
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C.M. Baeten, JA Bergstra

Recursive process definitions with the state operator

Computer Science/Department of Software Technology Report CS-R8920 May

The Cer1tre for Mathematics and Computer Science is a research institute of

the Stichting Mathematisch Centrum, which was founded on February 11,

1946, as a nonprofit insti1ution aiming at the promotion of mathematics, com

puter science, and their applications. It is sponsored by the Dutch Govern

ment through the Netherlands Organization for the Advancement of Research

(N.W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Recursive Process Definitions with the State Operator

J.C.M. Baeten
Department of Software Technology, Centre for Mathematics and Computer Science,

P.0.Box 4079, 1009 AB Amsterdam, The Netherlands

J .A. Be rgstra
Programming Research Group, University of Amsterdam,
P.O.Box 41882, 1009 DB Amsterdam, The Netherlands

Department of Philosophy, State University of Utrecht,
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

We investigate the defining power of finite recursive specifications over the theory with +
{alternative composition) and · {sequential composition) and I.. (the state operator) over a finite set
of states, and find that it is greater than that of the same theory without state operator. Thus,
adding the state operator is an essential extension of BPA (the theory of processes over +0).
On the other hand, applying the state operator to a regular process again gives a regular pro
cess. As a limiting result in the other direction, we find that not all PA-processes {where also par
allel composition II is present) can be defined over BPA plus state operator.

1980 Mathematics Subject Classification (1985 revision}: 68010, 68070, 68040.
1987 CR Categories: F.1.2, F.4.3, F.4.2, F.3.1.
Key words & Phrases: process algebra, state operator, defining power, recuqlive definition.
Note: Both authors are partially sponsored by ESPRIT contract 432, An Integrated Formal Ap
proach to Industrial Software Development {METEOR). The first author is also partially sponsored
by RACE contract 1046, Specification and Programming Environment for Communication Soft
ware (S!'ECS).

1. IN1RODUCTION.

1

The theory BPA (Basic Process Algebra) is the starting point for a whole range of theories for concurrent

communicating processes (see e.g. BERGSTRA & KLOP [BK2]), that can be classified as an algebraic and

axiomatic approach to concurrency (in the vein of CCS, see MILNER [M] or CSP, see HOARE [H]).

BPA has two binary operators:+ iis alternative composition (non-deterministic choiice, as in CCS), and·

is sequential composition (as ; in CSP), and consists of just five simple axioms (see below). We add the

constant o for deadlock, with two extra rotioms. In addition, we allow systems o f recursive equations over

BPA0 (compare the µ-operator in CCS or CSP). The defining power of such recursive specifications was

studied in BERGSTRA & KLOP (BKl] . There, it was found that a wider class of processes can be defined

than the class of regular processes (essentially, the class of context-free languages). We obtain the theory PA

by the addition of the parallel operator II (merge). It was found in [BKl] that this increases the defining

power of recursive specifications even further.

The state operator A. was introduced in BAETEN & BERGSTRA [BB 1]. It can be used to describe actions

that have a side effect on a state space, and showed itself useful in a range of applications, e.g. for the trans

lation of programming or specification languages into process algebra (see VAANDRAGER (VI), or SPECS

Report CS-R8920
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 J.C.M.Baeten & J.A.Bergstra

[S]). Now the quesLion arises if the defining power of BPA is increased by the addition of the state operator.

Of course, we have to limit ourselves to a finite state space, for otherwise any process becomes definable (see

the example of the queue in [BB l]). ln this paper, we answer this question positively.

We obtain the theory of regular processes (finite automata) if we limit ourselves to linear specifications

over BPA. We show that applying the state operator to a regular process again yields a regular process. On

the: other hand, if we are allowed to use the state operator in the recursion, then all processes that are defin

abl.e over BPA0, are definable by a linear specification over BPA0 +A.. Even some processes that are not de

finable over BP As. are definable by a linear specification over BPA0 + A.. On the other hand, not all PA-de

finable processes are definable over BPAo +A..
Thus, we obtain a hierarchy of process classes. The results we obtain, are pictured in fig. I. Each arrow

denotes a strict inclusion relation. Between the three classes at the right, some non-inclusion results are ob

tained.

BPAolin.
= BPAorec. A.(BPASrec.)
A.(BP~lin.)

FIGURE 1.

We identify the classes in figure 1:

BPAo lin.: processes definable by a linear specification over BPA0;

A.(BPAa Jin.): processes obtained by application of A. to processes in BPAo lin.;

BPAo rec.: processes definable by a recursive specification over BPA0;

A.(BPAa rec.): processes obtained by application of A. to processes in BPAa rec.;

BPAa + A. Jin.: processes definable by a linear specification over BP Ao + A.;

P Ao rec.: processes definable by a recursive specification over P A(J.

PAorec.

BPAO+A.lin.

ACKNOWLEDGEMENT: This article is a revision of [BB2). We thank an anonymous referee for his/her valu

able comments and suggestions for improvements.

