
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.C.M. Baeten , J.A. Bergstra

Process algebra with a zero object

Computer Science/ Department of Software Technology Report CS-R9028 June

8il~ .!'· · ··":
CGritrum v..x,t 'N:$lci'- '•~· ~' trwnnstK"~

ltrrt<fr><t1!/ff'

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Process Algebra with a Zero Object

J.C.M. Baeten
Department of Software Technology, Centre for Mathematics and Computer Science,

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands

J .A. Bergstra
Programming Research Group, University of Amsterdam,
P.O.Box 41882, 1009 DB Amsterdam, The Netherlands

Department of Philosophy, State University of Utrecht,
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

The object O acts as a zero for both sum and multiplication in process algebra. The constant 6,
representing deadlock or inaction, is only a left zero for multiplication. We will call O predictable
failure.

1980 Mathematics Subject Classification (1985 revision): 68045, 68055, 68065, 68050.
1987 CR Categories: F.4.3, D.2.10, D.3.1, D.3.3.
Key words & Phrases: process algebra, zero, deadlock, inaction, failure.
Note: Partial support received by ESPRIT basic research action 3006, CONCUR, and by
RACE contract 1046, SPECS. This document does not necessarily reflect the views of the
SPECS consortium.
Note:this article will appear in the Proceedings of CONCUR 90, Springer LNCS. It is a revision
of BAETEN & BERGSTRA [90], but leaving out the material in section 6.

1. INTRODUCTION.

1

The object O acts as a O for both sum and multiplication in process algebra. The constant o representing
deadlock or inaction is only a left zero for multiplication. The purpose of this paper is to indtroduce a
constant O in process algebra and discuss its properties.

We will call O predictable failure. A predictable failure differs from deadlock (inaction) in the sense
that a system will actively try to avoid it. The axioms for O incorporate the intention of a system to
avoid failure whenever possible. The axioms for o (in particular x ~ 0 ⇒ x + o = x) incorporate the
intention of a process to make progress if it can.

In fact O stands for a truly empty process, its execution is simply inconceivable. The process O also
occurs in PONSE & DE VRIES [89) (but is called o there!).

A process specification involving O or renaming into O is not executable. It must be implemented,
which means that one has to provide an equivalent (or better) specification not involving O or renaming
into 0. Due to this observation O is a high level feature that plays a role in system design and
specification, rather than in implementation.

Report CS-R9028
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 J.C.M.Baeten & J.A.Bergstra

2. AXIOMATIZATION.

2.1. BASIC PROCESS ALGEBRA WITH ZERO.
We start out from the theory of Basic Process Algebra as described in BERGSTRA & KLoP [84a, 85,
86]. For a recent survey article see BERGSTRA & KLOP [89].

We have a set of atomic actions, A. Each atomic action is a constant of the sort P, the sort of
processes that the theory is about. Then, we have two binary operators on P: + is alternative
composition or sum, and· is sequential composition or product. For this signature, we have the
first five axioms in table 1 below (Al-5), constituting BPA. In table 1, x,y,z are arbitrary elements of
P.

Then we add the zero constant, obeying the next three axioms (Zl-3). Usually, we also have the
constant o in the theory, called deadlock or inaction. The two axioms for inaction need conditions,
in order to avoid clashes with the zero axioms (A60, A70). The conditions use a predicate on processes
-:;:. 0, that determines whether or not a term can be proved equal to the zero process. This predicate is
axiomatized in the last four axioms of table 1. There, we have a E A.
We put Ao= Au {o}, Aoo =Au {0,o}, BPAo = BPA + Zl-3, BPAoo = BPAo + A6o, A7o + NZl-4.

Of all operators,+ will bind the weakest, and· the strongest. We often leave out the· sign.

x+y=y+x Al
x + (y + z) = (x + y) + z A2
X+X=X A3
(x + y)·z = x·z + y·z A4
(x·y)·z = x·(y·z) A5

x·0 = 0 Zl
x+0=x 22
0·x = 0 23

x-:;:.0 ⇒ X+O=X A6o
x-:;:.0 ⇒ o·x = o A70

0 "#-0 NZl
a-:;:.0 NZ2
X "#- 0, y "#- 0 ⇒ x·y "#- 0 NZ3
x-:;:.0 ⇒ x+y-:;:.0 NZ4
TABLE 1. BPAQ0.

The difference between 0 and o requires further comments:
i. o is an inactive process, if a system reduces too it deadlocks. Of course the mere occurrence of o
in a process expression (like a + b(o + c}) need not indicate a deadlock. Compare this to the
expression e = 2 + 0·(5 + 8); in no way the occurrence of 0 in e implies that e vanishes.
ii. x + o = x is a progress rule: the system eventually discovers that o is no option and proceeds with
x (if possible).
iii. x·0 = 0 is a liveness rule: the system must, after completion of x, eventually execute 0, i.e. assert
false. This form of liveness is not required for o.
iv. 0 + o = o because o is 'better than' 0.

