
∃ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ.

(ii) If t∗ = at ′ and u∗ = a ′u ′ and b′ is a bisimulation condition for t ′ and u ′,
then

Π(A,D)eq
∃ , t

′ � b′ � δ ≈ u ′ � b′ � δ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ.

(iii) If t∗ = at ′ and u∗ is an action expression, or t∗ is an action expression and
u∗ = a ′u ′, then

Π(A,D)eq
∃ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ.

Proof. If t∗ and u∗ are action expressions, then b∗ is a bisimulation condition
for t∗ and u∗ (cf. (4.10) on p. 57), so, by Lemma 4.8 on p. 57, D |= b∗ ≈ eq(t∗, u∗).
Hence, we conclude (i) by Lemma 5.35 and (Bool).

If t∗ = at ′ and u∗ = a ′u ′ and b′ is a bisimulation condition for t ′ and u ′, then
D |= b∗ 4 eq(a, a ′) ∧ b′ (cf. (4.11) on p. 57), whence D |= b∗ 4 eq(a, a ′), b∗ 4 b′.
From D |= b∗ 4 eq(a, a ′) we conclude by Lemma 5.35 and Lemma 5.33 that

Π(A,D)eq
∃ ` a � b∗ � δ ≈ a ′ � b∗ � δ; (5.12)

from D |= b∗ 4 b′ we conclude by Lemma 5.33 that

Π(A,D)eq
∃ , t

′ � b′ � δ ≈ u ′ � b′ � δ ` t ′ � b∗ � δ ≈ u ′ � b∗ � δ. (5.13)

So, if (*) t ′ � b′ � δ ≈ u ′ � b′ � δ, then we can make the following derivation:

t∗ � b∗ � δ ≈ (a � b∗ � δ)(t ′ � b∗ � δ) by Lem. 5.6(ii)
≈ (a ′ � b∗ � δ)(u ′ � b∗ � δ) by (5.12), (5.13)
≈ u∗ � b∗ � δ by Lem. 5.6(ii);

this proves (ii).
If t∗ = at ′ and u∗ is an action expression, or t∗ is an action expression and u∗ =

a ′u ′, then D |= b∗ ≈ ⊥ (cf. (4.12) on p. 57); hence t∗ � b∗ � δ ≈ δ ≈ u∗ � b∗ � δ
by (Bool), (C1) and (C2); this proves (iii). �

96 Chapter 5 A deductive system for pCRL

We have now established all the necessary facts that are needed to prove Theo-
rem 5.20; let us now put everything together.

Proof of Theorem 5.20. The implication from left to right is by Lemma 5.21;
for the implication from right to left we prove that

GBPAδ(A,D) |= t 4 u implies Π(A,D)eq
∃ ` t 4 u (5.14)

for all ordered tree forms t and u (this is enough by Lemma 5.15); we proceed by
induction on #(t) + #(u).

First we consider the case that t and u are both simple tree forms; suppose
that t =

∑
~x t∗ � b � δ and u =

∑
~y u∗ � c � δ. By Theorem 5.26 there exists a

t∗-simulation condition b∗ for u∗, and for the implication (5.14) it suffices to prove

Π(A,D)eq
∃ ` t∗ � b∗ � δ ≈ u∗ � b∗ � δ; (5.15)

for then, (5.14) follows by Lemma 5.34. To see that (5.15) holds, we distinguish
cases according to the syntactic forms that t∗ and u∗ may take:

1. If t∗ and u∗ are both action expressions, then we get (5.15) by Lemma 5.39(i).

2. Suppose t∗ = at ′ and u∗ = au ′. By Corollary 5.37 there exists a bisimulation
condition b′ for t ′ and u ′; by Lemma 5.38

GBPAδ(A,D) |= t ′ � b′ � δ ≈ u ′ � b′ � δ.

Let t ′′ and u ′′ be ordered tree forms, provably equivalent to t ′ � b′ � δ and
u ′� b′ � δ, respectively; by Lemma 5.22 we may assume #(t ′′) < #(t∗) and
#(u ′′) < #(u∗), so we obtain by the induction hypothesis that

Π(A,D)eq
∃ ` t ′′ ≈ u ′′,

and hence

Π(A,D)eq
∃ ` t ′ � b′ � δ ≈ u ′ � b′ � δ.

We now get (5.15) with an application of Lemma 5.39(ii).

3. If t∗ = at ′ and u∗ is an action expression, or t∗ is an action expression and
u∗ = a ′u ′, then we apply Lemma 5.39(iii) to get (5.15).

Hence, (5.14) holds for simple tree forms. To prove that (5.14) holds for all tree
forms, we proceed by distinguishing cases according to the syntactic form of t :

1. If t = δ, then (5.14) is immediate by (A6).

2. If t is a simple tree form, then it remains to consider the case that u is not
simple, so suppose that u = u1 + · · ·+ un for some n 6= 1, and suppose that
GBPAδ(A,D) |= t 4 u. We apply the Split Lemma (Lemma 5.29) to split t
into n simple expressions t1, . . . , tn such that #(t) ≥ #(ti),

Π(A,D) ` t ≈ t1 + · · ·+ tn, and GBPAδ(A,D) |= ti 4 ui (1 ≤ i ≤ n).

5.3 Relative completeness 97

It follows that Π(A,D)eq
∃ ` ti 4 ui for all 1 ≤ i ≤ n (this is the special case

which we have dealt with), so by (A2) Π(A,D)eq
∃ ` t 4 u. Hence, we may

conclude that (5.14) holds if t is a simple expression.

3. If t = t1 + · · · + tm for some m ≥ 2 and with each ti (1 ≤ i ≤ m) a simple
tree form, then GBPAδ(A,D) |= ti 4 u for all 1 ≤ i ≤ m. It now follows
from the previous case (2) that Π(A,D)eq

∃ ` ti 4 u for all 1 ≤ i ≤ m, and
hence, by (A2), Π(A,D)eq

∃ ` t 4 u.

This completes the proof of Theorem 5.20. �

Remark 5.40 With the inclusion of (Eq) and (Qe) (see Table 5.3), the axioms
(Data) and (Cq3) have become redundant. This follows from Theorem 5.20 and
the observation that the proof of this theorem does not involve applications of
these axioms. Note that (Data) and (Cq3) are the only axioms of our deductive
system in which the general notion of ‘substituting an arbitrary data expression
d for x in p’ is used; (Cq2) only involves a simpler variant, that of ‘substituting
a variable y for x in p. Thus, by deleting (Data) and (Cq3) from Π(A,D)eq

∃ we
get a deductive system for pCRL that is conceptually simpler. We shall return to
this issue in Chapter 6.

5.3.3 Skolem expressions

Recall the deduction of p1 4 q1 in Example 5.30; it does not involve (Qe). In-
stead, it uses (Cq3), and the fact that in(x)out(x2)� x2 ≤ −2x�δ is obtained by
substituting x2 for y in in(x)out(y) � y ≤ −2x� δ. We have remarked that such
a deduction cannot be generalised to prove that

GBPAδ(A,D) |= t 4 u implies Π(A,D)eq
∃ ` t 4 u

for all simple tree forms t =
∑
~x t∗� b � δ and u =

∑
~y u∗� c � δ. For, t∗� b � δ

may not be a substitution instance of u∗ � c � δ, because the appropriate data
expressions to substitute for the ~y are not available (see Example 5.32).

Our stance in this chapter has been that questions about data that arise when
proving that a pCRL equation is valid in GBPAδ(A,D), should be delegated to the
subsidiary deductive system for the data. Perhaps we should expect that it also
provides the data expressions needed in the circumstances described above? We
shall now prove that if we do, then (Qe) becomes redundant. We strengthen our
requirement (III) that D has quantifier elimination, adapting a definition from
Chang and Keisler (1990).

Definition 5.41 Suppose that D is a data algebra and consider a first-order for-
mula ϕ with FV(ϕ) − {x} = {x1, . . . , xn}. A data expression d = d(x1, . . . , xn)
(the variables with an occurrence in d must be among the x1, . . . , xn) we call a
Skolem expression 4 for (∃x)ϕ if

D |= (∃x)ϕ→ ϕ[x := d].
4Chang and Keisler (1990) call it a “Skolem function”.

98 Chapter 5 A deductive system for pCRL

We say that D has Skolem expressions if it has a Skolem expression for every
first-order formula. If D is a data algebra with Skolem expressions, then Sk(x, ϕ)
denotes a Skolem expression for (∃x)ϕ.

Example 5.42 We expand the data algebra R of Example 3.5 with a function
sqrt : R→ R such that

sqrt(r) =
{ √

r if r ≥ 0; and
0 otherwise.

The data expression sqrt(x) is a Skolem expression for the formula (∃y)eq(y2, x)
(cf. Example 5.32); for, (sqrt(r))2 = r if, and only if, r ≥ 0.

If D has Skolem expressions, then we may define a mapping β from first-order
formulas to Boolean expressions by

β(r(d1, . . . , dn)) = r(d1, . . . , dn);
β(¬ϕ) = ¬β(ϕ);
β(ϕ ∨ ψ) = β(ϕ) ∨ β(ψ); and
β((∃x)ϕ) = β(ϕ)[x := Sk(x, ϕ)].

If ϕ is a first-order formula, then

D |= (∃x)ϕ↔ ϕ[x := Sk(x, ϕ)].

(The implication from left to right is valid since Sk(x, ϕ) is a Skolem expression
for (∃x)ϕ; the other implication is trivial.) Hence, ϕ and β(ϕ) are equivalent, and
moreover, β yields a formula from which all quantifiers have been eliminated, i.e.,
β(ϕ) is an open first-order formula. So, we get the following proposition.

Proposition 5.43 If D has Skolem expressions, then it has quantifier elimination.

We now show that (Qe) can be deduced within Π(A,D) if D has Skolem ex-
pressions.

Lemma 5.44 If D has Skolem expressions, then, for every Boolean expression b,

Π(A,D) `
∑
x p � b � δ ≈ p � β((∃x)b) � δ, provided that x 6∈ FV(p).

Proof.

(4) Since D |= β((∃x)b) ≈ β((∃x)b) ∨ b, we have the following derivation:

p � β((∃x)b) � δ ≈
∑
x p � β((∃x)b) � δ by (Cq1)

≈
∑
x p � β((∃x)b) ∨ b � δ by (Bool)

≈
∑
x(p � β((∃x)b) � δ + p � b � δ) by (C5)

≈
∑
x p � β((∃x)b) � δ +

∑
x p � b � δ by (Cq4)

≈ p � β((∃x)b) � δ +
∑
x p � b � δ by (Cq1).

Consequently, Π(A,D) `
∑
x p � b � δ 4 p � β((∃x)b) � δ.

5.3 Relative completeness 99

(<) Clearly, δ[x := d] = δ, and since x 6∈ FV(p), p = p[x := d]; so∑
x p � b � δ ≈

∑
x p � b � δ + p � b[x := Sk(x, b)] � δ

=
∑
x p � b � δ + p � β((∃x)b) � δ

is an instance of Cq3.

Hence, Π(A,D) ` p � β((∃x)b) � δ 4
∑
x p � b � δ.

It follows that Π(A,D) `
∑
x p � b � δ ≈ p � β((∃x)b) � δ. �

Let us denote by Π(A,D)eq the deductive system that consists of Π(A,D) to-
gether with (Eq) from Table 5.3. By Proposition 5.43 and Lemma 5.44 we get the
following corollary to Theorem 5.20.

Corollary 5.45 If D has equality and Skolem expressions, then

Π(A,D)eq ` p ≈ q if, and only if, GBPAδ(A,D) |= p ≈ q

for all pCRL expressions p and q .

Bibliographic notes

Ponse (1991) proves relative completeness of a proof system for deriving partial
correctness assertions about processes.

Hennessy (1991) advocates the idea of designing a deductive system for value-
passing processes in which reasoning about data is factored out as much as possible.
His deductive system is for a version of value-passing CCS, and he proves a relative
completeness result with respect to a model based on Acceptance Trees (Hennessy,
1985). This work was continued by Hennessy and Lin (1996), who present a
series of deductive systems that are proved relatively complete for finite processes
modulo a series of symbolic bisimulation equivalences (Hennessy and Lin, 1995),
and subsequently extended to settings with recursion, by Hennessy and Lin (1997)
and Rathke (1997).

These deductive systems are designed to infer sequents of the form

b � p ≈ q ,

meaning that the equation p ≈ q holds for every valuation ν such that ν̄(b) = >.
Thus, in our terminology, the sequents correspond to pCRL equations of the form

p � b � δ ≈ q � b � δ.

We have already seen in Section 4.4 that value-passing CCS, having input prefixing
as a primitive instead of choice quantification, is strictly less expressive than pCRL.
Every equation of expressions of value-passing CCS corresponds to a universal first-
order formula, and every universal formula is logically equivalent to a Boolean
expression (with free variables). This explains why Hennessy and Lin (1996) only
need our first two requirements (that the presupposed subsidiary deductive system

100 Chapter 5 A deductive system for pCRL

allows the inference of all valid data equations and all valid Boolean equations,
and that D has equality) is needed to obtain a relative completeness result.

The technique of splitting expressions by means of conditions (cf. our Split
Lemma on p. 90) seems to be standard in settings with operations that involve
choice quantification over a certain domain (e.g., input prefixing, choice quantifi-
cation, integration), but it may appear in different guises. Our form of splitting
is with respect to some other pCRL expression. Hennessy and Lin’s proof shows a
similar kind of splitting. Also Parrow and Sangiorgi (1995) use this kind of split-
ting in completeness proofs for their axiomatisations of early bisimulation and
early congruence in a π-calculus-like setting. Fokkink and Klusener (1995), on
the other hand, associate with every process expression of a variant of real time
ACP with prefix integration a unique partition of intervals of real numbers, and
splitting is with respect to this partition. They use splitting to reduce each process
expression to a normal form. Since these normal forms are unique, it follows that
their set of axioms is complete.

Groote and Ponse (1994) have proposed a formal framework for µCRL in which
reasoning about data and reasoning about processes is fully integrated. In their
framework, a property of a µCRL specification is expressed, roughly, as a Boolean
combination of data equations, Boolean equations or µCRL equations. The basis
of their deductive system is a hybrid between (classical) natural deduction (but
without the rules for existential and universal quantifiers), and equational logic.
Axioms are added in a modular fashion. For instance, there is a module called
pCRL, which contains (A1)–(A7), (Cq1)–(Cq5) (see Table 5.2), and

p ≈ q →
∑
x p ≈

∑
x q .

Note that this implication corresponds to our (Cong(
∑
x)).

To facilitate reasoning about Boolean expressions and data expressions with
(free) variables, Groote and Ponse include induction schemata based on a presup-
posed set of constructors. In particular, for Boolean expressions, they include the
law of the excluded middle ¬(b ≈ >) → (b ≈ ⊥). Thus, the soundness of their
deductive system hinges on the assumptions that the data algebra is minimal, and
that there are no more than two Booleans. In contrast, our deductive system is
also usable if the data algebra is not minimal (cf. Remark 3.10 on p. 35). If the
data algebra happens to be minimal, then, since Boolean expressions and data
expressions may contain variables, our requirement that S is a complete specifi-
cation of D implies that S is inductively complete (i.e., it admits the inference of
all valid equations that can be proved by means of structural induction).

Groote and Ponse only demonstrate the soundness of their deductive system;
they do not address the issue of completeness. In fact, completeness would take
a different form in their setting, since their deductive system allows the inference
of Boolean combinations of equations (in particular, negations of equations). So,
to get a complete system, it would be necessary to also add axioms such as, e.g.,
¬(a ≈ a ′p) for all action expressions a and a ′, and for every µCRL expression
p. Then, to prove the result, one would still need similar requirements about the
data as we presented at the beginning of Section 5.3, except, perhaps, that the

5.3 Relative completeness 101

first requirement could be relaxed to ground completeness5.
The completeness result presented in this chapter may be reused to obtain com-

pleteness results in related settings. For instance, Groote and Luttik (1998b)
consider pCRL expressions modulo branching bisimulation. They add the stan-
dard laws for branching bisimulation (Van Glabbeek and Weijland, 1996) to the
deductive system Π(A,D)eq

∃ and then show that every pCRL expression is prov-
ably equal to a compact expression. Since compact pCRL expressions p and q are
branching bisimilar if, and only if, p ≈ q is valid, it follows from the results in
this chapter that the resulting deductive system is relatively complete. By means
of a similar technique, Luttik (1999a) has obtained relatively complete deductive
systems for pCRL expressions modulo weak-, delay-, and η-bisimulation. Likewise,
Van der Zwaag (2000) and Groote et al. (2000) have proved that with respect to
their deductive systems for timed versions of pCRL and µCRL, respectively, each
expression is provably equal to a so-called well-timed deadlock-saturated expres-
sion, and that two such expressions p and q are timed bisimilar if, and only if,
p ≈ q is valid in GBPAδ(A,D). Thus, also in their settings, relative completeness
follows from our result.

5A data specification is ground complete if all valid data equations without variables and all
valid Boolean equations without variables can be deduced.

6

Algebraic pCRL

We now have a formal system to reason about elements of generalised basic process
algebras with deadlock. Taking a sequence A of parametrised action symbols and
a data algebra D with equality and quantifier elimination as parameters, it has
two ingredients:

1. a set of meaningful expressions (here: the set of pCRL expressions), and

2. a deductive system (here: the deductive system Π(A,D)eq
∃).

The axioms of the deductive system are all in the form of equations, and its
inference rules closely resemble the conventional rules of equational logic. The
temptation to qualify our formal system with the adjective ‘algebraic’ is therefore
hard to resist. However, from an algebraic point of view, it is not wholly satis-
factory. What is unsatisfactory about it, is best illustrated in comparison with
a related deductive system that we do consider satisfactory. We enter a minor
digression and review the situation in the theory of basic process algebras with
deadlock.

It is not unusual to present the theory of basic process algebras with deadlock in
the following manner. One starts with the declaration of an alphabet A of constant
symbols that serves as a parameter of a formal system. The set of meaningful
expressions of this formal system consists of the terms that can be built from the
elements of A, another constant symbol δ, and binary function symbols + and ·;
let us, for the moment, use the symbol P to denote this set. The deductive system
associated with this formal system has as axioms the equations generated by the
schemata (A1)–(A7) in Table 5.2 on p. 75, and as inference rules the first five rules
listed in Table 5.2 (i.e., (Refl)–(Cong(·))), with the meta variables ranging over
P. We write BPAδ(A) ` p ≈ q if the deductive system permits a deduction that
has the equation p ≈ q as conclusion.

What is algebraic about this formal system? For one thing, the set P is in a
natural way the universe of an algebra

Pe = 〈P,+, ·, δ〉,

As an immediate consequence of the inference rules of the deductive system asso-
ciated with BPAδ(A), the relation

ϑ = {〈p, q〉 ∈ P × P | BPAδ(A) ` p ≈ q}

103

104 Chapter 6 Algebraic pCRL

is a congruence on Pe.
But there is a more profound reason why we may rightfully call it algebraic.

Note that each of the schemata (A1)–(A7) associates with Pe a binary relation:

(A1)Pe = {〈p + q , q + p〉 | p, q ∈ P};
(A2)Pe = {〈p + (q + r), (p + q) + r〉 | p, q , r ∈ P};

...
(A7)Pe = {〈δ · p, δ〉 | p ∈ P}.

In these definitions, the occurrences of +, · and δ may be understood as referring
to the algebraic structure of Pe, instead of to the syntactic structure of P. This
makes them essentially independent of the syntactic structure of the elements of
P; the only thing that matters is that P is the universe of an algebra Pe with two
binary operations + and ·, and with a distinguished element δ (e.g., Pe could just
as well be the set of pCRL expressions with +, · and δ defined as before, or it could
be the set of natural numbers with addition, multiplication, and the distinguished
natural number 0).

