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ABSTRACT
We propose a refinement of branching bisimulation equivalence that we call orthogonal
bisimulation equivalence. Typically, internal activity (i.e., the performance of τ -steps) may
be compressed, but not completely discarded. Hence, a process with τ -steps cannot be
equivalent to one without τ -steps. Also, we present a modal characterization of orthogonal
bisimulation equivalence. This equivalence is a congruence for ACP extended with abstraction
and priority operations. We provide a complete axiomatization, and describe some expressiveness
results. Finally, we present the verification of a PAR protocol that is specified with use of priorities.
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1 Introduction

In concurrency theory, Milner’s observation equivalence as discussed in the setting of CCS
(Calculus of Communicating Systems [20], cf. [22, 23]) is a standard example of a branching
time behavioral equivalence that deals with abstraction. Here ‘branching time’ refers to the
fact that the branching structure of processes is taken into account, and ‘abstraction’ refers
to a mechanism to hide actions that are assumed not to be observable or interesting for some
other reason. In the process algebraic approaches based on ACP (Algebra of Communicating
Processes [7], overviewed in [5, 12]), observation equivalence is named τ -bisimulation equiv-
alence [8], and abstraction boils down to renaming actions into the silent step (or action) τ ,
the occurrences of which then may be eliminated according to certain axioms. Abstraction is
a prominent feature in process algebra, serving both verification styles and expressive power.

A popular and relatively new semantics that deals with abstraction, proposed by van
Glabbeek and Weijland in [18], is branching bisimulation equivalence (see also [19]). Branch-
ing bisimulation equivalence is a refinement of semantics such as observation equivalence,
delay bisimulation equivalence [21] and η-bisimulation equivalence [3], and can be considered
an improvement of these because it fully respects the branching structure of processes. In the
words of [19]: “in two [branching] bisimilar processes every computation [sequence of steps]
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in the one process corresponds to a computation in the other, in such a way that all inter-
mediate states of these computations correspond as well, due to the [branching] bisimulation
relation.” We recall that in branching bisimilarity, the axiom

x · τ = x

(or, a.τ.x = a.x in a setting with action prefixing a. , such as CCS [20]) is claimed to be at
the very heart of abstraction (cf. [19]). This axiom expresses that the observational contents
of the silent step τ in a sequential context xτ (we usually omit the symbol · in terms) is totally
void. Branching bisimulation equivalence is the behavioral equivalence that characterizes this
notion of ‘observational contents’ in the setting of process algebra (cf. [16, 19]; we return to
this point in Section 10).

In this paper we propose a refinement of branching bisimulation equivalence, called orthog-
onal bisimulation equivalence, which has the following two main characteristics.

1. Internal activity (i.e., the performance of τ -steps) may be compressed, but not com-
pletely discarded.

2. Operations that grasp at the local structure of a process, such as the priority operator,
are compatible with this semantics and do not require any special treatment of τ .

Our bisimulation equivalence is called “orthogonal” because it respects the dichotomy be-
tween concrete processes [4, 17], i.e., processes in which no internal actions occur, and those
that contain τ -steps: a process without τ -steps cannot be equivalent to one with τ -steps.
As a consequence, orthogonal bisimilarity is a less abstract equivalence than those discussed
above. Below we elaborate on the two characteristics mentioned.

Let compression stand for the reduction of finitary internal activity (characterized by τ -
steps) to a single τ -step. Compression is valid in orthogonal bisimilarity, and after compres-
sion, the presence of a τ -step is as decisive as that of any observable action and indicates the
presence of some internal activity. For example,

a(τ + ττ)

is orthogonally bisimilar to its compressed form aτ , and both represent the action a followed
by some internal activity. Furthermore, neither of these two is orthogonally bisimilar to a.
Hence, the axiom x = xτ is not sound in orthogonal bisimulation equivalence (its weakened
version xττ = xτ is sound). Typically, in orthogonal bisimilarity one may abstract from the
structure of finitary internal activity, but not from its presence. This is a major difference with
branching bisimulation equivalence and the coarser (larger, i.e., more identifying) semantics
on abstraction mentioned above. We now consider the case of divergence, i.e., the occurrence
of an infinite τ -path. In branching bisimulation equivalence, a τ -loop may be discarded in
case there is an alternative available, which can be explained as a feature: often τ -loops result
from the abstraction of the occurrence and recovery of an undesirable event, for example the
corruption and retransmission of a data-package in a communication protocol. Discarding
such a loop corresponds with the assumption that it will not be chosen infinitely often (and,
following the example, with the assumption that the occurrence and recovery of an undesirable
event may only be repeated consecutively a finite number of times). In process algebra, this
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assumption is called fairness and it often plays an important role in verifications. Whereas
in branching bisimilarity τ -loops can always be discarded, this is not the case in orthogonal
bisimilarity. According to the first characteristic above, a τ -loop may be discarded only if
one of its exits starts with an initial τ -step. We also distinguish a second, more restricted
variant of orthogonal bisimulation equivalence that preserves divergence in all circumstances,
divergence sensitive orthogonal bisimilarity (reminiscent of branching bisimulation equivalence
with explicit divergence as defined in [19]).

The priority operator θ was introduced in [1]. It can for example be used to give priority
to interrupts or internal behavior in a process algebra specification of some protocol, or
to give lowest priority to the execution of time-outs or error messages. Essentially, the
priority operator is based on a (fixed, partial) ordering on actions, and prevents an action
(and its subsequent behavior) to be executed in the case that there is an alternative with a
higher priority. Right at its introduction, it was recognized that the priority operator θ and
abstraction are difficult to combine, and a modular approach was advocated for using both
in a process algebra verification: first eliminate all occurrences of the priority operator, and
then apply abstraction as to arrive at a concise characterization of the external behavior.
The priority operation not being fully compatible with any known semantics that deals with
abstraction1 is an immediate consequence of the axiom xτ = x. The main cause for this
problem is that on the term level τ can hide alternatives, by which xτy can be different
from xy in the scope of the priority operator. For example, assume for actions a, b, c the
priority ordering a < {b, c}. Then the process term θ(a || bτc), where a || bτc represents a in
parallel with b followed by τ followed by c, defines a behavior in which the action a may be
executed before c, a situation that cannot occur in θ(a || bc). This shows that without any
special measures, the priority operator is not compatible with the axiom xτ = x. However,
orthogonal bisimilarity is a congruence for the priority operator (even in the case that τ has
a priority).

In the above we informally introduced orthogonal bisimulation equivalence. In the remain-
der of this paper we establish its definition (Section 2) and provide a modal characterization
(Section 3). Furthermore, we define the system ACPorth

τ in Section 4, and we prove some
completeness results in Section 5. Then in Section 6 we consider the priority operator, and
argue that it is compatible with orthogonal bisimilarity. In Section 7 we introduce some
forms of iteration in order to describe infinite processes, and we shortly discuss fairness in
the present setting. Section 8 is on expressiveness modulo orthogonal bisimilarity. Finally,
in Section 9 we describe as an example the specification and verification of a PAR protocol
[26] in orthogonal bisimulation equivalence. The paper is ended with some remarks and con-
clusions in Section 10. We added two appendices, containing some congruence proofs and
examples on expressiveness.

Note. In earlier work [28, 29], orthogonal bisimilarity was defined using a constant ι instead
of τ . We now consider this use of the symbol ι obsolete.

1In the literature, several solutions for this problem were proposed, but none of these are totally satisfactory
and generally accepted; we return to this issue in our conclusions in Section 10.
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2 Transition Systems and Orthogonal Bisimilarity

A transition system (over L) is a triple (S,L, T ), where S is a nonempty set of states, L is a
set of labels and T ⊆ S × L× S is a transition relation.

We usually write s
a−→ s′ for a transition (s, a, s′); we call it an a-transition and refer to s

as its source and to s′ as its target. We write s
a−→ if s has an outgoing a-transition. We call

s′ a (a-)successor of s, if s has an outgoing (a-)transition with target s′.
In the process algebras introduced in Section 4, we distinguish states that have the option

to terminate successfully. This is achieved by considering transition systems together with
a valuation function that assigns propositions to states: if P is a set of proposition letters,
then a valuation is a function V from the state set to the power set of P . In this paper we
shall use

√
as the termination symbol; we say that a state s has the option to terminate if√ ∈ V (s).

The special label τ represents an unobservable, or silent, action. We write Lτ for a set of
transition labels containing τ ; for a set L, we let Lτ = L ∪ {τ}.

For any state s, we define the set of finite τ -paths starting in s inductively as follows:

1. s ∈ τ -paths(s);

2. if s0 · · · sn ∈ τ -paths(s) for some n ≥ 0, and sn
τ−→ s′, then s0 · · · sns′ ∈ τ -paths(s).

We define orthogonal bisimulation equivalence of states. Below, we compare this equiva-
lence relation with strong bisimulation equivalence and branching bisimulation equivalence,
that are well-known from the literature.

Definition 2.1 Consider a transition system (S,Lτ , T ) with valuation V . A binary relation
R on S is an orthogonal bisimulation, if it is symmetric, and, whenever sRr, then

1. V (s) = V (r), and

2. if s
a−→ s′ for some a and s′ with a 6= τ , then r

a−→ r′ for some r′ with s′Rr′, and

3. if s τ−→ s′ for some s′, then r τ−→ , and, for some n ≥ 0, there is a r0 · · · rn ∈ τ -paths(r)
such that s′Rrn and sRri for all i < n.

States s and r are orthogonally bisimilar, notation s ↔o r, if they are related by some
orthogonal bisimulation.

If states s and r are orthogonally bisimilar and s
a−→, then also r

a−→.

Example 2.1 Consider the transition system below. Observe that s0 ↔o s2. Also, it holds
that s0 ↔o s1 if, and only if, a = τ .

a
y
s0

τ−→ s1
τ←→

a
y
s2

We see that from a state (s0) an equivalent state (s2) may be reached by τ -steps via nonequiv-
alent states (s1).
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We defined bisimilarity of states in a single transition system. This can easily be extended
to bisimilarity of states in different systems by first taking the disjoint union of the systems.
The disjoint union of two transition systems is obtained by taking the disjoint union of the
states, the union of the labels and the corresponding disjoint union of the transitions.

Lemma 2.1 If s ↔o r and, for some n ≥ 0, it holds that s0 · · · sn ∈ τ -paths(s), then there
is, for every i ≤ n, an mi ≥ 0, such that r has a τ -path with r0

0 = r and mn = 0 and

1. for all i < n, r0
i · · · r

mi
i ∈ τ -paths(r0

i ) and rmii = r0
i+1, and

2. for all i ≤ n, rji ↔o si, if j < mi or j = 0.

Proof. Straightforward. 2

Theorem 2.1 Orthogonal bisimilarity is an equivalence relation.