2. PRELIMINARIES.

2.1 BASIC PROCESS ALGEBRA.

The axiom system BPA consists of the axioms in table 1 below. The signature of BPA consists of a set A =

{a,b,c, ... } of constants, called atomic actions, and the operators+ (alternative composition) and. (sequential

Recursive process definitions with the state operator 3

composition. Often the dot · and parentheses will be suppressed .. binds stronger than +. By a process we

mean an element of some algebra satisfying the axioms of BPA; the x,y,z in table 1 vary over processes.

Such an algebra is a process algebra (for BPA), e.g. the initial algebra of BP A is one.

x+y=y+x

(x + y) + z == x + (y + z)

X+X = X

(x + y)z = xz + yz

TABLE 1. BPA.

2.2 EXAMPLE.

Al

A2
A3

A4

A5

a(b + c)d denotes the process whose first action is a followed by a choice between b and c and concluding

with d. By axioms Al and A4 we see that a(b + c)d = a(cd + bd). Note, however, that BPA does not en

able us to prove that a(cd + bd) = acd + abd. In general. we do not equate the processes x(y + z) and xy +

xz. We do this, because the moment of choice in these p rocesses is different. This is important for instance in

the analysis of deadlock behaviour (see below). As a consequence, we have a branching time semantics as in

ccs.

2.3 DEADLOCK.

We distinguish one special constant in A, namely o. We use this constant to denote deadlock, reached when

no action is possible any more, the absence of an alternative to proceed. The constant 8 E A has two special

axioms, displayed in table 2 below. We denote the theory BP A + o, with axioms A 1-7, by BP AfJ.

X+o=X

o·x = 0
TABLE 2 . Dead.lock.

A6

A7

Using o, we can describe two different ways of termination: in the process ao + b , we have unsuccessful

termination (deadlock) after performing a, and successful termination after performing b. Only in the case of

successful tennination can we continue with the next process in a context of sequential composition. Note

that this approach is different from the situation in CCS or CSP, w here only one kind of termination is

possible. Nevertheless, our results will also hold in the setting of CCS or (T)CSP, since the key use of o is

to define a notion of restriction, a notion that is also present in CCS and CSP.

We see, that with the rejected law x(y +z) = xy + xz we can derive ab == a(b + o) = ab + ao, and this

equates a process with deadlock possibility to one without such a possibility, a c learly undesirable situation.

Now we consider recursive specifications over BPA0. We give some defin itions.

2.4 DEFINITIONS.

1. A system of recurs.ion equations or recursive specijicaLion (over BPAo) is a finite seLof equations
E == {Xi = Si(Xo ,Xn): i = O, ... ,n},

4 J.C.M.Baeten & J.A.Bergstra

where the Si(X) are process expressions in the signature ofBPA-0, possibly containing occurrences of the re

cursion variables in X. The variable Xo is the root variable. Usually we will omit mentioning the root variable

when presenting a system of recursion equations, with the understanding that it is the first variable in the ac

tual presentation.

2. We will also on occasion use inftnitary recursive specifications
E = {Xi = Si(X): i E N},

but will always state explicitly when thal is the case.

3. A process Po (in a certain process algebra) is a solution of a specification E if there are processes P1 , ... in

this process algebra such that substituting processes Pi for variables Xi yields only true statements.

4. Suppose that the right hand side of a recursion equation Xi = Si(X) is in normal form w.r.t. applications

(from left to right) of axioms A4 and A5 in table l. Such a recursion equation is guarded if every occurrence

of every Xj (j = O, ... ,n) in Si(X) is preceded (guarded) by an atom from A; more precisely, every occurrence

of Xj is in a subexpression of the form a·s' for some atom a and expressions'. For instance, the equation X =

aX + YbY is not guarded, as the first occurrence of Y is unguarded; but the recursion equation X = c(aY +

ZbX) is guarded.

If the right hand side of an equation is not in normal form w.r.t. A4 and AS, it is said to be guarded if it

is so after bringing the right hand side into normal form.

5 . A recursive specification is called linear if all its equations are of the form X = o or

X"" a1 ·X1 + ... + ak-Xk + b1 4' ... + bm
where k+m;;:: 1, and each ai,bj e A - {o}. Obviously, linear specifications are always guarded.

Now we can use guarded recursive specifications to define processes. It is obvious that not every specifica

tion can be used to determine a process (as every process satisfies the equation X = X), but guardedness is a

sufficient criterion to guarantee unique solutions in several algebras.
We mention a few algebras where the laws of BPA0 hold and guarded recursive specifications have

unique solutions:

the projective limit model, see e.g. BERGSTRA & KLOP [BK2];

the graph model, see e.g. BAETEN, BERGSTRA & KLOP [BBK];
the action relation model, see e.g. VAN GLABBEEK [G] (the operational semantics that forms the basis of

this model is presented below).

We will assume in the sequel that every guarded recursive specification has a unique solution (also for

infinitary specifications!), and we say this process is defined by the specification.

