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1. INTRODUCTION. 

1 

The object O acts as a O for both sum and multiplication in process algebra. The constant o representing 
deadlock or inaction is only a left zero for multiplication. The purpose of this paper is to indtroduce a 
constant O in process algebra and discuss its properties. 

We will call O predictable failure. A predictable failure differs from deadlock (inaction) in the sense 
that a system will actively try to avoid it. The axioms for O incorporate the intention of a system to 
avoid failure whenever possible. The axioms for o (in particular x ~ 0 ⇒ x + o = x) incorporate the 
intention of a process to make progress if it can. 

In fact O stands for a truly empty process, its execution is simply inconceivable. The process O also 
occurs in PONSE & DE VRIES [89) (but is called o there!). 

A process specification involving O or renaming into O is not executable. It must be implemented, 
which means that one has to provide an equivalent (or better) specification not involving O or renaming 
into 0. Due to this observation O is a high level feature that plays a role in system design and 
specification, rather than in implementation. 
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2. AXIOMATIZATION. 

2.1. BASIC PROCESS ALGEBRA WITH ZERO. 
We start out from the theory of Basic Process Algebra as described in BERGSTRA & KLoP [84a, 85, 
86]. For a recent survey article see BERGSTRA & KLOP [89]. 

We have a set of atomic actions, A. Each atomic action is a constant of the sort P, the sort of 
processes that the theory is about. Then, we have two binary operators on P: + is alternative 
composition or sum, and· is sequential composition or product. For this signature, we have the 
first five axioms in table 1 below (Al-5), constituting BPA. In table 1, x,y,z are arbitrary elements of 
P. 

Then we add the zero constant, obeying the next three axioms (Zl-3). Usually, we also have the 
constant o in the theory, called deadlock or inaction. The two axioms for inaction need conditions, 
in order to avoid clashes with the zero axioms (A60, A70). The conditions use a predicate on processes 
-:;:. 0, that determines whether or not a term can be proved equal to the zero process. This predicate is 
axiomatized in the last four axioms of table 1. There, we have a E A. 
We put Ao= Au {o}, Aoo =Au {0,o}, BPAo = BPA + Zl-3, BPAoo = BPAo + A6o, A7o + NZl-4. 

Of all operators,+ will bind the weakest, and· the strongest. We often leave out the· sign. 

x+y=y+x Al 
x + (y + z) = (x + y) + z A2 
X+X=X A3 
(x + y)·z = x·z + y·z A4 
(x·y)·z = x·(y·z) A5 

x·0 = 0 Zl 
x+0=x 22 
0·x = 0 23 

x-:;:.0 ⇒ X+O=X A6o 
x-:;:.0 ⇒ o·x = o A70 

0 "#-0 NZl 
a-:;:.0 NZ2 
X "#- 0, y "#- 0 ⇒ x·y "#- 0 NZ3 
x-:;:.0 ⇒ x+y-:;:.0 NZ4 
TABLE 1. BPAQ0. 

The difference between 0 and o requires further comments: 
i. o is an inactive process, if a system reduces too it deadlocks. Of course the mere occurrence of o 
in a process expression (like a + b(o + c}) need not indicate a deadlock. Compare this to the 
expression e = 2 + 0·(5 + 8); in no way the occurrence of 0 in e implies that e vanishes. 
ii. x + o = x is a progress rule: the system eventually discovers that o is no option and proceeds with 
x (if possible). 
iii. x·0 = 0 is a liveness rule: the system must, after completion of x, eventually execute 0, i.e. assert 
false. This form of liveness is not required for o. 
iv. 0 + o = o because o is 'better than' 0. 
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v. 0·x = 0 and o·x = o are explained by the non-executability of 0, resp. o. Note that we have in 
particular o·0 = 0. Unfortunately, the explanation of this in philosophical terms is shallow. 

2.2. PROJECTION. 
We can extend the signature given above with the projection operators 7tn (for n~1 ). The axioms 
are straightforward adaptations of the usual ones (see BERGSTRA & KLoP [84a]). In table 2, a e A. 

1tn{0) = 0 
1tn{S) = o 
1tn{a) = a 
x * 0 ⇒ 1t1 (ax) = a 
7tn+ 1 (ax) = a·1tn{x) 
7tn x + = 7tn x + 7t 
TABLE 2. Projection. 