That the schemata (A1)–(A7) make sense independent of the (syntactic) nature
of the elements of P, that is what makes this formal system genuinely algebraic.
We define that an arbitrary algebraic structure A = 〈A,+, ·, δ〉 satisfies (A1)–(A7)
if each of the relations (A1)A–(A7)A is included in the identity relation on A. The
congruence ϑ induced on the algebra Pe includes each of the relations (A1)Pe–
(A7)Pe, and from this it is easily concluded that the quotient algebra Pe/ϑ satisfies
(A1)–(A7). Incidentally, among the algebraic structures that satisfy (A1)–(A7),
Pe/ϑ is a special one, namely a free one with as free generators the congruence
classes that contain an element of A.

So much for our digression, let us return to our earlier convention that P denotes
the set of pCRL expressions associated with A and D. It seems quite natural to
conceive P as an algebraic structure

Pe = 〈P,+, ·, δ,
∑
x,� b �〉x∈X,b∈B.

What we mean, is that Pe is an algebraic structure with binary operations + and
·, and a distinguished element δ, and that it is further equipped with a sequence
of unary operations

∑
x indexed by a set of variables X, and with a sequence of

binary operations � b � indexed by a set of Boolean expressions B. Additional
justification for this point of view is provided by the fact that the relation

ϑ = {〈p, q〉 ∈ P × P | Π(A,D)eq
∃ ` p ≈ q}

is a congruence on Pe, due to the inference rules of Π(A,D)eq
∃ .

The proper question to ask next, is whether the axiom schemata of our deductive
system make sense for arbitrary algebraic structures with two plus a B-indexed
sequence of binary operations, an X-indexed sequence of unary operations, and
a distinguished element. From our earlier remarks it is clear that the schemata
(A1)–(A7) make sense, and about the schemata (C1)–(C6), (Bool) and (Cq4)

Chapter 6 Algebraic pCRL 105

similar remarks can be made. The remaining schemata deserve a more careful
examination.

Consider the axiom schema (Cq1). It associates with Pe the binary relation

(Cq1)Pe = {〈
∑
x p, p〉 | p ∈ P and x ∈ X such that x 6∈ FV(p)}.

The difficulty is manifest: the definition of the relation (Cq1)Pe involves the
predicate x 6∈ FV(), and thus it refers to a syntactic property of pCRL expressions.
Similar difficulties arise when we consider the schemata (Cq2), (Cq5) and (Qe).
The schema (Cq3) reveals another kind of difficulty, which it shares with (Cq2)
and (Data). The binary relation

(Cq3)Pe = {〈
∑
x p,

∑
x p + p[x := d]〉 | p ∈ P, x ∈ X and d ∈ D}

depends on a particular syntactic accordance between p and p[x := d]. To com-
plete our inventarisation of difficulties: the schema (Cq6) refers to a syntactic
property of a condition, and the schema (Eq) refers to a syntactic relation be-
tween action expressions and a condition.

Having identified the algebraically unsatisfactory axiom schemata, we may won-
der whether they tell us anything at all about the quotient algebra Pe/ϑ. One
source of algebraic dissatisfaction was a proviso with the predicate x 6∈ FV().
Note that x 6∈ FV(

∑
x p) for all pCRL expressions p, so if we replace p by

∑
x p in

(Cq1), then we may safely omit the proviso; the quotient algebra Pe/ϑ satisfies
the schema

(Cq1)′
∑
x

∑
x p ≈

∑
x p.

Similarly, (Cq5) may be transformed into

(Cq5)′ (
∑
x p) · (

∑
x q) ≈

∑
x(p ·

∑
x q).

Note that, in view of (Cq1), replacing “q such that x 6∈ FV(q)” by
∑
x q in (Cq5)

does not really result in a weaker schema. In the same manner, (Qe) may be
brought into an algebraically more pleasant (but equivalent) form.

We have found the algebraic counterpart of the statement “x 6∈ FV(p)”; it
corresponds to saying that “p is a pCRL expression that satisfies

∑
x p ≈ p”. In

the present chapter we shall deal with the other algebraically unsatisfactory aspects
as well, with the goal of finding a complete, and purely algebraic characterisation
of the quotient algebra Pe/ϑ. At this point we lack the language to explain the
algebraic counterparts of the other difficulties mentioned above. Nevertheless,
there is an underlying idea that deserves mention ahead of things: if x does not
occur in d , then

Π(A,D)eq
∃ ` p[x := d] ≈

∑
x p � eq(x, d) � δ (see Corollary 6.11 below).

This will be used to eliminate the notion of substitution from the schemata con-
cerned.

Before we move on to lay out the algebraic framework in which our project
is to be carried out, it is appropriate to make two further remarks regarding

106 Chapter 6 Algebraic pCRL

the conditional. The first remark concerns its arity. We have announced that
the conditional gives rise to a sequence of binary operations indexed by Boolean
expressions. But actually, as a brief glance on earlier chapters will readily reveal,
we have a strong preference for conditionals in the form of guarded commands
(i.e., with δ in the position of its right argument). To make our preference official,
the algebras to be defined will be equipped with a sequence of unary guarded
commands, instead of a sequence of binary conditional compositions.

The other remark is about the index set. To make our treatment still more
independent of syntax, and thus more algebraic in spirit, we use as indices the
elements of an algebra, rather than the expressions of a language. Naturally, this
algebra, say B, should be a Boolean algebra. Furthermore, this is a good moment
to take advantage of our experience. We have argued that, in view of the results
of Chapter 4, there are good reasons to require full first-order expressiveness of
the Booleans (see the beginning of Section 5.3). Therefore, we shall require in
addition that B is equipped with a sequence of unary operations (∃x) (one for
every x ∈ X) and that it contains a sequence of distinguished elements eq(x, y)
(one for every two x, y ∈ X), so that B is a cylindric algebra. Cylindric algebras
have been introduced by Tarski and others, and they stand to first-order predicate
logic with equality in the same relation as Boolean algebras stand to propositional
logic.

6.1 ω-dimensional basic process modules

Consider the generalised basic process algebra with deadlock TD(A) introduced in
Section 3.4. We have shown that it is a pCRL-complete generalised basic process
algebra with deadlock (i.e., an element of GBPAδ(A,D)), and hence suitable as a
semantics of our formal system. As a matter of fact, it is an initial element of the
class GBPAδ(A,D) (cf. Theorem 3.15 on p. 40). In Section 3.3 we have explained
how a pCRL expression p together with a valuation ν denotes a unique pCRL tree
ιν(p), via the interpretation homomorphism ιν : Pol(A,D)→ TD(A).

Let us now fix, for the remainder of this chapter, a particular enumeration
(without repetitions) of the variables

X = x0, x1, . . . , xk, . . . (k < ω).

It gives rise to a one-to-one correspondence between valuations and elements of
the cartesian power Dω (precisely: the valuation ν corresponds to the element
ν(x0), ν(x1), . . . , ν(xk), . . . (k < ω) of Dω). It requires only this minor shift of
perspective to regard a pCRL expression p as a finite specification of the function
from Dω into TD(A) that associates with every valuation ν the pCRL tree ιν(p).

Since TD(A) is initial in GBPAδ(A,D), and since Π(A,D)eq
∃ is sound and com-

plete with respect to GBPAδ(A,D), two pCRL expressions are provably equivalent
if, and only if, they specify the same function. This gives us a mathematically at-
tractive alternative for the elements of Pe/ϑ; we may view them as functions
from Dω into TD(A). It is also convenient to be a little more general. Let
A = 〈A,+, ·, δ,

∑
〉 be the maximal generalisation of an arbitrary basic process

6.1 ω-dimensional basic process modules 107

algebra with deadlock 〈A,+, ·, δ〉. We consider

F = (Dω → A),

the set of all functions from Dω into A. An element d0, d1, . . . , dk, . . . (k < ω)
of Dω we call a point, and we denote it by {dk}; for each i < ω, di is the ith
coordinate of {dk}. An element of F assigns a process from A to each point, and
may thus be thought of as an ω-dimensional Cartesian space with in each point a
process from A. We denote by δ the space that has δ in each point, and we define
pointwise binary operations + and · on F . That is, for all F,G ∈ F and for all
{dk} ∈ Dω,

(F +G)({dk}) = F ({dk}) +G({dk}),
(F ·G)({dk}) = F ({dk}) ·G({dk}) and
δ({dk}) = δ.

We could now proceed to define on F a generalised operation
∑

, also pointwise,
but we prefer an alternative that makes use of the extra structure of F . We write
{dk} ∼i {ek} if the points {dk} and {ek} agree on each coordinate except possibly
the ith, i.e.,

{dk} ∼i {ek} if, and only if, dk = ek for all k ∈ ω − {i}.

The set of all points {ek} such that {dk} ∼i {ek} we shall henceforth refer to as
the line through {dk} parallel to the ith coordinate axis. We associate with every
i < ω a partial unary operation si : F → F such that

(siF)({dk}) =
∑
{F ({ek}) | {ek} ∼i {dk}};

si is defined on F provided that, for all {dk} ∈ Dω, the set {F ({ek}) | {ek}∼i{dk}}
is admissible for

∑
in A. That is, the operation si replaces the element in every

point {dk} by the generalised sum of all the elements on the line through {dk}
parallel to the ith coordinate axis; we call si the projective summation along i.
Note that if F = siG for some G ∈ F , then the elements of A on the line through
a point {dk} ∈ Dω parallel to the ith coordinate axis are all the same; formally:

{dk} ∼i {ek} implies F ({dk}) = F ({ek}), for all {dk}, {ek} ∈ Dω. (6.1)

If F ∈ F satisfies (6.1) we call it uniform along i.
The operations si (i < ω) satisfy the equalities in Table 6.1 with p and q

ranging over F . We shall not detail a proof of this; what we shall do is give some
intuitions. According to (Cs1), projective summations commute; the composition
sisj is the transformation that replaces the element in every point {dk} ∈ Dω by
the generalised sum of the elements at the points {ek} such that {ek} ∼i {dk}
or {ek} ∼j {dk}. If F ∈ F is uniform along i, then, since

∑
{p} = p in every

GBPAδ, applying si to it has no effect; this explains (Cs2) and (Cs6), since siF
and siδ are both uniform along i. According to (Cs3), F ≤ siF with respect
to the partial order ≤ induced on F by +; this is an immediate consequence of

108 Chapter 6 Algebraic pCRL

(Cs1) sisjp = sjsip
(Cs2) sisip = sip
(Cs3) x+ sip = sip
(Cs4) si(p + q) = sip + siq
(Cs5) si(p · siq) = sip · siq
(Cs6) siδ = δ

Table 6.1: The axioms for the projective summations in an ω-dimensional basic
process algebra with deadlock (i, j < ω).

(Ga1) in Table 2.2. By (Cs4), projective summations distribute over alternative
compositions, an immediate consequence of the fact that∑

{p′ + p′′ | p′ ∈ P′, p′′ ∈ P′′} =
∑

P′ +
∑

P′′

in every generalised basic process algebra with deadlock. To understand why (Cs5)
is valid, first note that, by definition,

(si(F · siG))({dk}) =
∑
{F ({ek}) · (siG)({ek}) | {ek} ∼i {dk}}.

Since (siG) is uniform along i, (siG)({ek}) = (siG)({dk}) for all {ek} such that
{ek} ∼i {dk}, so

(si(F · siG))({dk}) =
∑
{F ({ek}) · (siG)({dk}) | {ek} ∼i {dk}}.

With an application of (Ga3) we may pull out (siG)({dk}) in the right-hand side
to obtain (siF · siG)({dk}).

Definition 6.1 An ω-dimensional basic process algebra with deadlock is an al-
gebra P = 〈P,+, ·, δ, si〉i<ω that consists of a basic process algebra with deadlock
〈P,+, ·, δ〉 (see Table 2.1 on p. 17) together with a sequence

s0, s1, . . . , sk, . . . (k < ω)

of unary operations that satisfy the equalities in Table 6.1 for all p, q ∈ P. For
i < ω, the operation si is called the ith projective summation.

We shall see later that the projective summations just introduced correspond to
the unary operations that choice quantifiers induce on the set of pCRL expressions
modulo provable equivalence. We now wish to define on F unary operations that
correspond to guarded commands. We have already announced that we would like
to incorporate them as a sequence of unary operations indexed by the elements of
a cylindric algebra. Let us first recapitulate a few basic facts and intuitions from
the theory of cylindric algebras (see the books of Henkin et al. (1971, 1985) for a
thorough treatment).

6.1 ω-dimensional basic process modules 109

(Ba1) a ∨ (b ∨ c) = (a ∨ b) ∨ c
(Ba2) b ∨ c = c ∨ b
(Ba3) b ∨ (b ∧ c) = b
(Ba4) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(Ba5) b ∨ ¬ b = >

(Ba1′) a ∧ (b ∧ c) = (a ∧ b) ∧ c
(Ba2′) b ∧ c = c ∧ b
(Ba3′) b ∧ (b ∨ c) = b
(Ba4′) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(Ba5′) b ∧ ¬ b = ⊥

Table 6.2: The axioms of Boolean algebras.

The idea of conceiving pCRL expressions modulo provable equivalence as func-
tions from Dω into TD(A) has an analogy for Boolean expressions modulo equiva-
lence in D. Accordingly, a Boolean expression b may thought of as a specification of
a function from Dω into the two-element Boolean algebra. We consider a Boolean
expression b as a specification of the set of valuations under which b evaluates to
> (this amounts to the same thing), and proceed to consider the powerset of Dω.

Definition 6.2 A Boolean algebra is an algebra 〈B,∨,∧,¬,>,⊥〉 that satisfies
for all a, b, c ∈ B the equalities in Table 6.2.

It is well-known that the powerset of any set is the universe of a Boolean al-
gebra with ∨, ∧, ¬ as (set-theoretic) union, intersection and complementation,
respectively, and with the entire set as the distinguished element > and ∅ as the
distinguished element ⊥ (see, e.g., Koppelberg, 1989). We consider the powerset
of Dω as such a Boolean algebra, and additionally, we correlate with every i < ω
a unary operation ci on the powerset of Dω such that for all U ⊆ Dω

ciU = {{dk} ∈ Dω | there exists {ek} ∈ U such that {dk} ∼i {ek}}.

A set U ⊆ Dω such that {dk} ∈ U implies {ek} ∈ U for all {ek} ∼i {dk}, is called
a cylinder parallel to the ith axis or, for brevity, an i-cylinder. The operation ci
is called the ith cylindrification; when applied to the set U ⊆ Dω, it yields the
i-cylinder ciU swept out by all translations of U parallel to the ith coordinate
axis. Furthermore, we treat, for every i, j < ω, the set

dij = {{dk} ∈ Dω | di = dj}

as a distinguished element. The set dij is called a diagonal element ; it consists of
all points whose ith coordinates are equal to their jth coordinates. The cylindri-
fications and diagonal elements satisfy the equalities in Table 6.3, and this makes
the powerset of Dω into an ω-dimensional cylindric algebra.

110 Chapter 6 Algebraic pCRL

(Ca1) ci⊥ = ⊥
(Ca2) b ∨ cib = cib
(Ca3) ci(b ∧ cib′) = cib ∧ cib′

(Ca4) cicjb = cjcib
(Ca5) dii = >
(Ca6) if i 6= j, k, then djk = ci(dji ∧ dik)
(Ca7) if i 6= j, then ci(dij ∧ b) ∧ ci(dij ∧ ¬ b) = ⊥

Table 6.3: The axioms for cylindrifications and diagonal elements in an ω-
dimensional cylindric algebra (i, j, k < ω).

Definition 6.3 An ω-dimensional cylindric algebra is an algebra

C = 〈C,∨,∧,¬,>,⊥, ci,dij〉i,j<ω

that consists of a Boolean algebra 〈C,∨,∧,¬,>,⊥〉 (see Table 6.2), with unary
operations ci : C → C (i < ω) and distinguished elements dij ∈ C (i, j < ω)
that satisfy the axioms in Table 6.3 for all b, b′ ∈ C. The operations ci are called
cylindrifications, and the elements dij are called diagonal elements.

The theory of cylindric algebras has been designed for the purpose of algebraising
first-order predicate logic with equality. To illustrate the correspondence between
the ith cylindrification and the existential quantifier (∃xi), let U be the set of all
valuations under which the Boolean expression b evaluates to >. If {dk} ∈ ciU ,
then there exists a valuation {ek} ∈ U such that {dk} ∼i {ek}; the formula (∃xi)b
evaluates to > under any such valuation {dk}. Conversely, if (∃xi)b evaluates to
> under the valuation {dk}, then there exists a valuation {ek} ∼i {dk} such that
b evaluates to > under {ek}, so {dk} ∈ ciU by definition. There is a similar corre-
spondence between the diagonal element dij and the Boolean expression eq(xi, xj);
dij consists precisely of those valuations under which eq(xi, xj) evaluates to >.

We now combine the theory of cylindric algebras with that of ω-dimensional
basic process algebras with deadlock. If p is a pCRL expression, describing a
function F from Dω into TD(A), and b is a Boolean expression, describing a subset
U of Dω, then the pCRL expression p � b �δ describes the function G from Dω into
TD(A) such that G({dk}) = F ({dk}) if {dk} ∈ U , and G({dk}) = δ otherwise.
We associate with every U ⊆ Dω a transformation U :→ on F that replaces the
element in a point outside U by δ and leaves the points in U unchanged, i.e.,

(U :→F)({dk}) =
{
F ({dk}) if {dk} ∈ U ; and
δ otherwise.

We contend that the transformations U :→ satisfy the equalities in Table 6.4 with
p and q ranging over F . The verifications are fairly straightforward; we shall only
discuss (Gc9)–(Gc11).

To demonstrate the validity of (Gc9), let U ⊆ Dω and F ∈ F , and consider a
line ` parallel to the ith coordinate axis. Note that it suffices to show that the

6.1 ω-dimensional basic process modules 111

(Gc1) >:→ p = p
(Gc2) ⊥:→ p = δ
(Gc3) b ∨ c:→ p = b:→ p + c:→ p
(Gc4) b:→(c:→ p) = b ∧ c:→ p

(Gc5) b:→ δ = δ
(Gc6) b:→(p + q) = b:→ p + b:→ q
(Gc7) b:→(p · q) = (b:→ p) · q
(Gc8) (b:→ p) · q = (b:→ p) · (b:→ q)

(Gc9) si(b:→ sip) = cib:→ sip
(Gc10) si(cib:→ p) = cib:→ sip
(Gc11) if i 6= j, then dij :→ si(dij :→ p) = dij :→ p

Table 6.4: The axioms for the guarded command in an ω-dimensional basic process
module over C (i, j < ω and b, c ∈ C).

sets (si(U :→ siF))(`) and (ciU :→ siF)(`) are singletons and equal. Since siF is
uniform along i, (siF)(`) is a singleton, say (siF)(`) = {a} with a an element of
A. Now there are two cases. If U contains a point on `, then ciU contains every
point on `, so (ciU :→ siF)(`) = {a}. To see that also (si(U :→ siF))(`) = {a},
observe that an application of U :→ has the effect of replacing perhaps some,
but certainly not all elements on ` by δ, i.e., (U :→ siF)(`) = {δ, a}, and that
a subsequent application of si replaces every element on ` by

∑
{δ, a}. Since∑

{δ, a} = a in A, it follows that (si(U :→ siF))(`) = {a}. In the other case, U
does not contain a point on `, so that ciU does not contain a point on ` either,
whence (ciU :→ siF)(`) = {δ}. To see that also (si(U :→ siF))(`) = {δ}, note
that an application of U :→ has the effect of replacing all elements on ` by δ, i.e.,
(U :→ siF)(`) = {δ}; since

∑
{δ} = δ in A, it follows that (si(U :→ siF))(`) = {δ}.