A subprocess of process x is a process that can be reached by executing a number of steps from x. A

regular process (or a.finite automaton) is a process that has only finitely many subprocesses. A well-known

result is that the regular processes are exactly the processes that are the solution of a finite linear recursive

specification.

2 .5 TRACE CONSISTENCY.

We will also need a way to tell when two process expression cannot give the same process. Certainly,. two

processes that are equal, must be able to perform the same sequences of actions (must have the same traces).

Actually, this criterion is sufficient for our purposes. We will now give an operational semantics for process

Recursive process definitions with the state operator 5

expressions that yields the traces of such an expression. This semantics is given by means of action rules

(first given for this theory in VAN GLABBEEK [G], but appearing earlier in many places, see e.g. PLOTKIN

[P]). We will use this operational semantics in a rather informal way: when we say that process p can do an
a-step to process q, we mean p ~ q.

2.6 ACTION RULES.

For each a e A, we define two predicates on process expressions: ~ is a binary relation, and ~ .../ is a unary

relation. Their intuitive meaning is as follows:

• x ~ y means that x can perform an a-step and evolve into y;

• x ~.../means that x can perform an a-step and terminate successfully.

The formal definition of these predicates is g iven in the following table 3. The last lines give rules for recur

sion: the idea is that if we know that an action relation holds for the right-hand side of an equation, we can

infer it holds for the left-hand side, the recursion variable. A more exact treatment can be found in [G].

a~...J
x ~ x' ==:. x+y ~ x' x ~ .,/ ~ x+y ~ ..J
y~y· ==:> x+y~y· y~.,/ ~ x+y~ .../
x~x· ==:. x·y~x··y x~..J ~ x·y~y

Si ~ Y ==:> Xi ~ Y Si ~ .,/ ~ Xi ~ -.J

TABLE 3. Action rules for BPAo +recursion.

2.7 STATE OPERATOR.

Now we add the state operator to the signature of BP~. This operator was introduced and used in BAETEN

& BERGSTRA [BBl]. Let S be some.finite set (the state space). Then As is a unary operator on processes,

for each s e S. If x is some process, then A.s(x) denotes process x in states. Then, if x is able to execute an

action a, the result will be a certain action, and it will have a certain effect on the state. Thus, the state opera

tor comes with two functions:
action: A x S ~ A, that gives the result of the execution of an action:

effect : Ax S ~ S, that gives the state resulting from the execution of an action.

We will always require that action(8,s) = o and e1fect(8,s) = s, for any s e S (i.e. 8 is inert).

The state operator has axioms SOI-3, displayed in table 4. Here s E S, a e A and x,y are arbitrary pro

cesses.

A.s(a) = action(a,s) SOI

TABLE 4_ State Operator.

The state operator is a renaming operator, since the action function allows us to rename atoms. Notice

that atomic actions may only be renamed into an atomic action, not into a general process. While such general

renaming is consistent with BPA0, it is not consistent with several extensions of the theory, such as the the-

6 J.C.M.Baeten & J.A.Bergstra

ory PA to be discussed further on. By renaming into o, we can block the execution of an action; thus, the

state operator also includes the notion of encapsulation or restriction.

By means of lhe state operators, we can express constructs like the guarded command, the if .. then ...

else ... construct or case distinction. Further, the operator can handle processes with data variables, and can

be used to (mechanically) translate a given computer program into process algebra. We claim that the state

operator can be very useful in the design of a programming language that is based on process algebra. For

examples and more motivation, see [BBl], [Vl) or [S].

We give lhe action rules for the state operator in table 5.

x ~ x', action(a,s) ~ o ~
x ~ --J, action a,s * o ~

As(X)action(a,~ Aeffect(a,s)(X')

As x action(a,~ .,)

TABLE 5. Action rules for the state operator.

We note that in [BB 1] also a generalized state operator is defined (the result of executing an action is a

sum of actions, possibly followed by different states). We remark that the results in this paper could also

have been obtained using the genernlized state operator.

2.8 SUMMARY OF RESlJLTS.

Now we can state the central question of this paper as follows: does the state operator add to the defining

power of BPAo? In section 3, we will answer this question in the positive. More specifically, there exists a

guarded recursive specification over BPA0 with root variable X, a finite state space S with action, effect

functions, and an s E S, such that As(X) is not the solution of a guarded recursive specification over BPA0.

Thus, the state operator applied to a recursively definable process does not necessarily yield a recursively

definable process. However, if we limit ourselves to linear specifications, we get a different result. We will

show in section 4: if Eis a linear recursive specification over BPA0 with root variable X, if Sis a finite state

space with action, effect given, and if s e S, then As(X) is again the solution of a linear recursive specifica

tion over BPAa.

Thus, the state operalor applied to a regular process again gives a regular process. If, however, we allow

the state operalor inside the recursion, we get a very different picture. We will show that all BPA0-definable

processes, and some that are not even BP Ao-definable, can be defined by a linear recursive specification over

BPAo+ A.