Process algebra with a zero object 3

v. 0·x = 0 and o·x = o are explained by the non-executability of 0, resp. o. Note that we have in
particular o·0 = 0. Unfortunately, the explanation of this in philosophical terms is shallow.

2.2. PROJECTION.
We can extend the signature given above with the projection operators 7tn (for n~1). The axioms
are straightforward adaptations of the usual ones (see BERGSTRA & KLoP [84a]). In table 2, a e A.

1tn{0) = 0
1tn{S) = o
1tn{a) = a
x * 0 ⇒ 1t1 (ax) = a
7tn+ 1 (ax) = a·1tn{x)
7tn x + = 7tn x + 7t
TABLE 2. Projection.

2.3 INFINITARY RULES.
The axioms given abov~ constitute a complete theory for finite processes, processes represented by
closed terms, i.e. equality on finite processes (in a graph model to be presented further on) coincides
with derivability from the axioms. When we are dealing with infinite processes however, processes
specified by means of recursive equations, we need additional proof principles. In this paper, we will
discuss 4 such principles.

First, we consider the Approximation Induction Principle (AIP). AIP can be maintained in the
present setting as in BERGSTRA & KLOP [86]. Roughly, this proof rule states that two processes
should be identified if all their projections are equal. More explicitly:

for all n 7tn(x) = 7tn(Y) ⇒ x = y.
This rule is valid for finitely branching processes only (a process is finitely branching if it has a
representation as a finitely branching graph or tree, see further on).

Next, we consider two principles that deal with solutions of recursive equations. The Recursive
Definition Principle (RDP) states that every recursive specification has at least one solution, and the
Recursive Specification Principle (RSP) states that every guarded recursive specification has at most
one solution. Here, guarded roughly means that every variable occurring in the right-hand side of an
equation must be preceded by an atomic action. For more details and formal definitions, see
BERGSTRA & KLOP [86].

Now let us consider these rules in the present setting. Notice that the guarded equation x = a·x has
two solutions: 0 and aro (the process that indefinitely performs a). It follows that the principle RSP has
to be relaxed: every guarded system of recursion equations not containing an occurrence of O has at
most one solution different from 0. Thus more formally, RSp0 states:

Let E be a guarded recursive specification with k process names such that none of the equations of
E involves either O or a renaming into O (see below). Such Eis called 0-free.
Let X = (x1, ... , Xk) and Y = (y1, ... , Yk) be process vectors of length k.
Then x1 ;t: 0 & ... & Xk ;t: 0 & Y1 ;t: 0 & ... & Yk ;t: 0 & X = E(X), Y = E(Y)
implies X = Y.

Besides RSp0 there is also RDp0 which states that:
every 0-free guarded system of recursion equations possesses at least one solution vector
consisting of processes different from 0.

4 J.C.M.Baeten & J.A.Bergstra

The last infinitary proof rule that we will consider is the Limit Rule. We describe this rule in 4.4.

2.4 RENAMING INTO ZERO.
06 is an operator that substitutes O for o. We will call this operator deadlock prevention. Let a E A.

06(0) = 0
06(0) = 0
06(a) = a
06(ax) = a·06(X)
06 X +
TABLE 3. Deadlock prevention.

An example: Oo(ab + c(deo + ao)) = ab.
Note that the equation 06(x·y) = 06(X)·06(Y) leads to a problem as follows: Let x = am (i.e. the

unique solution different from O of the equation z = a·z) and y = o, then x·y = x because of AIP,
hence x = 06(X) = 06(x·y) = 06(x)·00(y) = 00(x)·O = 0, which contradicts the assumptions on x.

Also note that it is incorrect to rename an atomic action a into O by an operator Oa, for that leads to
0 = Oa(a) = Oa(a + o) = Oa(a) + Oa(o) = 0 + o = o.

3. SEMANTICS.

3.1 TRANSITION RULES.
We define a structured operational semantics as in VAN GLABBEEK [87], on congruence classes
of process expressions, i.e. a ~ relation holds between two terms iff they are provably equal to the
format in the rules in table 4 below. Likewise, a term satisfies ~ ✓ iff it can be written in the form a +
x. For closed terms, the rules now determine an action graph. On action graphs, we will then define
a notion of bisimulation as in BERGSTRA & KLOP [86]. In this definition, we have to pay special
attention to the separate status of the process 0. Note that we have to define the rules on congruence
classes of process expressions, since we need the predicate* 0 in the definition. We cannot define
action rules on terms in the format of GROOTE & V AANDRAGER [89] or GROOTE [90].

a+x ~ ✓
a

x * 0 ⇒ a·x + y =+ x
TABLE 4. Action rules.

