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1. Introduction 

1.1. !nit ial algebra specification of data types 

Algebraic specifications of data types are often interpreted in terms of initial algebra 
semantics [21]. The data type specified is taken to be the initial algebra of the 
specification. The latter is characterized by the following two properties: 

(i) each of its elements corresponds to at least one closed term (term without 
variables) over the visible signature of the specification ("no junk"), 

(ii) two of its elements are never equal unless the corresponding closed terms can be 
proved equal by means of equational reasoning from the equations given in the 
specification ("no confusion"). 
Every algebraic specification whose hidden functions do not generate any "new" 
elements of visible sorts has an initial algebra satisfying (i) and (ii). It is determined 
uniquely up to isomorphism. 

In view of property (ii) we can write 

C/EqTh(S)= C/EqTh(I(S)), 

where S is the specification, J(S) its initial algebra, C/EqTh(S) the set of closed 
equations (equations without variables) over the visible signature of S that are 
provable from S by means of equational reasoning, and C/EqTh(J (S)) the set of closed 
equations valid in J(S). Since we consider only finite specifications, C/EqTh(S) is 
a recursively enumerable set. Hence, C/EqTh(l(S)) is recursively enumerable as well, 
and this is equivalent to saying that I (S) is a semicomputable algebra. So initial 
algebra specifications give rise to semicomputable data types. Conversely, if hidden 
sorts and functions are allowed in the specification, every semicomputable data type 
has an initial algebra specification. This result, which was proved for the single
sorted case in [1], will play a crucial role in the proof of our main theorem in 
Section 4. 

1.2. Equational logic, the equational theory of the initial algebra, and w-completeness 

The identity 

C/EqTh(S)= C/EqTh(I (S)) 

expresses the fact that equational reasoning is complete with respect to the set of 
closed equations valid in the initial algebra. If the restriction to closed equations is 
dropped, however, and open equations (i.e., equations containing variables) are taken 
into account as well, completeness is lost. Let EqTh(S) be the set of open as well as 
closed equations over the visible signature of S that are equationally provable from S, 
and let EqTh(J (S)) be the set of open as well as closed equations valid in the initial 
algebra /(S). Due to the "no junk" property of the initial algebra, an open equation is 
valid in /(S) if all closed equations that can be obtained from it by substituting closed 
terms over the visible signature of S for its variables, are valid in J(S). Clearly, such an 
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equation need not be valid in models of S containing "junk". As a consequence, 
equational reasoning need not be complete with respect to EqTh(I(S)) and 

EqTh(S) ~ EqTh(l(S)) 

is the only thing that can be stated with certainty m the general case. It may 
occasionally happen, however, that 

EqTh(S) = EqTh(l(S)) 

and in that case S is called inductively complete [25, 13] or w-complete [11]. All 
equations valid in the initial algebra of an w-complete specification Scan be proved 
by purely equational means from the equations given in S. 

Consider, for example, the following simple initial algebra specification of the 
natural numbers with addition and multiplication: 

module N 
begin 

sort Num 
functions 0 : N um 

S: Num--+Num 
+,.: Num x Num--+Num 

variables x, y : N um 
equations x + 0 = x 

x+S(y)=S(x+y) 

x.0=0 
x.S(y)=x+(x.y) 

end N. 

N is not cv-complete. The commutative, associative and distributive laws for addition 
and multiplication, for instance, are not equationally derivable from N, but by adding 
them an w-complete specification N is obtained [12]: 

module N 
begin 

import N 
variables x, y, z: N um 
equations x+y=y+x 

x+(y+z)=(x+y)+z 

x.y= y.x 

x.(y.z)=(x.y).z 

x .(y + z) = (x.y)+(x.z) 

end N. 

The w-completeness of N follows from the fact that, using the equations of N, 
every (0, S, +,.)-term can be brought in canonical polynomial form. Two such 
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canonical forms represent the same function on the natural numbers only if they 
are syntactically equal modulo associativity and commutativity of addition and 
multiplication. 

1.3. Which data types have OJ-complete initial algebra specifications? 

First of all, it should be noted that if a specification Sis w-complete, the correspond
ing theory EqTh(J(S)) is recursively enumerable since it is equal to EqTh(S) and the 
latter is recursively enumerable (whether Sis OJ-complete or not). As we explained in 
Section 1.1, the set of closed equations ClEqTh(J(S)) is always recursively enumerable, 
but this is not true for the full set of equations EqTh(l(S)). Even in seemingly very 
simple cases the latter is not recursively enumerable. Consider, for instance, the 
following initial algebra specification of the natural numbers with addition, multipli
cation and cut-off subtraction: 

module N' 
begin 

import N 
function ..:.. : N um x N um -7 N um 
variables x, y : N um 
equations x..:O=x 

o-=-x=O 
S(x)-=-S(y)=x-=- y 

end N'. 

The corresponding set of equations EqTh(I(N')) is not recursively enumerable [3, 
Section 8]. Hence, N' cannot be extended to an ro-complete specification, not even if 
hidden sorts and functions are allowed [25, 11]. The same example was used in [24] to 
show that equational logic plus structural induction is not necessarily complete with 
respect to EqTh(I(S)). Cf. also [17]. 

