
Theoretical Computer Science 82 (1991) 285-302 
Elsevier 

Recursive process definitions with 
the state operator 

J.C.M. Baeten* 
Department of Software Technology, Centre for Mathematics and Computer Science, 
P.O. Box 4079, 1009 AB Amsterdam, Netherlands 

J .A. Bergstra * 

285 

Programming Research Group, University of Amsterdam, P.O. Box 41882, 1009 DB Amsterdam, 
Netherlands, and Department of Philosophy, State University of Utrecht, Heidelberglaan 2, 
3584 CS Utrecht, Netherlands 

Communicated by A. Meyer 
Received May 1988 
Revised May 1989 

Abstract 

Baeten, J.C.M., and J.A. Bergstra, Recursive process definitions with the state operator, Theoretical 
Computer Science 82 (1991) 285-302. 

We investigate the defining power of finite recursive specifications over the theory with + 
(alternative composition) and · (sequential composition) and A (the state operator) over a finite 
set of states, and find that it is greater than that of the same theory without state operator. Thus, 
adding the state operator is an essential extension of BPA (the theory of processes over+,'). On 
the other hand, applying the state operator to a regular process again gives a regular process. As 
a limiting result in the other direction, we find that not all PA-processes (where also parallel 
composition II is present) can be defined over BPA plus state operator. 

I. Introduction 

The theory BPA (Basic Process Algebra) is the starting point for a whole range 
of theories for concurrent communicating processes (see e.g. [5]), that can be 
classified as an algebraic and axiomatic approach to concurrency (in the vein of 
CCS, see [8] or CSP, see [7]). 

BPA has two binary operators: + is alternative composition (non-deterministic 
choice, as in CCS), and · is sequential composition (as; in CSP), and consists of 

* Both authors are partially sponsored by ESPRIT contract 432, An Integrated Formal Approach to 
Industrial Software Development (METEOR). The first author is also partially sponsored by RACE 
contract 1046, Specification and Programming Environment for Communication Software (SPECS). 

0304-3975/91/$03.50 © 1991-Elsevier Science Publishers B.V. 



286 J.C.M. Baeten and J.A. Bergstra 

just five simple axioms. We add the constant 5 for deadlock, with two extra axioms. 
In addition, we allow systems of recursive equations over BPA8 (compare the 
JL·Operator in CCS or CSP). The defining power of such recursive specifications 
was studied in [ 4]. There, it was found that a wider class of processes can be defined 
than the class of regular processes (essentially, the class of context-free languages). 
We obtain the theory PA by the addition of the parallel operator II (merge). It was 
found in [ 4] that this increases the defining power of recursive specifications even 
further. 

The state operator A was introduced in [l]. It can be used to describe actions 
that have a side effect on a state space, and showed itself useful in a range of 
applications, e.g. for the translation of programming or specification languages into 
process algebra (see [11] or [10]). Now the question arises if the defining power of 
BPA is increased by the addition of the state operator. Of course, we have to limit 
ourselves to a finite state space, for otherwise any process becomes definable (see 
the example of the queue in [l]). In this paper, we answer this question positively. 

We obtain the theory of regular processes (finite automata) if we limit ourselves 
to linear specifications over BPA. We show that applying the state operator to a 
regular process again yields a regular process. On the other hand, if we are allowed 
to use the state operator in the recursion, then all processes that are definable over 
BPA8 , are definable by a linear specification over BPA8 +A. Even some processes 
that are not definable over BPA15 , are definable by a linear specification over 
BPA15 +A. On the other hand, not all PA-definable processes are definable over 
BPA8 +A. 

Thus, we obtain a hierarchy of process classes. The results we obtain are pictured 
in Fig. 1. Each arrow denotes a strict inclusion relation. Between the three classes 
at the right, some non-inclusion results are obtained. We identify the classes in Fig. 1: 
• BPA8 lin.: processes definable by a linear specification over BPA8 ; 

• A(BPA8 lin.): processes obtained by application of A to processes in BPA8 !in.; 
• BPA8 rec.: processes definable by a recursive specification over BPA8 ; 

• A(BPA8 rec.): processes obtained by application of A to processes in BPA8 rec.; 

PAorec. 

BP ASiin. 
BPAorec. 

A.(BPAO!in.) 

BPAo+A.lin. 

Fig. 1. 



Recursive process definitions with the state operator 287 

• BPAa+A lin.: processes definable by a linear specification over BPAll+.A; 

• PA8 rec.: processes definable by a recursive specification over PAil. 

2. Preliminaries 

2.1. Basic process algebra 

The axiom system BPA consists of the axioms in Table 1. The signature of 

BPA consists of a set A= {a, b, c, ... } of constants, called atomic actions, and the 

operators+ (alternative composition) and ·(sequential composition). Often the dot 

· and parentheses will be suppressed. · binds stronger than +. By a process we 

mean an element of some algebra satisfying the axioms of BPA; the x, y, z in Table 

1 vary over processes. Such an algebra is a process algebra (for BPA), e.g. the initial 

algebra of BPA is one. 