Next, we want to demonstrate the validity of (Gc10). To this end, we assume
that U ⊆ Dω and F ∈ F , and we consider a line ` parallel to the ith coordinate
axis. Note that ciU , being an i-cylinder, either contains every point on ` or no
point on ` at all. In the first case, (ciU :→F)(`) = F (`), whence

(si(ciU :→F))(`) = {
∑
F (`)}

and also

(ciU :→ siF)(`) = (siF)(`) = {
∑
F (`)}.

In the second case, (ciU :→ siF)(`) = {δ}, and also (ciU :→F)(`) = {δ}, whence,
since

∑
{δ} = δ in A, (si(ciU :→F))(`) = {δ}.

We assume i 6= j, and prove the equality of (Gc11). Consider a line ` paral-
lel to the ith coordinate axis. The effect of dij :→ is that the element in every
point on ` is replaced by δ, except the element in the single point {dk} on ` with
the jth coordinate equal to the ith coordinate (note that for {dk} to be unique
it is imperative that i 6= j), i.e., for all F ∈ F , (dij :→F)({dk}) = F ({dk}) and
(dij :→F)({ek}) = δ if {ek} is another point on `, distinct from {dk}. The effect of
si is that each element on ` is replaced by the generalised sum of the set of all the
elements on `. Hence, since

∑
{a} = a for every a in A, the composite transforma-

tion si dij :→ replaces every element on ` by the element in {dk}. What matters

112 Chapter 6 Algebraic pCRL

is that the element in {dk} is invariant under the transformations si dij :→, i.e.,
that (si(dij :→F))({dk}) = F ({dk}). So, (dij :→ si(dij :→F))({dk}) = F ({dk}),
whereas (dij :→ si(dij :→F))({ek}) = δ if {ek} is another point on `, distinct from
{dk}. We conclude that dij :→ si(dij :→F) = dij :→F for all F ∈ F .

Definition 6.4 Let C be an ω-dimensional cylindric algeba with universe C. An
ω-dimensional basic process module over C is an algebra

P = 〈P,+, ·, δ, si, b:→〉i<ω, b∈C

consisting of an ω-dimensional basic process algebra with deadlock 〈P,+, ·, δ, si〉i<ω
equipped with unary operations b:→ (b ∈ C) that satisfy the equalities in Table 6.4
for all p, q ∈ P. The operations b:→ are called guarded commands and b is the
guard of b:→. The class of all ω-dimensional basic process modules over C we
denote by C-BPMω.

Recall that the unary operations si on F are partial; their definition depends on
the presence of generalised sums in A. As a consequence, to get a decent algebraic
structure, we need to take a subset of F that is closed under the operations of
cylindric basic process algebras, in particular under si for every i < ω. Let F∗ be
any subset of F that contains δ, and that is closed under +, ·, si (i < ω) and U :→
(U ⊆ Dω); then

F∗ = 〈F∗,+, ·, δ, si, U :→〉i<ω, U⊆Dω

is an ω-dimensional basic process module over the cylindric algebra of subsets of
Dω.

Remark 6.5 The definitions above can be generalised by replacing ‘ω’ everywhere
by an arbitrary ordinal (Henkin et al. do this for cylindric algebras in their books).
Then, e.g., the theory of basic process algebras with deadlock coincides with the
theory of 0-dimensional basic process algebras with deadlock. We do not need
such generality here. For the sake of conciseness, we shall often suppress the
adjective ‘ω-dimensional’, adopting the convention that ‘cylindric algebra’ always
means ‘ω-dimensional cylindric algebra’, and that ‘basic process module’ always
means ‘ω-dimensional basic process module’. In contrast, ‘basic process algebra
with deadlock’ will retain its old meaning; if we mean ‘ω-dimensional basic process
algebra with deadlock’, then we shall always explicitly say so.

6.2 Comparing formal systems

If we have an algebraic framework that subsumes a certain formal system, then it
frequently provides a convenient context for discussing the correspondence between
this formal system and other formal systems. In this section we shall encounter
two examples of this.

Our first example concerns the correspondence between the set Φ of first-order
formulas and the set B of Boolean expressions associated with a data algebra D;

6.2 Comparing formal systems 113

we shall discuss it in the framework of cylindric algebras. Consider the set Φ of
first-order formulas associated with D as an algebraic structure

Fm = 〈Φ,∨,∧,¬,>,⊥, ci,dij〉i,j<ω

with ci : Φ→ Φ defined by ciϕ = (∃xi)ϕ, and dij = eq(xi, xj) ∈ Φ, for all i, j < ω
(we assume that D has equality). The relation

↔D = {〈ϕ,ψ〉 ∈ Φ× Φ | D |= ϕ↔ ψ}

is a congruence on Fm, and the quotient algebra satisfies the axioms of cylindric
algebras (as listed in Tables 6.2 and 6.3).

Theorem 6.6 Suppose that D has equality. The algebra Fm/↔D is a cylindric
algebra; it is called the cylindric algebra of formulas associated with D.

Proof. See Henkin et al. (1985) for details. �

Next, consider the set B of Boolean expressions, it is in a natural way the
universe of an algebraic structure

Be = 〈B,∨,∧,¬,>,⊥〉

similar to Boolean algebras, and the relation

≈D = {〈b, c〉 ∈ B × B | D |= b ≈ c}

is a congruence on Be. Clearly, the quotient Be/≈D is a Boolean algebra.
Recall that every open first-order formula is a Boolean expression; according to

the following proposition, the relations ↔D and ≈D coincide on the set of open
first-order formulas.

Proposition 6.7 If ϕ and ψ are open first-order formulas, then

D |= ϕ↔ ψ if, and only if, D |= ϕ ≈ ψ.

Proof. By Proposition 4.2 on p. 53 and (4.3) on p. 54, it suffices to prove that

D, ν |= ϕ ≈ ψ if, and only if, D, ν |= (¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ) ≈ >

for every valuation ν.
To establish the implication from left to right, we assume ν̄(ϕ) = ν̄(ψ) and derive

ν̄((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ)) = >. Note that ¬ b ∨ b = > for all b ∈ B, so that we
may conclude from ν̄(ϕ) = ν̄(ψ) that ¬ ν̄(ϕ) ∨ ν̄(ψ) = > and ¬ ν̄(ψ) ∨ ν̄(ϕ) = >.
Then, using the definitions on p. 32, we derive

ν̄((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ))
= (¬ ν̄(ϕ) ∨ ν̄(ψ)) ∧ (¬ ν̄(ψ) ∨ ν̄(ϕ)) = > ∧ > = >.

114 Chapter 6 Algebraic pCRL

To establish the implication from right to left, we assume ν̄(ϕ) 6= ν̄(ψ) and
derive ν̄((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ)) = ⊥. Note that, since B has two elements and by
the definition of ¬, ν̄(ϕ) 6= ν̄(ψ) implies

¬ ν̄(ϕ) = ν̄(ψ) and ¬ ν̄(ψ) = ν̄(ϕ).

Hence, since b ∨ b = b for all b ∈ B,

¬ ν̄(ϕ) ∨ ν̄(ψ) = ν̄(ψ) and ¬ ν̄(ψ) ∨ ν̄(ϕ) = ν̄(ϕ).

Furthermore, since ¬ b ∧ b = ⊥ for all b ∈ B,

ν̄(ψ) ∧ ν̄(ϕ) = ⊥.

So, we get

ν̄((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ))
= (¬ ν̄(ϕ) ∨ ν̄(ψ)) ∧ (¬ ν̄(ψ) ∨ ν̄(ϕ)) = ν̄(ψ) ∧ ν̄(ϕ) = ⊥.

The proof of the proposition is complete. �

Let us write [b] for the equivalence class of Boolean expressions in Be/≈D that
contains the Boolean expression b, and [ϕ] for the equivalence class of first-order
formulas in Fm/↔D that contains ϕ. If D has equality, then, by Proposition 4.4
on p. 54, every element [b] of Be/≈D contains an open first-order formula. If D
has quantifier elimination, then every element [ϕ] of Fm/↔D also contains an
open first-order formula. Hence, we may conclude from the above proposition,
that if D has equality and quantifier elimination, then Be/≈D and Fm/↔D are
isomorphic as Boolean algebras. The isomorphism is given by the association

[β(ϕ)] 7→ [ϕ], (6.2)

where β is the mapping that associates with every first-order formula an equivalent
Boolean expression (cf. the definition of β on p. 84).

Via the isomorphism, Be/≈D inherits from Fm/↔D cylindrifications and di-
agonal elements such that for all i, j < ω

ci[b] = [β((∃xi)b)]; and
dij = [eq(xi, xj)].

(6.3)

Henceforth, if D has equality and quantifier elimination, then we shall always
assume that Be/≈D has unary operations ci and distinguished elements dij sat-
isfying the requirements in (6.3). Furthermore, for the sake of brevity, we shall
write B instead of Be/≈D. We summarise the above in the following theorem.

Theorem 6.8 If D has equality and quantifier elimination, then

B = Be/≈D

is a cylindric algebra with cylindrifications and diagonal elements defined as in
(6.3).

6.2 Comparing formal systems 115

This concludes our discussion of the correspondence between the first-order for-
mulas and the Boolean expressions associated with D. For our second example we
return to the formal system of pCRL expressions modulo provable equivalence in
the deductive system Π(A,D)eq

∃ . We shall first explain how it is a basic process
module over B. Then, we shall modify it to the effect that the notion of ‘sub-
stituting an arbitrary data expression d for a variable x in a pCRL expression p’
(which presently, e.g., occurs in the axiom schemes (Cq3) and (Data)) is elim-
inated from the formalisation. It is replaced by the conceptually simpler notion
of ‘substituting another variable y for x in p’. The resulting formal system also
gives rise to a basic process module over B, which turns out to be isomorphic to
the basic process module of pCRL expressions modulo provable equivalence.

The set P of pCRL expressions associated with A and D, is the universe of an
algebraic structure

Pe = 〈P,+, ·, δ, si〉i<ω,

with the obvious definitions for +, · and δ, and with the unary operations si (i < ω)
defined by

sip =
∑
xi

p.

The deductive system Π(A,D)eq
∃ induces, because of its inference rules (see Ta-

ble 5.2 on p. 75), a congruence

ϑ = {〈p, q〉 ∈ P × P | Π(A,D)eq
∃ ` p ≈ q}

on the algebra Pe. We write [p] to denote the equivalence class of pCRL expressions
modulo provable equivalence that contains p, i.e.,

[p] = {q ∈ P | Π(A,D)eq
∃ ` p ≈ q}.

Owing to (Bool) and (Cong(�b�)) in Table 5.2, we can expand the quotient
algebra Pe/ϑ with unary operations [b]:→ ([b] ∈ B) defined by

[b]:→[p] = [p � b � δ].

Thus, we obtain an algebra similar to basic process modules, the algebra of pCRL
expressions modulo provable equivalence associated with A and D:

pCRL(A,D) = 〈P/ϑ,+, ·, δ, si, [b]:→〉i<ω, [b]∈B.

Our next task is to prove that pCRL(A,D) is a basic process module over B.
There are essentially two methods at our disposal. The first method consists of
formalising the correspondence between the equivalence classes of pCRL expres-
sions modulo provable equivalence and certain functions from Dω into TD(A). In
the previous section we have established that any set of functions

F∗ ⊆ (Dω → TD(A))

116 Chapter 6 Algebraic pCRL

closed under the operations of basic process modules (with as guards the subsets of
Dω) constitutes a basic process module over the cylindric algebra of subsets of Dω.
It suffices to show that pCRL(A,D) can be embedded into such a basic process
module. This can be done with an application of the completeness theorem of the
previous chapter (Theorem 5.20 on p. 85). Instead, we use the second method.
It consists of deriving the validity in pCRL(A,D) of the axioms of basic process
modules directly, as propositions about the deductive system Π(A,D)eq

∃ .

Theorem 6.9 The algebra pCRL(A,D) is an ω-dimensional basic process module
over B.

Proof. That pCRL(A,D) satisfies the axioms of basic process algebras with
deadlock (Table 2.1 on p. 17) is clear by the schemes (A1)–(A7) in Table 5.2.

We verify that the unary operations si (i < ω) in pCRL(A,D) satisfy the axioms
of projective summations (see Table 6.1). For (Cs1), we need to show that, for all
pCRL expressions p, sisj [p] = sjsi[p] in pCRL(A,D). Since x, y 6∈ FV(

∑
x,y p), we

have the following deduction within Π(A,D)eq
∃ :∑

y,x p 4
∑
y,x

∑
x,y p by (Cq3) and Lem. 5.7 on p. 78

≈
∑
x,y p by (Cq1).

By a symmetric argument we may also deduce∑
x,y p 4

∑
y,x p.

Hence
∑
xi,xj

p and
∑
xj ,xi

p are provably equivalent, so

sisj [p] = [
∑
xi,xj

p] = [
∑
xj ,xi

p] = sjsi[p].

For (Cs2) and (Cs5) the crucial observation is that xi 6∈ FV(
∑
xi

p); because of
this, their validity in pCRL(A,D) is immediate by (Cq1) and (Cq5), respectively.
Similarly, since xi 6∈ FV(δ), the validity of (Cs6) in pCRL(A,D) follows from
(Cq1). Since p[x := x] = p, the validity of (Cs3) is by (Cq3). The validity of
(Cs4) is immediate by (Cq4).

It remains to verify that pCRL(A,D) also satisfies (Gc1)–(Gc11). That (Gc1)
holds in pCRL(A,D) is immediate by (C1), that (Gc2) holds follows from (C2)
and (C1), and (Gc3) and (Gc4) correspond with (C5) and (C3). We obtain
the validity of (Gc5) in pCRL(A,D) by Lemma 5.8 on p. 78, (Gc6) by (i) of
Lemma 5.6, (Gc7) by Lemma 5.9, and (Gc8) by Lemma 5.6(ii) and Lemma 5.9.
Since xi 6∈ FV(

∑
xi

p), it follows from (Qe) that (Gc9) holds in pCRL(A,D). We
get from (Cq1) that Π(A,D)eq

∃ `
∑
xi
δ ≈ δ; hence, since xi does not occur in

β((∃xi)b) (cf. Definition 5.18), we obtain (Gc10) by (Cq6). For the verification
of (Gc11) we need the following lemma and its corollary.

Lemma 6.10 If d is a data expression and x is a variable, then

Π(A,D)eq
∃ ` p � eq(x, d) � δ ≈ p[x := d] � eq(x, d) � δ (6.4)

for every pCRL expression p.

6.2 Comparing formal systems 117

Proof. The proof is by structural induction on p.
Suppose that p is an action expression, say p = a(d0, . . . , dn−1) with a ∈ A of
arity n and ~d = d0, . . . , dn−1 a sequence of data expressions. Let e0, . . . , en−1 be
such that ei = di[x := d] (1 ≤ i ≤ n), and let us denote with eq(~d ,~e) the boolean
expression eq(d0, e0) ∧ · · · ∧ eq(dn−1, en−1). Then, since D |= eq(x, d) 4 eq(~d ,~e),
(6.4) follows from (Eq) with an application of Lemma 5.33 on p. 92.
If p = δ, then (6.4) is trivial, and if p = p1 + p2 or p = p1 · p2, then (6.4) is by
Lemma 5.6 on p. 78 and the induction hypothesis.
If p = p1 � b � p2, then (6.4) is proved by means of Lemmas 5.5 and 5.6(i) on
p. 77, (C3), Lemma 5.33 on p. 92 and the induction hypothesis.
If p =

∑
y p′, we may assume by (Cq2) that y 6= x and that y has no occurrence

in d ; then, (6.4) follows by (Cq1), (Cq6) and the induction hypothesis.
The proof of the lemma is now complete. �

Corollary 6.11 If the variable x does not occur in the data expression d , then

Π(A,D)eq
∃ ` p[x := d] ≈

∑
x p � eq(x, d) � δ

for every pCRL expression p.

Proof. Note that x 6∈ FV(p[x := d]) and D |= β((∃x)eq(x, d)) ≈ >. Hence

p[x := d] ≈ p[x := d] � β((∃x)eq(x, d)) � δ by (C1)
≈
∑
x p[x := d] � eq(x, d) � δ by (Qe)

≈
∑
x p � eq(x, d) � δ by Lem. 6.10

by which the corollary is proved. �

With the above lemma and its corollary we can complete the verification that
pCRL(A,D) is a basic process module: since i 6= j implies xi 6= xj , we have the
following deduction

(
∑
xi

p � eq(xi, xj) � δ) � eq(xi, xj) � δ

≈ p[xi := xj] � eq(xi, xj) � δ by Cor. 6.11
≈ p � eq(xi, xj) � δ by Lem. 6.10.

Hence, also (Gc11) holds in pCRL(A,D), so the proof of the theorem is complete.
�

Corollary 6.11 shows that if d is a data expression, and x is a variable that does
not occur in d , then the result of substituting d for x in the pCRL expression p
can be obtained from p by applications of the constructs of pCRL. We shall now
use this observation to realise a conceptual simplification. We design a formal
system in which data expressions play a less prominent role. We shall then prove
that this formal system gives rise to a basic process module that is isomorphic
to pCRL(A,D), thereby demonstrating that the new formal system has the same
expressive and demonstrative power as the original one.

118 Chapter 6 Algebraic pCRL

Definition 6.12 An action expression a is flat if a = a(y0, . . . , yn−1), where a ∈ A
is of arity n and y0, . . . , yn−1 is a sequence of variables. A pCRL expression p is
flat if all occurrences of the action expressions in p are flat; we denote by Pflat the
set of flat pCRL expressions.

Example 6.13 With R as data algebra (see Example 3.5), the pCRL expression∑
x in(x)out(x2)

is not flat. However, by Corollary 6.11 it is provably equivalent to the pCRL
expression∑

x in(x)(
∑
y out(y) � eq(y, x2) � δ)

and this one is flat.

We are going to define a mapping z that associates with every pCRL expression
a provably equivalent flat pCRL expression. For this it is convenient to have a
short notation for expressions that will be used to simulate substitution: if d is a
data expression, and x is a variable that does not occur in d , let

p{|x := d |} =
∑
x p � eq(x, d) � δ. (6.5)

Let z : P → Pflat be a mapping from pCRL expressions to flat pCRL expressions
that satisfies the following conditions:

1. if p = δ, or p is a flat action expression, then z(p) = p;

2. if p is a nonflat action expression, say p = a(d0, . . . , dn−1) with a ∈ A of
arity n and d0, . . . , dn−1 a sequence of data expressions of which at least one
is not a variable, then

z(p) = a(y0, . . . , yn−1){|y0 := d0|} · · · {|yn−1 := dn−1|},

where y0, . . . , yn−1 is a sequence of distinct variables that do not occur in
any of the di (0 ≤ i < n);

3. z distributes over the other constructs of pCRL, i.e.,

z(p + q) = z(p) +z(q);
z(p · q) = z(p) ·z(q);
z(p � b � q) = z(p) � b �z(q); and
z(
∑
x p) =

∑
xz(p).

Lemma 6.14 If D has equality and quantifier elimination, then

Π(A,D)eq
∃ ` p ≈ z(p)

for every pCRL expression p.

