
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J. Heering, P. Klint

Module algebra

Computer Science/Department of Software Technology Report CS-R8617 May

,1cot '': !nforrnatica

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright '~' Stichting Mathematisch Centrum, Amsterdam

Module Algebra

J .A. Bergstra
Department of Computer Science, University of Amsterdam

Department of Philosophy, University of Utrecht

J. Haering
Department of Software Technology, Centre for Mathematics and Computer Science

P. Klint
Department of Software Technology, Centre for Mathematics and Computer Science

Department of Computer Science, University of Amsterdam

An axiomatic algebraic calculus of modules is given which is based on the operators combination/union,
export, renaming, and taking the visible signature. Four different models of module algebra are discussed
and compared.

1986 CR Categories: D.2.0 [Software Engineering]: Requirements/Specifications - Languages; D.2.2
[Software Engineering]: Tools and Techniques - Modules and Interfaces; D.3.3 [Programming
Languages]: Language Constructs - Modules; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages - Algebraic Approaches to Semantics.

1980 Mathematics Subject Classification: 68810 [Software]: Analysis of Programs - Semantics.

Key Words & Phrases: algebraic specification, first-order specification, signature, module algebra, module
composition, signature expression, module expression, Craig interpolation lemma, information hiding,
abstraction, export, union of modules, renaming, visible signature.

Note: Partial support received from the European Communities under ESPRIT projects 348 (Generation of
Interactive Programming Environments - GIPE) and 432 (An Integrated Formal Approach to Industrial
Software Development - METEOR).

Note: This paper has been submitted for publication elsewhere.

1. INTRODUCTION

I.I. General
The study of modules and modularization is one of the central issues in software engineering. Three
notions are basic to an understanding of modularization as a software engineering technique:
(I) Information hiding! abstraction. Modules generally contain hidden (auxiliary, local, internal, invisi

ble, . . .) items without which it would be very difficult or even impossible to specify them.
These items must remain inaccessible from the outside so as not to spoil the intended semantics
of the module [P72]. Examples are the hidden variables and functions that have to be introduced
when specifying data types in programming languages, and the hidden sorts and functions
needed in initial algebra specifications of data types (see SECTION 5.4). It should be noted that
the notion of "hiding the representation" discussed by MESEGUER & GOGUEN in the context of
algebraic specification [MG86] is different from the notion of information hiding. Representation
independence is achieved by considering isomorphism classes of models instead of single

Report CS-R8617
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

(concrete) models, but this does not help in hiding auxiliary sorts and functions.
(2) Compositionality of module operations. Modules can be adapted and combined by means of vari

ous operations like renaming of hidden items and importing a module in another one. Each such
operation should preferably be a simple (but at least an effectively computable) operation on the
textual representation (presentation) of modules. Import of a module in another module, for
instance, should correspond to textual substitution plus renaming of hidden items to avoid name
clashes. Simplicity at the textual level is not enough, however. The textual operation should
have a semantical counterpart which is comparable in simplicity, i.e., module operations should
be compositional [J86]. If these two (tough) requirements can be met, computations involving
modules become both practicable and meaningful.

(3) Reusability of modules. Some modules can be used as part of many programs or specifications.
These are said to be reusable. Such modules resemble constructs in programming or specification
languages, which are also highly reusable. (From this viewpoint a programming language is
nothing but a coherent collection of reusable constructs.) Reusability can be enhanced by choos
ing the right module composition operations, but the requirement of compositionality imposes a
restriction on the module operations that are acceptable. For instance, creating a new module by
editing the text of an existing one is also a very general form of reuse, of course, but this will not
normally correspond to a comparably simple change in the semantics of the module and hence
not to a valid module operation.

1.2. Outline of this paper
Each specification module (at least implicitly) contains a syntax part defining the language used in it.
Composition of modules entails, first of all, composition of the corresponding languages and hence
composition of the corresponding syntax definitions. In principle, these may be arbitrary grammars,
but in this paper we limit ourselves to signatures defining strongly typed first-order expression
languages. In SECTION 2.1 we discuss signatures in general terms, and in SECTION 2.2 we give an
initial/final algebra specification of the algebra of signatures. Basic operators of this algebra are
renaming(.), combination/union (+), and intersection (n).

In SECTION 3.1 the definition of the algebra of signatures is extended to a definition of the basic
algebra of first-order logic modules EMA [fol]. The main operators of this algebra are taking the visi
ble signature(~). renaming(.), combination/union (+), and export (0). (We do not discuss parametri
zation in this paper.) In SECTION 3.2 we prove a normal form theorem for closed module expressions.
In SECTION 3.3 we introduce hiding and common export operators. The former is complementary to
export, while the latter is a generalization of export allowing a rather elegant axiomatization. In SEC
TION 3.4 we discuss four well-known types of construction/ development steps, namely abstraction,
enrichment, extension and refinement, from the viewpoint of module algebra.

In SECTION 4 four different models for EMA [fol] are given:
(I) the initial algebra O(EMA[fol]),
(2) the algebra M(jol) of full model classes of modules,
(3) the algebra Mc(fol) of classes of countable models of modules, and
(4) the algebra T(jol) of theories of modules.
We show that there are homomorphisms WJ(jol) ~ Wdc(fol) and Wdc(fol) ~ T(jol), and also that
M (fol) ~ WJ cifol) ~ T (fol).

In SECTIONS 5.1-2 the expressive power of equational logic, (eql), conditional equational logic (ceql),
first-order logic (fol), and equational logic in the presence of Booleans (eql +boo/) are compared with
each other. The implications of our results for equational logic and initial algebra semantics are
briefly discussed in SECTION 5.3, while SECTION 5.4 gives an overview of related results in the field of
algebraic specification.

Finally, a series of examples of modular algebraic specifications using the operators of EMA are
given in SECTION 6.

3

1. 3. Related work
The introduction of composition/construction operators for modular specifications is, of course, not
new. Such operators occur, for instance, in CLEAR [BG80], OBJ2 [FGJM85], OBSCURE [LOE85],
and PLUSS [GAU85]. In particular, the operators union, export and forget in PLUSS are similar to
our operators +' D and b.. GANZINGER [GAN83], KLAEREN [KLA83], and EHRIG & MAHR [EM85]
have given a category theoretic treatment of the +-operator in the context of initial/final algebra
semantics.

A structure theory of algebraic specifications based on a set of construction operators was given by
KAPLAN [KAP83], LIPECK [LIP83], and WIRSING [W83]. The work of LIPECK is also based on
category theory, but WIRSING uses first-order logic and model theory as his point of departure. Our
approach is similar to that of WIRSING. In fact, the full model class semantics fVJ(jol) was discussed
by him in [W83] and several laws of BMA [fol] can be identified there, although not yet in a uniform
setting. The importance of the CRAIG interpolation lemma in the context of specification languages
was pointed out by MAIBAUM, VELOSO & SADLER [MVS85, MS85], who used it to characterize the
composability of implementations. We obtain a conditional distributive law (E4)

x = (~(Y)n~(Z))+x' ~ xD(Y+Z) = (xDY)+(xDZ),

which, in the context of a first-order logic interpretation of module expressions, is equivalent to the
CRAIG interpolation lemma.

In BERGSTRA, HEERING & KLINT [BHK85] we experimented with an algebraic specification formal
ism similar to OBJ or PLUSS. Our motivation for the present work was both dissatisfaction with the
import and export mechanisms we used there and the feeling that we needed a firmer foundation for
our formalism.

As far as we know the following points in our paper are new:
(I) the specification of the algebra of signatures;
(2) the laws of BMA [fol];
(3) the normal form theorem for closed module expressions;
(4) the models fVdc(fol) and T(jol) of BMA[fol] (with the understanding that fVJ(jol) has already

been discussed by WIRSING [W83]);
(5) the fact that equations and conditional equations have equal power for a variety of different

semantics;
(6) the fact that in the presence of boo! equations are as powerful as full first-order logic.

2. SIGNATURES

2.1. General
The language in which the axioms of a specification are expressed consists of a logical and a non
logical part. The latter is defined by the signature of the specification. The signatures of many-sorted
algebraic and first-order specifications (the only ones we consider in this paper) are sets of declara
tions of sorts, typed constants, and typed functions.

FIGURE 2.1 shows a simple example of a signature Sig both in textual and graphical form. Because
the constant symbols 0 and function symbol S are declared more than once with different types, they
are said to be overloaded. The circles in the graphical representation correspond to sorts while the
arrows denote constants or functions. In general, the types of n-adic function symbols (n ;;a.2) are not
uniquely determined by the graphical representation, but only up to an arbitrary permutation of the
argument sorts.

4

0

N

s

sorts N, L
constant 0 : N

function S : N ~ N
constant 0 : L
functions

i:N~L

/: LXL ~L
S:L~L

0

i L

s

FIGURE 2.1. Example of a signature Sig - textual and
(almost) equivalent graphical representation.

Let Y(~) be the set of correctly and explicitly typed expressions (terms) which can be formed from
the constant and function symbols declared in a signature ~ plus the typed first-order variable sym
bols declared in some separate variable declaration, and let..<&'(~) be the set of correctly and explicitly
typed first-order formulas over~- Some expressions belonging toY(Sig) (FIGURE 2.1) are

0N

sN-+N(ON)

sL-+L(jLXL-+L(XL,yL)),

where x and y are variables of sort L. Some expressions not in Y(Sig) are

0 (not explicitly typed)

(incorrectly typed)

JLXL-+L(OL) (jis not a monadic function).

Usually, most of the explicit typing is redundant. For instance, the ..<l'(Sig)-identities

sL-L(OL) = oL

sL-+L(iN-+L(nN)) = ;N-+L(SN N(nN))

sL-+L(jLXL->L(XL,yL)) = fLXL-+L(SL-+L(XL),SL-+L(yL))

can in principle be abbreviated to

S(OL) = 0

S(i(n)) = i(S(n))

S(f(x,y)) = f(S(x),S(.y)),

5

because all types except that of 0 and S in the first identity can be deduced from the context in which
the constant and function symbols occur. This example shows that if all explicit typing is dropped
the intended typing cannot always be inferred mechanically. Also, type inference is context
dependent and, even if initially possible, may become impossible if the context is widened by combin
ing the module in question with another one. In SECTION 3.5 we introduce a notation that allows us
to drop the explicit typing from axioms in many cases.