2.2. Example 

a ( b + c) d denotes the process whose first action is a followed by a choice between 

band c and concluding with d. By axioms Al and A4 we see that a(b+c)d= 

a ( cd + bd ). Note, however, that BPA does not enable us to prove that a ( cd + bd) = 
acd + abd. In general, we do not equate the processes x(y + z) and xy + xz. We do 

this, because the moment of choice in these processes is different. This is important 

for instance in the analysis of deadlock behaviour (see below). As a consequence, 

we have a branching time semantics as in CCS. 

2.3. Deadlock 

We distinguish one special constant in A, namely 8. We use this constant to denote 

deadlock, reached when no action is possible any more, the absence of an alternative 

to proceed. The constant 8 EA has two special axioms, displayed in Table 2. We 

Table I 
BPA 

x+y=y+x Al 
(x+y)+z=x+(y+z) A2 
x+x=x A3 
( x + y) z = xz + yz A4 

(xy)z =x(yz) AS 

Table 2 
Deadlock 

x+8 =x A6 
8· x=8 A7 



288 J.C.M. Baeten and J.A. Bergstra 

denote the theory BPA+8, with axioms Al-A?, by BPA8 . Using 8, we can describe 
two different ways of termination: in the process a8 + b, we have unsuccessful 
termination (deadlock) after performing a, and successful termination after perform­
ing b. Only in the case of successful termination can we continue with the next 
process in a context of sequential composition. Note that this approach is different 
from the situation in CCS or CSP, where only one kind of termination is possible. 
Nevertheless, our results will also hold in the setting of CCS or (T)CSP, since the 
key use of 8 is to define a notion of restriction, a notion that is also present in CCS 
and CSP. 

We see, that with the rejected law x(y + z) = xy + xz we can derive ab = a ( b + 8) = 
ab + ao, and this equates a process with deadlock possibility to one without such a 
possibility, a clearly undesirable situation. 

Now we consider recursive specifications over BPA8 • We give some definitions. 

2.4. Definitions 

(1) A system of recursion equations or recursive specification (over BPA8 ) is a 
finite set of equations 

E = {X; = S;(X0 , ••• , Xn): i = 0, ... , n}, 

where the s;(X) are process expressions in the signature ofBPA8 , possibly containing 
occurrences of the recursion variables in X. The variable X0 is the root variable. 
Usually we will omit mentioning the root variable when presenting a system of 
recursion equations, with the understanding that it is the first variable in the actual 
presentation. 

(2) We will also on occasion use infinitary recursive specifications 

E = {X; = S;(X): i EN}, 

but will always state explicitly when that is the case. 
(3) A process p0 (in a certain process algebra) is a solution of a specification E 

if there are processes p,, . .. in this process algebra such that substituting processes 
p; for variables X; yields only true statements. 

(4) Suppose that the right-hand side of a recursion equation X; = s;(X) is in 
normal form with respect to applications (from left to right) of axioms A4 and A5 
in Table 1. Such a recursion equation is guarded if every occurrence of every XJ 
(j = 0, ... , n) in s;(X) is preceded (guarded) by an atom from A; more precisely, 
every occurrence of XJ is in a subexpression of the form a· s' for some atom a and 
expression s'. For instance, the equation X = aX + Yb Y is not guarded, as the first 
occurrence of Y is unguarded; but the recursion equation X = c(a Y + ZbX) is 
guarded. 

If the right-hand side of an equation is not in normal form with respect to A4 
and A5, it is said to be guarded if it is so after bringing the right-hand side into 
normal form. 



Recursive process definitions with the state operator 289 

(5) A recursive specification is called linear if all its equations are of the form 
X=8 or 

where k + m;;:, 1, and each a;, bj EA-{ 8}. Obviously, linear specifications are always 
guarded. 

Now we can use guarded recursive specifications to define processes. It is obvious 
that not every specification can be used to determine a process (as every process 
satisfies the equation X = X), but guardedness is a sufficient criterion to guarantee 
unique solutions in several algebras. 

We mention a few algebras where the laws of BPA11 hold and guarded recursive 
specifications have unique solutions: 
• the projective limit model, see e.g. [5]; 
• the graph model, see e.g. [3]; 
• the action relation model, see e.g. [6] (the operational semantics that forms the 
basis of this model is presented below). 

We will assume in the sequel that every guarded recursive specification has a 
unique solution (also for infinitary specifications!), and we say this process is defined 
by the specification. 

A subprocess of process x is a process that can be reached by executing a number 
of steps from x. A regular process (or a finite automaton) is a process that has only 
finitely many subprocesses. A well-known result is that the regular processes are 
exactly the processes that are the solution of a finite linear recursive specification. 

2.5. Trace consistency 

We will also need a way to tell when two process expressions cannot give the 
same process. Certainly, two processes that are equal, must be able to perform the 
same sequences of actions (must have the same traces). Actually, this criterion is 
sufficient for our purposes. We will now give an operational semantics for process 
expressions that yields the traces of such an expression. This semantics is given by 
means of action rules (first given for this theory in [6], but appearing earlier in many 
places, see e.g. [9]). We will use this operational semantics in a rather informal 
way: when we say that process p can do an a-step to process q, we mean p -4 q. 