We can also add rules in order to deal with recursive equations. In that case, however, the transition
system may become undecidable because x * 0 is in general not decidable. To see this notice that for
every recursively enumerable set Wei;;;; N with recursive index e and every n E Na guarded recursive
specification over ACP can be uniformly computed with solution p(e,n) such that:

n E We ¢::} for some k p(e,n) = jk•o

n E We ¢::} p(e,n) = im.
This construction can be found in BERGSTRA & KLoP [84b]. It follows that:

n E We ¢::} 06(p(e,n)) = 0,
hence it is undecidable whether X = 0 for recursively specified X in general.

Process algebra with a zero object 5

3.2 GRAPH MODEL.

We can also define a graph model directly. Let 1' be the set of all rooted labeled trees, where all edges
are labeled with elements of A, and all endpoints labeled with an element of {✓, o, 0}. The
interpretation of the constants and operators of BP Aoo is straightforward:
• [o] is the one-node graph labeled with o, [0] is the one-node graph labeled with 0;
• [a] is the two-node graph with one edge labeled a, and the endpoint labeled ✓;
• if g,h are in 1', then g + h is obtained by identifying the roots of g and h. If one graph is [0], the
result is just the other graph. If one graph is [o], the result is also the other graph, unless that graph is
[0] (in which case it is [o]);
• if g,h are in 1', then g·h is obtained by first making a copy of h for each ✓-endpoint of g. Then we
remove the ✓-label, and identify the endpoint with the root of its copy.

We give some examples in fig. 1 below. We see the trees that represent the terms 0, (a+ b)·c, a·B +
a·0. Recursively specified processes will in general have infinite trees.

C

✓

C

✓
FIGURE 1.

If g is a tree in 1', ands a node in g, then we calls a zero node of g if every maximal path in g from
s must end in a 0-labeled point. Now we can give the definition ofbisimulation on these trees.

3.2.1 DEFINITION.

Let g,h E 1'. We say g,h are bisimilar, g t::t h, if there exists a relation R (called a bisimulation) on
nodes of g and h, such that
1. the domain of R consists of all non-zero nodes of g;
2. the range of R consists of all non-zero nodes of h;
3. either g,h are both the zero graph, or the roots of g,h are related;
4. if R(s,t) ands ~ s' ands' non-zero, then there is a non-zero t' such that t ~ t' and R(s',t');
5. if R(s,t) and t ~ t' and t' non-zero, then there is a non-zeros' such thats ~ s' and R(s',t');
6. if R(s,t) and s,t are endpoints, then they have the same label.

3.2.2 PROPOSITION

Bisimulation is a congruence on 1'.

In order to prove that 1'/ t::t is a good model for the theory BPAoo, we first need a couple of lemmas.

3.2.3 LEMMA

Lett be a closed term over BPAoo such that BPAoo If t * 0. Then BPAoo I- t = 0.

PROOF: By induction on the structure oft. If t is a constant, this follows immediately from the axioms
in table 1. If tis a sum, say t = t1 + t2, and BPAoo If t * 0, it follows from axiom NZ4 that BPAoo If
t1 * 0 and BPAoo If t2 * 0. By induction hypothesis, BPAoo I- t1 = 0 and BPAoo I- t2 = 0 and

6 J.C.M.Baeten & J.A.Bergstra

consequently BPAos I- t = 0. Finally, if tis a product, say t = t1 ·t2, and BPAos If t * 0, it follows
from axiom NZ3 that either BPAos If t1 * 0 or BPAos If t2 * 0. By induction hypothesis, we obtain
either BPAos I- t1 = 0 or BPAos I- t2 = 0 In the first case, use 23 and in the second case Zl to obtain
BPAos 1- t = 0.

3.2.4 LEMMA

Lett be a closed term over BPAos such that BPAos I- t :I:- 0. Then t can be written without 0, i.e. there
is a closed terms over BPAos that does not contain 0, such that BPAoo I- t = s.

PROOF: By induction on the structure oft. If tis a constant, this follows directly from the axioms in
table I. If t has the form of a product t1 ·t2, it follows by the previous lemma that t1 :I:- 0 and t2 :I:- 0.
Then use induction hypothesis. Finally, if t has the form of a sum t1 + t2, it is by the previous lemma
enough to consider the following four cases.
Case 1; t1 * 0, t2 * 0. Use induction hypothesis.
Case 2: t1 = 0, t2 = 0. It follows that t = 0, contradiction.
Case 3: t1 = 0, t2 :I:- 0. It follows that t = t2, and we can use the induction hypothesis for t2.
Case 4; t1 * 0, t2 = 0. Just like case 3.