2.2. The algebra of signatures
Composition of specification modules entails, first of all, composition of the corresponding signatures.
Hence, we first give an initial/final algebra specification of the algebra of signatures (FIGURES 2.2 and
2.3). Signatures are basically sets of atomic signatures. The latter are declarations of a single sort or
function. The primary operations on signatures are renaming(.), combination/union (+), and intersec
tion (n).

6

ATREN
Atomic

renamings

inv~

ATSIG
Atomic signatures

SIG
Signatures

TYPES

eq

s

eq

FIGURE 2.2. The signature of the algebra of signatures.

eq

specification Booleans

begin

sort BOOL

constants F, T: BOOL

functions

..., : BOOL - BOOL

V , A: BOOL XBOOL - BOOL

variables X, Y,Z: BOOL

axioms

...,F = T

...,...,X = X

XVT = T

XVF= X

XV...,X = T

(XVY)VZ = XV(YVZ)

XVY = YVX

XVX= X

X AY = -,(-,XV..., Y)

(XV Y)AZ = (X AZ)V(YAZ)

end Booleans

specification Signatures

begin

import Booleans

parameter Names

begin

sort NAMES

functions

eq: NAMESXNAMES - BOOL (Equality)

a: NAMESXNAMESXNAMES - NAMES (Elementary renaming)

variables l,m,n : NAMES

requirements

eq(l,l) = T

I =I= m ~ eq(l,m) = F

7

8

o(l,m,l) = m

o(l,m,m) = I
eq(l,n) = F & eq(m,n) = F ~ o(l,m,n) = n

end Names

sort TYPES

functions

i: NAMES ~ TYPES

*: TYPESXTYPES ~TYPES

o: NAMESXNAMESXTYPES ~TYPES.

E : NAMES X TYPES ~ BOOL

eq: TYPES X TYPES ~ BOOL

variables

l,m,n : NAMES

t,u,v: TYPES

axioms

(t*U)*V = t*(U*V)

o(l,m,i (n)) = i (o(l,m,n))

o(l,m,t*u) = o(l,m,t)*o(/,m,u)

lEi(m) = eq(l,m)

lE(t*u) = (/Et)V(lEu)

eq(i(l),i(m)) = eq(l,m)

eq(i(/)*t,i(m)*u) = eq(l,m)/\eq(t,u)

eq(i(l),t*u) = F

eq(t*u,i(l)) = F

sort ATSIG

functions

S: NAMES ~ ATSIG

F: NAMESXTYPES ~ ATSIG

eq: ATSIGXATSIG ~ BOOL

variables

l,m: NAMES

t,u: TYPES

axioms

eq(S(/),S(m)) = eq(l,m)

eq(S(l),F(m,t)) = F

eq(F(l,t),S(m)) = F

eq(F(l,t),F(m,u)) = eq(l,m)/\eq(t,u)

(Sequences of one or more names)

(Injection)

(Concatenation)

(Renaming)

(Membership)

(Equality)

(Atomic signatures)

(Sort constructor)

(Constant I function constructor)

(Equality)

sortATREN

functions

rs: NAMES XNAMES ~ ATREN

rf: NAMESXNAMESXTYPES ~ATREN

. : ATRENXATSIG ~ ATSIG

variables

l,m,n : NAMES

t,u: TYPES

axioms

rs(l,l) = rs(m,m)

rs(m,m) = rj(l,l,t)

rj(l,l,t) = rj(m,m,u)

rs(l,m) = rs(m,l)

rj(l,m,t) = rj(m,l,t)

rs(l,m).S(n) = S(a(l,m,n))

rs(l,m).F(n,t) = F(n,a(l,m,t))

rj(l,m,t).F(n,t) = F(a(l,m,n),t)

eq(t,u) = F ~ rj(l,m,t).F(n,u) = F(n,u)

rj(l,m,t).S(n) = S(n)

sort SIG

constant 0: SJG

functions

i: ATSIG ~ SIG

+: SIGXSIG ~ SIG

S: TYPES~ SIG

. : ATRENXSIG ~ SIG

~: ATREN ~ SIG

inv~: ATREN ~ SIG

E: ATSJGXS/G ~HOOL

n: S/GXS/G ~ SIG

.!l: ATSJGXS/G ~ S/G

k: S/GXSJG ~HOOL

eq: SJGXSJG ~HOOL

variables

/,m: NAMES

t,u: TYPES

a: ATSIG

(Atomic renamings)

(Sort renaming constructor)

(Function renaming constructor)

(Apply atomic renaming)

} (Identify all ;dent;ty renanUng')

(Signatures)

(Empty signature)

(Injection)

(Combination/ Union)

(Convert type to set of sorts)

(Apply atomic renaming)

9

(Signature affected by atomic renaming)

(Signature used but invariant under

atomic renaming)

(Membership)

(Intersection)

(Deletion)

(Subsignature)

(Equality)

10

r: ATREN

x,y,z: SJG

axioms

x+0 = x

x+x = x

x+y=y+x

(x+y)+z = x+(y +z)

i(F(l,t)) = i(F(l,t))+S(t)

S(i (/)) = i (S(/))

S(t*u) = S(t)+S(u)

r.0 = 0

r.i(a) = i(r.a)

r.(x+y) = (r.x)+(r.y)

"2(rs(l,f)) = 0

eq(l,m) = F ==> "2(rs(f,m)) = i(S(/))+i(S(m))

eq(l,m) = F ==> "2(if(l,m,t)) = i(F(l,t))+i(F(m,t))

inv"2(rs(l,m)) = 0

eq(l,m) = F ==> inv"2(if(l,m,t)) = S(t)

aE0 = F

S(/)Ei{S(m)) = eq(l,m)

S(/)Ei(F(m,t)) =/Et

F(/,t)Ei(F(m,u)) = eq(l,m)/\eq(t,u)

F(/,t)Ei{S(m)) = F

a E(x +y) = (a Ex)V(a Ey)

xn0 = 0

xnx = x

xny = ynx

(xny)nz = xn(ynz)

S(/)Ex = F ==> i(S(/))nx = 0

F(/,t)Ex = F ==> i(F(l,t))nx = S(t)nx

a Ex = T ==> i(a)nx = i(a)

(x+y)nz = (xnz)+(ynz)

a Ex = F ==> at:u = x

aAi(a) = 0

I Et = T ==> S(l)Lli(F(m,t)) = S(/)AS(t)

aA(x+y) = (at:u)+(aAy)

x+z = y ==> x~y = T

(A constant or function implicitly

declares the sort(s) occurring in its type)

(This catches all identity renamings)

a Ex = T & a Ey = F ~ x ~y = F

eq(x,y) = (x ~y)/\(y ~x)

end Signatures

FIGURE 2.3. Initial/final algebra specification of the algebra of signatures.

COMMENTS:
(I) Functions whose type consists of a single name correspond to constants.

11

(2) Although sorts are implicitly declared by constants and functions, a sort that does not occur in the
type of any constant or function still has to be declared explicitly.

(3) Because we allow overloaded constants and functions, unrestricted union of signatures is no prob
lem.

(4) In general,ff(~ 1 +~2) ¥::ff(~ 1)Uff(~2).

(5) Due to its permutative character, renaming never causes name clashes.

(6) Because of overloading, atomic renamings must completely specify the atomic signature they
should work on when applied.

(7) The use of functions ~ and inv~ on ATREN will become clear later on when restricted renamea
bility of hidden functions in modules is discussed (SECTION 3.1).

(8) Signatures has formal parameter Names simply because we preferred to suppress most details of
the associated data type. For all suitable actual parameters, the initial model of Signatures is a com
putable algebra. Every closed signature expression of sort SIG can be brought in the normal form

m n
L i(S(sk)) + L i(F(fk,tk)) (m,n~O),

k=I k=l

with sk¥=s1 (k¥::1), (fk,tk)¥=(ji,t1) (k¥=1), and sk <;£t1, i.e., only sorts not occurrring in the type of any
constant or function are declared explicitly. Two signatures are equal if and only if the corresponding
normal forms are syntactically identical modulo associativity and commutativity of + and modulo
associativity of *.

Furthermore, for all suitable actual parameters the initial and final model of Signatures are iso
morphic, i.e., the initial model does not have non-trivial homomorphic images and all non-trivial
minimal models are isomorphic (cf. [BT82]). There are two reasons for this. First, on all sorts except
ATREN an eq-function is defined with the property that for all closed expressions x and y

1-eq(x,y) = T <:=? 1-x = y
I- eq(x,y) = F <:=? V x = y.

On these sorts any equality which is stronger than provable equality immediately leads to incon
sistency. Secondly, all atomic renamings with the same behavior are provably equal and hence no
stronger equality on ATREN is possible without inducing a stronger equality on ATSIG as well.

We are not interested in "non-standard signatures", i.e., we only consider the non-trivial minimal
model of Signatures.

(9) We call an equation w-derivab/e if all of its closed instances are derivable. An equation is w
derivable if and only if it holds in the initial model (cf. [HEE85]). Some equations that are w
derivable from Signatures are:

(x ny)+z = (x ny)+(x nz)

12

(x+y)nx = x
x+(xny) = x
r.(r.x) = x
r.(x ny) = (r.x)n(r.y)
r.(aAx) = (r.a)il(r.x).

For reasons of readability we will from now on use a somewhat different notation for signatures.
Instead of

i(S(n))
i(F(c,i(n)))
i(F(j,(· · · (i(n 1)* · · · *i(nk -1))*i(nd)))

we will write respectively

S:n
F:c:n
F:f:n 1 X · · · Xnk-l~nk·

For instance,

i(S(n)) + i(S(m))+ i(F(j,(i(n)*i(m))*i(n)))

becomes

S:n + S:m + F:f:n xm~n.