2.6. Action rules 

For each a e A, we define two predicates on process expressions: -4 is a binary 
relation, and -4 J is a unary relation. Their intuitive meaning is as follows: 
• x -4 y means that x can perform an a-step and evolve into y; 

• x -4 J means that x can perform an a-step and terminate successfully. 
The formal definition of these predicates is given in Table 3. The last lines give 
rules for recursion: the idea is that if we know that an action relation holds for the 



290 J.C.M. Baeten and J.A. Bergstra 

Table 3 
Action rules for BPA8 +recursion 

a .J4 .j 
X .J4 X 1 ~ X + y ...!4. x' 
y .J4 y' ~ x + y .!4 y' 
x -'4 x' ~ x · y .J4 x' · y 
Si .J4 Y ~ Xi -'4 Y 

x-'4.j ~ x+y.!4.j 
y.!4.j ~ x+y.!4.j 
x.!4.J ~ x· y.!4 y 
Si .!4 .j ~ X, .!4 .j 

right-hand side of an equation, we can infer it holds for the left-hand side, the 
recursion variable. A more exact treatment can be found in [6]. 

2. 7. State operator 

Now we add the state operator to the signature of BPA0 • This operator was 
introduced and used in [1]. Let S be some finite set (the state space). Then A, is a 
unary operator on processes, for each s ES. If x is some process, then A.(x) denotes 
process x in state s. Then, if x is able to execute an action a, the result will be a 
certain action, and it will have a certain effect on the state. Thus, the state operator 
comes with two functions: 

action: Ax S 4 A, that gives the result of the execution of an action; 

effect: Ax S 4 S, that gives the state resulting from the 
execution of an action. 

We will always require that action(l5,s)=ll and effect(l5,s)=s, for any sES 
(i.e. lJ is inert). 

The state operator has axioms S01-S03, displayed in Table 4. Here s ES, a EA 
and x, y are arbitrary processes. 

The state operator is a renaming operator, since the action function allows us to 
rename atoms. Notice that atomic actions may only be renamed into an atomic 
action, not into a general process. While such general renaming is consistent with 
BPAs, it is not consistent with several extensions of the theory, such as the theory 
PA to be discussed later. By renaming into 8, we can block the execution of an 
action; thus, the state operator also includes the notion of encapsulation or 
restriction. 

Table 4 
State operator 

A,(a) = action(a, s) SOI 
A,(ax) = action(a, s) · Aeffw(a.>)(x) S02 
A,(x+y)=A,(x)+A,(y) S03 



Recursive process definitions with the state operator 291 

By means of the state operators, we can express constructs like the guarded 
command, the if . .. then . .. else . .. construct or case distinction. Further, the 
operator can handle processes with data variables, and can be used to (mechanically) 
translate a given computer program into process algebra. We claim that the state 
operator can be very useful in the design of a programming language that is based 
on process algebra. For examples and more motivation, see [l, 11, 10]. 

We give the action rules for the state operator in Table 5. 
We note that in [I] a generalized state operator is also defined (the result of 

executing an action is a sum of actions, possibly followed by different states). We 
remark that the results in this paper could also have been obtained using the 
generalized state operator. 

2.8. Summary of results 

Now we can state the central question of this paper as follows: does the state 
operator add to the defining power of BPA8 ? In Section 3, we will answer this 
question positively. More specifically, there exists a guarded recursive specification 
over BPA8 with root variable X, a finite state space S with action, effect functions, 
and an s E S, such that As (X) is not the solution of a guarded recursive specification 
over BPA8 • 

Thus, the state operator applied to a recursively definable process does not 
necessarily yield a recursively definable process. However, if we limit ourselves to 
linear specifications, we get a different result. We will show in Section 4: if E is a 
linear recursive specification over BPA8 with root variable X, if S is a finite state 
space with action, effect given, and if s ES, then A,(X) is again the solution of a 

linear recursive specification over BPA8 • 

Thus, the state operator applied to a regular process again gives a regular process. 
If, however, we allow the state operator inside the recursion, we get a very different 
picture. We will show that all BPA8-definable processes, and some that are not even 
BPA8 -definable, can be defined by a linear recursive specification over BPA8 +A. 

Not all processes can be defined over BPA8 +A, however, as we will also show 
that there is a PA-definable process that is not BPA8 +A-definable. We see that the 
defining power of BPA8 +A does not give all of the defining power of PA. 

We can summarize our results in the following picture. Each arrow denotes a 
strict inclusion relation. Alongside the arrows, we give the sections where this result 
is obtained. Moreover, we have some non-inclusion results: in Lemma 4.9 and 
Section 5.1, we show that no inclusion relation exists between PA8 rec. and BPA8 +A. 
In Theorem 4.5, we show that BPA8 +A is not included in A (BPA8 rec.). 