6.2 Comparing formal systems 119

(Eq)′ a(y0, . . . , yn−1) � eq(y0, z0) ∧ · · · ∧ eq(yn−1, zn−1) � δ
≈ a(z0, . . . , zn−1) � eq(y0, z0) ∧ · · · ∧ eq(yn−1, zn−1) � δ

Table 6.5: Those instances of (Eq) that preserve flatness; y0, . . . , yn−1 and
z0, . . . , zn−1 range over X (repetitions are allowed).

Proof. The proof is by structural induction on p, and clearly the only nontrivial
case is when p is a nonflat action expression. So, suppose p = a(d0, . . . , dn−1) and

z(p) = a(y0, . . . , yn−1){|y0 := d0|} · · · {|yn−1 := dn−1|}.

By Corollary 6.11

Π(A,D)eq
∃ ` z(p) ≈ a(y0, . . . , yn−1)[y0 := d0] · · · [yn−1 := dn−1],

and since the variables in the sequence y0, . . . , yn−1 are all distinct and without
occurrence in the di (0 ≤ i < n), a(y0, . . . , yn−1)[y0 := d0] · · · [yn−1 := dn−1] = p.

�

Thus, there is no loss in expressivity if we confine ourselves to flat pCRL ex-
pressions. To prove the validity of an equation of flat pCRL expressions, we could,
of course, use the deductive system Π(A,D)eq

∃ and only allow deductions that
exclusively involve flat pCRL expressions. The question is whether we then still
have a relatively complete system. Note that this is not clear beforehand, since
applications of (Cq3), (Data) and (Eq) do not always preserve flatness. On the
other hand, recall that our completeness proof of the previous chapter did not
involve applications of (Data) and (Cq3) (see Remark 5.40), so if we just leave
them out we still have a relatively complete deductive system. Furthermore, in-
stead of (Eq) we could include the variant shown in Table 6.5, both sides of which
are flat. We denote the resulting deductive system for flat pCRL expressions by
Π(A,D)flat. That is, with the understanding that the meta variables range over
flat pCRL expressions, Π(A,D)flat consists of

1. the axioms and the inference rules in Table 5.2 on p. 75 except (Data) and
(Cq3);

2. (Qe) from Table 5.3 on p. 85; and

3. (Eq)′ from Table 6.5.

We shall establish below that Π(A,D)flat has a deduction for every valid equation
of flat pCRL expressions. The key step consists of showing that Lemma 6.10 and
Corollary 6.11 can be deduced within Π(A,D)flat. We need the following lemma.

Lemma 6.15 If p is a flat pCRL expression, b and c are boolean expressions, and
x is a variable that does not occur in c, then

Π(A,D)flat ` (
∑
x p � b � δ) � c � δ ≈

∑
x p � b ∧ c � δ.

120 Chapter 6 Algebraic pCRL

Proof. We have that

(
∑
x p � b � δ) � c � δ ≈ (

∑
x p � b � δ) � c �

∑
x δ by (Cq1)

≈
∑
x(p � b � δ) � c � δ by (Cq6)

≈
∑
x p � b ∧ c � δ by (C3),

so the lemma is proved. �

Lemma 6.16 If d is a data expression and x is a variable, then

Π(A,D)flat ` z(p) � eq(x, d) � δ ≈ z(p[x := d]) � eq(x, d) � δ. (6.6)

Proof. We proceed by structural induction on p.
Suppose p is an action expression, say p = a(d0, . . . , dn−1), and let e0, . . . , en−1

be such that p[x := d] = a(e0, . . . , en−1), i.e., ei = di[x := d] (0 ≤ i < n). For any
sequence ~y = y0, . . . , yn−1 of distinct variables without occurrence in the di

Π(A,D)flat ` z(p) ≈
∑
~y a(y0, . . . , yn−1) � eq(~y, ~d) � δ, (6.7)

where eq(~y, ~d) is an abbreviation for eq(y0, d0) ∧ · · · ∧ eq(yn−1, dn−1). Indeed, if
p is not flat, then z(p) = a(y0, . . . , yn−1){|y0 := d0|} · · · {|yn−1 := dn−1|}, so that
(6.7) follows by Lemma 6.15. On the other hand, if p happens to be flat, then
d0, . . . , dn−1 is a sequence of variables; using that D |= β((∃~y)eq(~y, ~d)) ≈ >, we
deduce (6.7) as follows:

z(p) ≈ a(d0, . . . , dn−1) �>� δ by (C1)

≈ a(d0, . . . , dn−1) � β((∃~y)eq(~y, ~d)) � δ by (Bool)

≈
∑
~y a(d0, . . . , dn−1) � eq(~y, ~d) � δ by (Qe)

≈
∑
~y a(y0, . . . , yn−1) � eq(~y, ~d) � δ by (Eq)′.

By similar reasoning, we also have, for any sequence ~y = y0, . . . , yn−1 of distinct
variables that do not occur in the ei (0 ≤ i < n),

Π(A,D)flat ` z(p) ≈
∑
~y a(y0, . . . , yn−1) � eq(~y,~e) � δ, (6.8)

where eq(~y,~e) is an abbreviation for eq(y0, e0) ∧ · · · ∧ eq(yn−1, en−1). Since

D |= eq(~y, ~d) ∧ eq(x, d) ≈ eq(~y,~e) ∧ eq(x, d),

(6.6) is easily obtained from (6.7) and (6.8) by Lemma 6.15 and (Bool).
If p = δ, then (6.6) is trivial.
Note that for flat pCRL expressions Lemma 5.5 on p. 77, Lemma 5.6 on p. 78 and
Lemma 5.33 on p. 92 hold with Π(A,D)flat instead of Π(A,D). Hence, since z
distributes over +, ·, � b � and

∑
y, the proof in these cases is analogous to that

of Lemma 6.10. �

6.2 Comparing formal systems 121

The following corollary is obtained from Lemma 6.16 in the same way as we have
obtained Corollary 6.11 from Lemma 6.10.

Corollary 6.17 Let p be a pCRL expression, let d be a data expression and let
x be a variable that does not occur in d ; then

Π(A,D)flat ` z(p[x := d]) ≈ z(p){|x := d |}.

We are now in a position to prove that the deduction of an equation of flat pCRL
expressions may be assumed to consist of flat pCRL expressions only.

Theorem 6.18 If D has equality and quantifier elimination, then

Π(A,D)eq
∃ ` p ≈ q if, and only if, Π(A,D)flat ` p ≈ q

for all flat pCRL expressions p and q .

Proof. Clearly, every deduction within Π(A,D)flat is also a deduction within
Π(A,D)eq

∃ , so we only need to prove the implication from left to right. For that,
it suffices to prove that, for all pCRL expressions p and q , if p ≈ q is an axiom
of Π(A,D)eq

∃ , then Π(A,D)flat ` z(p) ≈ z(q). For then any deduction within
Π(A,D)eq

∃ proving the validity of an equation p ≈ q may be transformed into a
deduction within Π(A,D)flat proving the validity of z(p) ≈ z(q). From this the
theorem follows, since z(p) = p if p is already flat. In most cases, p ≈ q being an
axiom of Π(A,D)eq

∃ implies that z(p) ≈ z(q) is an axiom of Π(A,D)flat; the only
nontrivial cases are when p ≈ q is an instance of (Eq), (Data) or (Cq3).
For (Eq) we need to show that

Π(A,D)flat ` z(a(d0, . . . , dn−1)) � eq(~d ,~e) � δ

≈ z(a(e0, . . . , en−1)) � eq(~d ,~e) � δ, (6.9)

using eq(~d ,~e) as an abbreviation for eq(d0, e0) ∧ · · · ∧ eq(dn−1, en−1). Suppose
that ~y = y0, . . . , yn−1 is a sequence of variables that do not occur in any of the di
and ei (0 ≤ i < n). Then, by Corollary 6.17 and Lemma 6.15,

z(a(d0, . . . , dn−1)) � eq(~d ,~e) � δ

≈
∑
~y a(y0, . . . , yn−1) � eq(~y, ~d) ∧ eq(~d ,~e) � δ;

by (Bool), using D |= eq(~y, ~d) ∧ eq(~d ,~e) ≈ eq(~y,~e) ∧ eq(~d ,~e),

≈
∑
~y a(y0, . . . , yn−1) � eq(~y,~e) ∧ eq(~d ,~e) � δ;

and by Lemma 6.15 and Corollary 6.17

≈ z(a(e0, . . . , en−1)) � eq(~d ,~e) � δ.

This proves (6.9).

122 Chapter 6 Algebraic pCRL

For (Data) we need to show that if D |= d ≈ e, then

Π(A,D)flat ` z(p[x := d]) ≈ z(p[x := e]). (6.10)

First, observe that we may assume without loss of generality that x does not
occur in d or in e. For if x happens to occur in d or in e, then we select a
variable y distinct from x and with no occurrence in d , e and p; we note that
p[x := d] = p[x := y][y := d] and p[x := e] = p[x := y][y := e]; and we continue
the proof with p[x := y] instead of p, and with y instead of x. Now, given that x
does not occur in d or e, we may apply Corollary 6.17 to both z(p[x := d]) and
z(p[x := e]), and, since D |= d ≈ e implies D |= eq(x, d) ≈ eq(x, e), we obtain
(6.10) by (Bool).
It remains to consider (Cq3); we need to show that

Π(A,D)flat `
∑
xz(p) ≈

∑
xz(p) +z(p[x := d]). (6.11)

Note that for flat pCRL expressions Lemma 5.31 on p. 91 holds with Π(A,D)flat

instead of Π(A,D); we use it to conclude from D |= eq(x, d) 4 > that

Π(A,D)flat ` z(p) � eq(x, d) � δ 4 z(p) �>� δ,

so that by (C1)

Π(A,D)flat ` z(p) ≈ z(p) +z(p) � eq(x, d) � δ. (6.12)

We now first derive (6.11) for the special case that x has no occurrence in d :∑
xz(p)
≈
∑
x(z(p) +z(p) � eq(x, d) � δ) by (6.12)

≈
∑
xz(p) +

∑
xz(p) � eq(x, d) � δ by (Cq4)

≈
∑
xz(p) +z(p[x := d]) by Cor. 6.17.

For the general case, let y be a variable such that y 6= x, y has no occurrence in d
and y 6∈ FV(p). By the first two conditions on y we may apply the special case to
conclude

Π(A,D)flat `
∑
xz(p) ≈

∑
xz(p) +z(p[x := y]) and (6.13)

Π(A,D)flat `
∑
y z(p[x := y]) ≈

∑
y z(p[x := y]) +z(p[x := y][y := d]).

(6.14)

The third condition on y ensures that y 6∈ FV(
∑
xz(p)), so if we apply

∑
y to both

sides of (6.13), and subsequently apply (Cq1) to the left-hand side and (Cq4) and
(Cq1) to the right-hand side, then we get

Π(A,D)flat `
∑
xz(p) ≈

∑
xz(p) +

∑
y z(p[x := y]). (6.15)

Since p[x := y][y := d] = p[x := d], the general case now follows by combining
(6.14) and (6.15). �

6.3 Dimension-restricted free basic process modules 123

From the set Pflat of flat pCRL expressions we obtain an algebra pCRL(A,D)flat

of flat pCRL expressions modulo provable equivalence, dividing out the congruence
induced on Pflat by Π(A,D)flat. The construction is completely analogous to the
one that turned P into pCRL(A,D); we do not spell out the details. Combining
Lemma 6.14 and Theorem 6.18, if p and q are pCRL expressions, then

Π(A,D)flat ` z(p) ≈ z(q) if, and only if, Π(A,D) ` p ≈ q .

Hence, and since z is surjective onto the set of flat pCRL expressions, the associ-
ation

[z(p)] 7→ [p].

defines a surjective embedding from pCRL(A,D)flat into pCRL(A,D). Therefore,
we have the following corollary.

Corollary 6.19 Suppose that D has equality and quantifier elimination. The
algebra pCRL(A,D)flat of flat pCRL expressions modulo provable equivalence is a
basic process module over B, and it is isomorphic to the algebra pCRL(A,D) of
pCRL expressions modulo provable equivalence.

6.3 Dimension-restricted free basic process modules

Our goal in this section is to find a complete abstract algebraic characterisation of
pCRL(A,D). We have proved in the previous section that pCRL(A,D) is a basic
process module over B; to complete our characterisation we determine the dis-
tinctive properties of pCRL(A,D) in comparison with other basic process modules
over B.

With the transition from basic process algebras with deadlock to ω-dimensional
basic process modules, we have added a notion of ‘dimension’. The dimension set
dim p associated with an element p of an ω-dimensional basic process algebra P
is the set of all i < ω such that sip 6= p in P. In the case of the basic process
modules F∗ (discussed in Section 6.1) the dimension set dimF of an element F
of F∗ consists of all i < ω such that F is not uniform along i. In the case of the
basic process modules pCRL(A,D) and pCRL(A,D)flat of pCRL expressions modulo
provable equivalence (discussed in Section 6.2) the dimension set dim[p] consists
of all i < ω such that

∑
xi

p and p are not provably equivalent. Since FV(p) is
finite for every pCRL expression p, and xi 6∈ FV(p) implies that

∑
xi

p and p are
provably equivalent by an application of (Cq1), we conclude that dim[p] is finite
for every pCRL expression p (both in pCRL(A,D) and pCRL(A,D)flat). This is a
distinct property of pCRL(A,D) and pCRL(A,D)flat that not every basic process
module has.

Definition 6.20 An ω-dimensional basic process module P is locally finite if dim p
is finite for all elements p of P.

124 Chapter 6 Algebraic pCRL

Remark 6.21 Our notions “dimension set” and “local finiteness” are analogous
to the corresponding notions in the theory of cylindric algebras (cf. Henkin et al.,
1971). Naturally, a cylindric algebra C is locally finite if for every element b of C
the equality cib = b is true in C for all but finitely many i < ω. The cylindric
algebra of formulas Fm/↔D is a locally finite cylindric algebra, so B is locally
finite too, by Theorem 6.8.

Our remarks preceding Definition 6.20 establish the following lemma.

Lemma 6.22 pCRL(A,D) is a locally finite basic process module over B.

Thus, for the sake of our comparison of pCRL(A,D) with other basic process
modules over B, we now zoom in at the locally finite ones. The principal way
to compare algebras is through their homomorphisms. Let C be an arbitrary
cylindric algebra, and consider a homomorphism h : P → Q between two locally
finite basic process modules P and Q over C. Then h is dimension-preserving in
the sense that

dimh(p) ⊆ dim p for all p in P.

Indeed, if sip = p in P, then, since h is a homomorphism, sih(p) = h(sip) = h(p)
in Q. Hence, if P0 is a subset of P and f : P0 → Q is an arbitrary mapping from
P0 into the universe Q of Q that extends to a homomorphism from P into Q, then
f must be dimension-preserving. From the fact that there exist locally finite basic
process modules for which there is no finite upper bound on the dimensions of
their elements (pCRL(A,D) and pCRL(A,D)flat are examples), we conclude: if an
algebra is free for the class of locally finite basic process modules over C, then the
dimension sets associated with its free generators must be infinite (and, in fact,
equal to ω). In other words, there is no nontrivial free locally finite basic process
module over C (the trivial basic process module over C is the one with {δ} as its
universe).

This is a pity, because the free algebras in a class are often very useful for
the description of the algebras belonging to the class. Fortunately, in the case
of locally finite basic process modules, there is a way out that requires only a
minor curtailment of freedom. Suppose that P is a locally finite basic process
module over C, and suppose that P0 is a set of generators for P. Then P0 is
dimension-restricted free for P if every dimension-preserving mapping from P0

into the universe Q of any other locally finite basic process module over C can be
extended to a homomorphism h : P → Q. In this case we shall also say that P
is dimension-restricted free on P0. A locally finite basic process module is called
dimension-restricted free if it has a dimension-restricted free set of generators.

Proposition 6.23 Let C be a cylindric algebra. If P and Q are locally finite basic
process modules over C, dimension-restricted free on P0 and Q0, respectively, and
there exists a bijection f : P0 → Q0 such that both f and f−1 are dimension-
preserving, then P and Q are isomorphic.

6.3 Dimension-restricted free basic process modules 125

Proof. Let h1 : P → Q and h2 : Q → P be the unique homomorphic ex-
tensions of f and f−1, respectively. Then h2 ◦ h1 homomorphically extends the
identity mapping on P0, and therefore it is the identity mapping on the universe
of P. Similarly, h1 ◦ h2 homomorphically extends the identity mapping on Q0

and therefore is the identity mapping on the universe of Q. Consequently, the
homomorphisms h1 and h2 are bijections, and hence isomorphisms. �

So, if we prove that pCRL(A,D) is a dimension-restricted free locally finite basic
process module over B, then we have characterised it up to isomorphism, and this
is the purpose of the remainder of this section. The first thing we should do is to
select a set of generators for pCRL(A,D). The definition of pCRL expressions (see
(3.4) on p. 33) suggests a candidate: the set of equivalence classes in pCRL(A,D)
that contain an action expression. Needless to say, it generates pCRL(A,D), but
Corollary 6.11 may be used to show that it cannot be dimension-restricted free.

Example 6.24 Let a ∈ A be a unary parametrised action symbol, and suppose
that the universe of D contains at least two distinct elements, say d0 and d1.
Then, the action expressions a(x0) and a(x1) are not provably equivalent (if ν is a
valuation such that ν(x0) = d0 and ν(x1) = d1, then TD(A), ν 6|= a(x0) ≈ a(x1)).
Now, observe that, by Corollary 6.11, s0(d01:→[a(x0)]) = [a(x1)] in pCRL(A,D).
Hence, a mapping f that maps the equivalence classes in pCRL(A,D) that contain
an action expression into another locally finite basic process module over B can
only be extended to a homomorphism if f [a(x1)] = s0(d01:→ f [a(x0)]). Conse-
quently, as soon as we have fixed a value for f at [a(x0)], we no longer have any
freedom at all in choosing a value for f at [a(x1)].

The rationale of the above example is that a dimension-restricted free set of gen-
erators for pCRL(A,D) perhaps contains [a(x0)] or [a(x1)], but certainly not both.
(It seems quite natural to prefer [a(x0)] over [a(x1)], [a(x0, x1)] over [a(x6, x9)],
etc.) We prove below that

{[a(x0, . . . , xn−1)] | a ∈ A of arity n} (6.16)

is a dimension-restricted free set of generators for pCRL(A,D). Caution: the
sequence x0, . . . , xn−1 consists of the first n variables in the enumeration of X
fixed at the beginning of Section 6.1; henceforth, we shall call it the nth initial
segment of X. Note that the association

a 7→ [a(x0, . . . , xn−1)] (6.17)

defines a bijection between A and the set in (6.16). It is notationally conve-
nient to use the parametrised action symbol as a constant symbol denoting the
corresponding equivalence class, and, more generally, to use B-BPMω-terms over
A (i.e., terms built from the constant symbols A by means of another constant
symbol δ, unary function symbols si (i < ω) and [b]:→ ([b] ∈ B), and binary
function symbols + and ·) as formal expressions denoting equivalence classes of
pCRL(A,D).

126 Chapter 6 Algebraic pCRL

Example 6.25 If a ∈ A, then s0(d01:→ a) is an example of a B-BPMω-term over
A, which (if a’s arity happens to be 2) denotes the equivalence class that contains
the pCRL expression∑

x0
a(x0, x1) � eq(x0, x1) � δ.

If in and out are unary parametrised action symbols, and associated with D is a
Boolean expression 0 ≤ x0, then s0([0 ≤ x0]:→ in · out) is a B-BPMω-term over A
that denotes the equivalence class in pCRL(A,D) containing∑

x0
in(x0)out(x0) � 0 ≤ x0 � δ.