Not all processes can be defined over BPAo +A., however, as we will also show that there is a PA-defin

able process that is not BP Ao+ A-definable. We see that the defining power of BPA0 + A does not give all of

the defining power of PA.

We can summarize our results in the following picture. Each arrow denotes a strict inclusion relation.

Alongside the arrows, we give the sections where this result is obtained. Moreover, we have some non-in

clusion results: in 4.7 and 5.1, we show that no inclusion relation exists between PA0 rec. and BPA0 +A.. In

4.4, we show that BPA0 +A is not included in A(BPA0 rec.).

Recursive process definitions with the state operator 7

PAorec.

4 .1 BPAorec.
BPAolin. 3.2 A..(BPAOrec.)
A..(BP AO Jin.)

BPAo+A.lin.

FIGURE 2.

3. ANSWERS AND PROOFS.

3.1 DEFINITION.

Let a,b e A be two distinct atoms different from 8, and consider !he following guarded recursive specifica

tion:

c ,,, a·D·C
D = b + a·D·D.

This is a well-known specification (see e.g. BERGSTRA & KLOP [BKl]) which has as solution !he counter C
(interpret a as "add one" and bas "s.ubtract one"). Note that this process has infinitely many different sub

processes, since subprocess on-c, reached after executing a n times, has a trace beginning with n b's, but

no trace beginning with n+ 1 b's. This observation immediately gives the following lemma.

3.2 LEMMA .

Not every guarded recursive specification over BP A gives a regular process.

3.3 MERGE.

In order to define the processes we want to discuss in the sequel, it will be useful to extend the theory BPA

with the merge operator II , parallel composition. As a semantics for merge we use arbitrary interleaving. In

order to give a finite axiomatization of merge, we use an auxiliary operator IL (left-merge). Now, xlLy means

the same as x II y (the parallel, but interleaved, execution of x and y), but with the restriction that the first step

must come from x. For more about these issues, see e.g. BERGSTRA & KLOP [BK2].

The theory PA has operators +,·, II , IL and adds axioms Ml -4 of table 4 below to the axioms Al-5 of

BP A. The theory P Ao adds constant o and axioms A6-7 to this.

8

xlly=xlLy+ylLx

alLx = a·x

axlLy = a(x ll y)

(x + y)ILz = xllz + yll.z

TABLE6. PA.

Ml

M2

M3

M4

J.C.M.Baeten & J.A.Bergstra

We also give an operational semantics for PA, by means of the action rules in table 7.

x ~ x' => x II y ~ x' II y

~ ·=>xii ~xii '
TABLE 7. Action rules for PA.

3.4 DEANITION.

x~..J => xlly~y
~..J::::>xll ~x

Now let C be the process defined in 3.1, and let d e A be different from a,b,8. Define the process P by:

P =Clld.

P is just like the counter, except that once in its existence, it can do the action d. The moment, when this ac

tion will be executed, is completely undetermined, however. In the sequel, we will show that P cannot be

defined over BPA.o. but can be defined in A.(BPA.o rec.).

3.5 THEOREM.

P can be defined in A.(BPA.o rec.).

PROOF: Consider the following guarded recursive specification over BPA:

C' = a·D'·C' + d ·C'

D' = b + a·D'·D' + d·D'

This specification always adds ad-possibility to the one in 3.1, and the solution can be seen to be C II d">,

where dro is the solution of X = d ·X.

Now, define S = {0,1}, and let the functions action and effect be trivial (i.e. action(a,s) = a & ef

fect(a,s) = s) except in two cases:

l. action(d,O) = 8;

2. effect(d, 1) = 0.

CLAIM: P = A.1(C').

PROOF: First we establish that A.o(C') = C:
A.o(C') = a·A.o(D'-C') + 8·A.o(C') = a·A.o(D'-C'), and

A.o(D•n+1.C•) = b·A.o(D'n·C') + a·A.o(D•n+2·C') + 8·A.o(D'n+1.C') =

= b·A.o(D'n·C') + a·A.o(D'n+2·C'), for each n e N.

Thus, A.o(C') and Care both solutions of the same infinitary guarded recursive specification, and must be

equal.

Then we establish the claim:

A.1 (C '}=a ·A.1 (D"C ') + d·A.o(C'), and

Recursive process definitions with the state operator

A.1(D•n+1 ·C') = b·A.1(D'n·C'} + a·A.1(D'n+2·C') + d·A.o(O'n+1 ·C'), for each n e N.

On the other hand, we find

P = C li d = Clld + dll.C = (a·D·C) lld + d·C = a·(O·C ll d) + d·C, and

on+1 -C ll d = (b·D"·C + a·on+2·C}ll.d + dlL on+1.c =

= b·(On·C ll d) + a·(Dn+2·C lld) + d·On+1·C, for each n e N.

9

Using the previous result, we find that /q (C ') and P are both solutions of the same infinitary guarded recur

sive specification, and so must be equal.

This finishes the proof of the claim, and also the proof of the theorem.

Now we turn to the proof that P cannot be defined over BPAo. We first need some preliminary facts.