Table 5 
Action rules for the state operator 

x....!:4 x', action(a, s)r:= s :=:;. As(x) (lc//tHl{a,s) A,~trcct(u,s)(x') 

x-'4 J, action(a, s) ;" 8 =? A,(x) "''';"" 1""' 1 J 



292 

BPAolin. 
4.1 ::: 

!..(BPASlin.) 

3.2 

3. Answers and proofs 

J.C.M. Baeten and J.A. Bergstra 

PAorec. 

BPAorec. 

BPAl3+A.lin. 

Fig. 2. 

Definition 3.1. Let a, b EA be two distinct atoms different from 8, and consider the 
following guarded recursive specification: 

C=a·D·C 

D= b+a· D· D. 

This is a well-known specification (see e.g. [ 4]) which has as solution the counter 
C (interpret a as "add one" and b as "subtract one"). Note that this process has 
infinitely many different sub-processes, since subprocess on· C, reached after execu­
ting an times, has a trace beginning with n b's, but no trace beginning with n + 1 b's. 
This observation immediately gives the following lemma. 

Lemma 3.2. Not every guarded recursive specification over BPA gives a regular process. 

Merge 
In order to define the processes we want to discuss in the sequel, it will be useful 

to extend the theory BPA with the merge operator II, parallel composition. As a 
semantics for merge we use arbitrary interleaving. In order to give a finite axiomatiz­
ation of merge, we use an auxiliary operator IL (left-merge). Now, x lL y means the 
same as x II y (the parallel, but interleaved, execution of x and y ), but with the 
restriction that the first step must come from x. For more about these issues, see 
e.g. [5]. 

The theory PA has operators +, ·, II, IL and adds axioms Ml-M4 of Table 6 to 
the axioms Al-A5 of BPA. The theory PA8 adds constant 8 and axioms A6-A7 to 
this. 
We also give an operational semantics for PA, by means of the action rules in 
Table 7. 



Recursive process definitions with the state operator 

Table 6 
PA 

x llY =xlly+ yllx Ml 
allx= a· x M2 

axlly=a(xllY) M3 
(x+y)U.z=xllz+yllz M4 

Table 7 
Action rules for PA 

x -'4 x' =::> x II y -'4 x' II y 
y -'4 y' =::> x llY-'4 x llY' 

x .si.. J ~ x II y -'4 y 
Y -'4 J ~ x II Y .si.. x 

293 

Definition 3.3. Now let C be the process defined in Definition 3.1, and let d EA be 
different from a, b, 8. Define the process P by 

P=C \\d. 

P is just like the counter, except that once in its existence, it can do the action d. 

The moment when this action will be executed, is completely undetermined, however. 
In the sequel, we will show that P cannot be defined over BPA6 , but can be defined 

in A(BPA8 rec.). 

Theorem 3.4. P can be defined in A (BPA6 rec.). 

Proof. Consider the following guarded recursive specification over BPA: 

C'= a· D' · C'+d· C', 

D'= b+a· D' · D'+d· D'. 

This specification always adds a d-possibility to the one in Definition 3.1, and the 
solution can be seen to be C II dw, where dw is the solution of X = d · X. 

Now, define S={O, 1}, and let the functions action and effect be trivial (i.e. 

action (a, s) = a & effect( a, s) = s) except in two cases: 

(1) action(d, O) = 8; 

(2) effect(d, 1) = 0. 

Claim 3.5. P = A1( C'). 

Proof. First we establish that A0 ( C') = C: 

A0 ( C') =a· A0(D' · C') + 8 · A0 ( C') =a· A0(D' · C'), 

A0(D'"+ 1 • C') = b · A0(D'n · C') +a· A0(D'n+2 • C') + 8 · A0(D'n+i · C') 

= b · A0( D'" · C') +a · A0( Dm+z · C'), for each n EN. 



294 J.C.M. Baeten and J.A. Bergstra 

Thus, ,\ 0 ( C') and C are both solutions of the same infinitary guarded recursive 
specification, and must be equal. 

Then we establish the claim 

A 1 ( C') =a · )q ( D' · C') + d · A0 ( C'), 

A1 (D"1+1 • C') = b · A1(Dm · C') +a· A1(D1"+2 • C')+ d · A0 (Dm+i · C'), 

On the other hand, we find 

and 

P = C II d = C IL d + d ll C =(a· D · C) IL d + d · C 

= a · ( D · C II d) + d · C, 

for each n EN. 

Dn+I. c II d =(b. D". c +a. D"+2 • C) IL d + d IL on+l . c 
=b· (D" · C II d)+a · (D"+ 2 ' C II d)+d· Dn+I • C, 

for each n EN. 

Using the previous result, we find that A 1 ( C') and Pare both solutions of the same 
infinitary guarded recursive specification, and so must be equal. 

This finishes the proof of the claim, and also the proof of the theorem. 0 

Now we turn to the proof that P cannot be defined over BPA8 • We first need 
some preliminary facts. 