To say that the set in (6.16) generates pCRL(A,D) means that every equivalence
class in pCRL(A,D) is denoted by a B-BPMω-term over A. To prove it, we shall
define a mapping ξ from flat pCRL expressions to B-BPMω-terms over A such that
ξ(p) denotes the equivalence class in pCRL(A,D) that contains p (this is enough
since every equivalence class in pCRL(A,D) contains a flat pCRL expression). The
definition of ξ makes extensive use of the algebraic counterpart of substitution
of the variable xj for the variable xi, expressed as a composition of a projective
summation si and a guarded command dij :→. Therefore, it is convenient to
introduce an abbreviation: if C is a cylindric algebra of dimension ω and P is a
basic process module over C, then we define for all i, j < ω a unary operation σij
on the elements p of P by

σijp =
{

si(dij :→ p) if i 6= j; and
p if i = j.

The following lemma is to record that σij behaves as expected on pCRL(A,D).

Lemma 6.26 If i, j < ω, then σij [p] = [p[xi := xj]] in pCRL(A,D).

Proof. If i = j, then this is trivial. If i 6= j, then, by the definition of cylindric
summations and guarded commands in pCRL(A,D), the element σij [p] contains
the pCRL expression∑

xi
p � eq(xi, xj) � δ.

This expression is, by Corollary 6.11, provably equivalent to p[xi := xj]; hence
σij [p] contains p[xi := xj]; this proves the lemma. �

Definition 6.27 We define ξ as the unique mapping from flat pCRL expressions
to B-BPMω-terms over A such that

(i) if p = a(xi0 , . . . , xin−1) with a ∈ A of arity n, and m is the least element of
ω such that m > n− 1, i0, . . . , in−1, then

ξ(p) = σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

ma;

(ii) if p is a conditional, say p = q � b � r , then ξ(p) = [b]:→ ξ(q)+¬[b]:→ ξ(r).

6.3 Dimension-restricted free basic process modules 127

(iii) ξ respects the other constructs of pCRL, i.e.,

ξ(δ) = δ, ξ(p · q) = ξ(p) · ξ(q), and
ξ(p + q) = ξ(p) + ξ(q), ξ(

∑
xi

p) = siξ(p).

Lemma 6.28 For every flat pCRL expression p, ξ(p) denotes [p] in pCRL(A,D).

Proof. The proof is by structural induction on p.
Suppose p = a(xi0 , . . . , xin−1) with a ∈ A of arity n, and let m > n−1, i0, . . . , in−1,
so that

ξ(p) = σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

ma.

By Lemma 6.26, the equivalence class denoted by σn−1
m+n−1 · · ·σ0

ma contains the
action expression a(x0, . . . , xn−1)[x0 := xm] · · · [xn−1 := xm+n−1], which is (syn-
tactically) equal to

a(xm, . . . , xm+n−1)

since the variables in the sequences x0, . . . , xn−1 and xm, . . . , xm+n−1 are all mu-
tually distinct. Then, by Lemma 6.26, we find that ξ(p) is the equivalence class
in pCRL(A,D) that contains a(xm, . . . , xm+n−1)[xm+n−1 := xin−1] · · · [xm := xi0].
Since the variables in the sequence xm, . . . , xm+n−1 are mutually distinct and also
distinct from the variables in the sequence xi0 , . . . , xim−1 , this action expression is
(syntactically) equal to

a(xi0 , . . . , xin−1) = p.

Suppose that p = q � b � r . By the induction hypothesis and the definition of
guarded commands in pCRL(A,D), ξ(p) contains the pCRL expression

q � b � δ + r � ¬ b � δ,

which is by Lemma 5.5 on p. 77 provably equivalent to p.
For the other cases, the proof is straightforward. �

Since by Theorem 6.18 every element of pCRL(A,D) contains a flat pCRL ex-
pression, by the lemma just proved, every equivalence class in pCRL(A,D) is de-
noted by an element from the set of B-BPMω-term over A. Since the latter set
is generated by A, it follows that the set of equivalence classes denoted by the
elements of A, i.e., the set in (6.16), generates pCRL(A,D). Consequently, it now
remains to establish that this set is dimension-restricted free, and for this, the set
of B-BPMω-terms over A may also be of help. Namely, there is a straightforward
way to transform it into a dimension-restricted free algebra. We define a deductive
system B-BPMω(A) for equations of the form t ≈ u, where t and u are B-BPMω-
terms over A. As inference rules it has the rules of equational logic associated
with basic process modules over B. As axioms it has

128 Chapter 6 Algebraic pCRL

(Cs7) sia ≈ a if a ∈ A of arity ≤ i.

Table 6.6: The dimension-restriction axioms for parametrised action symbols.

1. the equations generated by the axioms of basic process modules over B
(cf. Tables 2.1 on p. 17, 6.1 on p. 108, and 6.4 on p. 111), replacing each
occurrence of ‘=’ by ‘≈’ and letting p, q and r range over B-BPMω-terms
over A, and

2. the dimension-restriction axioms for the elements of A as generated by the
schema (Cs7) in Table 6.6.

If t ≈ u has a deduction within this deductive system, then we call t and u provably
equivalent and we write B-BPMω(A) ` t ≈ u. The set of B-BPMω-terms over A
is naturally the universe of an algebra similar to basic process modules over B
and provable equivalence is a congruence on this algebra. We shall denote the
quotient, i.e., the algebra of B-BPMω-terms over A modulo provable equivalence,
by I(A,B). If t is a B-BPMω-term over A, then we write [t] for the equivalence
class in I(A,B) that contains it.

Proposition 6.29 The algebra I(A,B) is a locally finite basic process module
over B, and the set {[a] | a ∈ A} is dimension-restricted free for I(A,B).

Proof. Clearly, I(A,B) is a basic process module over B.
If t is a B-BPMω-term over A, then we write dim t for the set of all i < ω

such that B-BPMω(A) 6` sit ≈ t . To prove that I(A,B) is locally finite, it is
enough to show that dim t is finite; we proceed by structural induction on t : If
t = δ, then dim t = ∅ by (Cs6), and if t is a parametrised action symbol of
arity n, then dim t ⊆ {0, . . . , n − 1} by (Cs7). If t = u + v or t = u · v , then
dim t ⊆ (dim u ∪ dim v) by (Cs4) and (Cs5), respectively; since dim u and dim v
are finite by the induction hypothesis, dim t is finite too. If t = [b]:→ t ′, then
dim t ⊆ (dim t ′ ∪ {i < ω | ci[b] 6= [b] in B}) by (Gc9) or (Gc10). The set dim t ′

is finite by the induction hypothesis, and the set {i < ω | ci[b] 6= [b] in B} is finite
since B is locally finite (cf. Remark 6.21). Hence dim t is finite. If t = sit ′, then
dim t ⊆ (dim t ′ − {i}) according to (Cs2); since dim t ′ is finite by the induction
hypothesis, also dim t is finite.

That the set {[a] | a ∈ A} generates I(A,B) is clear; it remains to prove that it
is dimension-restricted free for I(A,B). So, suppose that P is an arbitrary locally
finite basic process module over B and consider a dimension-preserving mapping

f : {[a] | a ∈ A} → P.

We define a mapping g from the set of all B-BPMω-terms over A into the universe
of P as the homomorphic extension of the association that sends a ∈ A to f [a]:

g(a) = f [a] g(t · u) = g(t) · g(u) g([b]:→ t) = [b]:→ g(t)
g(δ) = δ g(t + u) = g(t) + g(u) g(sit) = sig(t).

6.3 Dimension-restricted free basic process modules 129

Since f is dimension-preserving, g maps each a ∈ A of arity n to an element p of
P such that dim p ⊆ {0, . . . , n− 1}; hence, sig(a) = g(a) for all i ≥ n. From this,
and since P is a basic process module over B, we get that if B-BPMω(A) ` t ≈ u,
then g(t) = g(u) in P. That is, g maps all the elements of an equivalence class
in I(A,B) to the same element in P, and therefore there exists a function h from
I(A,B) into P that sends [t] to g(t). It is immediate from the definition of g that
h is a homomorphism and that it extends f . �

Remark 6.30 The theory of basic process algebras with deadlock is usually pre-
sented as an algebraic specification parametrised by a set of constant symbols
(action symbols). Similarly, one might view the theory of basic process modules
over B as an algebraic specification parametrised by a set of constant symbols
(parametrised action symbols) and a set of axioms that specify the dimension of
each of these constant symbols (the axioms generated by the schema (Cs7) in Ta-
ble 6.6). The algebra I(A,B) is the initial algebra associated with this algebraic
specification.

The usefulness of Proposition 6.29 is in that we do not have to exhibit a homo-
morphism from pCRL(A,D) into every other locally finite basic process module
over B to show that it is dimension-restricted free. It is now sufficient to exhibit
an isomorphism between pCRL(A,D) and I(A,B). This, in turn, can be achieved
by proving the following completeness theorem: for all flat pCRL expressions p
and q

Π(A,D)flat ` p ≈ q if, and only if, B-BPMω(A) ` ξ(p) ≈ ξ(q).

We shall prove the completeness theorem below as Theorem 6.37. Its proof consists
mainly in showing how the axioms of Π(A,D)flat, when reformulated as equations
of B-BPMω-terms over A, can be deduced by means of the axioms of basic process
modules and the dimension-restriction axioms. Before we come to that, however,
we shall make a few preparations. In particular, we shall demonstrate that the
syntactic notions ‘xi 6∈ FV(p)’ and ‘p[xi := xj]’, which play a prominent rôle in
the axioms of Π(A,D)flat, are adequately represented by their algebraic counter-
parts in the theory of basic process modules (see Lemma 6.33 and Lemma 6.35,
respectively).

First, we establish a few facts about the unary substitution operations σij on
basic process modules. For the formulation thereof it is convenient to also define
them on cylindric algebras: let C be a cylindric algebra of dimension ω; we define
for all i, j < ω a unary operation σij on elements b of C by

σijb =
{

ci(dij ∧ b) if i 6= j; and
b if i = j.

In the proof of following lemma we shall make use of certain derived identities of
cylindric algebras; they are all established in Henkin et al. (1971).

Lemma 6.31 Let C be a cylindric algebra of dimension ω, let i, j, k, l < ω, and
let b ∈ C; then, in every basic process module over C,

130 Chapter 6 Algebraic pCRL

(i) σijδ = δ, σij distributes over + and ·, and σij(b:→ p) = (σijb):→σijp;

(ii) dij :→σki p = dij :→σkj p;

(iii) if k 6= i, j, then skσijp = σijskp;

(iv) σijsip = sip;

(v) σki σ
j
kskp = σji skp;

(vi) σki σ
j
kskslp = σliσ

j
l slskp; and

(vii) if k 6= i, j, then σijσ
k
l p =

{
σkjσ

i
jp if i = l; and

σkl σ
i
jp otherwise.

Proof.

(i) This is trivial if i = j, so we assume i 6= j. We then obtain σijδ = δ by (Gc5)
and (Cs6), and σij(p + q) = σijp + σijq by (Gc6) and (Cs4). Furthermore,
we have

σij(p · q) = si((dij :→ p) · (dij :→ q)) by (Gc7), (Gc8)

= si((dij :→ p) · (dij :→σijq)) by (Gc11)

= σijp · σijq by (Gc8), (Cs5);

and σij(b:→ p) = (σijb):→σijp can be deduced with (Gc4), (Gc9), (Gc11)
and commutativity, associativity and idempotency of ∧.

(ii) If i = j, then, trivially, dij :→σki p = dij :→σkj p.
If i 6= j, but i = k, then dij :→σki p = dij :→ p = dij :→σkj p by (Gc11), and
the case that i 6= j, but j = k, is similar.
So, suppose that i, j and k are distinct; then

(∗) ckdij = dij and
(∗∗) dij ∧ dki = dij ∧ dkj

(Henkin et al., 1971),

so

dij :→σki p = dij :→ sk(dki:→ p)
= sk(dij :→(dki:→ p)) by (Gc10) and (*)
= sk(dij :→(dkj :→ p)) by (Gc4) and (**)
= dij :→ sk(dkj :→ p) by (Gc10) and (*)

= dij :→σkj p.

(iii) If k 6= i, j, then skσijp = σijskp by (Cs1), (Gc10) and (*).

(iv) If i = j, then σijsip = sip is by definition. If i 6= j, then, since cidij = >
(cf. Henkin et al., 1971), σijsip = sip is by (Gc9) and (Gc1).

6.3 Dimension-restricted free basic process modules 131

(v) If k = i or k = j, then σki σ
j
kskp = σji skp by definition. If k 6= i, j, then we

obtain σki σ
j
kskp = σji skp from (ii)–(iv):

σki σ
j
kskp = σki σ

j
i skp by (ii)

= σki skσ
j
ip by (iii)

= skσ
j
ip by (iv)

= σji skp by (iii).

(vi) That σki σ
j
kskslp = σliσ

j
l slskp follows from (v) and (Cs1).

(vii) If k 6= i, j, then, by (iii) and (i), σijσ
k
l p = sk((σijdkl):→σijp).

If i = l, then, since σijdki = dkj (cf. Henkin et al., 1971), the right-hand
side is equivalent to σkjσ

i
jp.

On the other hand, if i 6= l, then, since also i 6= k, σijdkl = dkl (cf. Henkin
et al., 1971), so the right-hand side is equivalent to σkl σ

i
jp. �

Note that the proof of Lemma 6.31 does not involve any applications of (Cs3).
As an amusing and instructive aside, we can use Lemma 6.31(v) to prove that
(Cs3) is superfluous in the definition of locally finite ω-dimensional basic process
modules. We establish this in the following corollary. (Clearly, our definitions of
‘dimension set’ and ‘local finiteness’ make sense for every algebraic structure with
a sequence s0, s1, . . . , sk, . . . (k < ω) of unary operations.)

Corollary 6.32 Let C be a cylindric algebra, and let P be an algebraic structure
similar to basic process modules over C. The following are equivalent:

(i) P is locally finite, and satisfies the equalities in Table 2.1 on p. 17, the
equalities (Cs1), (Cs2) and (Cs4)–(Cs6) from Table 6.1 on p. 108, and the
equalities in Table 6.4 on p. 111.

(ii) P is a locally finite basic process module over C.

Proof. That (ii) implies (i) is immediate; we prove that (i) implies (ii).
Let p be an element of P; we prove that sip = sip + p for all i < ω. Using that

P is locally finite, let j < ω be such that j 6= i and j 6∈ dim p. We conclude that

sip = sip + sjσijp (6.18)

from the following deduction:

sip = sisjp j 6∈ dim p

= sisj((dij ∨ ¬dij):→ p) by (Gc1)
= sisj(dij :→ p + ¬dij :→ p) by (Gc3)
= sisj((dij :→ p + ¬dij :→ p) + dij :→ p) by (A1)–(A3)
= sisj(p + dij :→ p) by (Gc3), (Gc1)
= sip + sisj dij :→ p by (Cs4), j 6∈ dim p

= sip + sjσijp by (Cs1).

132 Chapter 6 Algebraic pCRL

Then, observe that by omitting all occurrences of sj in the above deduction, we
get a deduction that proves sip = sip + σjip, whence

sjσijp = sjσijp + σjiσ
i
jp.

Since j 6∈ dim p we get by Lemma 6.31(v) that σjiσ
i
jp = σjiσ

i
jsjp = sjp = p, so

sjσijp = sjσijp + p. (6.19)

Hence,

sip = sip + sjσijp by (6.18)

= sip + (sjσijp + p) by (6.19)

= (sip + sjσijp) + p by (A2)

= sip + p by (6.18).

Consequently, P is a locally finite ω-dimensional basic process module over C. �
When we demonstrated the local finiteness of pCRL(A,D), we established that

xi 6∈ FV(p) implies that
∑
xi

p and p are provably equivalent, whence i 6∈ dim[p]
in pCRL(A,D). The proof involved an application of (Cq1) (cf. our remarks
preceding Definition 6.20). We now deduce this same property again, but this time
we only use axioms of basic process modules and dimension-restriction axioms.
This shows that the algebraic notion of ‘dimension’ adequately represents the
syntactic notion of ‘free variables in an expression’.

Lemma 6.33 If p is a flat pCRL expression such that xi 6∈ FV(p), then

B-BPMω(A) ` siξ(p) ≈ ξ(p). (6.20)

Proof. We assume xi 6∈ FV(p) and prove (6.20) by structural induction on p.
Suppose that p = a(xi0 , . . . , xin−1) with a ∈ A of arity n, let m be the least element
of ω such that m > n− 1, i0, . . . , in−1, so that

ξ(p) = σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

ma.

Note that i 6∈ {i0, . . . , in−1} by the assumption that xi 6∈ FV(p). We now distin-
guish three cases:
If i < n, then we may interchange si and σmi0 · · ·σ

m+n−1
in−1

σn−1
m+n−1 · · ·σ

i+1
m+i+1 in

the left-hand side of (6.20) by Lemma 6.31(iii), and subsequently delete si with
an application of (Cs2); this gives the right-hand side of (6.20).
Likewise, if m ≤ i < m + n, say i = m + j with 0 ≤ j < n, then starting from
the left-hand side of (6.20) we interchange si and σmi0 · · ·σ

i−1
ij−1

, so that we may
subsequently delete si to obtain the right-hand side of (6.20).
In the case that remains, n < i < m or i ≥ m + n, so by Lemma 6.31(iii) and
(Cs7),

siξ(p) ≈ σmi0 · · ·σ
m+n−1
im+n−1

σn−1
m+n−1 · · ·σ0

msia ≈ ξ(p).

6.3 Dimension-restricted free basic process modules 133

Suppose that p is a conditional, say p = q � b � r . Clearly, xi 6∈ FV(p) implies
that xi does not occur in b, and therefore ci[b] = [b] and ci[¬ b] = [¬ b] in B. We
now prove (6.20) with the following deduction:

siξ(p) = si(ci[b]:→ ξ(q) + ci[¬ b]:→ ξ(r))
≈ si(ci[b]:→ ξ(q)) + si(ci[¬ b]:→ ξ(r)) by (Cs4)
≈ ci[b]:→ siξ(q) + ci[¬ b]:→ siξ(r) by (Gc10)
≈ ci[b]:→ ξ(q) + ci[¬ b]:→ ξ(r) by (IH)
= ξ(p).

If p = δ, then siξ(p) ≈ ξ(p) by (Cs6).
If p = q + r , then siξ(p) ≈ siξ(q) + siξ(r) by (Cs4), so siξ(p) ≈ ξ(p) follows by
the induction hypothesis.
If p = q · r , then ξ(r) ≈ siξ(r) by the induction hypothesis,

siξ(p) ≈ si(ξ(q) · siξ(r)) ≈ siξ(q) · siξ(r)

by (Cs5), and siξ(p) ≈ ξ(p) by another two applications of the induction hypoth-
esis.
If p =

∑
xj

q , then there are two cases: if xi = xj , then siξ(p) ≈ ξ(p) by (Cs2);
otherwise xi 6∈ FV(q), whence siξ(q) ≈ ξ(q) by the induction hypothesis, and
hence siξ(p) ≈ sjsiξ(q) ≈ ξ(p) by (Cs1). �

Intuitively, the sequence of natural numbers m, . . . ,m + n − 1 in the defini-
tion of ξ (Definition 6.27) refers to a sequence of ‘fresh’ variables xm, . . . , xm+n−1

(‘fresh’ here means ‘without an occurrence in the sequence x0, . . . , xn−1 or in the
sequence xi0 , . . . , xin−1 ’). Freshness is ensured by choosing m larger than n − 1
and i0, . . . , in−1; that we took for m the least such number, was a quite arbitrary
choice. The following lemma shows that any m > n− 1, i0, . . . , in−1 does the job.