3.2.3 THEOREM
BPA.o6 is a sound and complete axiomatization of the model 1'/t:t (for closed terms).

PROOF: First note that the graph model has a substructure consisting of the processes :I:- 0. That
structure is a model of BP As, the theory without zero, and with axioms A 1-7 (no conditions on A6 and
A 7). Thus there is only one process in which O features in an essential way and that is O itself.

Now soundness can be proved by inspection of the model. To prove completeness, consider two
closed terms t,s over BPAo0 and suppose 1'/t:t I- t=S. We use case distinction.
Case 1; t :I:- 0, s :I:- 0. By the previous lemma, t ands can be written as t*, s* without 0. By soundness
1'/t:t I- t* =s*. By the completeness theorem for BPAs, BPA0 I- t* = s*.
Case 2; t = 0, s = 0. Immediate.
Case 3: t = 0, s * 0. Write s as s* without 0. The definition of t:t shows that t t:t s* cannot hold,
contradiction.
Case 4· t * 0, s = 0. Just like case 3.

4. EXTENSIONS.

4.1 RENAMING.

Now we will look at renamings of atomic actions into atomic actions or o. (Renaming into zero was
discussed in 2.5.) Let f: Ao ➔ A0 be any function that keeps o fixed, i.e. f(o) = o. Then the renaming
operator Pf is defined by the axioms in table 5, where a e A0.

Pt(O) = 0
Pt(a) = f(a)
Pt(X + Y) = Pt(x) + Pt(Y)

TABLE 5. Renaming.

Process algebra with a zero object 7

It is straightforward to define the renaming operators on the graph model of 3.2. A very useful
example of a renaming operator is the encapsulation operator dH (for H ~ A) that is based on the
function g given by:

g(a) = o if a e H and g(a) = a if a e H.
The composition of an encapsulation operator with the deadlock prevention operator (06odH) will
prevent any action of H from occurring. We will see applications of this in the sequel.

4.2 PARALLEL COMPOSITION.
We can extend the theory BPAo6 with parallel composition as in the theory ACP of BERGSTRA &
KLOP [84a]. In order to axiomatize the parallel operator II (merge), we need two auxiliary operators
11. (left-merge) and I (communication merge). The theory is parametrized by a communication
function I , a binary function on the set of constants Ao6 that satisfies conditions Cl-4 in table 8
below. Moreover, we have the encapsulation operator of 4.1, that is used to block communications
with the outside. The theory ACPo consists of BPAo6 plus the axioms in table 6 below. In table 6,
a,b,ce Ao6-

alb=bla
(a I b) I c=a I (b I c)
a*0 ⇒ ola=o
OI a=0

xlly=xll.y+yll.x+x I y
all.x = a·x
axll.y = a·(x II y)
(x + y)ll.z = xll.z + yll.z
ax I b=(a I b)·x
a I bx=(a I b)·x
ax I by=(a I b)·(xlly)
(x+y) I Z=X I z+y I z
x I (y+z)=x I y+x I z

dH(0) = 0
dH(a) = a if a e H
dH(a) = o if a e H
dH(X + y) = dH(x) + dH(Y)
dH(x·y} = dH(X}'dH(Y}

TABLE 6. ACPo.

Cl
C2
C3
C4

CMI
CM2
CM3
CM4
CMS
CM6
CM7
CM8
CM9

DO
DI
D2
D3
D4

On the graph model, we can define parallel composition as follows:
• the node set of graph i II h is the cartesian product of the node sets of g and h;
• there is an edge (s,t) ➔ (s',t) iff there is an edges ~ s' in g;
likewise, there is an edge ~s,t) ~ (s,t') iff there is an ed8e t ~ t' in h;
and there is an edge (s,t) ➔ (s' ,t'} iff there are edges s ➔ s' in g and t 9+ t' in h with b I c = a; ·
• an endpoint (s,t) has a 0-label iff either sort has a 0-label;
an endpoint (s,t) has a o-label if one has a o-label, and the other a o or ✓-label;
an endpoint (s,t) has a ✓-label if both sand t have a ✓-label (all labels in non-endpoints are dropped).

8 J.C.M.Baeten & J.A.Bergstra

It can be proved that with this definition, bisimulation is also a congruence for parallel
composition, and all axioms of ACPo hold in the graph model.

4.3 DISCUSSION.
Note that we can derive from ACPo that for all finite closed terms x we have

0 II x = 0 IL x = x IL 0 = x I 0 = 0 I x = 0.
Now let us consider this for recursively defined processes. Look at the process B that is the non-zero
solution ofB = b·B. We calculate: Oil B = 0ILB + BIL0 + 0 I B = 0 ·B + bBIL0 + bB IO=

= O + b·(B II 0) + (b I 0)·B = b·(B II 0) = b·b·(0 II 8).
We also have B = b·b·B, so by RSp0 we have either 0 II B = B or 0 II B = 0.