Definition 3.6. A guarded recursive specification is in restricted Greibach Normal 
Form (restricted G NF) if each equation is of the form X = o or X = s1 + · · · + sk> 
where k :;?! 1 and each S; has one of the following forms: 

(i) s;=a; (for some a;EA-{o}); 
(ii) S; =a;· X; (for some a; E A-{o} and some recursion variable X;); 

(iii) s;=a;· x; · X7 (for some a;EA-{o} and recursion variables x;,xn. 

Lemma 3.7. Each guarded recursive specification over BPA., is equivalent to one in 
restricted GNF. 

Proof. See [3]. D 

Remark 3.8. The BPA8 -specifications above are all in restricted GNF. Note that as 
a consequence of Lemma 3.7, each subprocess of a process given by a recursive 
specification, can be represented by a finite product of recursion variables. Using 
the axioms of the state operator, As applied to an equation 



Recursive process definitions with the state operator 

in restricted GNF yields 

As(X) =action( ai. s) + · · ·+action( b1 , s) · Aeffecr(b,, sJ(X1) 

+ ... +action( Ci, s) . Aeffecr(c,. s)(X~ . xn + ... ' 

again the same format, and each subprocess has the form As(X1 • X2 • ••• • Xp). 

Theorem 3.9. P cannot be defined over BPA8 • 

295 

Proof. Suppose, for a contradiction, that the guarded recursive specification E over 
BPAs defines process P. By Lemma 3.7, we may suppose that E is in restricted 
GNF. We may also suppose that superfluous equations are removed (an equation 
is superfluous if its recursion variable cannot be accessed by executing a number of 
actions, starting from the root variable). From the definition of the counter it is 
apparent that infinitely many b-actions can never be executed consecutively. Thus, 
starting from any recursion variable, only finitely many consecutive b-actions are 
possible. Let m be the maximum number of b-actions any recursion variable can 
perform. We also derive from the definition of the counter that in any situation, an 
unlimited number of a-actions is possible. 

Now, starting from the root variable of E, perform 3m a-actions. Then we have 
a process 

a finite product of recursion variables. Since no d-action has taken place yet, X 1 

must be able to do a d-action. On the other hand, the whole process must be able 
to perform 3m b-actions. Of these, X 1 can perform at most m. Thus, after X 1 has 
performed its maximum number of b-actions, it must terminate, so that X 2 can start 
on the next series of b-steps. But since after the b-actions of X 1 no d-action has 
taken place yet, X 2 must be able to do a d-action. 

Now go back to X 1 • After it has done the d-action, it is replaced in the product 
by at most 2 recursion variables. Together, they can perform at most 2m b-steps, 
so they must terminate, after doing their maximum number of b-steps. But next, 
X 2 can perform a second d-step, and we have reached a contradiction, for P may 

only do one d-step. 
This finishes the proof of the theorem, and so we have proved that the state 

operator extends the defining power of BPA8 • D 

4. Further results 

First, we turn to regular processes. Regular processes are definable by linear 
specifications. Notice that linear specifications only differ from restricted GNF, in 
that we do not allow products of two recursion variables. But we know already that 
the defining power differs considerably: the counter is not a regular process (for it 



296 J.C. M. Ba et en and J.A. Bergstra 

has infinitely many subprocesses), so cannot be defined by a linear specification, 

but it has a specification in restricted GNF (see Definition 3.1). 

Theorem 4.1. Let E be a linear recursive specification over BPAa with root variable 

X 1 • Let a finite state space S with functions action, effect be given, and let So E S. Then 

A'"(X1) is again the solution of a linear recursive specification over BPAs. 

Proof. Let E have variables X 1 , ••• , Xn. We will define a new linear recursive 

specification F with variables Y;,,, for i = 1, ... , n and s ES. Now, let i, s be given. 

Let E have equation 

Then, F will have equation 

Y;,s = action(ai, s) · Yi,. eflecr(a,, sl + · · · + action(ak> s) · Yjk, effecr(a"' s> 

We see that after removing summands that are equal to 8, F becomes a linear 

recursive specification. It is obvious that the A,(X;) satisfy specification F, and thus 

,\,(X;) = Y;,,, in particular AsJX1) = Y1,,0 • This finishes the proof. 0 

Thus, the state operator applied to the solution of a linear specification gives a 

process that again can be given by a linear specification. The situation changes 

drastically if we allow the state operator in the recursion, i.e. consider linear 

specifications over BPA8 +A. First, we have the following theorem. 

Theorem 4.2. Let the process X be definable over BPA6 (not necessarily a regular 

process). Then X is also definable by a linear specification over BPA8 + ,\. 

Proof. Let a recursive specification E over BPA8 be given. We may suppose E is 

in restricted GNF. We have to define a linear specification over BPA8 +A that has 

the same solution. Let E = {X; = s;: i = 0, ... , n}. As we saw in Definition 3.6, each 

summand in each s; has one of the following three forms: 

(1) a single atomic action, a; 

(2) the product of an atomic action and a recursion variable a· X · 
' J , 

(3) the product of an atomic action and two recursion variables, a· Xj · Xk. 
Now we introduce new atoms: 

( 1) an atom (a, i) if atomic action a occurs in S; singly (a summand of type 1); 

(2) an atom (a, i,j) if atomic action a occurs in S; in the product a· Xj (type 2); 

(3) an atom (a, i,j, k) if atomic action a occurs in s; in the product a· X; · Xk 
(type 3 ). 