2.3 INFINITARY RULES. 
The axioms given abov~ constitute a complete theory for finite processes, processes represented by 
closed terms, i.e. equality on finite processes (in a graph model to be presented further on) coincides 
with derivability from the axioms. When we are dealing with infinite processes however, processes 
specified by means of recursive equations, we need additional proof principles. In this paper, we will 
discuss 4 such principles. 

First, we consider the Approximation Induction Principle (AIP). AIP can be maintained in the 
present setting as in BERGSTRA & KLOP [86]. Roughly, this proof rule states that two processes 
should be identified if all their projections are equal. More explicitly: 

for all n 7tn(x) = 7tn(Y) ⇒ x = y. 
This rule is valid for finitely branching processes only (a process is finitely branching if it has a 
representation as a finitely branching graph or tree, see further on). 

Next, we consider two principles that deal with solutions of recursive equations. The Recursive 
Definition Principle (RDP) states that every recursive specification has at least one solution, and the 
Recursive Specification Principle (RSP) states that every guarded recursive specification has at most 
one solution. Here, guarded roughly means that every variable occurring in the right-hand side of an 
equation must be preceded by an atomic action. For more details and formal definitions, see 
BERGSTRA & KLOP [86]. 

Now let us consider these rules in the present setting. Notice that the guarded equation x = a·x has 
two solutions: 0 and aro (the process that indefinitely performs a). It follows that the principle RSP has 
to be relaxed: every guarded system of recursion equations not containing an occurrence of O has at 
most one solution different from 0. Thus more formally, RSp0 states: 

Let E be a guarded recursive specification with k process names such that none of the equations of 
E involves either O or a renaming into O (see below). Such Eis called 0-free. 
Let X = (x1, ... , Xk) and Y = (y1, ... , Yk) be process vectors of length k. 
Then x1 ;t: 0 & ... & Xk ;t: 0 & Y1 ;t: 0 & ... & Yk ;t: 0 & X = E(X), Y = E(Y) 
implies X = Y. 

Besides RSp0 there is also RDp0 which states that: 
every 0-free guarded system of recursion equations possesses at least one solution vector 
consisting of processes different from 0. 
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The last infinitary proof rule that we will consider is the Limit Rule. We describe this rule in 4.4. 

2.4 RENAMING INTO ZERO. 
06 is an operator that substitutes O for o. We will call this operator deadlock prevention. Let a E A. 

06(0) = 0 
06(0) = 0 
06(a) = a 
06(ax) = a·06(X) 
06 X + 
TABLE 3. Deadlock prevention. 

An example: Oo(ab + c(deo + ao)) = ab. 
Note that the equation 06(x·y) = 06(X)·06(Y) leads to a problem as follows: Let x = am (i.e. the 

unique solution different from O of the equation z = a·z) and y = o, then x·y = x because of AIP, 
hence x = 06(X) = 06(x·y) = 06(x)·00(y) = 00(x)·O = 0, which contradicts the assumptions on x. 

Also note that it is incorrect to rename an atomic action a into O by an operator Oa, for that leads to 
0 = Oa(a) = Oa(a + o) = Oa(a) + Oa(o) = 0 + o = o. 

3. SEMANTICS. 

3.1 TRANSITION RULES. 
We define a structured operational semantics as in VAN GLABBEEK [87], on congruence classes 
of process expressions, i.e. a ~ relation holds between two terms iff they are provably equal to the 
format in the rules in table 4 below. Likewise, a term satisfies ~ ✓ iff it can be written in the form a + 
x. For closed terms, the rules now determine an action graph. On action graphs, we will then define 
a notion of bisimulation as in BERGSTRA & KLOP [86]. In this definition, we have to pay special 
attention to the separate status of the process 0. Note that we have to define the rules on congruence 
classes of process expressions, since we need the predicate* 0 in the definition. We cannot define 
action rules on terms in the format of GROOTE & V AANDRAGER [89] or GROOTE [90]. 

a+x ~ ✓ 
a 

x * 0 ⇒ a·x + y =+ x 
TABLE 4. Action rules. 