Both options are consistent. Our choice is to put 0 II B = 0 and in general 0 II x = 0. We can
motivate this if we use the Limit Rule of BAETEN & BERGSTRA [88] . We describe this rule next.

4.4 LIMIT RULE.
Let FCPEo be the class of finite closed process expressions over ACPo. Let p(x1 , .. ,,Xn) = q(x1 , .. ,,Xn)
be an equation over ACPO. The limit rule (LR) is as follows:

for all t1, .. ,,tn e FCPEo t1, ... ,tn = t1, ... ,tn LR.

The identity 0 II x = 0 follows from LR, because, as remarked above, 0 II t = 0 holds for all t e FCPEo.

4.5 PROJECTION AXIOMS.

The limit rule has other applications of equal importance. Consider the projection operator 1tn. The
following hold for the projection operators: for x,y e FCPEo

7tn(X II y) = 1tn{1tn{x) II 1tn{Y))
1tn{x·y) = 1tn{x)·1tn{Y)
1tn{dH(X)) = dH{1tn{x))
1tn(X IL y) = 1tn{1tn{x) IL 1tn{Y))
1tn(X I y) = 1tn{1tn{X) I 1tn{y)).

We call this set of equations EP. It follows from the limit rule that these identities are valid for all
processes. Now consider once more the process B from 4.3. Then 1tn(0 II B) = 1tn{1tn{0) II 1tn(B)) =
1tn(0 II b") = 0 . This holds for all n and so by AIP 0 II B = 0. More generally, using AIP and EP we can
prove that an identity p(x1 , .. ,,xn) = q(x1 , ... ,Xn) holds for all recursively specified processes as soon as
it holds for all finite processes. The proof proceeds just like in BAETEN & VAN GLABBffK [87).

Summarizing the discussion, we have that our model satisfied LR, AIP, EP. The logical
relationships are: LR I- EP, and AIP + EP I- LR for recursively specified processes only.

4 .6 STATE OPERATOR.

We can add a state operator A to the theory along the same lines as in BAETEN & BERGSTRA [88].
The process As(x) represents the process x in state s. The state operator is parametrized by two
functions action and effect. We write a(s) for action(a,s) and s(a) for effect(a,s) (a an action, s a
state). When an action a is to be executed, a(s) gives the resulting action, and s(a) the resulting state.

We will not allow that a(s) = 0, further one must assume that s(O) = s and O(s) = 0, and s(o) = s,
o(s) = o. Then the state operator works just as well as in the case of ACP. The axioms are displayed
in table 7. We have a e A0. It is straightforward to define the state operator on the graph model of 3.2.

Process algebra with a zero object

¼(0) = 0
¼(a)= a(s)
¼(a·x) = a(s)·¼(a)(x)
¼X+ =¼X+A,g
TABLE 7. State operator.

4.7. PRIORITIES.

9

In examples in section 5 we will also make use of the priority operator of BAETEN, BERGSTRA &
KLOP [87]. This operator gives some actions priority over others in a sum context. An auxiliary
operator <l (unless) is needed to give a finite axiomatization. We assume that a partial ordering< is
given on A (so O and o are not ordered). Table 8 gives axioms on top of the axioms of ACPo. We have

a,b e Ar,.

a<lb = a
a<lb = o
0<lx = 0
x<l0 = x

if not a<b
if a<b

z :;t 0 ⇒ x<lyz = x<ly
x<l(y + z) = (x<ly)<lz
xy<lz = (x<lz)y
(x + y)<lz = x<lz + y<lz

0(0) = 0
0(a) = a
0(xy) = 0(x)·0(y)

TABLE 8. Priority operator.

The priority operator can be defined on the graph model of 3.2 similarly as in BAETEN, BERGSTRA &
KLOP [87]: we prune away every branch that splits off at a node where there is a 'brother' edge with
higher priority, that leads to a non-zero node.

4.8. WEA YING.
In advance of an explanation of how to apply failure prediction in the design of (toy) control systems
we will introduce a parallel composition operator that differs from the ACP merge. This operator is
called weaving, because on trace sets it corresponds exactly to the weaving operator of trace theory,
see REM [87). It is denoted with x II a y and has in failure semantics the same meaning as the
corresponding operator of TCSP, see HOARE [85) from which the notation is taken. Our axioms
explain it in terms of bisimulation semantics and therefore in terms of many other abstract semantic
models. In table 9 we give an axiomatization on top of BPAr,, so not considering the extra constant 0.
We have B ~ A, a,b e Ar,. We can add Oby putting 0 IL Bx = x IL B 0 = 0 I Bx = x I B 0 = 0.