Lemma 6.34 If a = a(xi0 , . . . , xin−1) is a flat action expression, then

B-BPMω(A) ` ξ(a) ≈ σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

ma

for all m > n− 1, i0, . . . , in−1.

Proof. By definition

ξ(a) = σmi0 · · ·σ
m+n−1
in−1

σ
in−1
m+n−1 · · ·σ0

ma,

where m is the least element of ω that is greater than n− 1, i0, . . . , in−1. We need
to show that, in fact, m may be any element of ω greater than n− 1, i0, . . . , in−1,
and this is easily obtained as a consequence of the following claim.

Claim Let P be a basic process module and suppose that p is an element of P; if
m, . . . ,m+ n 6∈ dim p and m > i0, . . . , in−1, then

σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

mp = σm+1
i0
· · ·σm+n

in−1
σn−1
m+n · · ·σ0

m+1p.

134 Chapter 6 Algebraic pCRL

If n = 0, then there is nothing to prove.
Assume, inductively, that n > 0 and m, . . . ,m+ n 6∈ dim p. Then

σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

mp

= σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1

σn−2
m+n−2 · · ·σ0

msm+n−1sm+np m, . . . ,m+ n 6∈ dim p

= σmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1sm+n−1sm+n

σn−2
m+n−2 · · ·σ0

mp by Lem. 6.31(iii)

= σmi0 · · ·σ
m+n−2
in−2

σm+n
in−1

σn−1
m+nsm+nsm+n−1

σn−2
m+n−2 · · ·σ0

mp by Lem. 6.31(vi)

= σmi0 · · ·σ
m+n−2
in−2

σm+n
in−1

σn−1
m+nσ

n−2
m+n−2 · · ·σ0

mp by Lem. 6.31(iii)

= σm+n
in−1

σmi0 · · ·σ
m+n−2
in−2

σn−2
m+n−2 · · ·σ0

mσ
n−1
m+np by Lem. 6.31(vii),

whence, since m, . . . ,m+ n− 1 6∈ dim(σn−1
m+np) by Lemma 6.31(iii),

= σm+n
in−1

σm+1
i0
· · ·σm+n−1

in−2

σn−2
m+n−1 · · ·σ0

m+1σ
n−1
m+np by (IH)

= σm+1
i0
· · ·σm+n

in−1
σn−1
m+n · · ·σ0

m+1p by Lem. 6.31(vii).

The claim has been proved, and the lemma follows from it. �

We can now prove that the syntactic notion of ‘substituting the variable xj for
the free occurrences of the variable xi’ is adequately represented by its algebraic
counterpart, the unary operation σij .

Lemma 6.35 For every flat pCRL expression p,

B-BPMω(A) ` σijξ(p) ≈ ξ(p[xi := xj]). (6.21)

Proof. If i = j, then the lemma is trivial. If xi 6∈ FV(p), then p = p[xi := xj]
and ξ(p) ≈ siξ(p) by Lemma 6.33, and hence (6.21) follows by Lemma 6.31(iv).
For the remainder of the proof, we therefore assume that i 6= j and that xi ∈ FV(p);
we proceed by structural induction on p.
Suppose that p = a(xi0 , . . . , xin−1) and p[xi := xj] = a(xj0 , . . . , xjn−1); clearly,
jk = ik if ik 6= i, and jk = j if ik = i (0 ≤ k ≤ n− 1). Let us now fix

m > n− 1, i0, . . . , in−1, j0, . . . , jn−1.

In particular m > i, since i ∈ {i0, . . . , in−1} by our assumption that xi ∈ FV(p),
so, with a few applications of Lemma 6.31(iii) and a subsequent application of
either (Cs2) or (Cs7), we easily get

B-BPMω(A) ` σn−1
m+n−1 · · ·σ0

ma ≈ siσn−1
m+n−1 · · ·σ0

ma. (6.22)

6.3 Dimension-restricted free basic process modules 135

We now deduce (6.21) as follows:

σijξ(p) ≈ σijσmi0 · · ·σ
m+n−1
in−1

σn−1
m+n−1 · · ·σ0

ma by Lem. 6.34

≈ σmj0 · · ·σ
m+n−1
jn−1

σijσ
n−1
m+n−1 · · ·σ0

ma by Lem. 6.31(vii)

≈ σmj0 · · ·σ
m+n−1
jn−1

σijsiσ
n−1
m+n−1 · · ·σ0

ma by (6.22)

≈ σmj0 · · ·σ
m+n−1
jn−1

siσn−1
m+n−1 · · ·σ0

ma by Lem. 6.31(iv)

≈ σmj0 · · ·σ
m+n−1
jn−1

σn−1
m+n−1 · · ·σ0

ma by (6.22)

≈ ξ(p[xj := xi]) by Lem. 6.34.

If p = δ, then (6.21) is immediate by Lemma 6.31(i).
If p = p1 + p2, p = p1 · p2, or p = p1 � b � p2, then (6.21) is easily deduced from
Lemma 6.31(i) and the induction hypothesis.
If p =

∑
xk

p′, then k 6= j by our assumption about substitutions (see p. 33).
Moreover, k 6= i by our assumption that xi ∈ FV(p). By the induction hypothesis,
we get that σijξ(p

′) ≈ ξ(p′[xi := xj]), so (6.21) follows by Lemma 6.31(iii).
The proof is complete. �

We shall prove the completeness theorem by establishing a correspondence be-
tween the axioms of Π(A,D)flat and the axioms of basic process modules. To prove
that the equivalents of the axioms for the binary conditionals of Π(A,D)flat can
be derived with the axioms for guarded commands in basic process modules will
be to a large extent straightforward. The deduction of the equivalent of (C6) is
a minor exception, and it is convenient to prove it ahead of things, as a separate
lemma.

Lemma 6.36 Let C be a cylindric algebra, and let b be an element of C; then

(b:→ p + ¬ b:→ q) · (b:→ r + ¬ b:→ s) = b:→(p · r) + ¬ b:→(q · s)

for all elements p, q, r and s of a basic process module over C.

Proof. We get

(b:→ p) · (b:→ q + ¬ b:→ r) = b:→(p · q); (6.23)

for, since b ∧ b = b and b ∧ ¬ b = ⊥ in C, we have the following deduction:

(b:→ p) · (b:→ q + ¬ b:→ r)
= (b:→ p) · (b:→ q +⊥:→ r) by (Gc8), (Gc6) and (Gc4)
= (b:→ p) · (b:→ q + δ) by (Gc2)
= (b:→ p) · (b:→ q) by (A6)
= b:→(p · q) by (Gc8) and (Gc7).

Then, by (A4) and (A1), and since ¬¬ b = b in C,

(b:→ p + ¬ b:→ q) · (b:→ r + ¬ b:→ s) =
(b:→ p) · (b:→ r + ¬ b:→ s) + (¬ b:→ q) · (¬ b:→ s + ¬¬ b:→ r).

The lemma follows by applying (6.23) to the right-hand side. �

136 Chapter 6 Algebraic pCRL

We now prove the completeness theorem.

Theorem 6.37 Suppose that D has equality and quantifier elimination. Then

Π(A,D)flat ` p ≈ q if, and only if, B-BPMω(A) ` ξ(p) ≈ ξ(q)

for all flat pCRL expressions p and q .

Proof. We first prove that if p ≈ q is an instance of an axiom of Π(A,D)flat,
then B-BPMω(A) ` ξ(p) ≈ ξ(q). Note that ξ distributes over the operations +,
· and δ. Hence, since every basic process module satisfies (A1)–(A7), if p ≈ q is
an instance of one of (A1)–(A7), then B-BPMω(A) ` ξ(p) ≈ ξ(q). Next, we treat
the instances of (C1)–(C6):

(C1) Consider ξ(p �>� q) = [>]:→ ξ(p) + ¬[>]:→ ξ(q). By (Gc1) the first
summand of the right-hand side is provably equal to ξ(p), and, since
¬[>] = [⊥] in B, the second summand is provably equal to δ by (Gc2),
whence may be removed by (A6).

(C2) Consider ξ(p� b �q) = [b]:→ p+¬[b]:→ q , and interchange the summands
in the right-hand side with an application of (A1); since [b] = ¬[¬ b] in B
the result is ξ(q � ¬ b � p).

(C3) Consider

ξ((p � b � q) � c � q)
= [c]:→([b]:→ ξ(p) + ¬[b]:→ ξ(q)) + ¬[c]:→ ξ(q);

in the right-hand side, distribute [c]:→ over the alternative composition
with (Gc6), and combine the guards with (Gc4) to obtain

([c ∧ b]:→ ξ(p) + [c ∧ ¬ b]:→ ξ(q)) + ¬[c]:→ ξ(q).

Rearrange the summands with (A2) and combine the guards [c ∧ ¬ b] and
¬[c] with (Gc3); since [c ∧ ¬ b] ∨ ¬[c] = ¬[b ∧ c] in B, the result is

[b ∧ c]:→ ξ(p) + ¬[b ∧ c]:→ ξ(q) = ξ(p � b ∧ c � q).

(C4) Consider

ξ((p + q) � b � (r + s))
= [b]:→(ξ(p) + ξ(q)) + ¬[b]:→(ξ(r) + ξ(s));

in the right-hand side, with applications of (Gc6) distribute the guards
over the alternative compositions, and rearrange summands with (A1) and
(A2); the result is

([b]:→ ξ(p) + ¬[b]:→ ξ(r)) + ([b]:→ ξ(q) + ¬[b]:→ ξ(s))
= ξ(p � b � r + q � ¬ b � s).

6.3 Dimension-restricted free basic process modules 137

(C5) Consider ξ(p � b ∨ c � δ) = [b ∨ c]:→ ξ(p) +¬[b ∨ c]:→ δ. The first sum-
mand of the right-hand side is provably equal to [b]:→ ξ(p) + [c]:→ ξ(p)
by (Gc3), and the second summand may be deleted by (Gc5) and (A6).

(C6) That B-BPMω(A) ` ξ((p � b �q) · (r � b � s)) ≈ ξ(p · r � b �q · s) follows
from Lemma 6.36.

If D |= b ≈ c, then [b] = [c], so if p ≈ q is an instance of (Bool), then
ξ(p) = ξ(q).

With the instances of (Cq1), (Cq2) and (Cq4)–(Cq6) (recall that (Cq3) was
omitted from the deductive system Π(A,D)flat) we deal as follows:

(Cq1) Immediate by Lemma 6.33.

(Cq2) If i = j, then ξ(
∑
xi

p) = ξ(
∑
xj

p[xi := xj]); so assume that i 6= j. If
xj 6∈ FV(p), then ξ(p) ≈ sjξ(p) by Lemma 6.33; hence, since dij = dji in
every cylindric algebra,

ξ(
∑
xi

p) ≈ siσ
j
i ξ(p) by Lem. 6.31(iv)

≈ sjσijξ(p) by (Cs1)

≈ ξ(
∑
xj

p[xi := xj]) by Lem. 6.35.

(Cq4) Immediate by (Cs4).

(Cq5) If xi 6∈ FV(q), then ξ(q) ≈ siξ(q) by Lemma 6.33, so we get

ξ((
∑
xi

p) · q) ≈ siξ(p) · siξ(q) ≈ ξ(
∑
xi

p · q)

with an application of (Cs5).

(Cq6) If xi does not occur in b, then [b] = ci[b] and ¬[b] = ci ¬[b] in B; so

ξ(
∑
xi

p � b �
∑
xi

q)

= ci[b]:→ siξ(p) + ci ¬[b]:→ siξ(q)
≈ si ci[b]:→ ξ(p) + si ci ¬[b]:→ ξ(q) by (Gc10)
= ξ(

∑
xi

(p � b � q)).

For the instances of (Qe), note that if xi 6∈ FV(p), then (*) ξ(p) ≈ siξ(p) by
Lemma 6.33; hence, using that ci[b] = [β((∃xi)b)] in B, we obtain

ξ(
∑
xi

p � b � δ) ≈ si([b]:→ siξ(p)) by (*)

≈ ci[b]:→ siξ(p) by (Gc9)
≈ ξ(p � β((∃xi)b) � δ) by (*).

Suppose that p ≈ q is an instance of (Eq)′, say

p = a(xi0 , . . . , xin−1) � eq(xi0 , xj0) ∧ · · · ∧ eq(xin−1 , xjn−1) � δ, and
q = a(xj0 , . . . , xjn−1) � eq(xi0 , xj0) ∧ · · · ∧ eq(xin−1 , xjn−1) � δ.

138 Chapter 6 Algebraic pCRL

We fix m > n− 1, i0, . . . , in−1, j0, . . . , jn−1; then

B-BPMω(A) ` di0j0 ∧ · · · ∧ din−1jn−1 :→σmi0 · · ·σ
m+n−1
in−1

t

≈ di0j0 ∧ · · · ∧ din−1jn−1 :→σmj0 · · ·σ
m+n−1
jn−1

t

for every B-BPMω-term t over A, by Lem. 6.31(ii), (vii), (Gc4) and a straight-
forward induction on n. From this, B-BPMω(A) ` ξ(p) ≈ ξ(q) is obtained with
Lemma 6.34.

Hence, if p ≈ q is an axiom of Π(A,D)flat, then B-BPMω(A) ` ξ(p) ≈ ξ(q).
Moreover, it is at once clear that an application of an inference rule of Π(A,D)flat

translates to an application of the corresponding rule of equational logic in the
setting of basic process modules. It follows that any deduction within Π(A,D)flat

proving the validity of an arbitrary equation p ≈ q of flat pCRL expressions p and
q can be transformed into a deduction that proves B-BPMω(A) ` ξ(p) ≈ ξ(q);
this concludes the proof of the implication from left to right.

For the other implication, note that the dimension-restriction axioms are true
in pCRL(A,D) under the interpretation of B-BPMω-terms over A as equivalence
classes of pCRL(A,D) induced by the association in (6.17). Furthermore, by The-
orem 6.9 pCRL(A,D) is a basic process module over B, and satisfies, a fortiori,
the instances of the axioms of basic process modules over B with respect to this
particular interpretation. That is, if B-BPMω(A) ` ξ(p) ≈ ξ(q), then the equiv-
alence class in pCRL(A,D) denoted by ξ(p) must be the same as the equivalence
class denoted by ξ(q). By Lemma 6.28, ξ(p) denotes [p] and ξ(q) denotes [q], and
from [p] = [q] we conclude that Π(A,D)eq

∃ ` p ≈ q . Hence, by Theorem 6.18
Π(A,D)flat ` p ≈ q . This concludes the proof of the implication from right to left,
and the proof of the theorem. �

To conclude that the set in (6.16) is a dimension-restricted free set of generators
for pCRL(A,D) we still need to close one small gap. By Theorem 6.37 it is now
clear that the mapping ξ induces an embedding from pCRL(A,D)flat into I(A,D),
and hence, by Theorem 6.18, that

[p] 7→ [ξ(p)] (6.24)

defines an embedding from pCRL(A,D) into I(A,D). What we need, however, is
an isomorphism, i.e., a surjective embedding, and one that extends the association

[a(x0, . . . , xn−1)] 7→ [a]. (6.25)

Actually, since we already know that the sets {[a(x0, . . . , xn−1)] | a ∈ A of arity n}
and {[a] | a ∈ A} generate pCRL(A,D) and I(A,D), respectively, it suffices that
the embedding defined in (6.24) extends (6.25), and this is a consequence of the
following lemma.

Lemma 6.38 If a is a parametrised action symbol of arity n, then

B-BPMω(A) ` ξ(a(x0, . . . , xn−1)) ≈ a.

6.3 Dimension-restricted free basic process modules 139

Proof. According to Definition 6.27,

ξ(a(x0, . . . , xn−1)) = σn0 · · ·σ2n−1
n−1 σ

n−1
2n−1 · · ·σ0

na.

We prove by induction on j < n that

σn0 · · ·σ
n+j−1
j−1 σj−1

n+j−1 · · ·σ
0
na ≈ a.

If j = 0, then this is immediate; if j > 0, then n+ j − 1 > n− 1, and we deduce

σn0 · · ·σ
n+j−1
j−1 σj−1

n+j−1 · · ·σ
0
na

≈ σn0 · · ·σ
n+j−1
j−1 σj−1

n+j−1 · · ·σ
0
nsn+j−1a by (Cs7)

≈ σn0 · · ·σ
n+j−1
j−1 σj−1

n+j−1sn+j−1σ
j−2
n+j−2 · · ·σ

0
na by Lem. 6.31(iii)

≈ σn0 · · ·σ
n+j−2
j−2 sn+j−1σ

j−2
n+j−2 · · ·σ

0
na by Lem. 6.31(v)

≈ σn0 · · ·σ
n+j−2
j−2 σj−2

n+j−2 · · ·σ
0
nsn+j−1a by Lem. 6.31(iii)

≈ σn0 · · ·σ
n+j−2
j−2 σj−2

n+j−2 · · ·σ
0
na by (Cs7)

≈ a by (IH).

This completes the proof of the lemma. �

So, the association in (6.24) defines an isomorphism between pCRL(A,D) and
I(A,D) that extends (6.25), and hence by Proposition 6.29:

Corollary 6.39 The algebra pCRL(A,D) is a locally finite basic process module
over B, and the set {[a(x0, . . . , xn−1)] | a ∈ A of arity n} is a dimension-restricted
free set of generators for pCRL(A,D).

We have characterised the algebra pCRL(A,D) up to isomorphism, roughly, by
proving that the axioms of basic process modules constitute an axiomatisation of
the ground equational theory of pCRL(A,D) (expanded with parametrised action
symbols as constant symbols). An interesting question is whether there are still
some identities of pCRL(A,D) (equations between terms built from variables and
the operations of basic process modules over B that are valid in pCRL(A,D)) that
are specific to pCRL(A,D) in comparison with other locally finite basic process
modules over B. We conjecture that this is not the case:

Conjecture 6.40 If t and u are B-BPMω-terms in variables from some countably
infinite set, then t ≈ u is an identity of pCRL(A,D) if, and only if, t ≈ u identically
holds in every locally finite basic process module over B.

Bibliographic notes

For the material of this chapter we have drawn inspiration from a branch of math-
ematics called “Algebraic Logic”. Excellent introductions to the subject are by
Halmos (1956b), and Halmos and Givant (1998); they concentrate on algebraising
(monadic) first-order predicate logic. For a general theory about associating an

140 Chapter 6 Algebraic pCRL

algebraic semantics to a (not necessarily classical) logic we refer to a monograph
by Blok and Pigozzi (1989). In establishing the correspondence between our for-
mal system and basic process modules, we have borrowed techniques from the
two principal algebraic versions of first-order predicate logic: cylindric algebras
(Henkin et al., 1971, 1985) and polyadic algebras (Halmos, 1956a).

The idea that a pCRL expression describes a function from the Cartesian power
Dω into an arbitrary generalised basic process algebra P resembles Halmos’ point of
view that a propositional function is a function from some Cartesian power into an
arbitrary Boolean algebra (of propositions). The set of all such functions is again
a Boolean algebra, with respect to pointwise operations, on which in addition
one may define existential quantifiers (based on the infinite joins of the Boolean
algebra of propositions) and substitution operations. A Boolean subalgebra of
propositional functions that is moreover closed under existential quantifiers and
unary substitution operations is an example of a polyadic algebra.

Our transition from the deductive system Π(A,D)eq
∃ to the deductive system

associated with B-BPMω-terms over A parallels a series of three articles in a 1965
issue of the Archiv für Mathematische Logik und Grundlagenforschung by Tarski
(1965), by Kalish and Montague (1965), and by Monk (1965).