Recursive process definitions with rhe state operator 297 

Now we define the state operator. The state space is {O, ... , n}, and the action, effect 

functions are trivial except in the following cases: 

(i) action(<a, i), m) = action((a, i,j), m) = action((a, i,j, k), m)= B if i#-m; 

(ii) action ((a, i), i) = action ((a, i, j), i) = action( (a, i, j, k), i) =a; 

(iii) effect((a, i,j), i) = j, effect((a, i,j, k), i) = k. 

Then we consider the following linear recursive equation: 

X = L: (a, i)+ 2.: (a, i,j) · X + 2.: (a, i,j, k) · A)X). 
type I type 2 type 3 

Claim 4.3. ,\ 0(X) = X 0 • 

Proof. The proof is easier to follow if we take a specific example. So take E to be 

X 0 =a· X 0 + b + c · X 1 • X 0 

Then the linear equation becomes: 

X = <b, O)+(b, l)+(a, 0, 0) · X +(c, 0, 1, 0) · ,\ 1(X) +(b, 1, 0, 1) · A0(X). 

Now we show that for each sequence b1 ••• b" of O's and l 's we have 

Xb 1 • Xb2 • ••• • Xb,, = J\b,, 0 Ab,,_ 1 ° · · · 0 Ab1(X), by showing they satisfy the same 

infinitary recursive specification. We give the equations for the processes 

,\b,, 0 ,\b,,_ 1 ° · · · 0 AnJX). We use the abbreviation A0,,. bJX) for 

,\b,, 0 An,,_ 1 ° · · · 0 Ab1(X). Let a- be any sequence of O's and I's. Then 

A" 0 A0(X) = ,\O"(b + 8 +a· A0(X) + c · A0 ° A1 (X) + 8 · Ao 0 Ao(X)) 

= b+a · ,\"0 (X)+c· Auo 1(X), 

Ao- 0 A1 (X) = ,\()"( 8 + b + 8 · A1 (X) + 8 · A1 ° A1 (X) + b · A1 ° A0(X)) = b + b · A,,,o(X). 

This finishes the proof of the claim, and also the proof of the theorem. 0 

Next, we will give an example of a process that is not definable over BPA8 , but 

is definable by a linear specification over BPA8 +A. In fact, we will show more than 

that it is not definable over BPA8 ; we will show that it is not in A (BPA8 rec.). 

Definition 4.4. Let us define another copy of a counter, with different names: 

G=e· H· G, H=f+e· H· H· G. 

(a, b, e,f EA -{ 8} are all distinct). Then define 

B = c II G. 



298 J.C.M. Baeten and J.A. Bergstra 

As shown in [ 4], B can be considered as a bag (not order-preserving channel) 

over two elements, with a, e the input actions, and b,f the output actions. An 

alternative specification for the bag, in one equation, is the following: 

B=a· (b II B)+e· Ull B). 

It was shown in ( 4], that B cannot be defined over BPA. We strengthen this result 

in the following theorem. 

Theorem 4.5. There is no recursive specification over BPA8 with root variable X, and 

a finite state space S with functions action, effect, and s E S, such that A, ( X) = B. 

Proof. Suppose not, so there is a guarded recursive specification E over BP As with 

root variable X, and there is a finite state space S with element s and functions 

action, effect such that A5 (X) =B. We may suppose that Eis in restricted GNF and 

has no superfluous equations. We see that for each s E Sand each recursion variable 
Y, As{ Y) can perform only finitely many b-actions and finitely many /-actions. Let 

m be the maximum number of b or !-steps any A, ( Y) can do. Let k be the cardinality 

of S. 
Now , starting from A,(X), perform m(k + 2) a-actions and m(k + 2) e-actions. 

Then, we have a subprocess of the form 

A,(X1 • ••• • Xk • Xk+t · Xk+2 · ... · X,,) 

for certain t E S and recursion variables X; ( i = 1, ... , n ). Note that this product 
must contain at least k + 2 factors, since this process can do m ( k + 2) b-actions and 

m(k + 2) f-actions, and each variable can account for at most m. Now we will "eat 

up" the variables X1 , ••• , Xk+J in k + 1 different ways. 
In the first way, we keep on doing b-actions. After at most m of them, X 1 will 

terminate. We continue with b-actions, until Xk+ 1 terminates. Then, we have a 

process A5 /Xk+ 2 · •.. • X,,). 
In the second way, we do b-actions until Xk terminates. Then, we do /-actions 

until Xk+i terminates. Again, we have a process As2 (Xk+2 • ••• • X,, ). In general, for 
i = 1, ... , k + 1, we do b-actions until Xk+ 2-; terminates. Then, we continue doing 

.f-actions until Xk+ 1 terminates. Then, we have a process A,; (Xk+ 2 • ••• • X,, ). 
We have found Si, ... , sk+t ES but since S contains only k elements, at least two 

of these must be equal, say S; = sj with i <j. But then we have a contradiction, for 

A,,(Xk+2 · · · · · X,,) = As1(Xk+2 · ... · X,,), and As,(Xk+z · ... · X,,) can perform less 
consecutive b-actions and more consecutive !-actions than A,,(Xk+ 2 · .••• X,, ). 