Proof. Consider a transition system (S,Lτ , T ) with valuation V . We show that ↔o is transi-
tive. Reflexivity and symmetry are trivial. Let s1 ↔o s2 ↔o s3. We show that the symmetric
relation

R = {(s, r), (r, s) | s↔o t↔o r for some t ∈ S}

is an orthogonal bisimulation, and thereby that s1 ↔o s3.
Take any (s, r) ∈ R. By definition of R we have that, for some t, either s ↔o t ↔o r, or

r ↔o t↔o s. Assume the former; the latter case is symmetric.
First, observe that V (s) = V (t) = V (r).
Assume that s

a−→s′. We must show that r matches this transition appropriately. The case
with a 6= τ is easy; assume that a = τ . It is straightforward to verify that r

τ−→.
Since s ↔o t, it holds that t matches the τ -step to s′ in zero or more transitions, i.e. for

some n ≥ 0, there is a t0 · · · tn ∈ τ -paths(t) such that s↔o ti for all i < n and s′ ↔o tn. The
proof is finished straightforwardly using Lemma 2.1. 2

Orthogonal bisimilarity is not a congruence with respect to the alternative composition in
process algebra. We define here the equivalence relation rooted orthogonal bisimilarity, that
will prove to be a congruence with respect to the process algebraic operators.

Definition 2.2 An orthogonal bisimulation R is rooted between states s and r, if sRr, and

1. if s
τ−→ s′ for some s′, then r

τ−→ r′ for some r′ with s′Rr′, and

2. if r τ−→ r′ for some r′, then s τ−→ s′ for some s′ with s′Rr′.

States s and r are rooted orthogonally bisimilar, notation s↔ro r, if there is an orthogonal
bisimulation that is rooted between s and r.

Theorem 2.2 Rooted orthogonal bisimilarity is an equivalence relation.

Proof. Straightforward using Theorem 2.1.
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Other process equivalences

We recall the definitions of strong bisimulation equivalence [25] and branching bisimulation
equivalence [19].

Definition 2.3 Consider a transition system (S,L, T ) with valuation V . A binary relation
R on S is a strong bisimulation, if it is symmetric, and whenever sRr, then

1. V (s) = V (r), and

2. if s a−→ s′ for some a and s′, then r a−→ r′ for some r′ with s′Rr′.

States s and r are strongly bisimilar, notation s ↔ r, if they are related by some strong
bisimulation.

Orthogonal bisimilarity is coarser (or larger) than strong bisimilarity; any strong bisimu-
lation is also an orthogonal bisimulation. We show that for so-called compact states strong
bisimilarity and orthogonal bisimilarity coincide.

Definition 2.4 A τ -transition is inert, if its source and target are orthogonally bisimilar. A
state is compact, if it has no inert outgoing τ -transitions, and all its successors are compact.

Lemma 2.2 If s and r are compact and s↔o r, then s↔ r.

Proof. Suppose that R is an orthogonal bisimulation that relates s and r. Assume that there
does not exists a smaller orthogonal bisimulation that relates s and r. R relates only compact
processes. It is straightforward to show that R is a strong bisimulation. 2

Corollary 2.1 If all successors of s and r are compact and s↔ro r, then s↔ r.

We also compare orthogonal bisimilarity with branching bisimilarity [19]. Branching bisim-
ilarity is the finest (smallest, i.e., least identifying) of the process equivalences described
in [15]. Orthogonal bisimilarity is finer than branching bisimilarity, and hence finer than the
equivalences in [15].

Definition 2.5 Let =⇒ be the reflexive transitive closure of τ−→. Consider a transition sys-
tem (S,Lτ , T ) with some valuation V . A binary relation R on S is a branching bisimulation,
if it is symmetric, and whenever sRr, then

1. there is an r′ with r =⇒ r′ and V (s) = V (r′), and

2. if s
a−→ s′ for some a and s′, then either

(a) a = τ and s′Rr, or

(b) r =⇒ r′′ a−→ r′ for some r′′, r′ with sRr′′ and s′Rr′.

States s and r are branching bisimilar, notation s↔b r, if they are related by some branching
bisimulation.
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It is straightforward to prove that any orthogonal bisimulation is a branching bisimulation.
The root condition for branching bisimulations is the same as the root condition for orthogonal
bisimulations.

Proposition 2.1 It holds that ↔⊆↔o⊆↔b and ↔⊆↔ro⊆↔rb, for any transition system
over Lτ , and any valuation.

Example 2.2 Consider the transition system

s0
τ−→ s1

τ−→ s2
τ−→ s3.

Observe that s0 ↔ro s1, but not s1 ↔ro s2, while s1 ↔rb s2.

Divergence

A state s0 has τ -divergence if it has an infinite path

s0
τ−→ s1

τ−→ s2
τ−→ · · · .

Orthogonal bisimilarity does not always distinguish between states that have τ -divergence
and states that have not. E.g., consider the transition system

τ
y
s0

τ−→ s1
τ−→ s2

τ−→ s3.

Observe that s0 and s1 are (rooted) orthogonally bisimilar, while s0 has τ -divergence and
s1 has not. However, infinite τ -traces do not always collapse under (rooted) orthogonal
bisimilarity, an example being

τ
y
s0

a−→ s3
a←− s2

τ←− s1,

where s0 6↔o s1 and s0 6↔o s2. This implies that τ -divergence is a context-dependent phe-
nomenon, and that from a semantic point of view, orthogonal bisimilarity is not optimal. For
this reason we define a non-collapsing version for which τ -divergence is an invariant.

Definition 2.6 An orthogonal bisimulation R is divergence sensitive, if whenever sRr and
s has τ -divergence, then r has τ -divergence.

States s and r are divergence sensitive orthogonally bisimilar, notation s ↔dso r, if they
are related by a divergence sensitive orthogonal bisimulation.

States s and r are rooted divergence sensitive orthogonally bisimilar, notation s↔rdso r, if
they are related by a divergence sensitive orthogonal bisimulation that is rooted between s
and r.

Of course, divergence sensitive orthogonal bisimilarity is strictly finer than orthogonal
bisimilarity as such, and the same holds for the rooted versions.
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3 Modal Characterization

Assume a fixed set P of proposition letters and a set L of labels with τ 6∈ L. The set L of
formulas φ is defined by the following BNF grammar.

φ ::= p | 〈τ〉 | 〈a〉φ | ¬φ | φ ∧ φ | φUφ (a ∈ L, p ∈ P )

We abbreviate the formula 〈τ〉 ∧ ¬〈τ〉 as ⊥, and write > for ¬⊥, 〈a〉 for 〈a〉>, and Fφ for
>Uφ. We adopt the binding convention that 〈a〉, ¬ and F bind stronger than U, which binds
stronger than ∧.

Consider a transition system over Lτ with a valuation function V . Truth of a formula in a
state s is defined inductively as follows.

• s |= p, if p ∈ V (s).

• s |= 〈τ〉, if s τ−→.

• s |= 〈a〉φ, if s
a−→ s′ and s′ |= φ for some s′.

• s |= ¬φ, if not s |= φ.

• s |= φ ∧ ψ, if s |= φ and s |= ψ.

• s |= φUψ, if, for some n ≥ 0, there is a s0 · · · sn ∈ τ -paths(s) such that si |= φ for all
i < n and sn |= ψ.

Example 3.1 Consider the transition system below. All states satisfy the formula F〈b〉U〈a〉.

s0
τ−→

b
y
s2

τ−−→

a
y
s3

τ ↖ ↗ τ

s1

States s0 and s1 can reach the same states by τ -steps, namely s2 and s3. It holds that s1

satisfies ¬〈b〉U〈a〉, while s0 does not. Observe that it is not possible to find a distinguishing
formula using only future formulas Fφ instead of until formulas φUψ.

States s and r are L-equivalent, notation s ∼ r, if for all φ ∈ L it holds that s |= φ if, and
only if, r |= φ.

Theorem 3.1 Consider a transition system over Lτ with any valuation. For all states s and
r, it holds that s↔o r implies s ∼ r.

Proof. Straightforward by induction on the structure of formulas (proof uses Lemma 2.1).

A transition system is finitely branching in label a, if all states have finitely many a-
successors. A transition system is τ -path-image-finite if for all states s there are finitely
many states s′ with a path s · · · s′ ∈ τ -paths(s).
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Lemma 3.1 If R is an orthogonal bisimulation with sRr and s
τ−→s′, then there is a r0 · · · rn ∈

τ -paths(r), for some n ≥ 0, such that sRri for all i < n and s′Rrn, and for all i, j ≤ n, if
i 6= j then ri 6= rj.

Theorem 3.2 Consider a transition system (S,Lτ , T ) with valuation V that is τ -path-image-
finite and finitely branching in every label. For all s, r ∈ S, it holds that s ∼ r implies s↔o r.

Proof. We show that ∼ is an orthogonal bisimulation. Take any s, r with s ∼ r. Clearly
V (s) = V (r).

1. If s a−→ s′ with a 6= τ , then since s |= 〈a〉, also r |= 〈a〉. So, using that r is finitely
branching in a, for some n ≥ 0, r has a-successors r0, . . . , rn. We have to show that,
for some i ≤ n, s′ ∼ ri. Suppose that, for all i ≤ n, s′ 6∼ ri. Then there is, for every
i ≤ n, a formula φi, such that s′ |= φi and ri 6|= φi. Let φ = 〈a〉(φ0 ∧ · · · ∧ φn). We
see that s |= φ, whereas r 6|= φ, which contradicts the assumption s ∼ r. So r

a−→ r′ for
some r′ with s′ ∼ r′.

2. If s τ−→ s′ and s′ ∼ s, then s′ ∼ r since ∼ is transitive, and r τ−→ , since s |= 〈τ〉 and
hence r |= 〈τ〉.
So suppose that s τ−→ s′ and s′ 6∼ s. We must show that r can match this τ -step to
s′ appropriately. Suppose, to the contrary, that it cannot (1), i.e. that there is no
r0 · · · rn ∈ τ -paths(r) with n > 0 and ∀i < n(s ∼ ri) and s′ ∼ rn and for all i, j ≤ n, if
i 6= j then ri 6= rj . This last condition is justified by Lemma 3.1.

Let C ⊆ τ -paths(r) be the set of sequences r0 · · · rn such that

n ≥ 0, ∀i ≤ n(s ∼ ri), ∀i, j ≤ n(ri 6= rj ∨ i = j).

The set C is finite because r is τ -path-image finite. It is nonempty because r ∈ C.

By assumption (1), we see that for all r · · · r′ ∈ C it holds that there is no r′′ such that
r′ τ−→ r′′ and s′ ∼ r′′.

We define the set C ′ of extensions of paths in C as follows.

C ′ = {r · · · r′r′′ | r · · · r′ ∈ C, r′ τ−→ r′′, r′′ 6∼ s}

The set C ′ is finite because C is finite and the transition system is finitely branching
in τ .

Let χ be a formula such that s′ |= χ and s 6|= χ. Such a formula χ exists, because
s 6∼ s′.

It is straightforward to check that C ′ must be nonempty, since if it were empty then
r 6|= Fχ, whereas s |= Fχ.

So write C ′ = {ρ0, . . . , ρk} for some k ≥ 0. For all ρi = r · · · ri ∈ C ′ it holds that ri 6∼ s
and ri 6∼ s′, and hence that there are formulas φi, ψi such that s |= φi, s′ |= ψi, ri 6|= φi
and ri 6|= ψi. Let φ = φ0 ∧ · · · ∧ φk and ψ = ψ0 ∧ · · · ∧ ψk. Then s |= φ, s′ |= ψ and for
all i ≤ k, ri 6|= φ and ri 6|= ψ.