10

x II a y = x lL a y + y lL a x + x la y
a lL a x = a ·x if a e: B
a lL e x = o if a e B
(a·x) lle y = a·(x II a y) if a e: B
(a·x)ll.ey=o ifaeB
(x + y) lL B z = x lL e z + y lL B z
a le b = o if a e: B or a :t: b
a le a= a ifa e B
(a·x) le b = (a le b)·x
a le (b·x) = (a le b)·x
(a·x) le (b·y) =(ale b)·(x II e y)
(x + y) le z = (x le z) + (y le z)
x le + z = x le z + le z
TABLE 9. Weaving.

J.C.M.Baeten & J.A.Bergstra

Weaving is a parallel composition that uses action sharing: the actions named in the subscript B must
occur in a shared fashion for both x and y simultaneously. The above equations describe weaving on
the bisimulation model. It is possible to describe weaving in terms of the merge of ACP. Then it is
necessary to introduce copies of the atomic actions, so let for every b e B, bC be a new copy different
from all other actions in x and y and let c be a renaming function that renames every b E B to be and
leaves all other atoms unchanged. As a communication function we have bC I bC = b, all other
communications are trivial. Then the following identity holds for all finite closed process expressions:

X II By= oec(pc(X) II Pc(Y)).
The reason to have weaving in addition to II of ACP is that in many cases the shared action

communication mechanism is quite pleasant and one would prefer not to be burdened with its encoding
in terms of the merge operator.

5. APPLICATIONS.

5.1. SYSTEMS CONTROL.

In order to apply failure prediction we start from a system S that may be operated with actions from a
set B, a set of buttons. For simplicity we assume that Sis perpetual (does not terminate). Every now
and then an error e may occur (e e: 8). A controller allows the use of S. The functionality of this
controller is as follows:

C = I, instr(b)·H(b)·C,
DEB

where H(b) is a handler for the instruction b (instr(b) is an atomic action, H(b) need not be). H(b)
may or may not perform the action b, meant as an instruction for S. We will choose the following
equation for the handler:

H(b) = b·done(b) + not(b)
The action not(b) denotes a signal from the controller that b may not be performed, the action
done(b) is a controller signal indicating that b has successfully been performed. Both these actions
are supposed not to occur in any other system component. Thus the external alphabet of the controller
is instr(B) u done(B) u not(B) and none of these actions is supposed to occur in S.

Process algebra with a zero object 11

The handler uses a simulation program SIM that simulates the action b as an instruction for S. If
this simulation reveals a problem (a predictable failure) then bis not enforced on S, otherwise it will
be. We have:

SIM= 06°d{e}(S).
Let < be the partial ordering of atomic actions that imposes not(b) < b for all b e B and no other
relations. Then the controller together with the simulated system work as follows:

C-SIM = e<(C II a SIM)
The system C-SIM allows not(b) if it will not allow b. C-SIM allows b if after b , Scan proceed with
at least one infinite trace of actions not involving e. Of course, C-SIM must be implemented in a way
that does not use the constant O or the 'real' system S.

Now, finally, the controller together with the system Sis given by:
C-S = C-SIM II a S.

Due to the nature of the weaving operator, the occurring ternary communication can be described in a
very compact way.

5.2. SPECIFYING A PATH THROUGH A COMBINATORIAL EXPLOSION.

It is well-known that any NP-complete problem can be solved non-deterministically in polynomial
time. Essentially, this is done by non-deterministically guessing a value at each step. We formalize this
as follows. Let P be a computable predicate on sequences of length k of natural numbers in the range
{1, ... ,n}. The set of states is S = {(j,cr) : 1jk, cr a sequence of length j from {1, ... ,n}}. We have
atomic actions guess(i) (for 1 in). The action and effect functions are as follows:
• guess(i)((j,cr)) = skip if j < k • (j,cr)(guess(i)) = (j+ 1, cr*i) if j < k
• guess(i)((k,cr)) = exit if P(cr) • (k,cr)(guess(i)) = (k, cr)
• guess(i)((k,cr)) = o if-.P{cr)
• all other actions a are inert, i.e. a(s) = a and s(a) = s for all states s.
Now define the process Q,R by:

n
0 = A{o.~:>(CI, guess(i))k+ 1), R = Oo(O).

I•

R will equal O iff no sequence cr with P(cr) exists; otherwise, a sequence of length k will be accepted
by R such that P holds.

5.3. TRAFFIC LIGHT.

Let P be a point that travels on a one dimensional two way infinite discrete grid (i.e. the integers). At
each moment in time the coordinates of the point are an integer pair (p, v) where p is the position on
the grid and vis an integer denoting the velocity of P: if v = -3 this means that in one unit of time (say
a second) P moves from p to p - 3. There are three actions for P and one of these is performed each
second:

st
la

remain in the same state (keep the same speed in the same direction).
accelerate left: v ➔ v - 1 ,

ra accelerate right: v ➔ v + 1 .
Thus P = (st + la + ra) · tick · P where tick marks the progress of a clock.