3. BASIC MODULE ALGEBRA

3.1. BMA[fol]

(k>l)

In this section we consider module expressions. These are basically expressions consisting of module
constants/variables and the operators ~ (the visible signature of a module), . (renaming of a module),
T (conversion of a signature to a module without axioms), + (combination/union of modules), and
D (restriction of the visible signature of a module).

Each (closed) first-order sentence cf> over a signature x corresponds to a module constant <ct>> with
signature ~(<cp>) = n y. A finite first-order theory corresponds to a module expression

</>E.P(>•)

<c/>1>+ · · · +<c/>n>,

where + is the above-mentioned combination operator on modules. The signature of such a theory is

~(<c/>1>+ · · · +<c/>n>) = ~(<c/>1>)+ · · · +~(<c/>n>),

where the +-operator occurring in the right-hand side is the + on signatures.
Renaming of signatures is extended in the natural way to renaming of first-order sentences. So r.cp

is the sentence obtained from cf> by applying atomic renaming r to it, and <r.cp> is the corresponding
module. Clearly, ~(<r.cp>) = r.~(<ct>>).

In addition to (infinitely many) constants <cp>, there are module expressions T(x) for each signa
ture x. These represent modules that do not impose any constraint on x-algebras.

The class of flat module expressions consists of expressions involving only the constants <cp> and
the operators +, . and T. These represent ordinary finite first-order theories. T(x) is equivalent to
<cp> with cf> a tautology and~(<cp>)=x.

Non-flat expressions involve the export operator D. Consider, for instance,

xD(<c/>1 > +<c/>i>),

which is to be read as "export x from <c/>1 > + <c/>i >". The intended meaning of this module

13

expression is a specification whose visible signature is restricted to those sorts and functions of
~(<</>1 > + <<1>2 >) which also occur in x, i.e.,

~(x0(<</>1 >+<<1>2>)) = xn~(<</>1 >+<</>i>).

Sorts and functions not occurring in x become hidden, i.e., inaccessible from the outside. One of the
main properties of hidden sorts and functions is that they can be renamed without affecting the mean
ing of the specification in which they occur, as long as name clashes between hidden names as well as
between hidden and visible names are avoided.

The axioms of basic module algebra for first-order logic specifications (BMA [fol]) are given in FIG
URE 3.2. A graphical representation of the corresponding signature is shown in FIGURE 3.1. The
axioms of BMA [fol] mainly describe the interaction between the +- and 0-operators. Although this
cannot be done without aiming at a specific semantics for + and 0, it turns out that:

(I) The axioms of BMA[fol] are convincing on a priori grounds even without such a semantics;

(2) BMA [fol] has several different semantics including the "natural" ones;

(3) The +-, 0- and ~-operators cannot be treated separately from each other. General axioms
describing their interrelation are necessary if a useful interpretation of these operators is to be
obtained. Trying to find a meaning for the structuring operators of modular specifications without
any axiomatic preliminaries is not a well-defined problem.

While designing BMA[fol] we kept the following requirements in mind:

(1) All equations of BMA[fol] would have to hold in the algebra M(jol) of full model classes of
modules which we consider to be a natural standard model for modular specifications. M(jol) is dis
cussed in SECTION 4.2.

(2) As an extension of Signatures (SECTION 2.2) BMA [fol] would have to leave Signatures untouched
in the sense that every closed S/G-term over the signature of BMA[fol] would have to be provably
equal to a closed S/G-term over the signature of Signatures, and no new identities between closed
terms over the signature of Signatures would be introduced.

(3) Every closed module expression should be provably equal to a normal form containing at most a
single instance of the export operator 0, i.e., the normal form theorem (THEOREM 3.3.2) would have
to hold for BMA[fol]. Normalization of module expressions is a basic operation which will have to
be implemented in any system for manipulating specifications.

(4) The axioms of BMA[fol] would have to guarantee that refinement and enrichment are both special
cases of extension (see SECTION 3.4).

14

specification BMA [fol]

begin

import Signatures

sortM

Modules

FIGURE 3.1. The signature of BMA [fol].
(The signature is only partially shown.
It is an extension of the signature of
Signatures shown in FIGURE 2.2.)

(Modules)

AX[fol]
First-order
Axioms

constants

<cp>: M

functions

~: M-SIG

T:SIG-M

.:ATRENXM-M

+:MXM-M

O:SIGXM-M

variables

r:ATREN

x,x',y: S/G

X,Y,Z:M

axioms

~(<cp>) = ~(cp)

~(T(x)) = x

~(X+Y) = ~(X)+~(Y)

~(xD Y) = x n~(Y)

~(r.X) = r.~(X)

r. <cp> = <r.cp>

r.T(x) = T(r.x)

r.(X+Y) = (r.X)+(r.Y)

r.(xOY) = (r.x)O(r.Y)

r.(r.X) = X

~(r)n~(X) = inv~(r) ~ r.X = X

(For each closed first-order formula

cpEP(x) with signature x, <cp> is

a constant of sort M)

(Signature)

(Injection)

(Apply atomic renaming)

(Combination/ Union)

(Export)

(Sl)

(S2)

(S3)

(S4)

(S5)

(Rl)

(R2)

(R3)

(R4)

(R5)

(R6)

X+ Y = Y+X (Cl)

(X+Y)+Z = X+(Y+Z) (C2)

T(x+y) = T(x)+T(y) (C3)

X +T(~(X)) = X (C4)

X+(yOX) = X (C5)

~(X)OX = X (El)

xO(yOZ) = (xny)OZ (E2) -

xD(T(y)+Z) = T(xny)+(xOZ) (E3)

x = (~(Y)n~(Z))+x' ~
xO(Y+Z) = (xOY)+(xOZ) (E4)

end BMA[fol]

15

16

FIGURE 3.2. Basic Module Algebra.

COMMENTS:
(Sl)-(SS) are the natural identities for~-

(Rl)-(R3) are self-evident.

(R4) is valid because of the permutative character of renaming.

(RS) says that renaming is an involution.

(R6) postulates (restricted) renameability of hidden items. The condition

~(r)n~(X) = inv~(r)

does not allow renaming of items that are visible, or renaming of hidden items causing a clash
between hidden and visible names. Clashes between hidden names cannot happen due to the permu
tative character of renaming. The following equation is equivalent to (R6) and derivable from
BMA[fol]:

(~(r)n~(X))+y = inv~(r) ~ r.X = X. (R6')

(Cl) and (C2) together with the equation X + X = X express the fact that modules are sets of axioms.
The idempotent law for + is a special case of (CS) (take y=~(X) and apply (El)).

(C3)-(C4) are self-evident.

(CS) is a generalization of the idempotent law for +, expressing the fact that enrichment is a special
case of extension (see SECTION 3.4).

(El)-(E2) are self-evident.

(E3) is closely related to equation (7) below which is a special case in which D distributes over +. It
has been included for technical purposes and is used in SECTION 3.3.

(E4) postulates (restricted) distribution of D over +. Of course, it would be nice if we would have
unrestricted distributivity. But this is simply not true in the models of BMA[fol] we have in mind.
Consider the following simple counterexample (see SECTIONS 2.2 and 3.5 for the notation used):

x = S:B+F:T:B+F:F:B
Y = (x+F:c:B):(<T=c>)
Z = (x+F:c:B):(<F=c>).

In this case we have x 0(Y + Z) =I= (x D Y) + (x DZ) both from an intuitive point of view as well as in
all models of BMA [fol] discussed in SECTION 4.2. The point is that x D (Y + Z) implies T = F while
(xD Y)+(xDZ) does not, as one may choose c= Tin xD Y and c=F in xDZ.

Some equations that are equationally derivable or w-derivable (SECTION 2.2) from BMA [fol] are:

(I) xDT(0) = T(0)
(2) xDT(y) = T(xny)
(3) X+T(0) = X
(4) ~(X)n~(Y) = 0 & 0 DY = T(0) ~ ~(X)D(X + Y) = X

(The second part of the condition means that Y is consistent. See SECTION S.2.)
(S) (~(X)+y)DX = X
(6) ~(X)D(T(y)+ X) = X
(7) xD(T(y)+Z) = (xDT(y))+(xDZ).

If the equation x+(xny) = x is added to Signatures (this does not affect its initial model), all of the

17

above equations become equationally derivable. Hence, they are valid in all models of BMA [fol] that
do not contain non-standard signatures, and in particular in the models discussed in SECTION 4.2.

3.2. The normal form theorem
In the sequel ME[fol] will be the set of module expressions, i.e., expressions of sort Mover the signa
ture of BMA [fol], and CME[fol] will be the set of closed module expressions in ME[fol].

DEFINITION 3.2.l: A term XECME[fol] is flat if it does not contain the 0-operator.

The class of flat closed module expressions will be called FCME[fol].

THEOREM 3.2.1: For every XEFCME[fol] there is an X'EFCME[fol] of the form
n

L<ct>i>+T(x) (n ;;.o, the summand T(x) may be absent)
i=I

such that BMA [fol] I- X = X'.

PROOF: By structural induction using axioms (Rl)-(R3) and (C2)-(C4).

DEFINITION 3.2.2: A term XECME[fol] is in normalform if Xhas the form ~OYwith ~a signature
and Y flat.

THEOREM 3.2.2: (Normal form theorem) Each X E CME[fol] has a normal form X' E CME[fol] such
that BMA [fol] I- X = X'.

For V, W C CME[fol] we write

BMA [fol] I- V CW, if for all X E V there is an YEW with BMA [fol] I- X = Y;

BMA [fol] I- V = W, if BMA [fol] I- V C Wand BMA [fol] I- W CV.

Using this notation the normal form theorem can be restated very simply:

BMA[fol] I- CME[fol] = SIGOFCME[fol].