10 J.A. Bergstra, A. Ponse, and M.B. van der Zwaag

We see directly that s |= φU(ψ ∧ χ). We show that r 6|= φU(ψ ∧ χ), which contradicts
the assumption that s ∼ r. Suppose that r |= φU(ψ ∧ χ), i.e. that there is a τ -path
r0 · · · rn with r = r0 and n ≥ 0, such that rn |= ψ ∧ χ and ri |= φ for all i < n (2). We
make the following observations:

(a) n > 0 because r 6|= χ.

(b) ∀i < n(ri ∼ s). Suppose not, then assume that j is the smallest j < n with rj 6∼ s.
Then r0 · · · rj ∈ C ′ and so rj 6|= φ. Contradiction (2).

(c) rn 6∼ s, since s 6|= χ.

From these observations, it follows that r0 · · · rn ∈ C ′. Hence, rn 6|= ψ. Contradiction.
2

A formula for τ -divergence

We extend L with a special divergence formula ∆; let L∆ = L∪{∆}. The satisfaction relation
is defined as before, with s |= ∆, if s has τ -divergence.

States s and r are L∆-equivalent, notation s ∼∆ r, if for all φ ∈ L∆ it holds that s |= φ if,
and only if, r |= φ.

Theorem 3.3 Consider a transition system over Lτ with any valuation. For all states s and
r, it holds that s↔dso r implies s ∼∆ r.

Proof. Trivial extension of the proof of Theorem 3.1.

Theorem 3.4 Consider a transition system over Lτ , with any valuation, that is τ -path-
image-finite and finitely branching in every label. For all states s and r, it holds that s ∼∆ r
implies s↔dso r.

Proof. Trivial extension of the proof of Theorem 3.2.

4 Process Algebra

We use process algebra because it provides an elegant notation for transition systems, and
allows for axiomatic reasoning. The axiom system ACP(A, γ) [7] consists of the axioms in
Table 1. The signature is determined by a finite set of constants A, the elements of which are
called actions, and by a binary partial, commutative and associative function γ on A. The
function γ defines synchronous communication between actions. We write a, b for arbitrary
elements of A, and γ(a, b) ↓ if γ(a, b) is defined.

The signature has a constant δ 6∈ A (deadlock). Furthermore, the signature has binary
operators + (alternative composition), · (sequential composition), || (parallel composition,
merge), || (left merge) and | (communication merge). It has a unary operator ∂H (encap-
sulation) for every H ⊆ A. We write Aδ to denote the set A ∪ {δ}. We use infix notation
for all binary operators, and adopt the binding convention that + binds weakest and · binds
strongest. We suppress ·, writing xy for x · y.
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Table 1: The axioms of ACP(A, γ), a, b ∈ Aδ and H ⊆ A.

(A1) x + y = y + x
(A2) x + (y + z) = (x + y) + z
(A3) x + x = x
(A4) (x + y)z = xz + yz
(A5) (xy)z = x(yz)
(A6) x + δ = x
(A7) δx = δ

(CM1) x || y = (x || y + y || x) + x | y
(CM2) a || x = ax
(CM3) ax || y = a(x || y)
(CM4) (x + y) || z = x || z + y || z
(CM5) ax | b = (a | b)x
(CM6) a | bx = (a | b)x
(CM7) ax | by = (a | b)(x || y)
(CM8) (x + y) | z = x | z + y | z
(CM9) x | (y + z) = x | y + x | z
(CF1) a | b = γ(a, b) if γ(a, b) ↓
(CF2) a | b = δ otherwise

(D1) ∂H(a) = a if a 6∈ H
(D2) ∂H(a) = δ if a ∈ H
(D3) ∂H(x + y) = ∂H(x) + ∂H(y)
(D4) ∂H(xy) = ∂H(x)∂H(y)

Table 2: Compression axioms, a ∈ Aδτ and I ⊆ A.

(O1) xττ = xτ
(O2) xτ(y + z) = x(y + z) if τy = ττy, τz = ττz
(O3) x(τ(y + z) + z) = x(y + z) if τy = ττy

(TI1) τI(a) = a if a 6∈ I
(TI2) τI(a) = τ if a ∈ I
(TI3) τI(x + y) = τI(x) + τI(y)
(TI4) τI(xy) = τI(x)τI (y)
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Subsystems of ACP(A, γ) are BPA(A), which consists of axioms A1−A5, and has sequential
and alternative composition as operators, and BPAδ(A), the extension of BPA(A) with the
deadlock process, axiomatized by A6 and A7. If E is any of these axiom systems, we write
T(E) for its set of closed terms.

Semantics. We give a structural operational semantics for any of the theories presented.
We define transition systems where closed terms are states. These transition systems have a
special termination state; it is assumed that the valuation is such that only this special state
has the termination marking

√
. Therefore, we use the symbol

√
to denote the termination

state.
Let E be one of BPA(A), BPAδ(A) and ACP(A, γ). Then TS(E) is the transition system

(T(E) ∪ {√},A, T ),

where
√ 6∈ T(E) and the transition relation T is generated by the transition rules in Table 4.

The transition rules are such that
√

has no outgoing transitions. In this case we say that
the transition system has pure termination, or shortly, that it is pure.

Strong bisimilarity is a congruence with respect to all operators defined. All theories
presented so far are sound and complete with respect to strong bisimilarity. These are
standard results, cf. e.g. [12].

The silent step

The axiom system ACPorth
τ (A, γ) consists of ACP(A, γ) and the axioms in Table 2. Its

signature is obtained by extending the signature of ACP(A, γ) with the constant τ 6∈ Aδ, and
with a unary operator τI for every I ⊆ A. Let Aτ = A ∪ {τ} and Aδτ = Aδ ∪ {τ}. In the
axioms of Table 1, we now let a, b range over Aδτ . In the semantics, we take Aτ as the set of
transition labels. The subsystems BPAorth

τ (A) and BPAorth
δτ (A) are the respective extensions

of BPA(A) and BPAδ(A) with τ and the axioms O1−O3. It is straightforward to verify that
the axioms in Table 2 are sound with respect to rooted orthogonal bisimilarity.

The conditions in the axioms O2 and O3 are of the form τx = ττx. Such a condition holds
for x, if, and only if, the process x does not equal deadlock and all initial actions of x equal
τ .

Theorem 4.1 Rooted orthogonal bisimilarity is a congruence with respect to all operators
of ACPorth

τ (A, γ).

Proof. See Appendix A.

Proposition 4.1 If t is a closed BPAorth
τ (A) term that is built from τ ’s only, i.e. for all

subterms a ∈ Aτ of t it holds that a = τ , then t is derivably equal to exactly one of τ , ττ
and ττ + τ .

Proof. Straightforward by induction on the structure of t. An interesting case is

τ(ττ + τ)
(A3)
= τ(τ(τ + τ) + τ)

(O3)
= τ(τ + τ)

(A3)
= ττ.
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Branching bisimilarity. Rooted branching bisimilarity is axiomatized by the axioms B1
and B2, see Table 3. In Section 2, we have seen that rooted branching bisimilarity is a
coarser equivalence than rooted orthogonal bisimilarity. This is reflected in the strength of
the axioms: it is straightforward to show that

B1 + B2 ` O1−O3 and B1 + O3 ` B2.

Table 3: Branching bisimilarity axioms.

(B1) xτ = x
(B2) x(τ(y + z) + z) = x(y + z)

5 Completeness

We prove that BPAorth
δτ (A) is complete with respect to rooted orthogonal bisimilarity, i.e.

any two rooted orthogonally bisimilar closed terms are derivably equal. The proof is based
on Lemma 2.2 and the completeness of BPAδ(A). The completeness of BPAorth

τ (A) can be
proved similarly; this proof is omitted. We state that BPAorth

δτ (A) is a conservative extension
of BPAorth

τ (A).
Via the completeness of BPAorth

δτ (A), it follows that ACPorth
τ (A, γ) is complete: every closed

ACPorth
τ (A, γ) term is derivably equal to a closed BPAorth

δτ (A) term. This elimination result
is standard for ACP, and carries over to its orthogonal variant directly, as the special status
of τ as an action does not interfere with the elimination. We state that ACPorth

τ (A, γ) is a
conservative extension of BPAorth

δτ (A).

Definition 5.1 BPAorth
δτ (A) basic terms are defined inductively as follows.

1. The elements of Aδτ are basic terms.

2. If a ∈ Aτ , and t is a basic term, then a · t is a basic term.

3. If t and u are basic terms, then t + u is a basic term.

If I = {i1, . . . , in} is a finite index set, then we write
∑

i∈I ti for the process term ti1 +· · ·+tin.
As + is associative, we do not write parentheses. We use the convention that

∑
i∈∅ ti = δ.

Every basic term can, modulo axioms A1, A2 and A6, be written as∑
i∈I

aiti +
∑
j∈J

aj ,

where I, J are finite index sets such that for all i ∈ I and j ∈ J , ti is a basic term and
ai, aj ∈ Aτ .

Lemma 5.1 Every closed BPAorth
δτ (A) term is derivably equal to a basic term.
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Table 4: Transition rules.

a
a−−→√ x a−−→√

xy a−−→ y

x a−−→ x′

xy a−−→ x′y

x a−−→√

x + y a−−→√ y + x a−−→√

x
a−−→ x′

x + y a−−→ x′ y + x a−−→ x′
x

a−−→√ a 6∈ H

∂H(x) a−−→√
x

a−−→ y a 6∈ H

∂H(x) a−−→ ∂H(y)

x
a−−→√

x || y a−−→ y x || y a−−→ y y || x a−−→ y

x
a−−→ x′

x || y
a−−→ x′ || y x || y a−−→ x′ || y y || x a−−→ y || x′

x a−−→√ y b−−→√ γ(a, b) = c

x || y c−−→√ x | y c−−→√
x a−−→ x′ y b−−→ y′ γ(a, b) = c

x || y c−−→ x′ || y′ x | y c−−→ x′ || y′

x
a−−→ x′ y

b−−→√ γ(a, b) = c

x || y c−−→ x′ x | y c−−→ x′ y || x c−−→ x′ y | x c−−→ x′

x
a−−→√ a 6∈ I

τI(x) a−−→√
x

a−−→√ a ∈ I

τI(x) τ−−→√
x

a−−→ y a 6∈ H

τI(x) a−−→ τI(y)
x

a−−→ y a ∈ H

τI(x) τ−−→ τI(y)
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Proof. Straightforward.

Lemma 5.2 If t =
∑

i∈I τti for some nonempty finite set I, then τt = ττt.

Proof. Using induction on |I| and axioms O1 and O2.

Lemma 5.3 If t =
∑

i∈I τti + t′ for some nonempty finite index set I, with ti compact and
t↔o ti for all i ∈ I, then t = τti + t′ for any i ∈ I.

Proof. Take any i, j ∈ I. Since ↔o is an equivalence, we have ti ↔o tj . Since ti, tj are
compact, we have by Lemma 2.2 that ti ↔ tj. By the completeness of BPAδ we get ti = tj.
The required identity follows by axiom A3. 2

Lemma 5.4 Every closed BPAorth
δτ (A) term is derivably equal to a basic term that has only

compact successors.