At the same time, there is a traffic light at position 10 on the grid. Every 3 seconds this light changes
its colour, from green to red and back again:

TL= green ·tick· tick· tick· red· tick· tick· tick ·TL.
Here tick marks the progress of the same clock as for the moving object P.

12 J.C.M.Baeten & J.A.Bergstra

We require the communication tick tick= t. The composition of object and traffic light is
d{tick}(P II TL). The next step is that we have a state operator with triples consisting of an integer pair
and a colour as states. The functions action and effect work as follows (p,v integers, ca colour):

effect
(p, v, c)(st) = (p, v, c)
(p, v, c)(la) = (p, v-1, c)
(p, v, c)(ra) = (p, v+ 1, c)
(p, v, c)(red) = (p, v , red)
(p, v, c)(green) = (p, v , green)
(p, V, c)(t) = (p + V, V, c)

action
st(p, v, c) = st
la(p, v, c) = la
ra(p, v, c) = ra
red(p, v, c) = red
green(p, v, c) = green
t(p, v, c) = S if c = red & v > 0 & p ~ 1 O ~ p + v
t(p, v, c) = t otherwise.

Thus, for instance the second line of this table says that if action la is performed in state (p,v,c),
then we see the action la occurring, and the resulting state is (p,v-1,c).
The process PTL = A.(O, o, green)(d(tick}(P II TL)) describes P starting in the position (0, 0) with the
constraint that a deadlock occurs if P crosses the traffic light from left to right if it is green.

Next the process PTLC = 00(PTL) describes P under the constraint that it will never cross the
traffic light in red state from left to right. (C denotes correct functioning of the PTL combination).

Using the operator 00 it becomes possible to view all possible ways of correct behaviour as a
process itself. Notice that if we view st, la, ra as control options for an agent that controls P then
controlling Pin the context PTL leaves the controlling agent all freedom of action (choice from st, la,
ra at any moment). In contrast to this, the freedom of control in the context PTLC is limited.

We give examples of applying 00 in various states of PTL. For instance:
0o(A-(2, 5, green)(d(tick}(P II red ·tick· tick· tick ·TL)))= 0, but for no v we have
0o(A.(11, V, red)(d(tick}(P II TL))) = 0.

Of course this is just a toy example but one may imagine a more complex control system for which
disastrous events have to be avoided. Then the freedom of a controlling agent has to be limited in order
to avoid problems. Using the operation 00 it becomes possible to specify a control system that
disallows actions that must inevitably lead to a problematic stage (i.e. 0). Of course the implementation
of such a control system is quite a different matter. Already in the simple case with moving point and
traffic light above, a specification of PTLC without the use of O is not so straightforward.

Using 0, one may cut down a process graph to correct (failure free) process executions only.

In terms of a control system as described in 5.1 we get the following:
B = {la, ra, st}
S=P
SIM= PTLC
C-SIM = 8<(C II B SIM)
C-S = C Ila P.

Process algebra with a zero object 13

6. CONCLUDING REMARKS.

6.1. RELATION BETWEEN ACPo AND ACP.
ACPo is a generalization of ACP. The mechanism of generalization can be compared to the case in
which one takes the positive rational numbers which combine a multiplicative group structure and an
additive semi-group and adds Oto it. One adds a single object and several laws become invalid. (Let us
assume that one has defined p / 0 as 1 in order to avoid partial functions.)

6.2 EFFECTIVE COMPUTABILITY.
The reason not to have 0 as a member of the core system ACP is that it is not effectively computable.
That is to say that if we have a finite guarded recursive specification of a process X over ACPo, it may
be impossible to compute its finite projections 1tn in a uniform way. The central axiom systems BPA,
PA, ACP and its extensions in concrete process algebra all have the property that finite projections of
finitely recursively specified processes can be determined in a uniform mechanical way. This simply
means that ACP and its extensions in concrete process algebra can be viewed as an executable
programming language. This is why we propose not to consider 0 a part of concrete process algebra
Uust as the empty step £ and the silent step t are not part of concrete process algebra).

6.3 IMPLEMENTATION.
Implementation of a recursive ACPO specification first of all involves an elimination of 0. Now it must
be noticed that interesting use of 0 happens just in those cases where elimination of 0 is possible but at
a very high cost. In the examples 5.1, 5.2 and 5.3 this elimination is possible if the state operator is
allowed. Elimination of 0 is also possible if in addition to ACP abstraction (ti) may be used.

In all of these examples it is not known to us whether an equivalent specification in ACP can be
given (i.e. whether the state operator or abstraction operator are necessary strengthenings for an
elimination of 0 and 0~).