We can also add rules in order to deal with recursive equations. In that case, however, the transition 
system may become undecidable because x * 0 is in general not decidable. To see this notice that for 
every recursively enumerable set Wei;;;; N with recursive index e and every n E Na guarded recursive 
specification over ACP can be uniformly computed with solution p(e,n) such that: 

n E We ¢::} for some k p(e,n) = jk•o 

n E We ¢::} p(e,n) = im. 
This construction can be found in BERGSTRA & KLoP [84b]. It follows that: 

n E We ¢::} 06(p(e,n)) = 0, 
hence it is undecidable whether X = 0 for recursively specified X in general. 
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3.2 GRAPH MODEL. 

We can also define a graph model directly. Let 1' be the set of all rooted labeled trees, where all edges 
are labeled with elements of A, and all endpoints labeled with an element of {✓, o, 0}. The 
interpretation of the constants and operators of BP Aoo is straightforward: 
• [o] is the one-node graph labeled with o, [0] is the one-node graph labeled with 0; 
• [a] is the two-node graph with one edge labeled a, and the endpoint labeled ✓; 
• if g,h are in 1', then g + h is obtained by identifying the roots of g and h. If one graph is [0], the 
result is just the other graph. If one graph is [o], the result is also the other graph, unless that graph is 
[0] (in which case it is [o]); 
• if g,h are in 1', then g·h is obtained by first making a copy of h for each ✓-endpoint of g. Then we 
remove the ✓-label, and identify the endpoint with the root of its copy. 

We give some examples in fig. 1 below. We see the trees that represent the terms 0, (a+ b)·c, a·B + 
a·0. Recursively specified processes will in general have infinite trees. 

C 

✓ 

C 

✓ 
FIGURE 1. 

If g is a tree in 1', ands a node in g, then we calls a zero node of g if every maximal path in g from 
s must end in a 0-labeled point. Now we can give the definition ofbisimulation on these trees. 

3.2.1 DEFINITION. 

Let g,h E 1'. We say g,h are bisimilar, g t::t h, if there exists a relation R (called a bisimulation) on 
nodes of g and h, such that 
1. the domain of R consists of all non-zero nodes of g; 
2. the range of R consists of all non-zero nodes of h; 
3. either g,h are both the zero graph, or the roots of g,h are related; 
4. if R(s,t) ands ~ s' ands' non-zero, then there is a non-zero t' such that t ~ t' and R(s',t'); 
5. if R(s,t) and t ~ t' and t' non-zero, then there is a non-zeros' such thats ~ s' and R(s',t'); 
6. if R(s,t) and s,t are endpoints, then they have the same label. 

3.2.2 PROPOSITION 

Bisimulation is a congruence on 1'. 

In order to prove that 1'/ t::t is a good model for the theory BPAoo, we first need a couple of lemmas. 

3.2.3 LEMMA 

Lett be a closed term over BPAoo such that BPAoo If t * 0. Then BPAoo I- t = 0. 

PROOF: By induction on the structure oft. If t is a constant, this follows immediately from the axioms 
in table 1. If tis a sum, say t = t1 + t2, and BPAoo If t * 0, it follows from axiom NZ4 that BPAoo If 
t1 * 0 and BPAoo If t2 * 0. By induction hypothesis, BPAoo I- t1 = 0 and BPAoo I- t2 = 0 and 
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consequently BPAos I- t = 0. Finally, if tis a product, say t = t1 ·t2, and BPAos If t * 0, it follows 
from axiom NZ3 that either BPAos If t1 * 0 or BPAos If t2 * 0. By induction hypothesis, we obtain 
either BPAos I- t1 = 0 or BPAos I- t2 = 0 In the first case, use 23 and in the second case Zl to obtain 
BPAos 1- t = 0. 

3.2.4 LEMMA 

Lett be a closed term over BPAos such that BPAos I- t :I:- 0. Then t can be written without 0, i.e. there 
is a closed terms over BPAos that does not contain 0, such that BPAoo I- t = s. 