3.6 DEFINITION.

A guarded recursive specification is in restricted Greibach Normal Form (restricted GNF) if each equation is

of the form X = o or X = S1 + ... + Sk, where le1 and each s; has one of the following fonns:

i. s; =a; (for some a; e A - {o});

ii. Si ""a;· X; (for some a; e A - {O} and some recursion variable X;);

(for some a; e A - {o} and recursion variables X';,x'';).

3.7 LEMMA.

Each guarded recursive specification over BP Ao is equivalent to one in restricted CNF.

PROOF: See BAETEN, BERGSTRA & KLOP [BBK).

3.8 NOTE.

The BP~·specifications above are all in restricted GNP. Note that as a consequence of lemma 3.7, each

subprocess of a process given by a recursive specification, can be represented by a finite product of recursion

variables. Using the axioms of the state operator, A.s applied to an equation

x = a1 + ... + ak + b1 -X1 + ... + bm·Xm + C1 ·X'1·X"1 + ... + Cn·X'n·X"n

in restricted GNF yields

A.s(X) = action(a1 ,s) + ... + action(b1 ,s}-A.ettect(b1 ,s)(X1) + ... + action(c1 ,s)·A.ettect(c1 ,sJ(X'1 ·X"1) +

again the same format, and each subprocess has the form A.s(X1 ·X2· ... ·Xp).

3.9 THEOREM.

P cannot be defined over BP A15.

PROOF: Suppose, for a contradiction, that the guarded recursive specification E over BP Ao defines process

P. By 3.7, we may suppose that Eis in restricted GNP. We may also suppose that superfluous equations are

removed (an equation is superfluous if its recursion variable cannot be accessed by executing a number of

actions, starting from the root variable). From the definition of the counter it is apparen t, that never infmitely

many b-actions can be executed consecutively. Thus, starting from any recursion variable, only finitely many

consecutive b-actioris are possible. Let m be the maximum number of b-actions, any recursion variable can

10 J.C.M.Baeten & J.A.Bergstra

perform. We also derive from the definition of the counter that in any situation, an unlimited number of a-ac

tions is possible.

Now, starting from the root variable of E, perform 3m a-actions. Then we have a process

X1·X2· ... ·Xn.

a finite product of recursion variables. Since nod-action has taken place yet, X1 must be able to do a d-ac

tion. On the other hand, the whole process must be able to perform 3m b-actions. Of these, X 1 can perform

at most m. Thus, after X1 has performed its maximum number of b-actions, it must terminate, so that X2 can

start on the next series of b-steps. But since after the b-actions of X1 nod-action has ta.ken place yet, X2

must be able to do a d -action.

Now go back to X1. After it has done the d-action, it is replaced in the product by at most 2 recursion

variables. Together, they can perform at most 2m b-steps, so they must terminate, after doing their maxi

mum number of b-steps. But next, X2 can perform a second d-step, and we have reached a contradiction, for

P may only do one d-step.

This finishes lhe proof of the theorem, and so we have proved that the state operator extends the defining
power of BP A<,.

4. FURTHER RESULTS.

First, we turn to regular processes. Regular processes are definable by linear specifications. Notice that linear

specifications only differ from restricted GNP, in that we do not allow products of two recursion variables.
But we know already that the defining power differs considerably: the counter is not a regular process (for it

has infinitely many subprocesses), so cannot be defined by a linear specification, but it has a specification in
restricted GNF, see 3.1.

4.1 THEOREM.

Let Ebe a linear recursive specification over BPA0 with root variable X1. Let a finite state space S with
functions action, effect be given, and let So E S. Then A.50(X1) is again the solution of a linear recursive

specification over BP A<,.

PROOF: Let E have variables X1 , ... ,Xn. We will define a new linear recursive specification F with variables
Yi,s. for i = 1, ... ,n and s E S. Now, let i,s be given. Let E have equation

Xi=a1·Xj1 + ... +ak-Xjk+b1 + ... +bm.

Then, F will have equation
Yi,s = action(a1 ,s)·Yi1 ,effect(ap) + ... + action(ak,S)-Yjk.effect(ak.s) + action(b1 ,s) + ... + action(bm.s).

We see that after removing summands that are equal too, F becomes a linear recursive specification. It is ob
vious that the A.s(Xi) satisfy specification F, and thus /..s(Xi) = Yi,s. in particular A.s0(X 1) = Y 1,so· This finishes

the proof.

Thus, the state operator applied to the solution of a linear specification gives a process, that again can be

given by a linear specification. The situation changes drastically if we allow the state operator in the recur

sion, i.e. consider linear specifications over BPA<, + A.. First, we have the following theorem.

Recursive process definitions with the state operator 11

4.2 THEOREM.

Let the process X be definable over BPA0 (not necessarily a regular process). Then X is also definable by a

linear specification over BP A0 + A..

PROOF: Let a recursive specification E over BPA0 be given. We may suppose Eis in restricted GNF. We

have to define a linear specification over BPAo +A. that has the same solution. Let E = {Xi = Si : i = O, ... ,n}.