Tarski considers a system of first-order predicate logic with equality but without
operation symbols and individual constants. He observes that ϕ[x := y], the result
of substituting a variable y for the free occurrences of a variable x in the first-order
formula ϕ, is equivalent to (∀x)(eq(x, y) → ϕ) (cf. our Corollary 6.11). He then
uses this observation to simplify his system, eliminating the notion of a variable
occurring free in a given formula and replacing the general notion of substitution
by ‘replacement of one variable for another in an atomic formula’. Kalish and
Montague extend Tarski’s result to a system of first-order predicate logic with
operation symbols and individual constants. Taking their articles together, one
obtains a simplification of first-order predicate logic with equality comparable to
the simplification that was achieved by means of our transition from pCRL to flat
pCRL.

Monk subsequently proves that, without loss of expressivity or demonstrative
power, it is possible to work exclusively with formulas in which every non-logical
predicate is followed by some fixed sequence of variables. Then, atomic formulas
may be thought of as constants, and this ultimately leads to dimension-restricted
free cylindric algebras (see Henkin et al., 1971, 1985). Compare this to our function
ξ that explains how a flat pCRL expression may be translated to a B-BPMω-term
over A. The idea behind the translation is to interpret an element a ∈ A of
arity n as a constant that denotes the action expresion a(x0, . . . , xn−1), where
x0, . . . , xn−1 is the (fixed) nth initial segment of variables.

An advantage of the theory of basic process modules is that, as opposed to pCRL,
it does not involve binders. It is well-known that binders introduce a consider-
able amount of complexity into a syntax. They ensue the need for a distinction
between free and bound occurrences of a variable, and for a more complicated
notion of substitution (see Chapter 3). The λ-calculus (Barendregt, 1984) gives a
systematic treatment of such things and is often incorporated in a formal language
to organise the variable binding aspects. Alternatively, when there is a desire to

6.3 Dimension-restricted free basic process modules 141

stay within the realm of purely equational logic, Combinatory Logic (Curry, 1930)
may be incorporated for this purpose. In the context of process algebra, this ap-
proach is taken by Bergstra et al. (1994). They define an extension of ACP with
unary operations

∑
on processes that are similar to our choice quantifiers, except

that they have no binding effect themselves. In their setting, a binding effect is
simulated by means of the incorporated (typed) Combinatory Logic.

7

Concluding remarks

We have investigated how the choice quantifiers of µCRL fit in with process algebra
in the style of Bergstra and Klop (1984). Our starting point was their theory BPAδ
of basic process algebras with deadlock.

In Chapter 2 we have introduced the theory GBPAδ, extending BPAδ with an
abstract algebraic definition of generalised summation, a partial operation from
sets of processes to processes satisfying a few requirements. These requirements,
formulated as axioms in the form of equations, are to ensure that generalised
summation indeed generalises alternative composition, and that sequential com-
position distributes from the right over it. We have proved that our abstract
algebraic definition of generalised summation coincides with the natural general-
isation of binary alternative composition in algebras of transition trees, and we
conclude from this that our axioms are rightly chosen.

In Chapter 3 we have employed the theory GBPAδ to formalise our intuition
that choice quantification is a syntactic abbreviation mechanism, used to denote
sums of large (possibly infinite) sets of processes. The precise formalisation of the
correspondence between choice quantification and generalised summation turned
out to be a complex task. One source of discomfort was that we had to fix a data
domain D to be able to say precisely which sum is denoted by a choice quantifier.
As a consequence, the whole subsequent theory about pCRL is parametrised by
this data domain. However, it hardly plays a meaningful role in our general theory
about pCRL.

Recall that we have advertised to separate the specification of relevant data from
the specification of a process. Our results in Chapter 4 may be so interpreted that
in pCRL this separation is not achieved completely. Although a first-order assertion
about the data can always be expressed as an equation of pCRL expressions, it is
not necessarily expressible as an equation of data expressions. One might call this
an anomaly in the design of pCRL, and at least from a theoretical point of view, it is
another source of discomfort. For instance, a relatively complete axiomatisation of
the equational theory of pCRL can only be obtained under additional assumptions
with respect to the expressiveness of the data language (cf. Chapter 5).

In Chapter 6, we have used the results of the earlier chapters to improve the
presentation of the theory of choice quantification. Recall that a data algebra
consists of two parts: a Boolean algebra of conditions and a data part to serve
as domain for the choice quantifiers. In the theory of basic process modules, the
Boolean part is still present, in the form of the imported cylindric algebra. The

143

144 Chapter 7 Concluding remarks

data domain has been eliminated altogether from the general theory. By taking a
cylindric algebra (i.e., a Boolean algebra with existential quantifiers and equality)
of conditions, we have achieved a complete separation of pure data aspects (in the
cylindric algebra) from pure process aspects (in the ω-dimensional basic process
algebra).

A further advantage of the theory of basic process modules is that it defines a
variety of algebras in the universal algebraic sense, i.e., consisting of a universe
and an indexed set of finitary operations on this universe. Using the theory of
universal algebra, our definition yields at the same time, and in a manner that is
completely standard, a semantic class of algebras and a formal system to reason
about the elements of these algebras. Whereas the introduction of the language
pCRL, its semantics and its deductive system is lengthy and complex, the theory
of basic process modules provides an elegant shortcut in the form of an abstract
algebraic theory of parametrised processes.

Bibliography

Aceto, L., Fokkink, W. J., and Verhoef, C. (2001). Structural operational seman-
tics. In Bergstra et al. (2001), chapter 3, pages 197–292.

Baeten, J. C. M. and Bergstra, J. A. (1991). Real time process algebra. Formal
Aspects of Computing , 3(2), 142–188.

Baeten, J. C. M. and Bergstra, J. A. (1994). On sequential composition, action
prefixes and process prefix. Formal Aspects of Computing , 6(3), 250–268.

Baeten, J. C. M. and Weijland, W. P. (1990). Process Algebra. Number 18
in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press.

Barendregt, H. P. (1984). The Lambda Calculus — its syntax and semantics,
volume 103 of Studies in Logic and The Foundations of Mathematics. North-
Holland, Amsterdam New-York Oxford, revised edition.

Bergstra, J. A. and Klop, J. W. (1984). Process algebra for synchronous commu-
nication. Information and Control , 60(1–3), 109–137.

Bergstra, J. A. and Klop, J. W. (1985). Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1), 77–121.

Bergstra, J. A., Heering, J., and Klint, P., editors (1989). Algebraic specification.
Frontier Series. ACM Press, New York.

Bergstra, J. A., Bethke, I., and Ponse, A. (1994). Process algebra with iteration
and nesting. The Computer Journal , 37(4), 243–258.

Bergstra, J. A., Ponse, A., and Smolka, S. A., editors (2001). Handbook of Process
Algebra. North-Holland.

Blok, W. J. and Pigozzi, D. (1989). Algebraizable logics. Memoirs of the American
Mathematical Society , 77(396).

Blom, S., Fokkink, W., Groote, J. F., van Langevelde, I., Lisser, B., and van de Pol,
J. (2001). µCRL: a toolset for analysing algebraic specifications. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the 13th International Con-
ference on Computer Aided Verification (CAV 2001), volume 2102 of Lecture
Notes in Computer Science, pages 250–254. Springer.

145

146 Bibliography

Bolognesi, T. and Brinksma, E. (1987). An introduction to the ISO specification
language LOTOS. Computer Networks and ISDN System, 14(1), 25–59.

Bradfield, J. and Stirling, C. (2001). Modal logics and mu-calculi: An introduction.
In Bergstra et al. (2001), chapter 4, pages 293–330.

Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W. (1984). A theory of commu-
nicating sequential processes. Journal of the ACM , 31, 560–599.

Burris, S. and Sankappanavar, H. P. (1981). A Course in Universal Algebra. Num-
ber 78 in Graduate Texts in Mathematics. Springer-Verlag, New York Heidelberg
Berlin.

Chang, C. C. and Keisler, H. J. (1990). Model Theory , volume 73 of Studies in
logic and the foundations of mathematics. North-Holland, Amsterdam - New
York - Oxford - Tokyo, 3rd edition.

Curry, H. B. (1930). Grundlagen der kombinatorischen Logik. American Journal
of Mathematics, 52, 509–536, 789–834.

Davis, M. (1982). Computability and Unsolvability . Dover Publications, Inc.

Fokkink, W. and Klusener, S. (1995). An effective axiomatization for real time
ACP. Information and Computation, 122(2), 286–299.

Fokkink, W. J. (2000). Introduction to Process Algebra. Texts in Theoretical
Computer Science. Springer.

Fokkink, W. J. and Luttik, S. P. (2000). An ω-complete equational specification of
interleaving. In U. Montanari, J. D. Rolim, and E. Welzl, editors, Proceedings of
the 27th Colloquium on Automata, Languages and Programming (ICALP 2000),
volume 1853 of LNCS , pages 729–743, Geneva, Switzerland. Springer.

Van Glabbeek, R. J. and Weijland, W. P. (1996). Branching time and abstraction
in bisimulation semantics. Journal of the ACM , 43(3), 555–600.

Goguen, J. A. and Meseguer, J. (1985). Completeness of many-sorted equational
logic. Houston Journal of Mathematics, 11(3), 307–334.

Groote, J. F. and Luttik, S. P. (1998a). Undecidability and completeness results for
process algebras with alternative quantification over data. Report SEN-R9806,
CWI, The Netherlands. Available from http://www.cwi.nl/.

Groote, J. F. and Luttik, S. P. (1998b). A complete axiomatisation of branching
bisimulation for process algebras with alternative quantification over data. Re-
port SEN-R9830, CWI, The Netherlands. Available from http://www.cwi.nl/.

Groote, J. F. and Ponse, A. (1994). Proof theory for µCRL: A language for
processes with data. In D. J. Andrews, J. F. Groote, and C. A. Middelburg,
editors, Proceedings of the International Workshop on Semantics of Specification
Languages, Workshops in Computing, pages 232–251, Utrecht, The Netherlands.
Springer-Verlag.

Bibliography 147

Groote, J. F. and Ponse, A. (1995). The syntax and semantics of µCRL. In
A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communi-
cating Processes, Workshops in Computing, pages 26–62, Utrecht, The Nether-
lands. Springer-Verlag.

Groote, J. F. and Reniers, M. A. (2001). Algebraic process verification. In Bergstra
et al. (2001), chapter 17, pages 1151–1208.

Groote, J. F., Reniers, M. A., Van Wamel, J. J., and Van der Zwaag, M. B.
(2000). Completeness of timed µCRL. Report SEN-R0034, CWI. Available
from http://www.cwi.nl/.

Groote, J. F., Ponse, A., and Usenko, Y. S. (2001). Linearization in parallel pCRL.
Journal of Logic and Algebraic Programming , 48, 39–70.

Halmos, P. and Givant, S. (1998). Logic as Algebra. Number 21 in Dolciani
Mathematical Expositions. Mathematical Association of America, Washington,
DC.

Halmos, P. R. (1956a). Algebraic logic, II. Homogeneous locally finite polyadic
Boolean algebras of infinite degree. Fundamenta Mathematicae, 43, 255–325.

Halmos, P. R. (1956b). The basic concepts of algebraic logic. American Mathe-
matical Monthly , 53, 363–387.

Halmos, P. R. (1974). Naive Set Theory . Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 2 edition. First edition (1960) published by D. Van
Nostrand Co., Princeton, N.J.-Toronto-London-New York.

Henkin, L., Monk, J. D., and Tarski, A. (1971). Cylindric Algebras – Part I ,
volume 64 of Studies in Logic and the Foundations of Mathematics. North-
Holland Publishing Company.

Henkin, L., Monk, J. D., and Tarski, A. (1985). Cylindric Algebras – Part II ,
volume 115 of Studies in Logic and the Foundations of Mathematics. North-
Holland Publishing Company.

Hennessy, M. (1985). Acceptance trees. Journal of the ACM , 32(4), 896–928.

Hennessy, M. (1991). A proof system for communicating processes with value-
passing. Formal Aspects of Computing , 3, 346–366.

Hennessy, M. and Lin, H. (1995). Symbolic bisimulations. Theoretical Computer
Science, 138(2), 353–389.

Hennessy, M. and Lin, H. (1996). Proof systems for message-passing process
algebras. Formal Aspects of Computing , 8(4), 379–407.

Hennessy, M. and Lin, H. (1997). Unique fixpoint induction for message-passing
process calculi. In Proceedings of CATS’97 , Australia Computer Science Com-
munications, pages 122–131, Sidney.

148 Bibliography

Hoare, C. A. R. (1985). Communicating Sequential Processes. Series in Computer
Science. Prentice-Hall International, London.

Hollenberg, M. (1998). Logic and Bisimulation. Ph.D. thesis, Utrecht University.

Hungerford, T. W. (1974). Algebra, volume 73 of Graduate Texts in Mathematics.
Springer.

Kalish, D. and Montague, R. (1965). On Tarski’s formalization of predicate logic
with identity. Archiv für Mathematische Logik und Grundlagenforschung , 7,
81–101.

Koppelberg, S. (1989). Elementary arithmetic. In J. D. Monk and R. Bonnet,
editors, Handbook of Boolean Algebras (Vol. I), pages 5–46. North-Holland.

Loeckx, J., Ehrich, H.-D., and Wolf, M. (1996). Specification of abstract data
types. John Wiley & Sons Ltd., Chichester.

Luttik, B. (2000). A note on unique factorisation of communicating processes.
Available from http://www.cwi.nl/~luttik/.

Luttik, B. and Rodenburg, P. (1996). Transformations of reduction systems. Re-
port P9615, Programming Research Group, University of Amsterdam.

Luttik, B. and Visser, E. (1997). Specification of rewriting strategies. In M. Sell-
ink, editor, Proceedings of the 2nd International Workshop on the Theory and
Practice of Algebraic Specifications (ASF+SDF’97), Electronic Workshops in
Computing, pages 1–16, Berlin. Springer-Verlag.

Luttik, S. P. (1997). Description and formal specification of the link layer of P1394.
In I. Lovrek, editor, Proceedings of the 2nd International Workshop on Applied
Formal Methods in System Design, Zagreb, Croatia.

Luttik, S. P. (1999a). Complete axiomatisations of weak-, delay- and eta-
bisimulation for process algebras with alternative quantification over data. Re-
port SEN-R9914, CWI. Available from http://www.cwi.nl/.

Luttik, S. P. (1999b). Cylindric process algebras with conditionals give substitu-
tionless pcrl. Report SEN-R9912, CWI. Available from http://www.cwi.nl/.

Luttik, S. P., Rodenburg, P. H., and Verma, R. M. (1998). Correctness cri-
teria for transformations of rewrite systems (with an application to Thatte’s
transformation). Revision of (Luttik and Rodenburg, 1996); available from
http://www.cwi.nl/~luttik.

Manes, E. G. (1985). Guard modules. Algebra Universalis, 21, 103–110.

Mauw, S. and Veltink, G. J. (1990). A process specification formalism. Fundamenta
Informaticae, XIII, 85–139.

Dijkstra, E. W. (1976). A Discipline of Programming . Prentice-Hall Series in
Automatic Computation. Prentice-Hall.

Bibliography 149

McKenzie, R. N., McNulty, G. F., and Taylor, W. F. (1987). Algebras, Lattices,
Varieties — Volume I . Wadsworth & Brooks/Cole, Monterey, California.

Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer.

Milner, R. (1983). Calculi for synchrony and asynchrony. Theoretical Computer
Science, 28(3), 267–310.

Milner, R. (1989). Communication and Concurrency . Prentice-Hall International,
Englewood Cliffs.

Milner, R. (1999). Communicating and Mobile Systems: the π-calculus. Cambridge
University Press.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, I
and II. Information and Computation, 100, 1–77.

Monk, D. (1965). Substitutionless predicate logic with identity. Archiv für Math-
ematische Logik und Grundlagenforschung , 7, 102–121.

Myhill, J. (1955). Creative sets. Zeitschrift für mathematische Logik und Grund-
lagen der Mathematik , 1, 97–108.

Parrow, J. and Sangiorgi, D. (1995). Algebraic theories for name-passing calculi.
Inform. and Comput., 120(2), 174–197.

Parrow, J. and Victor, B. (1998). The fusion calculus: Expressiveness and sym-
metry in mobile processes. In Proceedings of LICS’98 , pages 176–185. IEEE
Computer Society Press.

Ponse, A. (1991). Process expressions and Hoare’s logic: Showing an irreconcil-
ability of context-free recursion with Scott’s induction rule. Information and
Computation, 95, 192–217.

Ponse, A. (1996). Computable processes and bisimulation equivalence. Formal
Aspects of Computing , 8(6), 648–678.

Ponse, A. and Usenko, Y. S. (2001). Equivalence of recursive specifications in
process algebra. Information Processing Letters, 80, 59–65.

Rasiowa, H. and Sikorski, R. (1963). The mathematics of metamathematics.
Państwowe wydawnictwo naukowe, Warszawa, Poland.

Rathke, J. (1997). Unique fixpoint induction for value-passing processes. In Pro-
ceedings of LICS’97, 12th Annual Symposium on Logic in Computer Science,
Warsaw , pages 140–148. IEEE Computer Society Press.

Rodenburg, P. H. (2000). On adding certain constants to basic process algebra.
Unpublished manuscript.

150 Bibliography

Rogers, Jr., H. (1992). Theory of Recursive Functions and Effective Computability .
The MIT Press. Paperback edition. Original edition published by McGraw-Hill
Book Company, 1967.

Shankland, C. and Van der Zwaag, M. B. (1998). The tree identify protocol of
IEEE 1394 in µCRL. Formal Aspects of Computing , 10(5–6), 509–531.

Shoenfield, J. R. (1967). Mathematical Logic. Addison-Wesley Publishing Com-
pany.

Stirling, C. (2001). Modal and Temporal Properties of Processes. Graduate Texts
in Computer Science. Springer.

Tarski, A. (1951). A decision method for elementary algebra and geometry . Uni-
versity of California Press, Berkeley and Los Angeles, Calif. 2nd ed.

Tarski, A. (1965). A simplified formalization of predicate logic with identity. Archiv
für Mathematische Logik und Grundlagenforschung , 7(3–4), 61–79.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society , 42,
230–265. corrections in Ibid, vol. 43, pp. 544–546.

Van der Zwaag, M. B. (2000). Time-stamped actions in pCRL algebras. Report
SEN-R0002, CWI. Available from http://www.cwi.nl/.