PROOF: By induction on the structure oft. If tis a constant, this follows directly from the axioms in 
table I. If t has the form of a product t1 ·t2, it follows by the previous lemma that t1 :I:- 0 and t2 :I:- 0. 
Then use induction hypothesis. Finally, if t has the form of a sum t1 + t2, it is by the previous lemma 
enough to consider the following four cases. 
Case 1; t1 * 0, t2 * 0. Use induction hypothesis. 
Case 2: t1 = 0, t2 = 0. It follows that t = 0, contradiction. 
Case 3: t1 = 0, t2 :I:- 0. It follows that t = t2, and we can use the induction hypothesis for t2. 
Case 4; t1 * 0, t2 = 0. Just like case 3. 

3.2.3 THEOREM 
BPA.o6 is a sound and complete axiomatization of the model 1'/t:t (for closed terms). 

PROOF: First note that the graph model has a substructure consisting of the processes :I:- 0. That 
structure is a model of BP As, the theory without zero, and with axioms A 1-7 ( no conditions on A6 and 
A 7). Thus there is only one process in which O features in an essential way and that is O itself. 

Now soundness can be proved by inspection of the model. To prove completeness, consider two 
closed terms t,s over BPAo0 and suppose 1'/t:t I- t=S. We use case distinction. 
Case 1; t :I:- 0, s :I:- 0. By the previous lemma, t ands can be written as t*, s* without 0. By soundness 
1'/t:t I- t* =s*. By the completeness theorem for BPAs, BPA0 I- t* = s*. 
Case 2; t = 0, s = 0. Immediate. 
Case 3: t = 0, s * 0. Write s as s* without 0. The definition of t:t shows that t t:t s* cannot hold, 
contradiction. 
Case 4· t * 0, s = 0. Just like case 3. 

4. EXTENSIONS. 

4.1 RENAMING. 

Now we will look at renamings of atomic actions into atomic actions or o. (Renaming into zero was 
discussed in 2.5.) Let f: Ao ➔ A0 be any function that keeps o fixed, i.e. f(o) = o. Then the renaming 
operator Pf is defined by the axioms in table 5, where a e A0. 

Pt(O) = 0 
Pt(a) = f(a) 
Pt(X + Y) = Pt(x) + Pt(Y) 

TABLE 5. Renaming. 
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It is straightforward to define the renaming operators on the graph model of 3.2. A very useful 
example of a renaming operator is the encapsulation operator dH (for H ~ A) that is based on the 
function g given by: 

g(a) = o if a e H and g(a) = a if a e H. 
The composition of an encapsulation operator with the deadlock prevention operator (06odH) will 
prevent any action of H from occurring. We will see applications of this in the sequel. 

4.2 PARALLEL COMPOSITION. 
We can extend the theory BPAo6 with parallel composition as in the theory ACP of BERGSTRA & 
KLOP [84a]. In order to axiomatize the parallel operator II (merge), we need two auxiliary operators 
11. (left-merge) and I (communication merge). The theory is parametrized by a communication 
function I , a binary function on the set of constants Ao6 that satisfies conditions Cl-4 in table 8 
below. Moreover, we have the encapsulation operator of 4.1, that is used to block communications 
with the outside. The theory ACPo consists of BPAo6 plus the axioms in table 6 below. In table 6, 
a,b,ce Ao6-

alb=bla 
(a I b) I c=a I (b I c) 
a*0 ⇒ ola=o 
OI a=0 

xlly=xll.y+yll.x+x I y 
all.x = a·x 
axll.y = a·(x II y) 
(x + y)ll.z = xll.z + yll.z 
ax I b=(a I b)·x 
a I bx=(a I b)·x 
ax I by=(a I b)·(xlly) 
(x+y) I Z=X I z+y I z 
x I (y+z)=x I y+x I z 

dH(0) = 0 
dH(a) = a if a e H 
dH(a) = o if a e H 
dH(X + y) = dH(x) + dH(Y) 
dH(x·y} = dH(X}'dH(Y} 

TABLE 6. ACPo. 