As we saw in 3.6, each summand in each Si has one of the following three forms:

1. a single atomic action, a;

2. the product of an atomic action and a recursion variable, a·Xj;

3. the product of an atomic action and two recursion variables, a·XrXk.

Now we introduce new atoms:

1. an atom (a,i) if atomic action a occurs in Si singly {a summand of type 1);

2. an atom (a,i,j) if atomic action a occurs in Si in the product a·Xj (type 2);

3. an atom (a,i,j,k) if atomic action a occurs in Si in the product a·XrXk (type 3).

Now we define I.he state operator. The state space is {O, ... ,n}, and the action, effect functions are trivial ex

cept in I.he following cases:

i. action((a,i),m) = action((a,i,j),m) = action((a,i,j,k),m) = o if i ;em;

ii. action((a.i),i) .. action((a,i,j),i) "" action((a,i,j,k),i) "" a;
iii. e ffect((a, i,j).i) = j. effect((a,i,j.k),i) = k.

Then we consider I.he following linear recursive equation:

X = Ltype 1 (a ,i) + Lty-pe 2 (a,i,j)·X + Ltype 3 (a,i,j.k)·A.j(X).

CLAIM: A.o(X) = Xo.

PROOF: The proof is easier to follow if we take a specific example. So take E to be:

Xo = a·Xo + b + c·X1·Xo

X1 = b·Xo·X1 +b.

Then the linear equation becomes:

X = (b,O) + (b,1) + (a,O,O)·X + (c,0,1,0)·A.1(X) + (b,1,0,1)·A.o(X).
Now we show that for each sequence b1 ... bn of O's and 1 's we have Xb1 ·Xb2 · .•. ·Xbn = ;\on°Abn.1° ... 0Ab1(X),

by showing they satisfy the same infinitary recursive specification. We give the equations for the processes

Abno"-bn.1 o ... o"-t,1 (X). We use the abbreviation Abn···b1(X) for AbnoAbn.1o ... oAb1(X). Let <1 be any sequence of

O's and 1 's. Then:

~oA.o(X) = ~(b + o + a·A.o(X) + c·A.ooA.1 (X) + o·A.ooA.o(X)) = b + a·~o(X) + c·Ao-01 (X), and

A&A.1 (X) = ~(o + b + o·A.1 (X) + o·A.10A.1 (X) + b·A.1°A.o(X)) = b + b·~1o(X}.

This finishes the proof of the claim, and also the proof of the theorem.

Next, we will give an example of a p rocess, I.hat is not definable over BPAo. but is definable by a linear

specification over BPAs +A.. In fact, we will show more than I.hat it is not definable over BPAo: we will

show that it is not in A(BPAs rec.).

12 J.C.M.Baeten & J.A.Bergstra

4.3 DEFINITION.

Let us define another copy of a counter, with different names:

G =e-H·G

H = f + e·H·H·G.
(a,b,e,f e A- {o} are all distinct). Then define

B=CllG.
As shown in [BK I], B can be considered as a bag (not order-preserving channel) over two elements, with

a,e the input actions, and b,f the output actions. An alternative specification for the bag, in one equation, is

the following:

B = a-(bllB) + e·(fll B).

It was shown in [BKI], that B cannot be defined over BPA. We strengthen this result in the following

theorem.

4.4 THEOREM.

There is no recursive specification over BP Ao with root variable X, and a finite state space S with functions
action, effect, and s e S, such that A-s(X) = B.

PROOF: Suppose not, so there is a guarded recursive specification E over BPA0 with root variable X, and

there is a finite state space S with elements and functions action, effect such that A.s(X) = B. We may sup

pose that Eis in restricted GNF and has no superfluous equations. We see that for each s e Sand each re

cursion variable Y, "-s(Y) can perform only finitely many b-actions and finitely many f-actions. Let m be the

maximum number of b or f-steps any A.5(Y) can do. Let k be the cardinality of S.
Now, starting from "-s(X), perform m(k+2) a-actions and m(k+2) e-actions. Then, we have a subpro

cess of the form

A.1(X1 · ... ·Xk·Xk+1 ·Xk+2· .. .-Xn)

for certain t E Sand recursion variables Xi (i = 1 , ... ,n). Note that this product must contain at least k+2 fac

tors, since this process can do m(k+2) b-actions and m(k+2) f-actions, and each variable can account for at

most m. Now we will "eat up" the variables X1, ... ,Xk+1 in k+1 different ways.

In the first way. we keep on doing b-actions. After at most m of them, X1 will terminate. We continue
wilh b-actions, until Xk+ 1 terminates. Then, we have a process A.s1 (Xk+2· .. . · Xn).

In the second way, we do b-actions until Xk terminates. Then, we do f-actions until Xk+1 terminates.
Again, we have a process A.s2(Xk+2' -·· ·Xn). In general, for i = 1, .. .,k+ 1, we do b-actions until Xk+2-i termi

nates. Then, we continue doing f-actions until Xk+ 1 terminates. Then, we have a process A.si(Xk+2· ... · Xn).