Proof. Take any closed term t. By Lemma 5.1 we may assume that t is a basic term. We
apply induction on the structure of t. If t ≡ δ, then it has no successors. If t ∈ Aτ , then its
only successor is

√
, which is compact. If t ≡ t′ + t′′, then the proof is immediate using the

induction hypothesis.
So assume that t ≡ at′. We have by induction hypothesis that t′ = u for some basic term

u with compact successors. The term u has a compact part and an inert part; the term u is,
modulo A1, A2 and A6 of the form

∑
i∈I τui + uc, where

uc =
∑
j∈J

ajuj +
∑
k∈K

ak;

u↔o ui for all i ∈ I; aj ∈ Aτ and u 6↔o uj for all j ∈ J ; ak ∈ Aτ for all k ∈ K.
The processes ui and uj are compact. We show that au is derivably equal to a term with

compact successors. Take any i ∈ I (if I = ∅, then u itself is compact). By Lemma 5.3, it
holds that u = τui + uc.

We know that ui is compact and that u↔o ui. From these two facts, it is straightforward
to verify that ui must be a summation consisting of the following summands.

1. For every k ∈ K, one or more summands ak. By axiom A3, we may assume that there
is exactly one summand ak for every k ∈ K.

2. For every j ∈ J , one or more summands aju
′
j with uj ↔o u′j . By Lemma 2.2 and the

completeness of BPAδ, we have that u′j = uj for all u′j . By these identities and by
axiom A3, we may assume that there is exactly one summand ajuj for every j ∈ J .

3. For every l in some finite index set L, a summand τul, with ui 6↔o ul. We assume
that L is nonempty; if it is not, then infer from u ↔o ui and the fact that u has a
τ -transition (to ui), that there must be a j ∈ J with aj = τ . In this case use axiom A3
to double a summand aju

′
j with such a j, thereby producing a summand τul.
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Finally, we get that ui =
∑

l∈L τul + uc.
Combining u = τui + uc, Lemma 5.2 and axiom O3, we find that au = aui, where the

right-hand side has compact successors. 2

Theorem 5.1 The axiom system BPAorth
δτ (A) is complete with respect to ↔ro, i.e. if t and

u are closed terms and t↔ro u, then BPAorth
δτ ` t = u.

Proof. Assume that t↔ro u. By Lemma 5.4 and soundness we may assume that all successors
of t and u are compact. By Corollary 2.1 we have that they are strongly bisimilar. BPAδ is
complete with respect to strong bisimilarity. 2

Corollary 5.1 The axiom system ACPorth
τ (A, γ) is complete with respect to ↔ro.

6 Priorities

We extend ACPorth
τ (A,γ) with the priority operator θ, introduced in ACP in [1]. Parameter

of θ is a partial ordering ≤ on Aτ (we write a < b or b > a if a ≤ b and a 6≡ b). If, e.g., the
priority ordering is given by a > b and a > c, then a has priority over b and over c. In this
case, we have that θ(a + b) = a and θ(b + c) = b + c. The priority operator can be used
to model interrupts in a distributed system; it is used as such in the specification of a PAR
protocol in Section 9.

The transition rules for θ are in Table 5. For the axiomatization, we need the auxiliary
operator � (“unless”). The axioms are in Table 6. A process p � q behaves as the part of p
that has initial actions that do not have an initial action with higher priority in q.

We give an example derivation. Suppose that a > b.

θ(ax + by) = θ(ax) � by + θ(by) � ax

= (a � b) · θ(x) + (b � a) · θ(y)
= a · θ(x) + δ

= a · θ(x)

The following example shows that, in the setting with τ , the priority operator is not a
congruence for the abstract process equivalences in [15].

Example 6.1 Let the priority ordering by given by c < b. Consider t ≡ a(τ(b + c) + c)
and u ≡ a(b + c). These processes are rooted branching bisimilar, and hence identified by all
process equivalences in [15]. Observe that none of these equivalences identifies θ(t) = a(τb+c)
and θ(u) = ab.

In this example, the process t performs a and reaches the process τ(b + c) + c. This process
has a direct option to execute c, and a blind option to execute b; the τ is hiding the option
for b. In orthogonal bisimulation equivalence, a nondirect option can never become direct:
orthogonally bisimilar processes have exactly the same direct options.

In Appendix A, it is proved that rooted orthogonal bisimilarity is a congruence with respect
to the priority operator in the setting with τ . We state without proof that the priority axioms
are sound and that ACPorth

τθ (A, γ) is a conservative extension of ACPorth
τ (A, γ). Completeness

follows from the fact that θ can be eliminated from terms, which is easy to verify.



Branching Time and Orthogonal Bisimulation Equivalence 17

Table 5: Transition rules for the priority operator.

x a−−→√ ¬∃b > a. x b−−→
θ(x) a−−→√

x a−−→ x′ ¬∃b > a. x b−−→
θ(x) a−−→ θ(x′)

x
a−−→√ ¬∃b > a. y

b−−→
x � y

a−−→√
x

a−−→ x′ ¬∃b > a. y
b−−→

x � y
a−−→ x′

Table 6: Priority axioms, a, b ∈ Aτ .

(P1) a � b = a if a 6< b
(P2) a � b = δ if a < b
(P3) x � yz = x � y
(P4) x � (y + z) = (x � y) � z
(P5) xy � z = (x � z)y
(P6) (x + y) � z = x � z + y � z

(TH1) θ(a) = a
(TH2) θ(xy) = θ(x)θ(y)
(TH3) θ(x + y) = θ(x) � y + θ(y) � x

Note. Various ways for dealing with the priority operators in abstract semantics were pro-
posed. A first, classical approach is to eliminate all priority operations before applying ab-
straction. Another approach was advocated by Bol and Groote in [11], where the unless
operator is equipped with a “look-ahead” facility for τ -steps. Both these approaches are not
fully general, in the sense that they do not admit that τ (freely) enters the priority ordering.
Although it may in some cases be questionable whether τ should be given a priority, this is
not in any technical sense problematic. This last fact can be characterized as follows: write
a ≡pr b if a and b have the same priority in some give priority ordering. Now assume I is
a set of internal actions, and τ ≡pr i for all i ∈ I. Then we have that τI and θ commute
modulo orthogonal bisimilarity, i.e.,

θ ◦ τI(x) = τI ◦ θ(x),

which is the strongest commutation result that can be expected.

7 Binary Kleene Star, Push-Down and Fairness

In process algebra, potentially infinite behaviors are usually characterized by means of recur-
sive equations. As an example, the equation

X = aX
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characterizes the process that can perform an infinite sequence of a-steps only, and so do the
equations Y = aY b and Z = aaZ (and many more). Recently, a different approach to the
specification of such behaviors attracted attention, namely the use of recursive operations
[6, 9]. As the most basic of these we consider the binary Kleene star operator (∗), defined by

BKS1 x∗y = x(x∗y) + y.

For example, a∗δ expresses the process mentioned above, and so does (aa)∗δ. We adopt the
convention that · and ∗ bind equally strong.

In the setting of BPA(A), axioms for the binary Kleene star are BKS1,BKS2 and BKS3
from Table 7. If E is any of the axiom systems discussed in the previous sections, we write
E∗ for its extension with the appropriate axioms on the binary Kleene star. In [13] it is
shown that BPA∗(A) axiomatizes bisimilarity over that signature. The system ACP∗(A, γ)
is defined by adding BKS1 − BKS4. In the setting with τ and ∗, the system BPAorth∗

τ is
defined by extending BPA∗(A) with the axioms O1−O3 (see Table 2) and the axioms O4
and O5 given in Table 7 below. (Note that these last two axioms are easily proved valid
in orthogonal bisimulation equivalence.) Finally, the system ACPorth∗(A, γ) is defined by
adding all axioms from Table 7 to ACPorth

τ (A, γ).
The transition rules for ∗ are as expected, and given in Table 8. Observe that each closed

term over one of the systems with ∗ has finitely many substates, where substates are those
terms that can be reached by transitions. This reveals the limited expressiveness of the
above-mentioned systems with ∗: only finite state processes are definable. This restriction
can be relaxed by adding the push-down operation ($, see [9]), defined by

PD x$y = x((x$y)(x$y)) + y.

We adopt the convention that · and $ bind equally strong. Transition rules for $ are as
expected, and given in Table 8. We write E$ for the inclusion of axiom PD in axiom system
E. With $ also non-regular processes can de defined. A typical example is

(a(a$b) + c)∗d.

This term can be recognized as a definition of a counter or register, modelling a memory
location for a natural number with unbounded capacity and restricted access by the actions:
a (“add one”), b (“subtract one”), c (“test zero”), and d (“clear location”). Abbreviating
(a(a$b) + c)∗d to C, a graphical representation of C is given below.

√ d
←−

c
y
C

b
←−−→
a

(a$b)C
b
←−−→
a

(a$b)2C · · ·

In ACP∗$(A, γ), registers can synchronize with terms representing register machine pro-
grams. As an example, let H = {x, x | x = a, b, c, d} and γ(x, x) = i for x = a, b, c, d.
Then termination of register C in case it holds value 2, characterized by the state (a$b)2C,
can be described by ∂H((a$b)2C || b∗d) = i3, and emptying register C can be described by
∂H((a$b)2C || b∗c). For indexed registers C1 and C2, transfer of the value of C1 to C2 is
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‘programmed’ by (b1a2)∗c1. In the following section we return to the issue of expressivity,
and we shall use register machine computation in a style as suggested above.

In settings with δ, there are no finite equational axiomatizations of the binary Kleene star
operator. Therefore we provide the following adaptation of RSP, the Recursive Specification
Principle.

RSP∗ if x = yx + z and ∂A(y) = δ, then x = y∗z

Here the second condition acts as a “guardedness restriction”; it excludes terms with an
initial τ action. E.g., we cannot infer ττa = τ∗δ, although ττa = τττa + δ is valid. For the
push-down operator there is a similar adaptation of RSP [9, 10], but we shall not use it.

Divergence. Due to the character and common use of τ , one may want to abstract from
infinite sequences or loops consisting only of τ steps. Depending on the kind of process se-
mantics one wants to use, different solutions have been found. In the case of rooted branching
bisimulation equivalence, a particular solution is provided by

FIRb
1 τ(τ∗x) = τx,

where FIR abbreviates Fair Iteration Rule. In the setting of rooted orthogonal bisimulation
equivalence, we have the ‘fairness axioms’ given in Table 9. In Section 9 we provide a protocol
verification in which fairness is used.

If we consider processes modulo rooted divergence sensitive orthogonal bisimilarity, then
of course the axioms OFIR1 and OFIR2 are no longer valid.

Table 7: The binary Kleene star axioms.