For the proof of the normal form theorem we first need a lemma:

LEMMA 3.2.1: Let~.~' be signatures and XEFCME[fol]. Then there is an X'EFCME[fol] such that
BMA[fol] 1- ~ox= (~+~')OX'.

PROOF: ~DX is transformed into ~DX' by means of a series of atomic renamings which successively
replace all names occurring in ~(X) but not in~ by names not occurring in~'. For such X' we have
BMA[fol] 1- ~DX= (~+~')OX'.

PROOF OF THE NORMAL FORM THEOREM: Let the 0-depth of an XECME[fol] be defined as follows:

d(X) = 0 if XEFCME[fol]
d(X + Y) = max(d(X),d(Y))
d(~DX) = l +d(X).

We use induction on the 0-depth. If d(X)=O, X is flat and X=~(X)DX. Now assume that for
some n ;;.o all X E CME[fol] with d(X).;;;,n can be brought into the required normal form.
If X=~OX' with d(X')=n, first normalize X' to ~'OX" with X"EFCME[fol]. This immediately
leads to normalization of X:

X = ~O(~'DX") = (~n~')DX".

The remaining case is

18

i=I

with d(X;):s;,n. (If one of the summands X; of Xis flat, we write X;=~(X;)OX;.) Using induction we
may normalize X; to ~;'OX;' with X;'EFCMEifol] (l:s;,i:s;,k), and we obtain

k

X = ~(~; n~;')OX;'.
i=I

k

Let ~= ~(~; n~;'). Using lemma 3.2.l we find for each an X;'' such that
i=I

(~; n~;')OX;' = ~OX;'', hence
k

X = ~(~OX;").
i=I

In order to normalize this sum it suffices to write any term of the form (~O Y1)+(~0 Y2) as ~O Y3
(with Y 1, Y2, Y3 flat). Performing this transformation k-1 times leads to the required normal form.
So consider

Y = (~O Y1)+(~0 Y2).

We want to apply (E4). Using lemma 3.2.1 we obtain a Y 2' such that

~OY2 = (~+~(Y1))0Y2'·
Taking the signature of both sides gives

so

Hence

~n~(Y2) = (~+~(Y1))n~(Y2');J~(Yi)n~(Y2'),

(~+~(Y1))0Y/ =
(~+ ~(Y1))0(~(Y/)O Y2') =
({~+ ~(Yi))n~(Y/))O Y2' =
({};n~(Y2'))+(~(Yi)n~(Y2')))0 Y2' =
(~n~(Y2'))0 Y2' =
~O(~(Y2')0 Y2') =
};O Y2'.

3.3. Two additional module operators: hiding and common export
Two useful operators for constructing specifications are the fliding operator 6. : ATSI G X M ~ M
defined by

a6.X = (a6.~(X))OX, (H)

and the common export operator 0 : M X M ~ M defined by

XOY = (};(X)n~(Y))O(X+Y). (CE)

The 6.- and 0-operators occurring in the right-hand side of (H) and {CE) are respectively the deletion
operator 6.: ATSIGXSIG ~sIG and the export operator 0: SIGXM ~ M. Hence, both

19

operators are defined in terms of operators of BMA [fol]. As such they are superfluous from a theoret
ical viewpoint and adding them to BMA [fol] would only complicate the theoretical development.
They are useful in practice, however. Hiding is complementary to export, while common export is a
generalization of export in the sense that

xD Y = T(x)D Y.

SIG

M
Modules

D

FIGURE 3.3. Extended signature for BMA [fol].
The hiding operator !l : A TSIG X M - M, and
the common export operator D : M X M - M
have been added. Note the overloading of D.

As C.P.J. Koymans pointed out to us, (E4) can be replaced by a remarkably symmetrical non
conditional equation if the common export operator is used in addition to the export operator:

(~(X)D Y)+(~(Y)DX) =XO Y. (E4*)

PROOF: We first show that BMA[fol]+(CE) I- (E4*).

20

(~(X)D Y)+(~(Y)DX) =
(~(X)D(~(Y)D Y))+(~(Y)D(~(X)DX)) =
((~(X)n~(Y))D Y)+((~(X)n~(Y))DX) =(using (E4) with x'= 0)

(~(X)n~(Y))O(X + Y) (S,E) XO Y.

Secondly, we show that BMA(fo/]-(E4)+(E4*)+(CE) I- (E4).
Suppose x = (~(Y)n~(Z))+x'. Let u' = x'n(~(Y)+~(Z)) and u = (~(Y)n~(Z))+u'. Now

xDY = xD(~(Y)DY) = (xn~(Y))DY =
(un~(Y))D Y = uD(~(Y)DY) = uOY.

Similarly, xDZ = uDZ and xD(Y+Z) = uD(Y+Z), so we only have to prove that

uD(Y+Z) = (uDY)+(uDZ).

To this end let Y' = Y+T(u) and Z' = Z+T(u).
It will be shown that

(a) Y'DZ' = uD(Y+Z)
(b) Y'DZ' = (uD Y)+(uDZ).

First observe that

~(Y'DZ') = (~(Y')n~(Z'))n(~(Y')+~(Z')) =
~(Y')n~(Z') = (~(Y)+u)n(~(Z)+u) =
(~(Y)n~(Z))+(~(Y)nu)+(~(Z)nu)+u =
u+((~(Y)+~(Z))nu) = u.

To prove (a) we apply (CE):

Y'DZ' = uD(Y'+Z') = uD(Y+T(u)+Z+T(u)) =
(E3)

uD(T(u)+ Y+Z) = T(unu)+uD(Y+Z) = T(u)+uD(Y+Z) =
T(~(uD(Y+Z)))+(uD(Y+Z)) = uD(Y+Z).

To prove (b) we apply (E4*):

Y'DZ' = (~(Y')DZ')+(~(Z')D Y') =
((~(Y')n~(Z'))DZ')+((~(Y')n~(Z'))D Y') =
(uD Y')+(uDZ') =
(uD(Y +T(u)))+(uD(Z +T(u))) =

(uD(T(u)+ Y))+(uO(T(u)+Z)) (~)
T(u nu)+(uD Y)+T(u nu)+(uDZ) =
T(u)+(uD Y)+T(u)+(uDZ) =
T(u)+(uD Y)+(uDZ) =

T(u+(~(Y)n~(Z)))+(uD Y)+(uDZ) =
T((u n~(Y))+(un~(Z)))+(uD Y)+(uDZ) =
T(~(uD Y)+~(uDZ))+(uD Y)+(uDZ) =
T(~((uD Y)+(uDZ)))+(uD Y)+(uDZ) =
(uD Y)+(uDZ).

REMARK: It follows from the above proof that we may replace (E4) in BMA[fol] by the slightly
weaker axiom

x = ~(Y)n~(Z) ~ xD(Y+Z) = (xDY)+(xOZ). (E4-)

21

3.4. Abstraction, enrichment, extension, and refinement
The theory of modular specification is relevant to the study of transformational program development.
Both require a classification of the various possible construction/ development steps. We will first dis
cuss such a classification informally, and then give precise definitions of the notions involved in the
context of module algebra.

Let S : X i-+ Y be a transformation step from a specification X to some other specification Y. In
accordance with more or less established terminology we may say that
(1) S is an abstraction (Y is an abstraction of X) if Y is obtained by deleting (hiding) information

from X.
(2) S is an enrichment (Y is an enrichment of X) if Y covers more issues than X without in any way

changing or constraining the meaning of X.
(3) S is an extension (Y is an extension of X) if Y describes more than X in a way consistent with X

and perhaps even in a more specific way than X. (An enrichment is a conservative extension.)
(4) Sis a refinement (Y is a refinement of X) if Y describes the same as X but in a more specific way

(essentially by adding additional constraints).

These informal definitions can be translated into precise ones for specifications X, YE CME[fol] as
follows.

DEFINITION 3.4.1: For X, YE CME[fo/] we say that
(1) Y is an abstraction of X if Y=~(Y)DX;
(2) Y is an enrichment of X if X is an abstraction of Y;
(3) Y is an extension of X if Y = Y + X;
(4) Y is a refinement of X if Y is an extension of X, and ~(Y)=~(X).

COMMENTS:

(1) If Y=~(Y)DX (Y is an abstraction of X), Y is obtained by hiding information (in this case a part
of the signature) from X.

(2) If X=~(X)D Y (Y is an enrichment of X), Y says more about new signature elements (i.e., sorts
and functions in ~(Y)-~(X)), but does not add any constraints to X.

(3) If Y = Y + X (Y is an extension of X), Y says more than X.

(4) If Y= Y + X and ~(Y)=~(X) (Y is a refinement of X), Y says more than X about the same signa
ture.

The combination operation X, Z i-+ X + Z can be viewed as producing an extension Y = X + Z of X.
Furthermore, both enrichment and refinement are (simpler) forms of extension. Indeed, if Y is an
enrichment of X then

X=~(X)DY,

and hence

Y + X= Y +(~(X)D Y) {<2) Y.

Refinement is by definition a special case of extension.
Every extension can be split into a refinement and an enrichment:

LEMMA 3.4.1: (Factorisation lemma) For any extension X i-+ Z with X,Z ECME[fol] there is a
YE CME[fol] such that X i-+ Y is a refinement and Y i-+ Z is an enrichment. (See FIGURE 3.4).

PROOF: Let Y=~(X)OZ. We must verify that

22

(a) Y=Y+X
(b) ~(Y)=~(X)

(c) Y=~(Y)DZ.

(a) Y=~(X)DZ=~(X)D(Z+ X)=(~(X)DZ)+(~(X)DX)=(~(X)DZ)+ X= Y + X.

(b) ~(Y) = ~(X) n ~(Z) = ~(X) n ~(X + Z) = (~(X) n ~(X)) + (~(X) n ~(Z)) = ~(X).

(c) Immediate from (b) and the definition of Y.