Cl 
C2 
C3 
C4 

CMI 
CM2 
CM3 
CM4 
CMS 
CM6 
CM7 
CM8 
CM9 

DO 
DI 
D2 
D3 
D4 

On the graph model, we can define parallel composition as follows: 
• the node set of graph i II h is the cartesian product of the node sets of g and h; 
• there is an edge (s,t) ➔ (s',t) iff there is an edges ~ s' in g; 
likewise, there is an edge ~s,t) ~ (s,t') iff there is an ed8e t ~ t' in h; 
and there is an edge (s,t) ➔ (s' ,t'} iff there are edges s ➔ s' in g and t 9+ t' in h with b I c = a; · 
• an endpoint (s,t) has a 0-label iff either sort has a 0-label; 
an endpoint (s,t) has a o-label if one has a o-label, and the other a o or ✓-label; 
an endpoint (s,t) has a ✓-label if both sand t have a ✓-label (all labels in non-endpoints are dropped). 
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It can be proved that with this definition, bisimulation is also a congruence for parallel 
composition, and all axioms of ACPo hold in the graph model. 

4.3 DISCUSSION. 
Note that we can derive from ACPo that for all finite closed terms x we have 

0 II x = 0 IL x = x IL 0 = x I 0 = 0 I x = 0. 
Now let us consider this for recursively defined processes. Look at the process B that is the non-zero 
solution ofB = b·B. We calculate: Oil B = 0ILB + BIL0 + 0 I B = 0 ·B + bBIL0 + bB IO= 

= O + b·(B II 0) + (b I 0)·B = b·(B II 0) = b·b·(0 II 8). 
We also have B = b·b·B, so by RSp0 we have either 0 II B = B or 0 II B = 0. 

Both options are consistent. Our choice is to put 0 II B = 0 and in general 0 II x = 0. We can 
motivate this if we use the Limit Rule of BAETEN & BERGSTRA [88] . We describe this rule next. 

4.4 LIMIT RULE. 
Let FCPEo be the class of finite closed process expressions over ACPo. Let p(x1 , .. ,,Xn) = q(x1 , .. ,,Xn) 
be an equation over ACPO. The limit rule (LR) is as follows: 

for all t1, .. ,,tn e FCPEo t1, ... ,tn = t1, ... ,tn LR. 

The identity 0 II x = 0 follows from LR, because, as remarked above, 0 II t = 0 holds for all t e FCPEo. 

4.5 PROJECTION AXIOMS. 

The limit rule has other applications of equal importance. Consider the projection operator 1tn. The 
following hold for the projection operators: for x,y e FCPEo 

7tn(X II y) = 1tn{1tn{x) II 1tn{Y)) 
1tn{x·y) = 1tn{x)·1tn{Y) 
1tn{dH(X)) = dH{1tn{x)) 
1tn(X IL y) = 1tn{1tn{x) IL 1tn{Y)) 
1tn(X I y) = 1tn{1tn{X) I 1tn{y)). 

We call this set of equations EP. It follows from the limit rule that these identities are valid for all 
processes. Now consider once more the process B from 4.3. Then 1tn(0 II B) = 1tn{1tn{0) II 1tn(B)) = 
1tn(0 II b") = 0 . This holds for all n and so by AIP 0 II B = 0. More generally, using AIP and EP we can 
prove that an identity p(x1 , .. ,,xn) = q(x1 , ... ,Xn) holds for all recursively specified processes as soon as 
it holds for all finite processes. The proof proceeds just like in BAETEN & VAN GLABBffK [87). 

Summarizing the discussion, we have that our model satisfied LR, AIP, EP. The logical 
relationships are: LR I- EP, and AIP + EP I- LR for recursively specified processes only. 

4 .6 STATE OPERATOR. 

We can add a state operator A to the theory along the same lines as in BAETEN & BERGSTRA [88]. 
The process As(x) represents the process x in state s. The state operator is parametrized by two 
functions action and effect. We write a(s) for action(a,s) and s(a) for effect(a,s) (a an action, s a 
state). When an action a is to be executed, a(s) gives the resulting action, and s(a) the resulting state. 

We will not allow that a(s) = 0, further one must assume that s(O) = s and O(s) = 0, and s(o) = s, 
o(s) = o. Then the state operator works just as well as in the case of ACP. The axioms are displayed 
in table 7. We have a e A0. It is straightforward to define the state operator on the graph model of 3.2. 
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¼(0) = 0 
¼(a)= a(s) 
¼(a·x) = a(s)·¼(a)(x) 
¼X+ =¼X+A,g 
TABLE 7. State operator. 