(BKS1) x∗y = x(x∗y) + y
(BKS2) x∗(yz) = (x∗y)z
(BKS3) (x + y)∗z = x∗(y((x + y)∗z) + z)
(BKS4) ∂H(x∗y) = ∂H(x)∗∂H(y)
(BKS5) τI(x∗y) = τI(x)∗τI(y)
(O4) x((ττ)∗y) = x(τ∗y) if τy = ττy
(O5) x((τ + ττ)∗y) = x((ττ)∗y)

8 Expressiveness

In this section we consider some basic expressiveness questions: which sort of transition
systems can be expressed in which of the axiom systems discussed before? In order to handle
these questions we restrict to transition systems that are pure, i.e., transitions systems with
a (single) termination state

√
not having outgoing transitions, and with at least one other

state (different from
√

, see Section 4). Expressing a pure transition system T up to some
behavioral equivalence ∼ in axiom system E comes down to showing that for each state s in
T different from

√
there is a term t over E satisfying s ∼ t.
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Table 8: Transition rules for binary Kleene star and push-down.

x a−−→√

x∗y a−−→ x∗y
x a−−→ x′

x∗y a−−→ x′(x∗y)
y a−−→√

x∗y a−−→√
y a−−→ y′

x∗y a−−→ y′

x a−−→√

x$y a−−→ (x$y)(x$y)
x a−−→ x′

x$y a−−→ x′((x$y)(x$y))
y a−−→√

x$y a−−→√
y a−−→ y′

x$y a−−→ y′

Table 9: Fairness axioms.

(OFIR1) x(τ∗(y + τz)) = x(y + τz)
(OFIR2) x(τ∗(y + τ)) = x(y + τ)

In [2], Baeten, Bergstra and Klop proved the following basic expressiveness result: each re-
cursive pure transition system (or ‘process graph’) can be expressed up to rooted τ -bisimilarity
in ACP with abstraction and finite, guarded recursive specifications. Furthermore, these au-
thors showed that abstraction is necessary for this result. Here a recursive transition system
is one that has a recursive set of states, a finite set of labels, and a transition relation that
can be characterized by a recursive function (describing for each state its finite number of
transitions in terms of an appropriate encoding). The proof of this expressiveness result car-
ries over to branching bisimulation equivalence, but not to any of the orthogonal bisimulation
equivalences defined in this paper. The main reason for this mismatch is the role of the law
x = xτ . In order to study expressiveness questions in the setting of orthogonal bisimilarity, it
therefore seems reasonable to enrich transition systems with τ ’s in the following way: given
a transition system T = (S,L, T ), its sequential τ -saturation Tτ is defined by (Sτ , Lτ , Tτ )
where

• Sτ = {s, sτ | s ∈ S} (and s ∈ S ⇒ sτ 6∈ S),

• Lτ = L ∪ {τ},

• Tτ = {s a−→ tτ , tτ
τ−→ t | s a−→ t ∈ T}.

We view binary Kleene star and push-down as a modern alternative to “finite guarded
recursive specifications” as used in the expressiveness result in [2]. First, we prove in detail
that we can express the sequential τ -saturation of any finite pure transition system with
labels in L ⊆ A up to rooted divergence sensitive orthogonal bisimulation equivalence in
ACPorth∗(A, γ), provided A is sufficiently large. Next, we argue that any recursive pure
transition system with finite label set L ⊆ A and bounded fan-out can be expressed in
ACPorth∗$

τ (A, γ) up to rooted orthogonal bisimulation equivalence, for a suitable, finite set A
of actions.
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Theorem 8.1 For each finite pure transition system T with finite label set L not containing
τ , there is a finite extension A of L such that Tτ can be expressed up to rooted divergence
sensitive orthogonal bisimulation equivalence in ACPorth

τ (A, γ), using only handshaking over
A \ L, and either ∗ or $.

Proof. Assume that T has states {√,X1, ...,Xn} for some n > 0. Then for every j with
0 < j ≤ n, Xj can be characterized by

Xj =
n∑
k=1

αj,kXk + βj

with αj,k and βj finite sums of actions or δ in the following way: for each transition Xj
a−→Xk

there is a summand a in αj,k and for each transition Xj
b−→√ there is a summand b in βj ,

and conversely, each summand of αj,k and βj is associated with a transition. If there are no
transitions with source Xj and target Xk (

√
), then αj,k (βj , respectively) equals δ. As a

consequence, Tτ can be characterized by Xj =
∑n

k=1 αj,kτXk + βjτ .
We define process terms that mimick the transitions of Tτ . Let A be the extension of L

with the following 2n + 3 fresh actions:

i, and rl, sl (l = 0, 1, ..., n).

Let γ(rl, sl) = i be the only communications defined (handshaking). As to provide some
intuition, these actions model the following behavior:

s0: order termination,
r0: receive the order to terminate,
sl: (l > 0) instruct the l-th process to start, and
rl: (l > 0) read instruction to start the l-th process.

Let H = {rl, sl | l = 0, 1, ..., n}, and for j = 1, ..., n,

Fj =
n∑
k=1

αj,ksk + βj .

In the case of ∗, consider the following process terms:

Q = (
∑n

k=1 rkFk)∗s0,
M = (

∑n
k=1 rksk)∗r0.

We derive:

∂H(FjQ ||M) = ∂H([(
∑n

k=1 αj,ksk)Q + βjQ] ||M)
=

∑n
k=1 αj,k · ∂H(sk ·Q ||M) + βj · ∂H(Q ||M)

=
∑n

k=1 αj,k · i · ∂H(Q || sk ·M) + βj · i
=

∑n
k=1 αj,k · i · i · ∂H(Fk ·Q ||M) + βj · i.

Consequently, τ{i} ◦ ∂H(FjQ ||M) satisfies the identities for Xj (j = 1, ..., n) up to rooted
divergence sensitive orthogonal bisimilarity. Hence, Tτ can be expressed in ACPorth∗(A, γ):
for each state Xj of Tτ ,

Xj ↔rdso τ{i} ◦ ∂H(FjQ ||M)
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in TS(ACPorth∗(A, γ)) ∪ Tτ (with single termination state
√

).
In the case of $, consider process terms

K = (
∑n

k=1 rkFk)$s0,

N = (
∑n

j=1 rksk)$r0.

Then Xj ↔rdso τ{i} ◦ ∂H(FjK ||N) for each j = 1, ..., n. This can be shown along the same
lines, using a denumerable infinity of copies of the transitions of Tτ : let l range over N (the
naturals) and consider

Yj(l) =
∑n

k=1 αj,kτYk(l + 1) + βjτ.

Clearly, Xj ↔rdso Yj(l) for each state Xj of Tτ and each value of l. So it suffices to show that
also τ{i} ◦ ∂H(FjK ||N)↔rdso Yj(0). We show this by first omitting the τ{i}-application:

∂H(Fj ·Kk+1 ||Nk+1) =
∑n

k=1 αj,k · ∂H(skKk+1 ||Nk+1) + βj · ∂H(Kk+1 ||Nk+1)
=

∑n
k=1 αj,k · i · ∂H(Kk+1 || skNk+2) + βj · ik+1

=
∑n

k=1 αj,k · i2 · ∂H(Fk ·Kk+2 ||Nk+2) + βj · ik+1.

Hence, applying τ{i} and axiom xττ = xτ (O1), we find for each k

τ{i} ◦ ∂H(Fj ·Kk+1 ||Nk+1) =
n∑
k=1

αj,kτ · τ{i} ◦ ∂H(Fk ·Kk+2 ||Nk+2) + βjτ,

which shows that τ{i} ◦ ∂H(Fj ·Kk+1 ||Nk+1)↔rdso Yj(k). 2

The above result shows that each regular process can be defined modulo sequential τ -
saturation and rooted divergence sensitive orthogonal bisimilarity in ACPorth

τ (A, γ), provided
we adopt (at least) one of ∗ and $, and A is sufficiently large (but finite). For non-regular,
computable processes (that is, processes that can be characterized by a recursive pure tran-
sition system) we have the following expressiveness result: the sequential τ -saturation of a
recursive pure transition system with (finite) label set L ⊆ A and bounded fan-out can be
expressed in ACPorth∗$

τ (A, γ) and ACPorth$
τ (A, γ) up to rooted divergence sensitive orthogo-

nal bisimulation equivalence, provided A is sufficiently large. For example, one can express
the sequential τ -saturation of a stack over a finite data type using the approach in [9].

We sketch a proof of the expressibility of pure recursive transition systems with bounded
fan-out. This proof is based on a characterization of register machine computations (see, e.g.,
[24]) in process algebra (a detailed explanation can be found in [10]). As has been shown in the
previous section, registers have a straightforward representation in BPA∗$(A). Furthermore,
each register machine program has a straightforward representation in BPA∗(A). It easily
follows that each (unary) recursive function f can be ‘implemented’ in ACP∗$(A, γ) in the
following sense: let P represent in BPA∗(A) a register machine program Pf that computes
f using three registers, and write C(0) for (a(a$b) + c)∗d (a register containing value 0) and
C(n+1) for (a$b)C(n). Then there is a context Con[ ](n) where n refers to the register value
C(n) such that

Con[Px](n)]↔
{

ig(n) · Con[x](f(n)) if f(n) is defined,
i∗δ otherwise.
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Here g is a computable function defined on the domain of f , and the i-steps result from com-
munications between the registers and the program. Furthermore, Con[ ](n) can be extended
to Con[ ](n1, ..., nk) in order to compute k > 1 computable functions in a sequential fashion:

Con[P1...Pkx](n, 0, ..., 0) ↔ ig
′(n) · Con[x](f1(n), ..., fk(n))

if each fi is defined on n, and computed by register machine program Pi.
Now let T = (S,L, T ) be a recursive pure transition system with S ⊆ N and fan-out

bounded by N . With the above implementation scheme at hand, it is not hard to express
the sequential τ -saturation of T up to rooted divergence sensitive orthogonal bisimilarity in
ACPorth∗$

τ (A, γ). A possible approach is the following. Given some state, let its menu be
a characterization of the labels of all its outgoing transitions or its termination status (i.e.,
no outgoing transitions and either

√
or deadlock). Fix an enumeration of these menus. Let

furthermore the transition relation T be characterized by (N +1)-tuples fetching all outgoing
transitions (at most N): a state s yields the map

(s, 0, ..., 0) 7→ (s1, ..., sN+1)

where

• sN+1 gives the menu value of s,

• si for i = 1, ...,N is the target associated with source s and the i-th label of menu sN+1

if such a transition is present, and 0 otherwise.

By the recursiveness of T , the above N + 1 functions that define 7→ can be computed by
some register program P , thus

Con[Px](s, 0, ..., 0) i−→→ Con[x](s1, ..., sN+1),

where i−→→ abbreviates the transitive closure of i−→ . Furthermore, assuming that we use
menu value 0 for successful termination and 1 for deadlock, it is straightforward to define a
process term Q that interprets the menu value sN+1 in the following way:

Con[Qx](s1, ..., sN , sN+1)
i−→→
{

Con[δx](s1, ..., sN , 0) if sN+1 = 1,
Con[(

∑
j∈J ajEj)x](s1, ..., sN , 0) if sN+1 > 1.