This finishes the proof. D 

Theorem 4.6. Bis definable by a linear recursive specification over BPA0 +A. 

Proof. We need two new atoms, b* andf*. The state space is S = {O, 1, B, F}, where 

0 is the starting state, and 1 is the state where the job is finished; in this state the 

state operator becomes trivial. We list the non-trivial cases of functions action, effect: 
(i) action(b*,O)=action(f*,0)=8; . 



Recursive process definitions with the slate operator 

(ii) action(b*, B) = b, ejfect(b*, B) = l; 
(iii) action(!*, F) = f, effect(/*, F) = l. 

Then we consider the following linear recursive equation: 

X =a· A8 (X) + e · Ap(X) + b* · X + f* · X. 

Claim 4.7. A0(X) =B. 

299 

Proof. Let Bn,m be the subprocess of B where counter C stands at n (i.e. there is 
a trace beginning with n b's, but no trace beginning with n+ 1 b's) and counter G 
stands at m. Thus, the Bn.m have the following infinitary linear specification: 

Bo.o =a· Bi.a+ e · Bo.1 

Bo,m =a· Bi,m + e · Bo.m+i + f· Bo,m--1 

B,,,0 =a· B,,+ 1,0 + e · Bn,1 + b · Bn-i.o 

B,,,rn =a· Bn+i,m + e · Bn,m+i + b · Bn-1,m + + f· Bo,m-1 

(m >0) 

(n > O) 

(n > 0, m > O). 

Next, let Aa",F"' be any sequence of A-operators, in which A8 occurs exactly n 

times, AF occurs exactly m times, and which further consists of a number of 
occurrences of A1. We will show that Bn,m = A0 ° A8 ",F"'(X), by showing they satisfy 
the same infinitary recursive specification. We now calculate this specification for 

the A0 ° AB'',F"'(X): 
Case 1: n = 0, m = 0. (Since the A 1 are trivial, we might as well leave them out.) 

A0 (X)=a· A0 °A 8 (X)+e· Ao 0 AF(X)+8· Ao(X)+8· Ao(X) 

=a· A0 ° A8 (X) + e · A0 ° AF(X). 

Case 2: n =0, m>O. 

Ao 0 AFm(X) =a. Ao 0 A B',F"'(X) +e. Ao 0 AFm+•(X) + 8. Ao 0 AFm(X) 

+f·AooAFm-toA1(X) 

=a· A0 ° A B',F"'(X) + e ·Ao 0 A F"'+•(X) + f· Ao 0 AF"' •(X). 

Case 3: n > 0, m = 0. Just like case 2. 
Case 4: n > 0, m > 0. 

A0 ° A8 '',F"'(X) =a· A0 ° A s"+',F"'(X) + e ·Ao 0 A s'',F"'+•(X) 

+b · Ao 0 Aa"-',F"' 0 A1(X)+ f- Ao 0 Aa",F"'-' 0 A1(X) 

=a· A0 ° A a"+'.F"'(X) + e · Ao 0 A a'',F"'+•(X) 

+ b ·Ao 0 A B"- 1,F"'(X) + J- Ao 0 A B'',F"'-•(X). 

Since the processes B,,,m satisfy the same infinitary specification, we have proved 
the claim, and thereby the theorem. D 



300 J.C.M. Baeten and J.A. Bergstra 

Finally, we give an example of a PA-definable process, that is not definable over 

BPA8+ A. This proves the last claim in Section 2.8: not every process is definable 

over BPA8 +A. 

Definition 4.8. We call a process p boundedly branching if there is some natural 

number n such that for every subprocess q of p, there are at most n processes q' 

such that q -4 q' (for some atom a). (In other words: the branching degree of the 

process is uniformly bounded.) 

Lemma 4.9. Every BPA8 +A-definable process is boundedly branching. 

Proof. In [ 4], it is proved that every BP A-definable process is boundedly branching. 

The proof is easy: every subprocess of a process defined by a recursive specification 

in restricted GNF is given by a product of recursion variables, and every step 

possible from this process is determined by the first variable in the product. But 

these steps in turn are determined by the equation for this variable, in which only 

a finite sum occurs. The uniform bound is the maximum number of summands in 

any equation of the specification. 
Then, this result extends to BPA8 +A., if we realize that applying the state operator 

to a term can only decrease the branching degree (by renaming into 8), but can 

never increase it. D 

Then, if we combine Lemma 4.9 with the following result of Bergstra and Klop 

[ 4], we have finished the proof of the last claim in Section 2.8: 

the solution of the PA-equation X=a+b· (X· cllX· d) is not boundedly 

branching. 