We have found s1, ... ,Sk+1 e S but since S contains only k elements, at least two of these must be equal,
say Si = Sj with k j. But then we have a contradiction, for Asi(Xk+2"·· ·Xn) = Asj(Xk+2· ... ·Xn), and

A.s1(Xk+2-. .. ·Xn) can perform less consecutive b-actions and more consecutive f-actions than Asj(Xk+2"·· ·Xn).

This finishes the proof.

4.5 DIBOREM.

B is definable by a linear recursive specification over BP Ao + A..

Recursive process definjtions with the state operator 13

PROOF: We need lwo new atoms, b* and f*. The state space is S - {0,1 ,B,F}, where O is the starting state,

and 1 is the state where the job is finished, in this state the state operator becomes trivial. We list the non

trivial cases of functions action, effect:

i. action(b*,O) = action(f" ,O) = o;

ii. action(b-,B) = b, effect(b*,B) = 1;

iii. action(f",F) = f, effect(f*,F) = 1.

Then we consider the following linear recursive equation:

x = a·A.s(X) + e·A.F(X) + b*·X + f*X

CLAIM: A..o(X) = B.

PROOF: Let Bn,m be the subprocess of B where counter C stands at n (i.e. there is a trace beginning with n

b's, but no trace beginning with n+ 1 b's) and counter G stands at m. Thus, the Bn,m have the following in

finitary linear specification:

Bo,o = a ·B1 .o + e·Bo.1

Bo,m = a·B1 ,m + e·Bo,m+1 + f-Bo,m-1

Bn,o = a·Bn+1,m + e·Bn,1 + b·Bn-1 ,0

Bn,m = a·Bn+1 ,m + e-Bn,m+1 + b-Bn-1,m + + f·Bo,m-1 (n>O, m>O).

Next, let A.en,Fm be any sequence of A-operators, in which A.9 occurs exactly n times, Af occurs exactly m

times, and which further consists of a number of occurrences of A.1. We will show that Bn,m = AooABn,Fm(X).

by showing they satisfy the same infinitary recursive specification. We now calculate this specification for the

A..ooA.en,Fm(X):

~ n=O, m=O. (Since the A.1 are trivial, we might as well leave them out)

A.o(X) = a·A.ooA.s(X) + e·A.ooA.F(X) + o·f..()(X) + o·/..o(X) = a·/..ooA.9(X) + e·A.ooA.F(X).

~n=O,m>O.

A.ool..fm(X) = a·A.ooA.91 ,Fm(X) + e·A.ool..fm+1 (X) + o·/..ool...Fm(X) + f·A.ooA.fm-10/...1 (X) =

= a·A.ooA.s1,Fm(X) + e·A.00A.fm+1(X) + f-Ao<>Afm-1 (X).

Case 3: n>O, m=O. Just like case 2.

Case 4: n>O, m>O.

A.oo/..9n,Fm(X) = a ·A.ooA.sn+ 1,Fm(X) + e·A.ooA.en,Fm+ 1 (X) + b·/..ooA.9n-1,fmoA.1 (X) + f· AooAsn,Fm-1°A.1 (X) =

= a·A.ooA.sn+1,Fm(X) + e·A.ooA.sn,Fm+1(X) + b·A.ooA.sn-1,Fm(X) + f·A,ooA.sn,Fm-1(X).

Since the processes Bn,m satisfy the same infinitary specification, we have proved the claim, and thereby the

theorem.

Finally, we give an example of a PA-definable process, that is not definable over BP~+ A.. This proves the

last claim in 2.8: not every process is definable over BP~ + A..

4.6 DEFlNITION.

We call a process p boundediy branching if there is some natural number n such that for every subprocess q

of p, there are at most n processes q ' such that q ~ q' (for some atom a). (In other words: the branching de

gree of the process is unifonnly bounded.)

14 J.C.M.Baeten & J.A.Bergstra

4.7 LEMMA.

Every BP Ao+ A.-definable process is boundedly branching.

PROOF: In (BK 1), it is proved that every BP A-definable process is boundedly branching. The proof is easy:

every subprocess of a process defined by a recursive specification in restricted GNF is given by a product of

recursion variables, and every step possible from this p.rocess is detennined by the first variable in the prod

uc t. But these steps in tum are determined by the equation for this variable, in which only a finite sum oc

curs. The uniform bound is the maximum number of summands in any equation of the specification.

Then, this result extends to BPAo +A., if we realize that applying the state operator to a term can only de

crease the branching degree (by renaming into o), but can never increase it.

Then, if we combine lemma 4.7 with the following result of BERGSTRA & KLOP [BKl], we have finished

the proof of the last claim in 2.8:

the solution of the PA-equation X = a + b·(X ·c II X-d) is not boundedly branching.