REMARK: Of course, whether an extension is an enrichment or not depends on the semantics used. It
is quite possible that an extension X 1-> Y is an enrichment in FiiA!c(fol) but not in M(fo/) (see SECTION
4.2).

Extension
X-----------;;.. Z(= Z+X)

Refinement

y (= ~(X)DZ)

FIGURE 3.4. Graphical summary of DEFINITION 3.4.1 and
the factorization lemma.

3.5. Notational conventions
In the examples and proofs in this paper we will use the operators :, + :, D: and il: in addition to +,
D and il. These do not occur in BMA [fol], but in many cases allow us to drop the explicit typing
from axioms (see SECTION 2.1) and to avoid having to duplicate signatures in module expressions.

For x: Y to be meaningful, x must be an unambiguous signature in which each name occurs at most
once as a function name of arity n (n~O). Thus, the signature F:S:M-M+F:S:N-N is ambigu
ous, but F:S :M + F:S :N -N is not. Now x: Y means that whenever a function symbol f of arity n
occurs without explicit typing in an axiom of Y and x contains F:f:A 1 X · · · XAn-A, then f is an
abbreviation of

JA Ix ... XA.->A

Here Y must be viewed purely syntactically rather than as an expression subject to the laws of
module algebra. Note, that the arity of a function symbol can always be determined uniquely from
the context in which the symbol occurs.

In addition to using the above abbreviation operators, we omit universal quantifiers from equations
and do not declare variables. The type of variables must be inferred from the context in which they
occur. For instance,

(S:B + F: T:B + F:F:B):(< T=/=F> + <x =TV x = F>) =
<TB=l=FB>+<"ilxB xB=rnvxn=FB>.

(S:N + F:O:N + F:S:N ~N + F: + :N X N ~N):
(<x+O=O>+<x+S(y)=S(x+y)>) =
<"ilxN XN +NXN-+NoN =xN>+
<"i/xN"i/yN XN +NXN-+N SN->N (yN)= SN->N (XN +N XN->N yN)>.

Now we can define + :, 0: and a: as follows:

X+:Y = X+(2:(X):Y)
xO:Y = xO(x:Y)
aa:Y = aa(i(a):Y).

4. SEMANTICS OF BMA [fol]

4.1. Notational conventions

.P(2:) = the set of closed first-order formulas of signature 2:.
(.P(0) contains the 0-ary connectives true and false.)

A/g(2:) = the class of all ~-algebras.
(Alg(0) = {A 0 }, where A 0 is the unique "empty" algebra.)

Alg(2:,cp) = the class of all 2:-algebras satisfying a formula <PE2'(2:).

A/gc(2:) = the class of all countable 2:-algebras.
Algc(2:,cp) = the class of all countable 2:-algebras satisfying a formula <PE.P(~).

(A/gc(2:,cp) = A/g(2:,cp) n A/gc(2:).)

LCT(2:)

Th(2:)
Th(~,<P)
Th(2:,K)

= the set of logically closed theories over 2:,
i.e., subsets of .P(2:) which are closed under logical deduction.
(Note that TELCT(2:) always contains true and hence is never empty.
Furthermore, 2: can always be completely recovered from T as all
constant and function symbols occur in the various tautologies
which must always be present in T.)

= {cf>E.P(2:) I I- cp} (=the smallest element of LCT(2:)).
= {l{IE.P(2:) I cp 1-1{1} for cpE.P(2:) (= the smallest element of LCT(2:) containing cp).
= {cpE.P(2:) I 'VAEKA l=cp}withKCA/g(2:).

23

We only consider algebras with non-empty carriers. It is assumed that ~ is exported from each 2:
algebra.

2:0A
2:0K
K+L

2:0T
T+U

= the restriction of A to 2: n 2:' with A EA/g(2:'). (If ~ n 2:' = 0, then ~ DA =A 0 .)

= {2:DA I A EK} with K CAlg(2:').
= {A EA/g(2:1+2:2) I 2:1 DA EK, ~2 DA EL} with K CAlg(~i). L CAlg(2:2).

= .P(2:) n T for TE LCT(2:').
= {cpE.P(2:1 +2:2) I TU U 1- cp} for TELCT(2:1), UELCT(~2).

Using the above notation we define three semantical mappings Mod, Mode. and Th on CME[fol] as
follows (with X E CME[fol]):

(1)

(2)

(3)

x~ Mod(X)

x~ Modc(X)

X ~ Th(X)

C A/g(2:(X))

C A/gc(2:(X))

C LCT(2:(X)).

24

The precise inductive definitions are as follows:

(1) Mod(<cp>) = Alg(~(<cp>),cp)

Mod(T(x)) = Alg(x)

Mod(X + Y) = Mod(X)+ Mod(Y)

Mod(~DX) = ~DMod(X)
(2) Mode(<cp>) = Alge(~(<cp>),cp)

Modc(T(x)) = Algc(x)

Modc(X + Y) = Modc(X)+ Modc(Y)

Modc(~DX) = ~DModc(X)
(3) Th(<cp>) = Th(~(<cp>),cp)

Th(T(x)) = Th(x)

Th(X + Y) = Th(X)+ Th(Y)

Th(~DX) = ~DTh(X).

An equivalence relation can be associated with each of these three mappings in the following straight
forward manner:

X -Mod Y ~ ~(X)=~(Y) & Mod(X)=Mod(Y)

X =Mode Y ~ ~(X)=~(Y) & Modc(X)=Modc(Y)

X -Th Y ~ ~(X)=~(Y) & Th(X)=Th(Y).

4.2. Four models of BMA [fol]
Being an algebraic specification, BMA [fol] has an initial model D(BMA [fol]). It essentially consists of
the textual representations (presentations) of modular specifications modulo a rather weak congruence
which is nevertheless strong enough to make the normal form theorem (THEOREM 3.2.2) work. As a
result, O(BMA [fol]) is a computable algebra which could actually be implemented as part of a system
for manipulating specifications.

Three further models of BMA[fol] can be obtained by factorizing CME[fol] with respect to the
three equivalence relations =Mod• -Mode• and -Th on ME[fol] introduced in the previous section. In
fact, all of them are congruences on CME[fol], so we may write

M(jol) = CME[fol] /=Mod

Mcifol) = CME[fol] /-Mode

lf(jol) = CME[fol] /-Th·

Furthermore, it can be verified that each of these three constructions is a (minimal) model of
BMA[fol]. All verifications involved are straightforward except the verification of T(jol) I= (E4), which
turns out to be equivalent to the CRAIG interpolation lemma. We will return to this later (THEOREM
4.2.2).

The relations between M(jol), Mclfol), and lf(jol) are as follows. For XECME[fol]

(a) Modc(X) = Mod(X)nAlgc(~(X))
(b) Th(X) = Th(~(X),Modc(X)).
The proof of (a) uses the downward LowENHEIM-SKOLEM theorem and (b) is based on the complete
ness theorem. Both proofs use the normal form theorem by assuming that X is in normal form.

Furthermore, it follows that

25

X =Mod Y ==> X =Mode Y ==> X =Th Y,

which implies that Mc(fol) is a homomorphic image of M(jol) and that lf(jo/) is a homomorphic
image of Mc<Jol).

Let X, YEFCME[fol]. We have trivially

x -Th y ==> x -Mod Y.

Hence, for flat module expressions the three semantics are equivalent. For non-flat expressions they
are different, however:

THEOREM 4.2.l: Ml(jol) ~ Mlc(fol) ~ lf(fo/).

Hence, there are homomorphisms </>1 :Ml(fo/) ~ Mc(fol) and <J>i:Mc(fo/) ~ lf(jol) which are surjec
tive but not injective.

PROOF: We first prove M(fol) ~ Mc(fol) by giving a pair of closed module expressions
X, YECME[fol] such that

Mcl=X=Y,

.but

MF' X=Y.

Let NA and NB be defined as follows:

NA = (S:A +F:SA:A~A +F:OA:A):
(<'1xA'1yA SA(x)=SA(y) ==> x=y>+<'1xA SA(x)=f=OA>)

NB = (S:B+F:S8 :B~B+F:On:B):
(<'1x 8 '1y 8 S8 (x)=S8 (y) ==> x=y>+<'1x8 Sn(x)=/=On>).

(See SECTIONS 2.2 and 3.5 for the notation used.)
Take

X = (S:A +S:B)D(NA +NB).

Let

Z = X+((F:f:A~B+F:g:B~A):(<'1xA gf(x)=x>+<'1x 8 jg(x)=x>))

and

Y = (S:A +S:B)DZ.

We must verify that

(a) Mc(fol) I= X= Y and
(b) M(fol) Ii X= Y.

(a) By construction Algc(Y)<;;;;,Algc(X), and if ~ EA!gc(X) its carriers A and B are both countable
and infinite. Therefore ~ can be enriched with a function f:A~B and its inverse g, so
Algc(X) <;;;,Alge(Y).
(b) We show that Alg(Y) =/= Alg(X). Indeed let ~ be a structure in which A and B are both infinite
but of different cardinality, then ~ EA!g(X); but as the carriers A' and B' of an ~' EA/g(Y) have the
same cardinality,~ €£Alg(Y).

Secondly, we prove Mc<Jol) ~ lf(fo/)) by giving X,YECME[fol] such that

1f (fol) I= X = Y,

but

26

Take

M c(jol) p! X = Y.

X = (S:N+F:O:N+F:S:N~N):(<'VxN'rfyN S(x)=S(Y) => x=y>+<'VxN S(x):#O>)

boo/= (S:B+F:T:B+F:F:B):(<T#F>+<'Vx 8 x=TVx=F>)

Z = X+:bool+:((F:ST:N~B+F:c:N):
(<ST(O)= T> + <'VxN ST(x)=ST(S(x))> + <ST(c)=F>))

y = ~(X)DZ.
By construction Algc(Y)<;;;,Algc(X). In fact,

Algc(Y) = A/gc(X)-{N},

where N is the standard model of X. Hence,

M c(jol) p! X = Y.