Here the aj’s are prescribed by the menu value and Ej is a process that transfers sj to the first
position, and empties all other registers. It follows that the full computation of all transitions
from s is captured by

Con[P ((QP )∗dN+1R)](s, 0, ..., 0),

where dN+1 synchronizes with the termination action dN+1 of the menu register in case it
holds value 0 and R terminates all remaining processes. Finally, applying τ{i} we can express
Tτ up to rooted divergence sensitive orthogonal bisimilarity: for each s ∈ S ⊆ Sτ it follows
that if s has transitions s

aj−−→ (sj)τ
τ−→ sj for j ∈ J , then

s↔rdso τ{i}(Con[(
∑

j∈J ajEj)P ((QP )∗dN+1R)](sj1, sj2, ..., sjN , 0))
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in the combined transition system. In the case that s has no transitions, s ↔rdso δ. In
Appendix B we provide some specific examples. Following the proof of Theorem 8.1 above,
it is straightforward how this approach should be adapted to ACPorth$

τ (A, γ) (thus, without
∗, cf. the related results in [9, 10]). The above can be summarized as follows:

Theorem 8.2 For each recursive pure transition system T with finite label set L not con-
taining τ and bounded fan-out, there is a finite extension A of L such that Tτ can be expressed
up to rooted divergence sensitive orthogonal bisimulation equivalence in ACPorth

τ (A, γ), using
only handshaking over A \ L, and either $, or both ∗ and $.

We note that for each term over ACPorth∗$
τ (A, γ) or ACPorth$

τ (A, γ), its fan-out and that of
all its substates is bounded by its complexity. This implies that a stronger expresiveness
result is not possible. An essential unbounded fan-out (i.e., each bisimilar system also has an
unbouded fan-out) is not expressible by a (finitary) process term.

9 Verification of a PAR Protocol

We prove the correctness of a Positive Acknowledgement and Retransmission (PAR) proto-
col [26]. The architecture of the protocol is depicted in Figure 1. We refer to [27] for an
earlier verification in process algebra.

The sender S reads a datum from the environment, and sends this datum, accompanied
by a bit, to the receiver R via channel K. The receiver has just one (thus positive) acknowl-
edgement for the arrival of a frame. The receiver sends its acknowledgements via channel L
to S. The channels are unreliable; upon receiving a datum the channel K can do one of three
things: it can pass on the datum, it can loose the information but send an error message
instead, and it can fail to do anything. The channel L either passes on the acknowledgement,
or fails to do anything. A dummy internal action i is added to make the choice between these
options non-deterministic.

The sender and the receiver act in response to received data only. This poses a problem,
because, when either of the channels K and L fails to act upon receiving a message, the
system will be waiting for nothing to happen, i.e. it will deadlock. In order to avoid this,
the time-out action to may occur, that is supposed to reactivate the system if it threatens
to deadlock. In [26], this time-out is issued by a timer, that is started by the sender at the
moment it sends a frame to K. Here, we model the time-out interruption by placing the
system in the scope of a priority operator and giving the action to lower priority than any
other action; it occurs if no other activity is possible. After a time-out, the sender retransmits
the last message.

Specification. We assume a finite data set D and a set of frames F = D × {0, 1}. The
components are specified as follows.

S = (S0 · S1)∗δ
Sn =

∑
d∈D r(d) · s0(dn) · Sdn

Sdn = (to · s0(dn))∗r3
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Figure 1: Architecture of the protocol.

K = (
∑

f∈F r0(f) ·Kf )∗δ
Kf = i · s1(f) + i · s1(⊥) + i

L = (r2 · (i · s3 + i))∗δ

R = (R0 ·R1)∗δ
Rn = (r1(⊥) +

∑
d∈D r1(d(1 − n)) · s2)∗

∑
d∈D r1(dn) · s(d) · s2

The sk and rk actions, with k ≤ 3, are the send and receive actions over the internal port k.
We let γ(sk, rk) = γ(rk, sk) = ck for k ∈ {2, 3} and

γ(sk(m), rk(m)) = γ(rk(m), sk(m)) = ck(m)

for all messages m and k ≤ 1, and γ undefined otherwise. The action c2 models the passing
of an acknowledgment from R to L. The action c3 is the passing of an acknowledgement from
L to S. The action to is performed only if no other actions are enabled; the partial priority
ordering < is defined by to < a for all actions a other than to.

The set H consists of all the send and receive actions over the internal ports. The set I
consists of to, i and all the communications. The complete system is defined as P = τI(p),
where

p = θ(∂H(S ||K ||R || L)).

Verification. Notation: [ ] for θ(∂H( )). We use the following abbreviations.

p0
d = [Sd0S1S ||Kd0K ||R || L]

p1
d = [Sd0S1S ||K ||R || L]

p2
d = [Sd0S1S ||K ||R1R || (i · s3 + i)L]

p3
d = [Sd0S1S ||K ||R1R || L]

p4
d = [Sd0S1S ||Kd0K ||R1R || L]
q = [S1S ||K ||R1R || L]

Driving the composed operator θ◦∂H inwards we leave out all summands that are blocked by
either the encapsulation or the priority operator. In particular this means that, in the presence
of alternatives, summands starting with a to action are renamed to δ. The linearization is
illustrated in Figure 2.
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Figure 2: Illustration of the process p. We left out the labels of i-transitions.

p =
∑

d∈D r(d) · [s0(d0) · Sd0S1S ||K ||R || L]
=

∑
d∈D r(d) · c0(d0) · p0

d

p0
d = i · [Sd0S1S || s1(d0) ·K ||R || L] +

i · [Sd0S1S || s1(⊥) ·K ||R || L] + i · p1
d

= i · c1(d0) · [Sd0S1S ||K || s(d) · s2 ·R1R || L] + (i · c1(⊥) + i) · p1
d

= i · c1(d0) · s(d) · [Sd0S1S ||K || s2 ·R1R || L] + (i · c1(⊥) + i) · p1
d

= i · c1(d0) · s(d) · c2 · p2
d + (i · c1(⊥) + i) · p1

d

p1
d = to · [s0(d0) · Sd0S1S ||K ||R || L]

= to · c0(d0) · p0
d

p2
d = i · [Sd0S1S ||K ||R1R || s3 · L] + i · p3

d

= i · c3 · q + i · p3
d

p3
d = to · [s0(d0) · Sd0S1S ||K ||R1R || L]

= to · c0(d0) · p4
d

p4
d = i · [Sd0S1S || s1(d0) ·K ||R1R || L] +

i · [Sd0S1S || s1(⊥) ·K ||R1R || L] + i · p3
d

= i · c1(d0) · [Sd0S1S ||K || s2 ·R1R || L] + (i · c1(⊥) + i) · p3
d

= i · c1(d0) · c2 · p2
d + (i · c1(⊥) + i) · p3

d
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Using RSP∗ we derive from the equations for p:

p0
d = ((i · c1(⊥) + i) · to · c0(d0)) ∗i · c1(d0) · s(d) · c2 · p2

d

p2
d =

(
i · to · c0(d0) · p̃4

d

) ∗i · c3 · q
p̃4
d = ((i · c1(⊥) + i) · to · c0(d0)) ∗i · c1(d0) · c2

In a similar way we can derive

q =
∑

d∈D r(d) · c0(d1) · q0
d

q0
d = ((i · c1(⊥) + i) · to · c0(d1)) ∗i · c1(d1) · s(d) · c2 · q2

d

q2
d =

(
i · to · c0(d1) · q̃4

e

) ∗i · c3 · p
q̃4
d = ((i · c1(⊥) + i) · to · c0(d1)) ∗i · c1(d1) · c2

Using substitution we eliminate all process abbreviations from the equation for p, yielding
terms tp and tq such that p = tp · q and q = tq · p. We derive by pressing the operator τI
inwards and compressing τ ’s

τI(tp) = τI(tq) =
∑

d∈D r(d) · τ(τ∗τ)τ · s(d) · τ((ττ(τ∗τ)τ)∗τ)τ.

Using OFIR2 we derive that

τI(tp) =
∑

d∈D r(d) · τ · s(d) · τ.

Since P equals τI(tp) · τI(tp) · P , we find by RSP∗ that

P =
(∑

d∈D r(d) · τ · s(d) · τ
) ∗δ.

Remark 9.1 In [28], a verification of the Concurrent Alternating Bit Protocol (CABP) can
be found. The CABP has parallel internal activity; in any state the system can do some
internal step. This is reflected in the outcome of the verification. The CABP was proved
rooted orthogonally bisimilar to the process

(τ∗
∑

d∈D r(d) · τ · (τ∗s(d)) · τ)∗δ.

10 Conclusions

In this paper we introduced orthogonal bisimulation equivalence and proved a number of
elementary results. In this final section we comment on its position in behavioral semantics.

Orthogonal bisimulation equivalence admits compression, but is not as abstract as the com-
mon behavioral equivalences that deal with abstraction. In particular, it is a finer equiva-
lence than branching bisimilarity [19]. Van Glabbeek and Weijland, the founders of branching
bisimulation equivalence, remark that “we know of no useful operator for which some abstract
equivalence in the linear time-branching time spectrum is a congruence, but rooted branching
bisimulation is not.” [19, p. 594], and provide many more arguments in favor of branching
bisimulation equivalence. Furthermore, branching bisimulation equivalence is argued to be
optimal in the following sense: it is the coarsest behavioral equivalence that respects the
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branching structure of processes2 (see [16]), and it is the finest congruence possible for a
common repertoire of process algebra operations (supporting the interleaving hypothesis)
that is abstract in the sense that it satisfies at least aτx = ax (cf. [14, 19]).

To the best of our knowledge, orthogonal bisimilarity is the first behavioral semantics
that is a congruence for the priority operator, and that takes the nature of abstraction
into account (up to compression). In comparison with branching bisimulation equivalence, a
typical property of orthogonal bisimulation equivalence is that it refutes the axiom xτ = x (or
aτx = ax in a setting with only action prefix), while it validates the weakened version xττ =
xτ . This property simply represents another perspective on silent activity, acknowledging
its presence, but not its structure. An immediate consequence of xτ = x not being sound
is that divergence is preserved more often than in branching bisimilarity. This may play
a role in the area of protocol specification and verification, where τ -cycles usually result
from the abstraction of the occurrence and recovery of an undesirable event, and fairness is
assumed. In Section 9 it is shown that such events in our modeling of the PAR protocol
can indeed be discarded after abstraction, as all exits of the occurring τ -cycles happen to
start with a τ -step. However, this is not always the case in the daily practice of protocol
specification in process algebra (cf. Remark 9.1). For this reason, the divergence sensitive
variant of orthogonal bisimulation equivalence is distinguished (which simply never discards
τ -cycles while it respects the branching structure of a process in the same sense).

In this paper, we attempted to show that orthogonal bisimulation equivalence is a refine-
ment of branching bisimulation equivalence that is interesting in its own right. Although it
is not an ‘abstract equivalence’ in the sense described above, it certainly provides another
look at abstraction in process algebra, and may be of use in situations where compression or
priorities play a role.