4.7. PRIORITIES. 

9 

In examples in section 5 we will also make use of the priority operator of BAETEN, BERGSTRA & 
KLOP [87]. This operator gives some actions priority over others in a sum context. An auxiliary 
operator <l (unless) is needed to give a finite axiomatization. We assume that a partial ordering< is 
given on A (so O and o are not ordered). Table 8 gives axioms on top of the axioms of ACPo. We have 

a,b e Ar,. 

a<lb = a 
a<lb = o 
0<lx = 0 
x<l0 = x 

if not a<b 
if a<b 

z :;t 0 ⇒ x<lyz = x<ly 
x<l(y + z) = (x<ly)<lz 
xy<lz = (x<lz)y 
(x + y)<lz = x<lz + y<lz 

0(0) = 0 
0(a) = a 
0(xy) = 0(x)·0(y) 

TABLE 8. Priority operator. 

The priority operator can be defined on the graph model of 3.2 similarly as in BAETEN, BERGSTRA & 
KLOP [87]: we prune away every branch that splits off at a node where there is a 'brother' edge with 
higher priority, that leads to a non-zero node. 

4.8. WEA YING. 
In advance of an explanation of how to apply failure prediction in the design of (toy) control systems 
we will introduce a parallel composition operator that differs from the ACP merge. This operator is 
called weaving, because on trace sets it corresponds exactly to the weaving operator of trace theory, 
see REM [87). It is denoted with x II a y and has in failure semantics the same meaning as the 
corresponding operator of TCSP, see HOARE [85) from which the notation is taken. Our axioms 
explain it in terms of bisimulation semantics and therefore in terms of many other abstract semantic 
models. In table 9 we give an axiomatization on top of BPAr,, so not considering the extra constant 0. 
We have B ~ A, a,b e Ar,. We can add Oby putting 0 IL Bx = x IL B 0 = 0 I Bx = x I B 0 = 0. 
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x II a y = x lL a y + y lL a x + x la y 
a lL a x = a ·x if a e: B 
a lL e x = o if a e B 
(a·x) lle y = a·(x II a y) if a e: B 
(a·x)ll.ey=o ifaeB 
(x + y) lL B z = x lL e z + y lL B z 
a le b = o if a e: B or a :t: b 
a le a= a ifa e B 
(a·x) le b = (a le b)·x 
a le (b·x) = (a le b)·x 
(a·x) le (b·y) =(ale b)·(x II e y) 
(x + y) le z = (x le z) + (y le z) 
x le + z = x le z + le z 
TABLE 9. Weaving. 

J.C.M.Baeten & J.A.Bergstra 

Weaving is a parallel composition that uses action sharing: the actions named in the subscript B must 
occur in a shared fashion for both x and y simultaneously. The above equations describe weaving on 
the bisimulation model. It is possible to describe weaving in terms of the merge of ACP. Then it is 
necessary to introduce copies of the atomic actions, so let for every b e B, bC be a new copy different 
from all other actions in x and y and let c be a renaming function that renames every b E B to be and 
leaves all other atoms unchanged. As a communication function we have bC I bC = b, all other 
communications are trivial. Then the following identity holds for all finite closed process expressions: 

X II By= oec(pc(X) II Pc(Y)). 
The reason to have weaving in addition to II of ACP is that in many cases the shared action 

communication mechanism is quite pleasant and one would prefer not to be burdened with its encoding 
in terms of the merge operator. 

5. APPLICATIONS. 

5.1. SYSTEMS CONTROL. 

In order to apply failure prediction we start from a system S that may be operated with actions from a 
set B, a set of buttons. For simplicity we assume that Sis perpetual (does not terminate). Every now 
and then an error e may occur (e e: 8). A controller allows the use of S. The functionality of this 
controller is as follows: 

C = I, instr(b)·H(b)·C, 
DEB 

where H(b) is a handler for the instruction b (instr(b) is an atomic action, H(b) need not be). H(b) 
may or may not perform the action b, meant as an instruction for S. We will choose the following 
equation for the handler: 

H(b) = b·done(b) + not(b) 
The action not(b) denotes a signal from the controller that b may not be performed, the action 
done(b) is a controller signal indicating that b has successfully been performed. Both these actions 
are supposed not to occur in any other system component. Thus the external alphabet of the controller 
is instr(B) u done(B) u not(B) and none of these actions is supposed to occur in S. 
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The handler uses a simulation program SIM that simulates the action b as an instruction for S. If 
this simulation reveals a problem (a predictable failure) then bis not enforced on S, otherwise it will 
be. We have: 