6.4 RELATED WORK.

In MILNER [89], a process 0 is introduced that replaces the constant NIL of CCS of MILNER [80].
This is just a notational matter and does not introduce semantic modifications as such. Nevertheless the
notation differs from ours considerably in the sense that Milner's 0 definitely corresponds to our
constant o and not to our constant 0. Similarly the constant STOP of TCSP of OLDEROG & HOARE
[86] corresponds too and not to (our) 0. We use o because that makes the notation consistent with
other papers about ACP (e.g. BERGSTRA & KLOP [89]). Because 0 is more truly a zero in process
algebra than o we preferred not to adapt our notation to the notation of Milner.

Of course Milner's restriction must be compared to our encapsulation operator and not to a
substitution of (our) 0 for some actions. Thus x I {a, b} in the notation of MILNER [80] corresponds to
a{a, b}(X) in the case of ACP.

ACKNOWLEDGEMENTS.

Hans Mulder and Sjouke Mauw have contributed to this paper through several critical remarks
including the view that an undisputable zero in ACP must satisfy the law x·0 = 0 and not just a·0 = 0
for atomic actions a. In addition, the second author acknowledges extended discussions with C.A.R.
Hoare about various aspects of this paper. We thank the referees for their careful review and many
helpful comments.

14 J.C.M.Baeten & J.A.Bergstra

REFERENCES.

J.C.M. BAETEN & J.A. BERGSTRA [88],Global renaming operators in concrete process algebra, I&C
78, 1988, pp. 205-245.

J.C.M. BAETEN & J.A. BERGSTRA [90], Process algebra with zero object and non-determinacy,
report P9002, Programming Research Group, University of Amsterdam 1990.

J.C.M. BAETEN & R.J. VAN GLABBEEK [87], Merge and termination in process algebra, in: Proc. 7th
FST&TCS, Pune (K.V. Nori, ed.), SpringerLNCS 287, 1987, pp. 153-172.

J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOP [86], Syntax and defining equations for an interrupt
mechanism in process algebra, Fund. Inf. IX, 1986, pp. 127-168.

J.A. BERGSTRA & J.W. KLOP [84a], Process algebra for synchronous communication, I&C 60,
1984, pp. 109-137.

J.A. BERGSTRA & J.W. KLOP [84b], The algebra of recursively defined processes and the algebra of
regular processes, in: Proc. 11th ICALP, Antwerpen (J. Paredaens, ed.), Springer LNCS 172, 1984,
pp. 82-95.

J.A. BERGSTRA & J.W. KLOP [85], Algebra of communicating processes with abstraction, TCS 37,
1985, pp. 77-121.

J.A. BERGSTRA & J.W. KLOP [86], Process algebra: specification and verification in bisimulation
semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.),
CWI Monograph 4, North-Holland, Amsterdam, 1986, pp. 61-94.

J.A. BERGSTRA & J.W. KLOP [89], Process theory based on bisimulation semantics, in: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency (J.W. de Balcker, W.-P. de
Roever & G. Rozenberg, eds.), Springer LNCS 354, 1989, pp. 50-122.

R.J. VAN GLABBEEK [87], Bounded nondeterminism and the approximation induction principle in
process algebra, in: Proc. STACS 87 (F.J. Brandenburg, G. Vidal-Naquet & M. Wirsing, eds.),
Springer LNCS 247, 1987, pp. 336-347.

J.P. GROOTE & F.W. V AANDRAGER [89], Structured operational semantics and bisimulation as a
congruence, extended abstract in: Proc. ICALP 89, Stresa (G. Ausiello, M. Dezani-Ciancaglini & S.
Ronchi Della Rocca, eds.), Springer LNCS 372, 1989, pp. 423-438. Full version to appear in I&C.

J.P. GROOTE [90] , Transition system specifications with negative premises, report CS-R8950, Centre
for Math. & Comp. Sci. 1990. To appear in Proc. CONCUR'90, Springer LNCS.

C.A.R. HOARE [85], Communicating sequential processes, Prentice Hall International, 1985.

R. MILNER [80], A calculus for communicating systems, Springer LNCS 92, 1980.

R. MILNER [89], Communication and concurrency, Prentice Hall International, 1989.

E.-R. OLDEROG & C.A.R. HOARE [86], Specification-oriented semantics for communicating
processes, Acta Informatica 23, 1986, pp. 9-66.

A. PoNSE & F.-J. DE VRIES [89], Strong completeness for Hoare logics of recursive processes: an
infinitary approach, report CS-R8957, Centre for Math. & Comp. Sci., Amsterdam 1989.

M. REM [87], Trace theory and systolic computations, in: Proc. PARLE Vol. I (J.W. de Bakker, A.J.
Nijman & P.C. Treleaven, eds.), Springer LNCS 258, 1987, pp. 14-33.