For

T(jol) I= X= Y

first notice that by construction

Th(X)<;;;,Th(Y).

Now suppose p E Th(Y). We show that p E Th(X). For this it suffices to verify N I= p. Let N' be any
extension of N which is elementarily equivalent to N. N' must be non-standard, therefore
N' EA/gc(Y) and N' I= p. But this implies N I= p.

THEOREM 4.2.2: T(jol) I= (E4).

PROOF: (Throughout this proof p,q,qi. ... denote first-order sentences.)
Suppose x ;J ~(Y) n ~(Z). We show that

xD(Y+Z) Th (xDY)+(xDZ).

(a) ~(xD(Y+Z)) = xn(~(Y)+~(Z)) = ~((xDY)+(xDZ)).

(b) Th(xD(Y + Z));J Th((xD Y)+(xDZ)):
Let pETh((xDY)+(xDZ)). Choose qETh(xDY),rETh(xDZ) with q/\rf-p. Clearly,
q,r E Th(x D(Y + Z)), hence p E Th(x D(Y + Z)).

(c) Th(xD(Y +Z))<;;;,Th((xD Y)+(xDZ)):
Let pETh(xD(Y+Z)), choose qiETh(Y), q2 ETh(Z) with qi/\q2 f-p, then qi f-q2=>p. Now
qi E.P(~(Y)), q2 =>pE.P(x+~(Z)). According to the CRAIG interpolation lemma [SH067, §5.4]
there is an rE.P(x) such that qi f- r, r f- q2=>p. Hence qi f- r and q2 f- r=>p, and therefore
rETh(xD Y) and r=>p ETh(xDZ) which implies p ETh((xD Y)+(xDZ)).

REMARK: Conversely, (E4) implies the CRAIG interpolation lemma. Suppose p E.P(x), q E.P(y) such
that f-p=>q. Let z = xny. Now zD(<p>+<-.q>)-Th (zD<p>)+(zD<-.q>). Conse
quently falseETh((zD<p>)+(zD<-,q>)). Choose r 1 ETh(zD<p>), r 2 ETh(zD<-.q>) with
r 1 /\r2 f- false. Then p f- ri f- -,r2 f- q and we may use ri as interpolant.

In summary we may say that each of the four semantics discussed in this section has some interest
ing property. The initial semantics D(BMA[fol]) is close to an implementation of the formalism;
M(jol) corresponds to what seems to be the most general intuition of module composition; Mclfol) is
different from M(jol) showing that first-order logic with hidden sorts and functions is strictly more
powerful than conventional "flat" first-order logic; and, finally, T(jo/) is mathematically manageable
and a potential candidate for becoming a standard semantics of module composition operators.

27

5. EQUATIONAL LOGIC FROM THE VIEWPOINT OF MODULE ALGEBRA

5.1. Conditional equations do not add expressive power
In the sequel eql means equational logic, and ceql means conditional equational logic.

THEOREM 5.1.1: M(jol) I= CME[ceql] = CME[eql]. (See SECTION 3.2 for the notation used.)

PROOF: Evidently CME[eql]<;;;;CME[ceql], which leaves the case CME[eq/];;;;)CME[ceql] to be proved.
For a TECME[ceql] we have to find a T'ECME[eql] such that

M(jol) I= T= T'.

We only have to consider T of the form <cp> where cp is a conditional equation. We assume cp has
only a single condition. Multiple conditions can be dealt with in a similar way.
Let .

cp - tf =tf ==> tf =t!/.

Choose a new function symbol h : S X S X U ~ U. Let

p = h(x,x,u)=u
q - h(t1,t2,t3)=h(t1ot2,t4)

x = (F:h:sxsxu~U):(<p>+<q>)
y = ~(<<t»)DX.

Now M(jol) I= <cp> = Y and YE CME[eql]. Indeed, because p,q I- cp we have on the one hand
Mod(<cp>);;;;)Mod(Y). On the other hand, each A EMod(<cp>) can be extended to a model
B EMod(X) as follows:

u0 ifs 1 :f=s2

where u0 is some fixed element of U (in A). It follows that

Mod(<cp>) <;;;; ~(<cp>)DMod(X) = Mod(Y).

5.2. A comparison of the expressive power of first-order logic and equational logic
What is the precise difference between equational logic and first-order logic from the viewpoint of
module algebra? The following observations on this problem are somewhat informal. We only give
sketches of the proofs involved.

We first need the following five definitions:

boo/cons = (S:B+F:T:B+F:F:B):(<T=f=F>)
boo/em = (S:B + F: T:B + F:F:B):(<Vx8 x =TV x = F>)
boo/ = boolcons +boo/em
boolincons = (S:B + F: T:B + F:F:B):(< T = F>)
incons = boo/cons+ boo/incons.

Boolcons expresses consistency, boo/em expresses the law of the excluded middle, and boo/incons
expresses inconsistency. The following disjunction holds in M(jol) (and hence also in Mc<Jol) and
lf(jo/)) for each XECME(fol]:

(a) 0DX = T(0), or
(b) 0 DX = 0 Oincons.

In case (a) we may say that X is consistent and in case (b) that it is inconsistent. Note that both boo
lincons itself as well as boo/em+ boolincons are consistent.

28

We now prove that boo/cons and boo/em are in some well-defined sense the only first-order
specifications that do not have algebraic equivalents:

(I) M(jol) Ii boo/cons ECME[eql].
PROOF: Let X E CME[eql]. To see that M(jol) Ii boo/cons= X note that X always has a model which is
trivial in the sense that each carrier has only a single element. Clearly, such a trivial A EMod(X) is
not an element of Mod(boolcons).

(2) M(jol) Ii boo/em E CME[eql].
PROOF: Let X=~(bool)DX'ECME[eqlJ with X' flat. Assume Mod(X)=Mod(boo/em). Then Mod(X')
contains a model A with A Ii T=F. Now let F:c:B El~(X'). Consider the initial algebra I of
X'+T(F:c:B). If I I= T=c, then Th(X') I- T=c and Th(X') I- 'Vx 8 (x=T) which implies
Th(X') I- F= T contradicting A Ii T=F. Similarly, I Ii F=c. Consequently, sort B of ~(X')DI has
more than two elements. As ~(X')D/ EMod(X') by construction, ~(boo!) DI EMod(X), but
~(boo!) DI E,lMod(boolem). This contradicts the assumption.

(3) M(jol) Ii boo/cons ECME[eql,boolem].
PROOF: Similar to (1).

(4) M(jol) Ii boo/em ECME[eql,boolcons].
PROOF: Similar to (2).

(5) M(jol) I= CME[fol] = CME[eql,boo!J.
PROOF: Existential quantifiers in X E CME[fol] are replaced by hidden Skolem functions. The result
ing X' contains only universal axioms and is equivalent to X in M(jol).
Next, a hidden equality function eqs :S X S ~B is introduced for each (hidden or visible) sort S of X'.
Atomic formulae in the axioms of X' are replaced by equations over B (tf = tf is replaced by
eqs(tf ,tf)= T, tf :rf=tf is replaced by eqs(tf ,tf)=F).
Finally, the universal axioms of X' are replaced by equations over boo/ by means of hidden boo/
operators like ...,, /\, and V.

COMMENTS:

(l) Boo/cons and boo/em are independent from the viewpoint of equational logic.

(2) A more interesting proof of (5) is based on a set of conditional rewrite rules (conditional equa
tions) for transforming an arbitrary X E CME[fo/J systematically into an X' E CME[eql,bool]. An ade
quate presentation of such rules requires a thorough specification of first-order logic similar to our
specification of signatures.

(3) There are two minor open questions:

(I) Let XECME[eql,boolcons]. Suppose that M(jol) Ii XECME[eql]. Does this imply
M(jol) I= boo/cons ECME[eql,XJ?

(II) The same question as (I) but with boo/em instead of boo/cons.

What these questions amount to is whether boo/cons and boo/em are "primitive" or "minimal" if one
works "modulo equational logic."

5.3. Why not base a model of BMA on equational logic?
Another semantic mapping may be considered which is like Th but produces an equational theory at
the visible level rather than a full first-order theory. The most appropriate domain for this fifth
semantic mapping EqTh is CME[eq!J. EqTh is defined as follows (Eq(~) denotes the set of ~
equations):

EqTh(<cp>) = Th(<<P>) n Eq(~(<cp>))
EqTh(X+ Y) = (EqTh(X)+EqTh(Y))nEq(~(X+ Y))
EqTh(~OX) = .P(~)nEqTh(X).

Clearly, EqTh(X)<;;,Th(X). Let x-EqTh Yif ~(X) = ~(Y) and EqTh(X) = EqTh(Y). We write

IEQlf(eq/) = CME[eql] / -EqTh·

It turns out that

IEQlf(eq/) I= BMA - [eql],

where BMA - = BMA -(E4).

THEOREM 5.3.1: IEQlf(eq/) V (E4).

29

PROOF: This is a somewhat tricky consequence of the failure of the interpolation property for equa
tional logic. Let

Xo = (S:A +F:c:A +F:f:A~A):(<f(c)=c>+ <ff(x)=x>)

X = (S:A +F:f:A~A)DX0
Y = (S:A +F:f:A~A +F:h:A XA XA~A +F:c 1:A +F:c2:A):

(<h(x,x,y)=y > + <h(x,f(x),ci)=h(x,f(x),c2)>).

Now, if (E4) were valid we would have

and

hence

~(Y)D(X0 + Y) = (~(Y)DX0)+(~(Y)D Y) = ((~(Y)n~(X0))DX0)+ Y = X + Y,

EqTh(Xo + Y) I- h(c,/(c),c 1)=h(c,/(c),c2)
EqTh(X0 + Y) I- j(c)=c,

EqTh(~(Y)D(X0 + Y)) I- c 1 =c2.

We will show, however, that

EqTh(X+ Y) V c 1 =c2.