Future Work. We did not yet analyze the complexity of (divergence sensitive) orthogonal
bisimilarity in finite state transition systems. Furthermore, the ‘branching structure of a
process’ as defined in [16] depends on a notion of observable content of the traces of that
process; it might well be that the “compression content” of a trace, i.e., the traces of the
process from which all second and consecutive τ ’s are removed, leads to a characterization
of orthogonal bisimilarity along the same lines as in [16]. Finally, ‘orthogonal versions’ for
other behavioral semantics still have to be formulated, characterized and interrelated. For
example, how should orthogonal ready equivalence or failure equivalence be defined, and is
it a congruence for process algebra with priorities? We note that it does not make sense to
consider orthogonal versions of behavioral equivalences that identify more than ready trace
or failure trace equivalence: it is well-known (see, e.g., [5]) that the priority operator is not
compatible with failure or ready semantics.3

2This notion is formally defined in [16].
3Suppose A = {a, b, c, d, e, f} and f < b < d and P = a(bc+ d) + a(be+ f), Q = a(be+ d) + a(bc+ f), then

P ≡R Q (so P ≡F Q), but θ(P ) 6≡F θ(Q).
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A Congruence Proofs

We prove that rooted orthogonal bisimilarity is a congruence relation with respect to all op-
erators of ACPorth

τθ . The proof is both straightforward and elaborate. Consider the transition
system of closed ACPorth

τθ (A, γ) terms for some arbitrary A, γ. We let t, u, v, w range over
closed process terms and x, y, z range over states (the state set consists of the closed terms
and the termination state

√
).

Two useful properties of orthogonal bisimulations: if R is an orthogonal bisimulation with
xRy, then x =

√
if, and only if, y =

√
, and, for a ∈ Aτ , x

a−→ if, and only if, y
a−→.

Consider (for i = 1, 2) process terms ti and ui such that ti ↔ro ui. We prove that t1�t2 ↔ro

u1 � u2 for all � ∈ {·, ||, || , |}, and that †(t1) ↔ro †(u1) for all † ∈ {∂H , τI , θ} with arbitrary
I,H ⊆ A and priority ordering < on Aτ . After this proof, we give a separate proof for the
alternative composition.

There is an orthogonal bisimulation Ri, that is rooted between ti and ui (for i = 1, 2). Let
R = R1 ∪R2 ∪R′, where R′ is defined as follows.

R′ =
{

(t � v, u � w), (†(t), †(u))
(t, u) ∈ R1 \ {(

√
,
√

)}, (v,w) ∈ R2 \ {(
√

,
√

)},
� ∈ {·, ||, || , |}, † ∈ {∂H , τI , θ}

}
We show that R is an orthogonal bisimulation that satisfies the appropriate root conditions.

Symmetry. The set R is symmetric. Take any (x, y) ∈ R. If, for i = 1, 2, (x, y) ∈ Ri,
then also (y, x) ∈ R, since Ri is symmetric. If (x, y) ∈ R′, then we make the following case
distinction.

• If x ≡ t � v and y ≡ u � w for some �, then, by definition of R′, it holds that tR1u
and vR2w. Since R1 and R2 are symmetric, it holds that uR1t and wR2v. Hence, by
definition of R′, it follows that (y, x) ∈ R.

• If x ≡ †(t) for some †, then use the definition of R′ and the symmetry of R1.

Concrete action steps. Take any (x, y) ∈ R′ and assume that x a−→ x′ for some a and x′

with a 6= τ . We have to show that y a−→y′ for some y′ with x′Ry′. We make a case distinction
on the form of x.
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• If x ≡ t · v, then, by definition of R′, y ≡ u · w such that tR1u and vR2w. We see
that either t

a−→√ and x′ = v, or t
a−→ t′ and x′ = t′ · v. In the first case also u

a−→√

since tR1u. Hence y
a−→ w. Since vR2w, also vRw, ok. In the second case, we find

that u
a−→ u′ for some u′ with t′R1u

′. Then y
a−→ u′ · w. We get t′ · vRu′ · w using the

definition of R′.

• If x ≡ t||v, then, by definition of R′, y ≡ u||w such that tR1u and vR2w. We distinguish
8 possibilities:

1. t a−→√ and x′ = v. In this case also u a−→√, and hence y a−→ w, ok.

2. t a−→ t′ and x′ = t′ || v. In this case u a−→ u′ with t′R1u
′. Then y a−→ u′ || w. Using

the definition of R′, we get x′Ru′ || w.

3. v
a−→√ and x′ = t. Like case 1.

4. v
a−→ v′ and x′ = t || v′. Like case 2.

5. t b−→√ and v c−→√ and γ(b, c) = a and x′ =
√

. In this case, it holds that u b−→√

and w c−→√. Hence y a−→√. It holds that
√

R
√

, since
√

R1
√

(and
√

R2
√

).

6. t
b−→ t′ and v

c−→√ and γ(b, c) = a and x′ = t′. Straightforward.

7. t b−→√ and v c−→ v′ and γ(b, c) = a and x′ = v′. Straightforward.

8. t
b−→ t′ and v

c−→ v′ and γ(b, c) = a and x′ = t′ || v′. Straightforward.

• If x ≡ t || v, then, by definition of R′, y ≡ u || w such that tR1u and vR2w. We
distinguish 2 possibilities:

1. t
a−→√ and x′ = v. In this case also u

a−→√, and hence y
a−→ w, ok.

2. t a−→ t′ and x′ = t′ || v. In this case u a−→ u′ with t′R1u
′. Then y a−→ u′ || w. Using

the definition of R′, we get x′Ru′ || w.

• If x ≡ t |v, then, by definition of R′, y ≡ u |w such that tR1u and vR2w. We distinguish
4 possibilities:

1. t b−→√ and v c−→√ and γ(b, c) = a and x′ =
√

. In this case, it holds that u b−→√

and w
c−→√. Hence y

a−→√. It holds that
√

R
√

, since
√

R1
√

(and
√

R2
√

).

2. t b−→ t′ and v c−→√ and γ(b, c) = a and x′ = t′. Straightforward.

3. t b−→√ and v c−→ v′ and γ(b, c) = a and x′ = v′. Straightforward.

4. t
b−→ t′ and v

c−→ v′ and γ(b, c) = a and x′ = t′ || v′. Straightforward.

• If x ≡ ∂H(t), then, by definition of R′, y ≡ ∂H(u) such that tR1u. If x′ =
√

, then
t a−→√ and a 6∈ H. Then also u a−→√, and y a−→√, ok. If x′ 6= √, then x′ = ∂H(t′), for
some t′ with t a−→ t′ and a 6∈ H. Then u a−→ u′ for some u′ with t′R1u

′. So y a−→ ∂H(u′).
Using the definition of R′, we get ∂H(t′)R∂H(u′).

• If x ≡ τI(t), then we proceed as in the previous case.
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• If x ≡ θ(t), then, by definition of R′, y ≡ θ(u) such that tR1u. If x′ =
√

, then t
a−→√

and there is no b > a with t
b−→. Since tR1u, also u

a−→√ and there is no b > a with
u b−→. Hence y a−→√.

If x′ =
√

, then x′ ≡ θ(t′), for some t′ with t a−→ t′ and there is no b > a with t b−→.
Since tR1u, it holds that u

a−→ u′ for some u′ with t′R1u
′ and there is no b > a with

u
b−→. Hence y

a−→ θ(u′) and x′R′θ(u′).

Silent steps. Take any (x, y) ∈ R′ and assume that x τ−→ x′ for some x′. We have to show
that y τ−→ and that, for some n ≥ 0, there are yk such that y0 · · · yn ∈ τ -paths(y) and x′Ryn
and xRyk for all i < n.

We make a case distinction on the form of x.

• If x ≡ t · v, then, by definition of R′, y ≡ u · w such that tR1u and vR2w. We see that
either t

τ−→√ and x′ = v, or t
τ−→t′ and x′ = t′ ·v. In the first case, since tR1u, u

τ−→ and
hence y

τ−→. Furthermore, for some n > 0, there are ui such that u0 · · ·un ∈ τ -paths(u)
and un =

√
and tR1ui for all i < n. Then (u0 · w) · · · (un−1 · w)w ∈ τ -paths(y). We

have x′R2w, and xR′ui · w for i < n by definition of R′.

In the second case, we find that, since tR1u, u τ−→ and hence y τ−→. Furthermore, for
some n ≥ 0, there are ui such that u0 · · · un ∈ τ -paths(u) and t′R1un and tR1ui for all
i < n. Then (u0 · w) · · · (un · w) ∈ τ -paths(y). We have x′R2un · w, and xR′ui · w for
i < n by definition of R′.

• If x ≡ t||v, then, by definition of R′, y ≡ u||w such that tR1u and vR2w. We distinguish
4 possibilities:

1. t
τ−→ √ and x′ = v. In this case u

τ−→ and hence y
τ−→. Furthermore, for some

n > 0, there are ui such that u0 · · ·un ∈ τ -paths(u) and un =
√

and tR1ui for all
i < n. Then also (u0 || w) · · · (un−1 || w)w ∈ τ -paths(y), and, by definition of R′,
xR′ui || w for all i < n.

2. t τ−→ t′ and x′ = t′ || v. In this case u τ−→ and hence y τ−→. Furthermore, for some
n ≥ 0, there are ui such that u0 · · ·un ∈ τ -paths(u) and t′R1un and tR1ui for
all i < n. Then also (u0 || w) · · · (un || w) ∈ τ -paths(y), and, by definition of R′,
xR′ui || w, for all i < n, and x′R′un || w.

3. v
τ−→√ and x′ = t. Like case 1.

4. v
τ−→ v′ and x′ = t || v′. Like case 2.

• If x ≡ t || v, then, by definition of R′, y ≡ u || w such that tR1u and vR2w. We
distinguish 2 possibilities:

1. t
τ−→ √ and x′ = v. In this case u

τ−→ and hence y
τ−→. Furthermore, for some

n > 0, there are ui such that u0 · · ·un ∈ τ -paths(u) and un =
√

and tR1ui for all
i < n. Then also (u0 || w)(u1 ||w) · · · (un−1 ||w)w ∈ τ -paths(y), and, by definition
of R′, xR′ui || w for all 0 < i < n.
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2. t
τ−→ t′ and x′ = t′ || v. In this case u

τ−→ and hence y
τ−→. Furthermore, for some

n ≥ 0, there are ui such that u0 · · ·un ∈ τ -paths(u) and t′R1un and tR1ui for all
i < n. Then also (u0 || w)(u1 || w) · · · (un || w) ∈ τ -paths(y), and, by definition of
R′, xR′ui || w, for all 0 < i < n, and x′R′un || w.

• If x ≡ t | v, then x cannot have an outgoing τ -step.

• If x ≡ ∂H(t), then, by definition of R′, y ≡ ∂H(u) such that tR1u. We see that t
τ−→

and hence u τ−→ and y τ−→.

If x′ =
√

, then t τ−→√. Furthermore, for some n > 0, there are ui such that u0 · · ·un ∈
τ -paths(u) and un =

√
and tR1ui for all i < n. Then also ∂H(u0) · · · ∂H(un−1)

√ ∈
τ -paths(y) and xR′∂H(ui) for all i < n.

If x′ 6= √, then x′ = ∂H(t′), for some t′ with t
τ−→ t′. Furthermore, for some n ≥ 0,

there are ui such that u0 · · ·un ∈ τ -paths(u) and t′R1un and tR1ui for all i < n. Then
also ∂H(u0) · · · ∂H(un) ∈ τ -paths(y) and x′R′∂H(un) and xR′∂H(ui) for all i < n.