SIM= 06°d{e}(S). 
Let < be the partial ordering of atomic actions that imposes not(b) < b for all b e B and no other 
relations. Then the controller together with the simulated system work as follows: 

C-SIM = e<(C II a SIM) 
The system C-SIM allows not(b) if it will not allow b. C-SIM allows b if after b , Scan proceed with 
at least one infinite trace of actions not involving e. Of course, C-SIM must be implemented in a way 
that does not use the constant O or the 'real' system S. 

Now, finally, the controller together with the system Sis given by: 
C-S = C-SIM II a S. 

Due to the nature of the weaving operator, the occurring ternary communication can be described in a 
very compact way. 

5.2. SPECIFYING A PATH THROUGH A COMBINATORIAL EXPLOSION. 

It is well-known that any NP-complete problem can be solved non-deterministically in polynomial 
time. Essentially, this is done by non-deterministically guessing a value at each step. We formalize this 
as follows. Let P be a computable predicate on sequences of length k of natural numbers in the range 
{1, ... ,n}. The set of states is S = {(j,cr) : 1$j$k, cr a sequence of length j from {1, ... ,n}}. We have 
atomic actions guess(i) (for 1 $i$n). The action and effect functions are as follows: 
• guess(i)((j,cr)) = skip if j < k • (j,cr)(guess(i)) = (j+ 1, cr*i) if j < k 
• guess(i)((k,cr)) = exit if P(cr) • (k,cr)(guess(i)) = (k, cr) 
• guess(i)((k,cr)) = o if-.P{cr) 
• all other actions a are inert, i.e. a(s) = a and s(a) = s for all states s. 
Now define the process Q,R by: 

n 
0 = A{o.~:>( CI, guess(i))k+ 1), R = Oo(O). 

I• 

R will equal O iff no sequence cr with P(cr) exists; otherwise, a sequence of length k will be accepted 
by R such that P holds. 

5.3. TRAFFIC LIGHT. 

Let P be a point that travels on a one dimensional two way infinite discrete grid (i.e. the integers). At 
each moment in time the coordinates of the point are an integer pair (p, v) where p is the position on 
the grid and vis an integer denoting the velocity of P: if v = -3 this means that in one unit of time (say 
a second) P moves from p to p - 3. There are three actions for P and one of these is performed each 
second: 

st 
la 

remain in the same state (keep the same speed in the same direction). 
accelerate left: v ➔ v - 1 , 

ra accelerate right: v ➔ v + 1 . 
Thus P = (st + la + ra) · tick · P where tick marks the progress of a clock. 

At the same time, there is a traffic light at position 10 on the grid. Every 3 seconds this light changes 
its colour, from green to red and back again: 

TL= green ·tick· tick· tick· red· tick· tick· tick ·TL. 
Here tick marks the progress of the same clock as for the moving object P. 
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We require the communication tick tick= t. The composition of object and traffic light is 
d{tick}(P II TL). The next step is that we have a state operator with triples consisting of an integer pair 
and a colour as states. The functions action and effect work as follows (p,v integers, ca colour): 

effect 
(p, v, c)(st) = (p, v, c) 
(p, v, c)(la) = (p, v-1, c) 
(p, v, c)(ra) = (p, v+ 1, c) 
(p, v, c)(red) = (p, v , red) 
(p, v, c)(green) = (p, v , green) 
(p, V, c)(t) = (p + V, V, c) 

action 
st(p, v, c) = st 
la(p, v, c) = la 
ra(p, v, c) = ra 
red(p, v, c) = red 
green(p, v, c) = green 
t(p, v, c) = S if c = red & v > 0 & p ~ 1 O ~ p + v 
t(p, v, c) = t otherwise. 

Thus, for instance the second line of this table says that if action la is performed in state (p,v,c), 
then we see the action la occurring, and the resulting state is (p,v-1,c). 
The process PTL = A.(O, o, green)(d(tick}(P II TL)) describes P starting in the position (0, 0) with the 
constraint that a deadlock occurs if P crosses the traffic light from left to right if it is green. 