5. Conclusions 

We have shown that the defining power of the state operator, a natural addition 

to the operators of basic process algebra, is considerable. Applying the state operator 

to a BPA-process sometimes gives a process that is not BPA-definable. On the other 

hand, applying the state operator to a regular process again gives a regular process. 

If we allow the state operator inside the recursion, even more processes become 

definable, for instance the bag, although there still remain PA-processes that are 
not definable. 

5.1 The following remarkable result, which strengthens Theorem 4.5, was com­

municated to us by Vaandrager [12]. It concerns the process queue. A (FIFO) queue 

Q (over two elements) is given by the following infinitary recursive specification, 



Recursive process definitions with the state operator 301 

with variables O"' with u a sequence of b's andf's. (Again, a and e are two different 
input actions, with corresponding output actions b, f) 

Ober= a· Obub + e · Obaf + b · Ou for any sequence u 

Ofa = a · Qp,-b + e · Oro:r + f · Q,, for any sequence u. 

Now it was shown in [l], that O cannot be defined over PA. Vaandrager [12] shows 

that 0 can be defined by a linear recursive specification over BP A0 +A. He uses the 
following specification. 
• out is a new atom; 

• take S = {O, B, F, l} (1 again inert), with the functions trivial except for the 
following cases: 

(i) action (out, B) = b, effect( out, B) = 1; action (out, F) = f, effect( out, F) = 1; 

(ii) action(b, F) = f, effect(b, F) = F; action(!, B) = b, effect(!, B) = F; 

(iii) action (out, O) = o. 
Then the following equation yields a queue: 

0 = A0(X), 

The proof of this fact is along the same lines as the proof of Theorem 4.6; a state 

Ocr will correspond to an expression ,\ 0 ° A,r*(X), where A"* is any sequence of 

A-operators, in which each A. 8 corresponds to a b in u, each AF corresponds to a f 
in a (in the same order), and which further consists of a number of occurrences 

of A1. 

5.2 Obviously, we can repeat all the questions in this paper with the theory PA 

in the place of BPA (or still other theories). Most of these questions we leave as 

open problems. The main question, does the state operator add to the defining 

power of PA, was answered positively in Section 5.1. 

Of course, the subject matter of this paper has many connections with formal 

language theory: all our results can be translated to that setting, and well-known 

examples in formal language theory can be translated to our setting. As an example, 

we can define a process with finite traces a" · b" · c" (for each n E 1\1), that will not 

be BPA-definable (roughly, context-free means BPA-definable), but is definable 

over BPA0 +A [12]. 

Acknowledgment 

This article is a revision of [2]. We thank an anonymous referee for his/her 

valuable comments and suggestions for improvements. 



302 J.C.M. Baeten and J.A. Bergstra 

References 

[1] J.C.M. Baeten and J.A. Bergstra, Global renaming operators over concrete process algebra, Inform. 
and Comput. 78 (3) (1988) 205-245. 

[2] J.C.M. Baeten and J.A. Bergstra, Recursive process definitions with the state operator, in: Proc. 
CSN 88, CW!, Amsterdam (1988) 279-294. 

[3] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Decidability ofbisimulation equivalence for processes 
generating context-free languages, in: J.W. de Bakker, A.J. Nijman and P.C. Treleaven, eds., Proc. 
PARLE, Vol. II (Parallel Languages), Eindhoven, Lecture Notes in Computer Science 259 (Springer, 
Berlin, 1987) 94-113. 

[ 4] J.A. Bergstra and J.W. Klop, The algebra of recursively defined processes and the algebra of regular 
processes, in: J. Paredaens, ed., Proc. llth ICALP, Antwerpen, Lecture Notes in Computer Science 
172 (Springer, Berlin, 1984) 82-94. 

[5] J.A. Bergstra and J.W.Klop, Process algebra for synchronous communication, Inform. and Control 
60{ 1/3) (1984} 109-137. 

[6] R.J. van Glabbeek, Bounded nondeterminism and the approximation induction principle in process 
algebra, in: F.J. Brandenburg, G. Vidal-Naquet and M. Wirsing, eds., Proc. STACS, Passau, Lecture 
Notes in Computer Science 247 (Springer, Berlin, 1987) 336-347. 

[7] C.A.R. Hoare, Communicating Sequential Processes (Prentice Hall, Englewood Cliffs, NJ, 1985). 
[8] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer, 

Berlin, 1980). 
[9] G.D. Plotkin, An operational semantics for CSP, in: E. Bj9Jrner, ed., Proc. Conf Formal Descr. of 

Progr. Concepts II, Garmisch (North-Holland, A~sterdam, 1982) 199-225. 
[10] SPECS Consortium/PTT-RNL, Definition of MR, version 1, SPECS document D.WP5.2, 1989. 
[11] F.W. Vaandrager, Process algebra semantics of POOL, report CS-R8629, Centre for Mathematics 

and Computer Science, Amsterdam, 1986; in: J.C.M. Baeten, ed., Applications of Process Algebra 
(Cambridge University Press, Cambridge, 1990) 173-236. 

[12] F.W. Vaandrager, personal communication, January 1988. 