• If x ≡ τI(t), then, by definition of R′, y ≡ τI(u) such that tR1u. We distinguish 4
possibilities:

1. t τ−→ √ and x′ =
√

. We see that u τ−→ and hence y τ−→. Furthermore, for some
n > 0, there are ui such that u0 · · · un ∈ τ -paths(u) and un =

√
and tR1ui for all

i < n. Then also τI(u0) · · · τI(un−1)
√ ∈ τ -paths(y) and xR′τI(ui) for all i < n.

2. t τ−→ t′ and x′ = τI(t′). We see that u τ−→ and hence y τ−→. Furthermore, for some
n ≥ 0, there are ui such that u0 · · ·un ∈ τ -paths(u) and t′R1un and tR1ui for all
i < n. Then also τI(u0) · · · τI(un) ∈ τ -paths(y) and x′R′τI(un) and xR′τI(ui) for
all i < n.

3. t
a−→√ and a ∈ I and x′ =

√
. In this case, u

a−→√ and hence y
τ−→√.

4. t
a−→ t′ and a ∈ I and x′ = τI(t′). In this case, u

a−→ u′ for some u′ with t′R1u
′. So

y
τ−→ τI(u′). By definition of R′, we have x′R′τI(u′).

• If x ≡ θ(t), then, by definition of R′, y ≡ θ(u) such that tR1u.

If x′ =
√

, then t
τ−→ √, and there is no a > τ with t

a−→. Since tR1u, we have that
for some n > 0, there are ui such that u0 . . . un ∈ τ -paths(u), un =

√
, and tR1ui for

i < n. Since, for i < n, tR1ui, it holds that there is no a > τ with ui
a−→. Hence

θ(u0) . . . θ(un−1)un ∈ τ -paths(y). We have that xRθ(ui) by definition of R′.

If x′ 6= √, then t τ−→ t′ for some t′ with x′ ≡ θ(t′), and there is no a > τ with t a−→.
Since tR1u, we have that for some n ≥ 0, there are ui such that u0 . . . un ∈ τ -paths(u),
t′R1un, and tR1ui for i < n. So u τ−→ and hence y τ−→. Since, for i < n, tR1ui, it holds
that there is no a > τ with ui

a−→. Hence θ(u0) . . . θ(un) ∈ τ -paths(y). We have that
xRθ(ui) and x′Rθ(un) by definition of R′.

Rootedness. We have to show that R is rooted between t1 � t2 and u1 � u2, and between
†(t1) and †(u1), for all � ∈ {·, ||, || , |} and † ∈ {∂H , τI , θ}.

• Sequential composition. Assume that t1 · t2
τ−→ x. We distinguish two possibilities:
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1. t1
τ−→√ and x = t2. Since R1 is rooted between t1 and u1, it holds that u1

τ−→√

and hence u1 · u2
τ−→ u2, ok.

2. t1
τ−→ t′1 and x = t′1 · t2. Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
τ−→ u′1 and t′1R1u

′
1. We see that u1 · u2

τ−→ u′1 · u2 and xRu′1 · u2, ok.

Silent steps of u1 · u2 are treated symmetrically.

• Merge. Assume that t1 || t2
τ−→ x. We distinguish 4 possibilities:

1. t1
τ−→√ and x = t2. Since R1 is rooted between t1 and u1, it holds that u1

τ−→√

and hence u1 || u2
τ−→ u2, ok.

2. t1
τ−→ t′1 and x = t′1 || t2. Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
τ−→ u′1 and t′1R1u

′
1. We see that u1 || u2

τ−→ u′1 || u2 and xRu′1 || u2, ok.

3. t2
a−→√ and x = t1. Like case 1.

4. t2
a−→ t′2 and x = t1 || t′2. Like case 2.

Silent steps of u1 || u2 are treated symmetrically.

• Left merge. Assume that t1 || t2
τ−→ x. We distinguish 2 possibilities:

1. t1
τ−→√ and x = t2. Since R1 is rooted between t1 and u1, it holds that u1

τ−→√

and hence u1 || u2
τ−→ u2, ok.

2. t1
τ−→ t′1 and x = t′1 || t2. Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
τ−→ u′1 and t′1R1u

′
1. We see that u1 || u2

τ−→ u′1 || u2 and xRu′1 || u2, ok.

Silent steps of u1 || u2 are treated symmetrically.

• Communication merge. No τ -steps.

• Encapsulation. Assume that ∂H(t1)
τ−→ x. We distinguish 2 possibilities:

1. t1
τ−→√ and x =

√
. Since R1 is rooted between t1 and u1, it holds that u1

τ−→√

and hence ∂H(u1)
τ−→√, ok.

2. t1
τ−→ t′1 and x = ∂H(t′1). Since R1 is rooted between t1 and u1, there must be

some u′1 with u1
τ−→u′1 and t′1R1u

′
1. We see that ∂H(u1)

τ−→∂H(u′1) and xR∂H(u′1),
ok.

Silent steps of ∂H(u1) are treated symmetrically.

• Hiding. Assume that τI(t1)
τ−→ x. We distinguish 4 possibilities:

1. t1
τ−→√ and x =

√
. Since R1 is rooted between t1 and u1, it holds that u1

τ−→√

and hence τI(u1)
τ−→√, ok.

2. t1
τ−→ t′1 and x = τI(t′1). Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
τ−→ u′1 and t′1R1u

′
1. We see that τI(u1)

τ−→ τI(u′1) and xRτI(u′1), ok.

3. t1
a−→√ and a ∈ I and x =

√
. Since t1R1u1, it holds that u1

a−→√ and hence
τI(u1)

a−→√, ok.
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4. t1
a−→ t′1 and a ∈ I and x = τI(t′1). Since t1R1u1, there must be some u′1 with

u1
a−→ u′1 and t′1R1u

′
1. We see that τI(u1)

τ−→ τI(u′1) and xRτI(u′1), ok.

Silent steps of τI(u1) are treated symmetrically.

• Priority. Assume that θ(t1)
τ−→ x. If x =

√
, then it must be that t1

τ−→√ and there is
no a > τ with t1

a−→. Since t1R1u1, it holds that there is no a > τ with u1
a−→. Since

R1 is rooted between t1 and u1, it holds that u1
τ−→√.

If x 6= √, then it must be that t1
τ−→ t′1 for some t′1 with x = θ(t′1), and there is no a > τ

with t1
a−→. Since t1R1u1, it holds that there is no a > τ with u1

a−→. Since R1 is rooted
between t1 and u1, it holds that u1

τ−→u′1 for some u′1 with t′1R1u
′
1. By definition of R′,

we find that xRθ(u′1).

Silent steps of θ(u1) are treated symmetrically.

Alternative composition. We prove that ↔ro is a congruence with respect to the alter-
native composition. We give a separate proof for this operator, because, contrary to the other
operators, we have to use the root condition explicitly.

We show that the relation

R = R1 ∪R2 ∪ {(t1 + t2, u1 + u2), (u1 + u2, t1 + t2)}

is an orthogonal bisimulation that is rooted between t1 + t2 and u1 + u2. Clearly, R is
symmetric.

• If t1 + t2
a−→ t for some a and t with a 6= τ , it must be that ti

a−→ t for some i ∈ {1, 2}.
Since tiRiui it holds that ui

a−→ u for some u with tRiu. Then also u1 + u2
a−→ u and

tRu.

• If t1 + t2
τ−→ t for some t, then it must be that ti

τ−→ t for some i ∈ {1, 2}. Since Ri

is rooted between ti and ui, it holds that ui
τ−→ u for some u with tRiu. Then also

u1 + u2
τ−→ u and tRu.

Steps of u1 + u2 are treated symmetrically. The second case shows that R is rooted between
t1 + t2 and u1 + u2.

B Expressing Recursive Pure Transition Systems

In this appendix, we spell out an instance of Theorem 8.2 (see Section 8). We consider the
case of recursive pure transition systems over label set L = {a, b}, and with fan-out of at
most three. We choose the following menu enumeration:

0 for successful termination,
1 for deadlock,
2 for a,
3 for b,
4 for a, a,
5 for a, b,

6 for b, b,
7 for a, a, a,
8 for a, a, b,
9 for a, b, b,

10 for b, b, b,
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Q
b4 ↓
• c4−−→δ

b4 ↓
• c4−−→aE1 E1 = (b2

∗c2)(b3
∗c3)

b4 ↓
• c4−−→bE1

b4 ↓
• c4−−→aE1 + aE2 E2 = (b1

∗c1)(b3
∗c3)((b2a1)∗c2)

b4 ↓
• c4−−→aE1 + bE2

b4 ↓
• c4−−→bE1 + bE2

b4 ↓
• c4−−→aE1 + aE2 + aE3 E3 = (b1

∗c1)(b2
∗c2)((b3a1)∗c3)

b4 ↓
• c4−−→aE1 + aE2 + bE3

b4 ↓
• c4−−→aE1 + bE2 + bE3

b4 ↓
• c4−−→bE1 + bE2 + bE3

Figure 3: The process Q.

A transition relation is characterized by 4-tuples fetching all outgoing transitions (at most
3): a state s yields the map

(s, 0, 0, 0) 7→ (s1, ..., s4)

where

• s4 gives the menu number of s,

• si for i = 1, 2, 3 is the target associated with source s and the i-th label of menu s4 if
such a transition is present, and otherwise 0.

Let P be such that it models the computation of 7→, i.e.,

Con[Px](s, 0, 0, 0) i−→→ Con[x](s1, ..., s4).

We define Q partly in a graphical manner in Figure 3. We write Conτ [x](~s) for τ{i}(Con[x](~s)),
and Prog for (QP )∗d4R.

As a first example, consider the transition system 5 a−→√. It is easily seen that

Conτ [aE1PProg](0, 0, 0, 0)

is rooted divergence sensitive bisimilar with state 5 in the sequential τ -saturation of 5 a−→√.
Next, consider the transition systems in Figure 4. It is immediately clear that the sequential

τ -saturation of the leftmost transition system, here drawn in the middle, has the property
that 5 ↔rdso Conτ [([aE1 + aE2)PProg](5, 7, 0, 0), as the only difference is in the length of
τ -sequences (here drawn by double arrows). Note that we could have taken (7, 5, 0, 0) as
initial tuple because there is no ordering in menu 4.
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a
y
5

a ↓
7 	 b

a↙ ↘ b

3
√

5τ
τ ↓↑ a

5
a ↓
7τ

a ↓↑ b
7

a↙ ↘ b

3τ
√
τ

τ ↓ ↓ τ
3

√

Conτ [E1PProg](5, 7, 0, 0)
τ ⇓↑ a

Conτ [([aE1 + aE2)PProg](5, 7, 0, 0)
a ↓

Conτ [E2PProg](5, 7, 0, 0)
(

= Conτ [E3PProg](3, 0, 7, 0)
)

τ ⇓↑ b
Conτ [(aE1 + bE2 + bE3)PProg](3, 0, 7, 0)

a↙ ↘ b

Conτ [E1PProg](3, 0, 7, 0) Conτ [E2PProg](3, 0, 7, 0)
τ ⇓ ⇓ τ

Conτ [δPProg](3, 0, 7, 0)
√

Figure 4: Three transition systems.