LEMMA 5.3.1: EqTh(X)<;;,EqTh((S:A +F:f:A~A):(<ff(x)=x>)).

To see that EqTh(X+ Y) V c 1 =c2 consider the following structure A:

JA I ={a,b}, f(a)=b, f(b)=a, c 1 ~a. c 2 ~b.
h(x,y,z)=z if x=y, h(x,y,z)=a if x=;i=y.

It follows from lemma 5.3.l that A I= EqTh(X), and A I= EqTh(Y) by inspection, hence
A I= EqTh(X + Y), but A V c 1 =c2 • Therefore EqTh(X + Y) V c 1 =c2.

Finally, lemma 5.3. l has to be verified. Consider the structure D:
IDI ={a,b,c},f(a)=b,f(b)=a, /(c)=c, c~c. DEMod(Xo). Therefore

EqTh(X0)<;;,Th(D)nEq(~(X0)) and
EqTh(X)<;;,Th(~(X)OD)nEq(~(X)).

We will list all possible equations over ~(X)DD and show that the ones that are valid in ~(X)DD
are derivable fromff(x)=O.
(a) f'(x) = j(y). These equations are not valid in ~(X)OD as can be seen by taking x =a and

y=c.
(b) f'(x) = j(x) with n mod2 =;i= m mod2. These equations are not valid in ~(X)OD either, as

30

can be seen by taking x =a.
(c) j(x) = j'(x) with n mod2 = m mod2. These equations are valid in ~(X)DD and can easily

be derived from f f(x) = x.

In view of the foregoing it can be concluded that
(1) IECH(eq/) is a semantics of CME[eql] in the weaker sense of BMA - .
(2) The proof of the normal form theorem (THEOREM 3.2.2) does not apply to IEQT(eql). This does

not mean that the normal form theorem is not valid for expressions in CME[eql]. It may still be
provable using recursion theoretic methods, but such a proof is unlikely to lead to an effective
normalization procedure which is essential in a practical system.

(3) IEQT(eq/) is not a homomorphic image of any of the other models.
Although IEQT(eq/) may at first sight seem a very plausible semantics, the loss of (effective) normali
zation shows that it should be rejected.

Note that EqTh(X) = Eq(~(X))n Th(X) cannot always hold, because otherwise IEQT(eq/) would
be a homomorphic image of T(eql) after all. So in general we have

EqTh(X) ~Eq(~(X))n Th(X).

Now the question is: can we define an initial algebra for specifications XECME[eql] on the basis
of the semantics T(eql)? The answer is given by the following theorem which we do not prove here.

THEOREM 5.3.2: Let XECME(eql], and let Yi. Y2 EFCME(eql] such that

BMA(eql] I- X = ~(X)DY1
BMA[eql] I- X = ~(X)DY2 •

Let A = /(Y1), B = /(Y2), then

~(X)DA ~ ~(X)DB.

COMMENTS:
(1) I(Y) denotes the initial algebra of a YEFCME[eql] provided ~(Y) does not have void (empty)
sorts (see for instance [EM85] or [MG86]).
(2) The initial algebra of an X E CME[eql] is found as follows. Take some Y EFCME(eql] such that
BMA(eql) I- X = ~(X)D Y. Then /(X) = ~(X)O/(Y).
(3) Let BMA(eql) I- X = ~(X)DYwith YEFCME(eql], then

(a) Th(X) = Th(~(X)D Y) = ..P(~(X))n Th(Y)
(b) l(Y) I= Th(Y)
(c) ~(X)D/(Y) 1=..P(~(X))nTh(Y)

(d) /(X) I= Th(X).

This indicates that the construction of /(X) is consistent with the T(eq/)-semantics.
(4) The normalizing transformation which has to precede taking initial algebras is justified by the
T(fo/)-semantics, which is not directly related to equational logic. This leads to open questions
regarding rewrite rules and separate compilation of modular term rewriting systems.

5.4. Relations with earlier results on algebraic specification
(I) For a minimal algebra A with signature~ the following two properties are equivalent
(a) A is semicomputable;
(b) A has an initial algebra specification with hidden sorts and functions, i.e., A :::::::: ~D/(X) for some

XEFCME[eql].
The implication (b) ~ (a) is immediate. The converse is proved in detail in [BT79] for the single
sorted case. It is an open question whether X can always be chosen in such a way that no hidden
sorts are introduced, i.e., that sorts(~)=sorts(~(X)).

(2) If A is a minimal computable algebra with signature ~. it has an initial algebra specification with

hidden functions only, i.e., there is an XEFCME[eql] such that
(a) A =::::: ~O/(X);
(b) sorts(~) = sorts(~(X)).

31

See [BT82]. MAJSTER [MAJ77] discovered that there are computable algebras for which there is no
X EFCME[eql] such that A - I(X).

In addition to (a) and (b) X can have several further properties (but not simultaneously):
(c) X has a complete (= confluent and terminating) term rewriting system. See [BT80] for a proof

of the single-sorted case.
(d) Both the number of equations of X and the number of constants and functions of ~(X) are

linearly bounded by the number of sorts of~. Moreover, /(X) is also the final X-algebra which
means that I (X) does not have non-trivial homomorphic images. See [BT82]. (Signatures of SEC
TION 2.2 is an example of such an X for the algebra of signatures.)

(e) ~(X) has only unary hidden functions. A proof of the single-sorted case was given in [BKN80].
A special case involving finite algebras was discussed in [BM82].

(3) If A is a minimal cosemicomputable algebra with signature~' there is an XEFCME[ceql] such
that
(a) X has a unique final algebra F(X) (which in this case has the property that each of its

homomorphic images satisfying X is either F(X) itself or the trivial ~(X)-algebra);
(b) A - ~OF(X);

(c) sorts(~) = sorts(~(X)).

See [BT83].

(4) Let f:w~w be a recursive function. There is a term T(X)EFCME[eql](X) with a free variable X
of sort M such that for all n Ew:

(a) /(T(~,..,:<Sn(O)=c>)) is finite

(b) card(/(T(~,..,:<Sn(O)=c>)))>f(n),

where ~"' = S:N + F:O:N + F:S :N ~N + F:c :N. See [BM81].

(5) The following example illustrates the fact that in the absence of hiding conditional equations are
more powerful than non-conditional ones. Let

~N = S:N + F:O:N + F:S :N ~N
~SON = ~N + S:SETS + F: 0 :SETS+ F:ins :N x SETS ~sETS + F: # :SETS ~N.

1\1 = l(T(~N)) is the structure of natural numbers. It is enriched to a ~soN-algebra A by interpreting
SETS as the collection of finite subsets of N, 0 as the empty set, ins as insertion, and # as the cardi
nality of a set. In [BM84] it is shown that FCME[ceql] contains an X with I(X) - A, but that
FCME[eql] does not. Of course, in view of (2) (A is clearly computable) there also exists an
XECME[eql] such that /(X) =:::::A.

(6) Let

~~ = ~N+F:P:N~N
where ~N is borrowed from (5). Enrich N = I(T(~N)) to a ~~-algebra Np by defining P(n)= 1 if n
is prime and P(n)=O otherwise. In the revised version of [BT79] it is shown that there is no
XEFCME[ceql] such that /(X) - Np, so Np has no initial algebra specification without hidden func
tions.

32

6. EXAMPLES USING EQUATIONAL LOGIC
In this section we give a series of modular algebraic specifications using the operators of BMA and
the hiding operator ~ of SECTION 3.3. See SECTIONS 1.1 and 3.5 for the notation used.

boo!O = T(S:B + F: T:B + F:F:B).

booll = boo!O+:(F:---.:B-'>B):(<---.T=F>+<---.F=T>).

boo/2 = booll+:(F:V:BXB-'>B):(<TVx=T>+<FVx=x>+<xVy=yVx>).

boo/3 = booll+ :(F:/\:B XB-"B):(<x /\y =---.(---.xV :r)>).

nat 0 = T(S:N + F:O:N + F:S :N -"N).

natl= natO+:(F:+:NXN-'>N):(<x+O=x>+<x+S(y)=S(x+y)>).

natl= natl+:(F:. :NXN-"N):(<x.O=O>+<x.S(y)=(x.y)+x>).

nat3 = natl+ :(F:exp:NXN-'>N):(<exp(x,O)=S(O)> + <exp(x,S(y))=x.exp(x,y)>).

nateqO = boolO+:natO+:(F:eq:NXN-'>B):

(<eq(O,O)= T> + <eq(S(x),O)=F> + <eq(O,S(x))=F> + <eq(S(x),S(y))=eq(x,y)>).

nateq I = booll + :nateqO.

setnateq = nateq I+ :(S:S + F: 0 :S + F:ins :N X S _,,s + F: E :N X S -'>B):

(<x E 0 =F> + <x Eins(y,z)=eq(x,y)V(x Ez)> +
<ins(x,ins(y,z))=ins(y,ins(x,z))> + <ins(x,ins(x,y))=ins(x,y)>).

setnatO = (~(boolO)+~(natO)+S:S+F: 0 :S+F:ins:Nxs_,,s +F: E:N XS-'>B)Dsetnateq.

nateql = nateq I+ :(F: + :B XN-'>N):(<F+x =x> + <T+x=S(x)>).

setnat I = (~(setnatO)+ F:card:S-'>N)D:

(nateql+ :setnatO+ :(<card(0)=0> + <card(ins(x,y))=---,(x Ey)+card(y)>)).

setnat 1 = (~(nat 0) + S:S + F: 0 :S + F:ins :N X S _,,s + F:card:S -'>N)Dsetnat I.

setnat3 = (nateqO+setnatl)+ :(F: E :NXS-'>B):(<x Ey =eq(card(y),card(ins(x,y))>).

setnat 4 = setnat I + setnat 3.

binnat 0 = T(S:BN + F:Ob :BN + F: lb :BN + F:A 0 :BN -BN + F:A 1 :BN -BN).