Next the process PTLC = 00(PTL) describes P under the constraint that it will never cross the 
traffic light in red state from left to right. (C denotes correct functioning of the PTL combination). 

Using the operator 00 it becomes possible to view all possible ways of correct behaviour as a 
process itself. Notice that if we view st, la, ra as control options for an agent that controls P then 
controlling Pin the context PTL leaves the controlling agent all freedom of action (choice from st, la, 
ra at any moment). In contrast to this, the freedom of control in the context PTLC is limited. 

We give examples of applying 00 in various states of PTL. For instance: 
0o(A-(2, 5, green)(d(tick}(P II red ·tick· tick· tick ·TL)))= 0, but for no v we have 
0o(A.(11, V, red)(d(tick}(P II TL))) = 0. 

Of course this is just a toy example but one may imagine a more complex control system for which 
disastrous events have to be avoided. Then the freedom of a controlling agent has to be limited in order 
to avoid problems. Using the operation 00 it becomes possible to specify a control system that 
disallows actions that must inevitably lead to a problematic stage (i.e. 0). Of course the implementation 
of such a control system is quite a different matter. Already in the simple case with moving point and 
traffic light above, a specification of PTLC without the use of O is not so straightforward. 

Using 0, one may cut down a process graph to correct (failure free) process executions only. 

In terms of a control system as described in 5.1 we get the following: 
B = {la, ra, st} 
S=P 
SIM= PTLC 
C-SIM = 8<(C II B SIM) 
C-S = C Ila P. 
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6. CONCLUDING REMARKS. 

6.1. RELATION BETWEEN ACPo AND ACP. 
ACPo is a generalization of ACP. The mechanism of generalization can be compared to the case in 
which one takes the positive rational numbers which combine a multiplicative group structure and an 
additive semi-group and adds Oto it. One adds a single object and several laws become invalid. (Let us 
assume that one has defined p / 0 as 1 in order to avoid partial functions.) 

6.2 EFFECTIVE COMPUTABILITY. 
The reason not to have 0 as a member of the core system ACP is that it is not effectively computable. 
That is to say that if we have a finite guarded recursive specification of a process X over ACPo, it may 
be impossible to compute its finite projections 1tn in a uniform way. The central axiom systems BPA, 
PA, ACP and its extensions in concrete process algebra all have the property that finite projections of 
finitely recursively specified processes can be determined in a uniform mechanical way. This simply 
means that ACP and its extensions in concrete process algebra can be viewed as an executable 
programming language. This is why we propose not to consider 0 a part of concrete process algebra 
Uust as the empty step £ and the silent step t are not part of concrete process algebra). 

6.3 IMPLEMENTATION. 
Implementation of a recursive ACPO specification first of all involves an elimination of 0. Now it must 
be noticed that interesting use of 0 happens just in those cases where elimination of 0 is possible but at 
a very high cost. In the examples 5.1, 5.2 and 5.3 this elimination is possible if the state operator is 
allowed. Elimination of 0 is also possible if in addition to ACP abstraction (ti) may be used. 

In all of these examples it is not known to us whether an equivalent specification in ACP can be 
given (i.e. whether the state operator or abstraction operator are necessary strengthenings for an 
elimination of 0 and 0~). 

6.4 RELATED WORK. 

In MILNER [89], a process 0 is introduced that replaces the constant NIL of CCS of MILNER [80]. 
This is just a notational matter and does not introduce semantic modifications as such. Nevertheless the 
notation differs from ours considerably in the sense that Milner's 0 definitely corresponds to our 
constant o and not to our constant 0. Similarly the constant STOP of TCSP of OLDEROG & HOARE 
[86] corresponds too and not to (our) 0. We use o because that makes the notation consistent with 
other papers about ACP (e.g. BERGSTRA & KLOP [89]). Because 0 is more truly a zero in process 
algebra than o we preferred not to adapt our notation to the notation of Milner. 

Of course Milner's restriction must be compared to our encapsulation operator and not to a 
substitution of (our) 0 for some actions. Thus x I {a, b} in the notation of MILNER [80] corresponds to 
a{a, b}(X) in the case of ACP. 
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