Index of notations

SYMBOL MEANING PAGE

p + q alternative composition 17, 33
p · q sequential composition 17, 33
δ deadlock 17, 33∑

P generalised summation 19
a(d1, . . . , dn) action expression 33
p � b� q conditional 33∑
x p choice quantifier 33

a?x1, . . . , xn.p input prefix 47
a!x1, . . . , xn.p output prefix 47
sip projective summation 108
b:→ p guarded command 112
σijp substitution operation 126

p ≤ q partial order induced by + on a BPAδ 18
p ≈ q pCRL equation 38
p 4 q pCRL summand inclusion 38

> true 31, 54
⊥ false 31, 54
¬ b, ¬ϕ complement, negation 31, 52
b ∨ c, ϕ ∨ ψ join, disjunction 31, 52
b ∧ c, ϕ ∧ ψ meet, conjunction 31, 54
(∃x)ϕ existential quantifier 52
eq(x, y) equality relation 54
ϕ→ ψ implication 54
ϕ↔ ψ bi-implication 54
(∀x)ϕ universal quantifier 54∨
m≤i≤m ϕi generalised disjunction 54

β(ϕ) first-order formula ϕ conceived as a Boolean expression 84
cib cylindrification 110
dijb diagonal element 110
σijb substitution operation 129

X, D, B set of variables, data expressions, Boolean expressions 32
FV(p) set of variables with a free occurrence in p 33

151

152 Index of notations

A nonempty set of parametrised actions 33
P, Pflat set of pCRL expressions, of flat pCRL expressions 33, 118
T , To set of tree forms, of ordered tree forms 41, 46
Φ, ΦU set of first-order formulas, universal first-order formulas 52, 66
[b], [p] equivalence class containing b, p 114, 115
dim p dimension set of p 123

BPAδ class of basic process algebras with deadlock 17
GBPAδ class of generalised basic process algebras with deadlock 20
GBPAδ(A,D) class of pCRL-complete GBPAδ’s 40
Π(A,S) basic deductive system for pCRL 74
Π(A,D)eq

∃ extended deductive system for pCRL 85
C-BPMω class of ω-dimensional basic process modules over C 112
Π(A,D)flat deductive system for flat pCRL 119

Tκ(L) algebra of transition trees with branching degree < κ 22
R ordered field of real numbers 31
Pol(A,D) algebra of pCRL polynomials associated with A and D 35
Act(A,D) subalgebra of Pol(A,D) generated by the pCRL actions 37
TD(A) algebra of pCRL trees associated with A and D 39
F∗ functional basic process module over Dω 112
B cylindric algebra of Boolean expressions 114
pCRL(A,D) basic process module of pCRL expressions 115
pCRL(A,D)flat basic process module of flat pCRL expressions 123
I(A,B) initial basic process module 128

p[x := d] substitution of data expression d for x in p 33
p[x := d] replacement of x by a data element d in p 35
ν, ν̄ valuation, its homomorphic extension 32, 37
ιν interpretation homomorphism generated by ν 38
θ, θo from pCRL expressions to (ordered) tree forms 45, 46
φ4 from summand inclusions to first-order formulas 59
φ from pCRL equations to first-order formulas 61
η from first-order formulas to pCRL equations 64
z from pCRL expressions to flat pCRL expressions 118
p{|x := d |} semantic substitution of data expression d for x in p 118
ξ from flat pCRL expressions to B-BPMω-terms over A 126

Index of subjects

ACP, 9, 49, 100
action, 18, 21, 23, 26
action expression, 41
action symbol, 10, 29
admissible set, 19, 25
algebra, 8
algebraic logic, 139
algebraic specification, 36, 129
α-congruence, 34
alternative composition, 8, 17, 22, 24

basic process algebra with deadlock, 17
generalised, 20
ω-dimensional, 108
with actions, 9

basic process module, 112
binder, 26
bisimulation, 68
Boolean

algebra, 19, 31, 109
expression, 32
polynomial, 35

Boolean equation, 33
bound variable, 33
BPAδ, 9
branching bisimulation, 101
branching degree, 21

CCS, 7
pure, 26, 48
value-passing, 26, 46–49, 65, 99

choice, see alternative composition
choice quantification, 12
choice quantifier, 12, 33
closed:

pCRL expression, 33
under generalised summation, 21

combinatory logic, 141

conditional, 33
continuation, 41
coordinate, 107
correct:

algorithm, 58
substitution, 33

CSP, 7
cylinder, 109
cylindric algebra, 110

of formulas, 113
cylindrification, 110

data, 3
algebra, 31
equation, 33
expression, 32
polynomial, 35
variable, 32

data specification, 73
complete, 74
model, 74
sound, 74

deadlock, 9, 17, 22, 24
deduction, 76
deductive system, 74

sound, 76
degree of unsolvability, 52
diagonal element, 110
dimension set, 123
dimension-preserving, 124
dimension-restricted free, 124

equality, 54
equational logic, 74
explicit instantiation, 47
extension:

of a function, 25
of an algebra, 26

153

154 Index of subjects

first-order formula, 19, 52
open, 53
universal, 66

first-order logic, 19, 52
first-order theory, 52
flat, 118
free generating set, 25
free variable, 33
function symbol, 31
fusion calculus, 49

generalisation, 19
trivial, finitary, maximal, 20

generalised algebra, 19
congruence, 39
free, 25
generators, 21
homomorphism, 24
quotient, 39
subalgebra, 21

generalised choice, see summation
generalised operation, 19, 22
generalised summation, 11
guard, 78, 112
guarded command, 78, 112

halting problem, 52

infinitary operation, see generalised op-
eration

infinite joins and meets, 19
infinite sum, see summation, gener-

alised
initial algebra, 27, 40, 129
initial segment, 125
input, 26

delayed, 49
restricted, 49

input prefix, 46
input/output

expressions, 47
theory, 66

integration operation, 35
interpretation

A-, 36
homomorphism, 36

κ-complete, 26
Kleene’s T -predicate, 51

label, 21, 24
labeled transition system, 7, 68
λ-calculus, 34, 140
language, 24, 32
least upper bound, 18
left distributivity, 17, 23, 25
line, 107
lineariser, 7
locally finite, 123
LOTOS, 5

minimal algebra, 35
modal logic, 68
model of concurrency, 7
µCRL, 5, 35, 49, 100

timed, 101
µCRL specification, 5

neutral element, see deadlock
nondeterministic output, 49

observation equivalence, 7
one-one reducibility, 52
output, see nondeterministic output
output prefix, 46

parallel composition, 8
parametrised action symbol, 29, 33
partial order, 18
π-calculus, 48, 100
pCRL, 29

action, 36
expression, 33
polynomial, 35
summand inclusion, 38
theory, 52
tree, 39

pCRL equation, 38
pCRL-complete, 37
point, 107
polyadic algebra, 140
prenex form, 61
process, 1, 17

equation, 10

Index of subjects 155

expression, 9
specification, 1, 10
variable, 10

process algebra, 8, 27
real time, 35

process calculus, 7
process theory, 7, 68
protocol

example, 18, 21
provably equivalent, 76
PSF, 5, 49

quantification
existential, 19
universal, 19

quantifier elimination, 84

real numbers, 31
recursively isomorphic, 52
relation symbol, 32
relative completeness, 73

satisfaction, 52
semilattice, 17
sequential composition, 8, 17, 22, 24
set theory, 17
simple expression, 41

simulation condition, 88
Skolem expression, 97
solution, 9
Split Lemma, 90
state, 2
structural operational semantics, 27
substitution, 33
summand inclusion, 18
summation

generalised, 19, 22, 24
projective, 108

symbolism, 31

transition tree, 21, 26
tree action, 23
tree form, 41

ordered, 46

uniform, 107
universal algebra, 17

valid, 38, 71
valuation, 32
variable, 4
variable convention, 34
variety, 25

Keuzekwantificatie in procesalgebra
Samenvatting (Dutch summary)

In dit proefschrift bestuderen we een fragment van de processpecificatietaal µCRL.
Deze taal is ontworpen voor de formele specificatie en verificatie van het gedrag
van complexe systemen, met name van systemen die bestaan uit een aantal parallel
executerende componenten. Een belangrijk aspect aan µCRL is dat het de moge-
lijkheid biedt om bij de specificatie van gedrag gebruik te maken van abstracte
datatypen, apart gedefinieerd middels een meer-soortige algebräısche specificatie.
In het eerste deel van hoofdstuk 1 bespreken we het conceptuele voordeel van deze
mogelijkheid, en introduceren we informeel de constructie uit µCRL die de hoofdrol
speelt in de rest van dit werk: keuzekwantificatie.

In het tweede deel van hoofdstuk 1 komen een aantal aspecten van de proces-
theorie aan de orde. In het bijzonder brengen we de voordelen van de algebräısche
benadering onder de aandacht. De meeste constructies van µCRL zijn ontleend
aan de algebräısche procestheorie ACP. Het ligt dus voor de hand om deze theorie
te gebruiken om µCRL-specificaties van een semantiek te voorzien. We beargu-
menteren dat dit een generalisatie vereist van de notie van keuze zoals die in ACP
is bevat. Een voorkomen van de keuzekwantor uit µCRL kan namelijk aanleiding
geven tot een keuze tussen oneindig veel alternatieven, terwijl met de operaties van
ACP alleen keuzes tussen eindig veel alternatieven uitdrukbaar zijn. In het derde
deel van hoofdstuk 1 belichten we kort de onderwerpen van de latere hoofdstukken.

In hoofdstuk 2 beschouwen we theorie BPAδ, het fragment van ACP dat gaat
over een binaire operatie + voor keuze, een binaire operatie · voor sequentiële
compositie, en een constante δ die deadlock representeert. We definiëren de theorie
GBPAδ, een uitbreiding van BPAδ met gegeneraliseerde sommatie. Gegeven een
universum P van processen is dit een operatie∑

: D → P, met D ⊆ {P′ | P′ ⊂ P}

die aan elke (mogelijkerwijs oneindige) verzameling van processen in D weer een
proces toekent, zo dat een drietal axioma schema’s geldt. Twee van deze schema’s
drukken tezamen uit dat de gegeneraliseerde som van een verzameling processen
de kleinste bovengrens is met betrekking tot de partiële ordening die de binaire
operatie + induceert op het universum van processen. Het derde schema zegt
dat de binaire operatie · van rechts distribueert over gegeneraliseerde sommatie.
Om onze nieuwe axioma schema’s te motiveren, beschouwen we algebra’s van
transitiebomen waarvan bekend is dat ze worden geaxiomatiseerd door BPAδ. We
laten zien dat de natuurlijke uitbreidingen van deze algebra’s met gegeneraliseerde

157

158 Samenvatting (Dutch summary)

sommatie geaxiomatiseerd worden door GBPAδ.
In de eerste helft van hoofdstuk 3 geven we een precieze definitie van pCRL, het

fragment van µCRL waar het ons in de rest van dit proefschrift om gaat. Het is
geparametriseerd met een data-algebra, een verzameling met functies en relaties.
Voor de specificatie van gedrag bevat het de constructies van BPAδ, en daarnaast:
acties geparametriseerd met dataexpressies, een conditional, en keuzekwantificatie.
Deze laatste constructie kwantificeert over het universum van de data-algebra. We
voorzien de taal pCRL van een semantiek door een precies verband te leggen met
de operaties van GBPAδ. Keuzekwantificatie wordt daarbij opgevat als een vorm
van gegeneraliseerde sommatie. Twee pCRL-expressies heten equivalent als ze in
elk geschikt model van de theorie GBPAδ hetzelfde proces aanduiden. Equivalente
pCRL-expressies duiden dus dezelfde transitieboom aan, maar ook het omgekeerde
blijkt het geval: als twee pCRL-expressies dezelfde transitieboom aanduiden, dan
zijn ze equivalent.

In de tweede helft van hoofdstuk 3 presenteren we een tweetal hulpresultaten die
betrekking hebben op de syntactische structuur van pCRL-expressies. Ten eerste
definiëren we boomvormen, pCRL-expressies die aan bepaalde syntactische eisen
voldoen. We bewijzen dat er voor elke pCRL-expressie een equivalente boomvorm
bestaat. Ten tweede geven we een vertaling van het eindige, sequentiële fragment
van ’value-passing CCS’ naar pCRL. De pCRL-expressies in het bereik van deze
vertaling noemen we ’input/output ’-expressies. ’Value-passing CCS’ heeft niet een
aparte constructie voor keuzekwantificatie, maar is gebaseerd op het zogenaamde
’input prefix ’-mechanisme, een combinatie van keuzekwantificatie en een beperkte
vorm van sequentiële compositie. Voor elke ’input/output’-expressie bestaat er
natuurlijk weer een equivalente boomvorm, en het blijkt dat die boomvorm nog
aan een extra syntactische eis voldoet die we expliciete instantiatie noemen.

In hoofdstuk 4 leggen we een verband tussen de equivalentie van pCRL-expressies
enerzijds en de geldigheid van eerste-orde beweringen over de data-algebra ander-
zijds. Zo is het altijd mogelijk om, gegeven een tweetal pCRL-expressies p en q , een
eerste-orde formule met betrekking tot de data-algebra te vinden die waar is dan
en slechts dan als p en q equivalent zijn. Er geldt bovendien dat het altijd mogelijk
is om, gegeven een eerste-orde formule ϕ met betrekking tot de data algebra, een
tweetal pCRL-expressies te vinden die equivalent zijn dan en slechts dan als ϕ waar
is. Het blijkt dat keuze kwantificatie bij deze correspondentie verantwoordelijk is
voor de simulatie in pCRL van zowel de universele als de existentiële kwantifi-
catie uit de eerste-orde logica. Het ’input prefix’-mechanisme van ’value-passing
CCS’ is minder expressief dan keuzekwantificatie. We concluderen dit uit het feit
dat vergelijkingen tussen ’input/output’-expressies corresponderen met universele
eerste-orde beweringen over de data. Bijgevolg kan existentiële kwantificatie in
principe niet worden gesimuleerd met de constructies van ’value-passing CCS’.

Om het rekenen met pCRL expressies te vergemakkelijken, presenteren we in de
eerste helft van hoofdstuk 5 een deductiesysteem voor pCRL. De axioma’s van dit
systeem drukken fundamentele eigenschappen van de constructies van pCRL uit; ze
zeggen bijvoorbeeld dat keuzekwantificatie distribueert over alternatieve compo-
sitie. De afleidingsregels van dit systeem zijn gebaseerd op de equationele logica.
Aangezien de axioma’s en de afleidingsregels geldig zijn met betrekking tot onze

Samenvatting (Dutch summary) 159

semantiek van pCRL-expressies, kan een afleiding van ons deductiesysteem worden
gezien als een volledig syntactisch bewijs dat twee pCRL-expressies equivalent zijn.

Vervolgens zou men de vraag kunnen stellen of ons deductiesysteem ook volledig
is, dat wil zeggen, of ons deductiesysteem krachtig genoeg is om elke equivalentie
van een dergelijk syntactisch bewijs te voorzien. De expressiviteitsresultaten uit
hoofdstuk 4 laten onmiddellijk zien dat dit niet het geval kan zijn. Als er namelijk
een volledig deductiesysteem voor pCRL-equivalenties zou bestaan, dan zou er ook
voor elke data-algebra een algoritme zijn dat de geldigheid van een eerste-orde be-
wering met betrekking tot deze data-algebra kan vaststellen. In het bijzonder zou
er dan volgen dat de eerste-orde theorie van de natuurlijke getallen met optelling,
vermenigvuldiging en een kleiner-dan relatie beslisbaar is, en dit is in strijd met
de onvolledigheidsstelling van Gödel.

De volgende vraag die zich opwerpt, is voor welke deelklasse van data-algebra’s
ons systeem dan wel volledig is. Deze vraag komt aan de orde in de tweede helft
van hoofdstuk 5. We formuleren een drietal algemene eisen op data-algebra’s,
namelijk

1. dat ze ω-volledig algebräısch moeten zijn gespecificeerd,

2. dat ze een gelijkheidspredicaat moeten bevatten, en

3. dat ze eliminatie van kwantoren moeten toelaten.

Ons deductiesysteem blijkt volledig te zijn, mits de data-algebra voldoet aan deze
drie eisen, en na toevoeging van nog twee extra axiomaschema’s. Verder conclu-
deren we dat met een subtiele verzwaring van de derde eis de toevoeging van één
van deze twee extra axiomaschema’s overbodig is.

Wat opvalt aan de in hoofdstukken 2, 3 en 5 ontwikkelde theorie, is dat er
een duidelijk onderscheid is tussen een syntactisch gedeelte (de taal pCRL, het
bijbehorende deductiesysteem) en een semantisch gedeelte (de algebräısche theo-
rie GBPAδ). Het verband tussen beide delen, en met name de interpretatie van
keuze kwantificatie als een speciaal soort gegeneraliseerde sommatie, is complex.
Hierover kan het volgende worden opgemerkt. Enerzijds is gegeneraliseerde som-
matie een operatie is met mogelijkerwijs oneindig veel argumenten, en daardoor
niet geschikt als constructie van een formele taal. Anderzijds is keuzekwantificatie
weliswaar een geschikte constructie voor een formele taal, maar ook afhankelijk
van de syntactische structuur van zijn argument, en daardoor niet geschikt als
operatie van een algebräısche theorie.

Door deze scheiding van syntax en semantiek, mist de theorie de wiskundige
elegantie van haar voorganger, de algebräısche theorie BPAδ. In hoofdstuk 6 de-
finiëren we de theorie van de basis procesmodules met als doel de syntax, het
deductiesysteem en de semantiek van pCRL in één algebräısche theorie te vere-
nigen. We geven een vertaling van pCRL-expressies naar termen in de signatuur
van de basis procesmodules. We bewijzen vervolgens dat twee pCRL-expressies
equivalent zijn dan en slechts dan als hun vertalingen equivalent zijn volgens de
axioma’s van basis procesmodules.

Dit proefschrift eindigt, in hoofdstuk 7, met enige conclusies.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process
Algebra. Faculty of Mathematics and Com-
puting Science, TUE. 1996-1

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty
of Mathematics and Computer Science, KUN.
1996-2

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementa-
tion. Faculty of Mathematics and Computer
Science, KUN. 1996-3

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-4

M.H.G.K. Kesseler. The Implementa-
tion of Functional Languages on Parallel Ma-
chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-5

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematics
and Computing Science, TUE. 1996-6

J.H. Hoepman. Communication, Synchro-
nization, and Fault-Tolerance. Faculty of
Mathematics and Computer Science, UvA.
1996-7

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathemat-
ics and Computing Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Mathe-
matics and Computer Science, VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake
Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechani-
cal Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in
Semantics. Faculty of Mathematics and Com-
puter Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs
of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-
mations in Context. Faculty of Computer Sci-
ence, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory
in Logic and Mathematics. Faculty of Mathe-
matics and Computing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathematics
and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Alge-
bra. Faculty of Mathematics and Computing
Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional
Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems Engi-
neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-
tion for Multiprocessor Computation. Faculty
of Mathematics and Computer Science, UU.
1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty of
Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-
tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathematics
and Natural Sciences, Univ. Leiden. 1999-04

E.I. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Fac-
ulty of Mathematics and Natural Sciences,
RUG. 1999-05

M.P. Bodlaender. Schedulere Optimiza-
tion in Real-Time Distributed Databases. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathemat-
ics and Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to sat-
isfiability problems. Faculty of Mathematics
and Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Pro-
tocols with Formal Methods. Faculty of Com-
puter Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical Engi-
neering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neu-
ral Prediction System. Faculty of Mathemat-
ics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Imple-
mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction. Faculty of
Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of Math-
ematics and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A strati-
fied approach to the verification of distributed
algorithms. Faculty of Mathematics and Com-
puter Science, UU. 2000-02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communicating
Processes. Faculty of Mathematics and Natu-
ral Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical En-
gineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-
ing Correct Programs. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Natu-
ral Sciences, Mathematics and Computer Sci-
ence, UvA. 2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Natu-
ral Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics and
Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics
and Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syn-
tax and semantics. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2001-05

R. van Liere. Studies in Interactive Visual-
ization. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of Math-
ematics and Computing Science, TU/e. 2001-
07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Anal-
ysis of Data in Environmental Epidemiology:
A Case-study into Acute Effects of Air Pol-
lution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Check-
ing. Faculty of Computer Science, UT. 2001-
10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presenta-
tion of formal mathematical documents. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-12

A.T. Hofkamp. Reactive machine control:
A simulation approach using χ. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduc-
tion techniques for model checking. Faculty of
Mathematics and Computing Science, TU/e.
2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and exper-
imental aspects.. Faculty of Mathematics and
Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-
cess Algebra. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA.
2002-04