Note: A 0(A 0(lb)) corresponds to 100, etc.

natbinnat = (binnatO+natO)+:(F:i:BN-N+F:j:N-BN):

((F:Sb :BN -BN)I).:

(nat 1 + :(<Sb(Ob)= lb>+ <Sb(lb)=Ao(lb)> + <Sb(Ao(x))=A 1(x)> +

<Sb(A 1(x))=Ao(Sb(x))> + <i(Ob)=O> + <i(Sb(x))=S(i(x))> +

<i(Ao(x))=i(x)+i(x)> + <j(O)=Ob> + <j(S(x))=Sb(j(x))>))).

binnat 1 = ('2.(binnat 0) + F:addb :BN X BN -BN + F:multb :BN X BN -BN)D:

(natbinnat+ :nat2+ :(<addb(x,y)= j(i(x)+i(y))> + <multb(x,y)= j(i(x).i(y))>)).

33

binnatset = ('2.(binnatO)+S:S+F: 0b:S+F:insb:BNXS-S+'2.(boo/O)+F: Eb:BNXS-B)D:

(setnatO+ :natbinnat+ :(< 0b= 0 > + <insb(x,y)=ins(i(x),y)> + <x Eby=i(x)Ey>)).

binnat2 = ('2.(binnatO)+F:stand:BN-BN)D :(natbinnat + :<stand(x)= j(i(x))>).

binnateqb = ('2.(binnat0)+'2.(boo/O)+F:eqb:BNXBN-B)D:

(natbinnat + :nateqO+ :(F:/th :BN-N):

(<lth(Ob)=S(O)> + <lth(lb)=S(O)> + <lth(A 0(x))=S(lth(x))> +

<lth(A 1 (x))=S(/th(x))> + <eqb(x,y)=eq(lth(x),/th(y))/\eq(i(x),i(y))>)).

binnateq = (binnatO+boolO)+:(F:eq:BNXBN-B)D:

(binnat2 + :binnateqb +: <eq(x,y) = eqb(stand(x),stand(y))>).

stackboo/ 0 = (S:ST + F: 0 :ST+ F:push :BX ST -sT + F:pop :ST -sT + F:top :BX ST -B):

(boo!O+ :(<pop(0)= 0 > + <pop(push(x,u))=u> + <top(x, 0)=x>+

<top(x,push(y,u))=y>)).

stackboolbinnat = stackboo!O + :binnat + :(F:k :ST -BN + F:/ :BN -ST):

(<k(0)=0b> + <k(push(T,x))=A 1 (k(x))> + <k(push(F,u))=Ao(k(x))> +

<l(Ob)= 0 > + <l(lb)=push(T, 0)> + <l(Ao(x))=push(F,l(x))> +

<l(A 1(x))=push(T,l(x))>).

stackboo/ l = ('2.(stackbool 0) + F:adds :STX ST -sT + F:mults: STX ST -ST) D :

(stackboolbinnat + :binnat 1 + :(<adds(x,y)=l(addb(k(x),k(y)))> +

<mults(x,y)=l(multb(k(x),k (y)))>)).

ACKNOWLEDGMENTS
We would like to thank N.W.P. van Diepen, P.R.H. Hendriks, C.P.J. Koymans, and E. Nieuwland for
their many helpful comments and suggestions.

REFERENCES

(References [E82], [GB84], [GM84], and [HOR85] are not cited in the text.)

[BG80] R.M. BURSTALL & J.A. GOGUEN, The semantics of CLEAR, a specification language, in:
D. BJ0RNER, ed., Abstract Software Specifications, LNCS, Vol. 86, Springer-Verlag, 1980,
pp. 292-332.

34

[BHK85] J.A. BERGSTRA, J. HEERING & P. KLINT, Algebraic definition of a simple programming
language, Report CS-R8504, Department of Computer Science, Centre for Mathematics
and Computer Science, Amsterdam, 1985.

[BKN8,,,0] J.A. BERGSTRA, H.C.M. KLEUN & P. NOUWT, On the algebraic specification of infinite
data types using monoidal auxiliary functions, Report 80-43, Institute of Applied
Mathematics and Computer Science, University of Leiden, l 980.

[BM81] J.A. BERGSTRA & J.-J. CH. MEYER, Small specifications for large finite data structures,
International Journal of Computer Mathematics, 9 (1981), 4, pp. 305-320.

[BM82] J.A. BERGSTRA & J.-J. CH. MEYER, The equational specification of finite minimal unoids
using unary hidden functions only, Fundamenta Informaticae, V (1982), 2, pp. 143-170.

[BM84] J.A. BERGSTRA & J.-J. CH. MEYER, On specifying sets of integers, Elektronische Informa
tionsverarbeitung und Kybernetik, 20 (1984), 10/11, pp. 531-541.

[BT79] J.A. BERGSTRA & J.V. TuC:KER, Algebraic specifications of computable and semi-computable
data structures, Report IW 115179, Department of Computer Science, Centre for
Mathematics and Computer Science, Amsterdam, 1979; revised version to appear in
Theoretical Computer Science.

[BT80] J.A. BERGSTRA & J.V. TucKER, A characterisation of computable data types by means of
a finite equational specification method, in: J.W. DE BAKKER & J. VAN LEEUWEN, eds,
Automata, Languages and Programming, 7th Colloquium, LNCS, Vol. 85, Springer-Verlag,
1980, pp. 76-90.

[BT82] J.A. BERGSTRA & J.V. TuCKER, The completeness of the algebraic specification methods
for computable data types, Information and Control, 54 (1982), 3, pp. 186-200.

[BT83] J.A. BERGSTRA & J.V. TuCKER, Initial and final algebra semantics for data type
specifications: two characterization theorems, SIAM Journal on Computing, 12 (1983), 2,
pp. 366-387.

[E82] H.-D. EHRICH, On the theory of specification, implementation, and parametrization of
abstract data types, Journal of the ACM, 29 (1982), l, pp. 206-227.

[EM85] H. EHRIG & B. MAHR, Fundamentals of Algebraic Specifications, Vol. I, Equations and Ini
tial Semantics, Springer-Verlag, 1985.

[FGJM85] K. FUTATSUGI, J.A. GOGUEN, J.P. JOUANNNAUD & J. MESEGUER, Principles of OBJ2,
Conference Record of the Twelfth Annual A CM Symposium on Principles of Programming
Languages, ACM, 1985, pp. 52-66.

[GAN83] H. GANZINGER, Increasing modularity and language-independency in automatically gen
erated compilers, Science of Computer Programming, 3 (1983), pp. 223-278.

[GAU85] M.-C. GAUDEL, An introduction to PLUSS, to appear in Proceedings of the Esprit Techni
cal Week, 1985.

[GB84] J.A. GOGUEN & R.M. BURSTALL, Introducing institutions, in: E. CLARKE & D. KOZEN,
eds, Logics of Programs, LNCS, Vol. 164, Springer-Verlag, 1984, pp. 221-255.

[GM84] J.A. GOGUEN & J. MEsEGUER, Equality, types, modules, and (why not?) generics for logic
programming, Journal of Logic Programming, 2 (1984), pp. 179-210.

[HEE85] J. HEERING, Partial evaluation and w-completeness of algebraic specifications, Report CS
R8501, Department of Computer Science, Centre for Mathematics and Computer Science,
Amsterdam, 1985; to appear in Theoretical Computer Science, 43 (1986), pp. 1-19.

[HOR85] J.J. HORNING, Combining algebraic and predicative specifications in LARCH, in: Formal
Methods for Software Development, TAPSOFT Proceedings, Vol. 2, LNCS, Vol. 186,
Springer-Verlag, 1985, pp. 12-26.

[J86] T.M.V. JANSSEN Foundations and Applications C!f Montague Grammar, Part 1: Philosophy,
Framework, Computer Science, Tract 19, Centre for Mathematics and Computer Science,
Amsterdam, 1986.

[KAP83] S. KAPLAN, Un langage de specification de types abstraits algebriques, These de 3eme
cycle, Universite de Paris-Sud, 1983.

[KLA83]
[LIP83]

[LOE85]

[MAJ77]

[MG86]

[MS85]

[MVS85]

[P72]

[SH067]
[W83]

35

H.A. KLAEREN, Algebraische Spezifikation, Springer-Verlag, 1983.
U. LIPECK, Ein algebraischer Kalkul filr einen strukturierten Entwurf von Datenabstrak
tionen, Dissertation, Forschungsbericht Nr. 148, Abteilung Informatik, Universiti:it Dort
mund, 1983.
J. LoECKX, A formal description of the specification language OBSCURE, Report A
85115, Universitat des Saarlandes, Saarbrilcken, 1985.
M.E. MAJSTER, Limits of the "algebraic" specification of abstract data types, SIGPLAN
Notices, 12 (1977), 10, pp. 37-42.
J. MESEGUER & J.A. GOGUEN, Initiality, induction, and computability, in: M. NIVAT & J.
REYNOLDS, eds, Algebraic methods in Semantics, Cambridge University Press, 1986.
T.S.E. MAIBAUM & M.R. SADLER, Axiomatising specification theory, in: H.-J. KREOWSKI,
ed., Recent Trends in Data Type Specification, 3rd Workshop on Theory and Applications
of Abstract Data Types, Informatik-Fachberichte 116, Springer-Verlag, 1985, pp. 171-177.
T.S.E. MAIBAUM, P.A.S. VELOSO & M.R. SADLER, A theory of abstract data types for pro
gram development: bridging the gap?, in: Formal Methods for Software Development, TAP
SOFT Proceedings, Vol. 2, LNCS, Vol. 186, Springer-Verlag, 1985, pp. 214-230.
D.L.PARNAS, On the criteria to be used in decomposing systems into modules, Communi
cations of the ACM, 15 (1972), pp. 1053-1058.
J.R. SHOENFIELD, Mathematical Logic, Addison-Wesley, 1967.
M. WIRSING, Structured Algebraic Specifications: A Kernel Language, Thesis, Institut filr
Informatik, Technische Universitat, Milnchen, 1983.