5. CONCLUSIONS.

We have shown that the defining power of the state operator, a natural addition to the operators of basic pro

cess algebra, is considerable. Applying the state operalOr to a BPA-process sometimes gives a process that is

not BPA-definable. On the other hand, applying the stale operator lo a regular process gives again a regular

process. If we allow the state operator inside the recursion, even more processes become definable, for in

stance the bag, although there still remain PA-processes that are not definable.

5.1 The following remarkable resull, that strengthens theorem 4.4, was communicated to us by V AAN

DRAGER [V2]. It concerns the process queue. A (FIFO) queue Q (over two elements) is given by the fol

lowing infinitary recursive specification, with variables Oc;, wilh cr a sequence of b's and f's. (Again, a and

e are two diffcrenl input actions, with corresponding output actions b,f.)

Ot = a·Ob + e·01

Obcr = a·Obab + e·Qbof + b·Ocr for any sequence CJ

01a = a ·01c;b + e·Oiof + f·Ocr for any sequence cr.

Now it was shown in BAETEN & BERGSTRA [BBI], that Q cannol be defined over PA. VAANDRAGER [V2]

shows thal 0 can be defined by a linear recursive specification over BPA0 +A.. He uses the following
specification.

• out is a new atom;

take S = { 0 ,B, F, 1} (1 again inert), with the functions trivial except for the following cases:

i. action(out,B) = b, effect(out,B) = 1; action(out.F) = f , effect(out,F) = 1;

ii. action(b,F) = f , effect(b,F) = F; action(f,B) = b, effect(f,B) = F;

iii. action(out,O) = o.
Then the following equation yields a queue:

Q = ;\.o(X)

X = a·A.s(X) + e·A.F(X) +out-X.

Recursive process definitions with the state operator 15

The proof of this fact is along the same lines as the proof of 4.5: a state Ocr will correspond 10 an expression

A.0°A.cr· (X), where A.a· is any sequence of !..-operators, in which each A.s corresponds to a b in cr, each AF
corresponds to a fin cr (in the same order), and which further consists of a number of occurrences of A.1.

5.2 Obviously, we can repeat all the questions in this paper with the theory PA in the place of BPA (or still

other theories). Most of these questions we leave as open problems. The main question, does the state oper

ator add to the definiing power of PA, was answered in the positive in 5 .1 above.

Of course, lhe subject matter of this paper has many connections with formal language theory: all our re
sults can be translated to that setting, and well-known examples in fonnal language theory can be translated to

our setting. As an example, we can define a process with finite uaces an-bn·cn (for each rn e N), that will not

be BP A-definable (roughly, context-free means BP A-definable), but is definable over BP.As+ A. ([V2)).

REFERENCES.

[BB I] J.C.M. BAEIBN & J.A. BERGSTRA, Global renaming operators over concrete process algebra, Inf. &

Comp. 78 (3), 1988, pp. 205-245.

[BB2] J.C.M. BAETEN & J.A. BERGSTRA, Recursive process definitions with the state operator, in: Proc.

CSN 88, CWI, Amsterdam 1988, pp. 279-294.
[BBK) J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOP, Decidability of bisimulation equivalence for pro

cesses generating context-free languages, in: Proc. PARLE, Vol. II (Parallel Languages) (J.W. de Bakk.er,

A.L Nijman, P .C. Treleaven, eds.), Eindhoven, Springer LNCS 259, 1987, pp. 94-113.

[BKl) J.A. BERGSTRA & J.W. KLOP, The algebra of recursively defined processes and the algebra of reg

ular processes, in: Proc. llth ICALP, Antwerpen (J. Paredaens, ed.), Springer LNCS 172, 1984, pp. 82-

94.

[BK2] J.A. BERGSTRA & J.W. KLOP, Process algebra for synchronous communication, Inf. & Control, 60

(1/3), 1984, pp. 109-137.
[G] R.J. VAN GLABBEEK, Bounded nondeterminism and the approximation induction principle in process

algebra, in: Proc. ST ACS, Passau (F.J. Brandenburg, G. Vidal-Naquet & M. Wirsing, eds.), Springer

LNCS 247, 1987, pp. 336-347.

[H] C.A.R. HOARE, Communicating sequential processes. Prentice Hall 1985.

[M] R. MILNER, A calculus of communicating systems. Springer LNCS 92, 1980.

(P] G.D. PLOTKIN, An operational semantics for CSP, in: Proc. Conf. Formal Descr. of Progr. Concepts II,

Garmisch (E. Bj0mer, ed.), North-Holland 1982, pp. 199-225.
[S] SPECS CONSORTIUM/ PTT-RNL, Definition of MR. version 1, SPECS document D.WPS.2, 1989.

[Vl] F.W. V AANDRAGER, Process algebra semantics of POOL, report CS-R8629, Centre for Mathematics

and Computer Science, Amsterdam 1986. To appear in: Applications of Process Algebra (J.C.M. Baeten,

ed.), CWI Monograph 8, North-Holland 1989, pp. 173-236.

[V2] F.W. VAANDRAGER, personal communication, January 1988.