The extension of N to N did not require the introduction of hidden signature 
elements. Obviously, OJ-complete initial algebra specifications without hidden signa
ture elements give rise to algebras whose equational theory is finitely axiomatizable in 
terms of equations over the original signature. Such algebras are called.finitely based. 
The w-completeness of N shows that the set of natural numbers with addition and 
multiplication is finitely based. Conversely, the w-complete specification ofnonfinitely 
based algebras, if possible, requires hidden signature elements. 

1.3.1. Finite data types 
One of the simplest nonfinitely based algebras is a three-element groupoid con

structed by Murskii [23]. We give an w-complete specification for it using addition 
and multiplication modulo three as hidden functions. (In [11] the same was done for 
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a somewhat larger nonfinitely based groupoid due to Lyndon.) A straightforward 
initial algebra specification of M urskii's groupoid is 

module M 
begin 

sort Num 
functions 0, 1, 2: N um 

µ: Num x Num~Num 
variable x: Num 
equations µ(0,x)=µ(x,0)=µ(1, 1)=0 

µ(1, 2)= 1 
µ(2, 1)=µ(2,2)=2 

end M. 

It is shown in [23] that for each n ~ 3 the equation 
µ(x i. µ(xz, ... µ(xn-1 • µ(xn, X i)) · · · )) 

= µ(µ(x" Xz ), µ(x., µ(x.-1 .... µ(x4, µ(x3, Xz)) · · · ))) 

is valid in I (M) but not provable from equations with less than n different variables. 
Hence, /(M) is not finitely based. 

It so happens that the finite field Z 3 of integers modulo three with addition and 
multiplication is functionally complete, i.e., every k-ary total function on 1:'. 3 can be 
represented by a closed or open (0, 1, 2, +,.)-term. Furthermore, Z3 has an w
complete specification, which can be obtained in an economical way by taking N and 
adding a few equations to it (cf. [25] ): 

module Z3 

begin 
import N 
functions 1, 2 : N um 
variable x : N um 
equations 1 =S(O) 

2=S(l) 
S(S(S(x)))=x .(x.x)=x 

The polynomials P m,n (m, n = 0, 1, 2) defined by 

2 2 

Pm,.(x,y)= TI (x+i)· TI (y+j) 
i=O j=O 

i+m;CO j+n;CO 

have the property 

Pm,n(m,n)= 1 

Pm,n(x,y)=O if x=/:m or y#n, 
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so µcan be defined in terms of addition and multiplication modulo three as follows: 

µ(x, y) =P1,2(x, y) + 2P2 • 1 (x, y)+ 2?2 , 2 (x,y) = 2x 2 y 2 + 2x 2 y + 2xy. 

By adding this definition of µ to Z3 and hiding the operators S, + and ., an 
w-complete specification of I(M) is obtained: 

module M 
begin 

import Z3 

hidden functions S, +,. 
functionµ: Num x Num -tNum 
variables x, y : N um 
equation µ(x, y) = 2x2 y 2 + 2x2 y + 2xy 

end M. 

More generally, Z P is functionally complete for every prime p and has an w
complete specification ZP similar to Z 3 . Hence, the above method of obtaining an 
w-complete specification with hidden functions applies to all single-sorted algebras 
with p elements. If n is not prime, the method breaks down due to the presence of zero 
divisors in the ring ?L", but by using the functionally complete Post algebras P,, rather 
than ?L" we will show in Section 3 that all finite data types have an w-complete initial 
algebra specification with hidden functions. 

1.3.2. Infinite data types 
The above method does not seem to work for infinite data types with a recursively 

enumerable equational theory. The w-complete specification M' of Murskii's 
groupoid I (M) shown in Fig. l is considerably less elegant than the specification 
M given in the previous section, but it illustrates an approach that, apart from 
equations (6)-( 10) which work only in the finite case, does lend itself to generalization. 
It requires both hidden sorts and hidden functions. It should be emphasized that, in 
adding hidden elements, we need not bother about equational derivability of open 
equations containing hidden functions, but only about open equations containing the 
functions present in /(M). 

M' is an enrichment of the specification M given in the previous section. The hidden 
machinery of M' works as follows. Closed terms of hidden sort SimOpenTerm 
correspond to open terms of sort Num of M. The role of variables is played by 
j(~),j(S(~)), ... , and the counterparts of the constants 0, 1 and 2 of sort Num are i(O), 
i(I) and i(2). These act as values. Equation (5) of Fig. 1 establishes m on SimOpenTerm 
as the counterpart of µ on Num. The substitution function (J defined by equations 
(6)-(9) allows substitution of "values" for "variables". It is used in equation (10) to 
define an equality on closed SimOpenTerm-terms corresponding to equality of open 
Num-terms in /(M). This equality is transferred to Num by means of the apply-function 
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module M' 
begin 

import M (Section 1.3. l) 
hidden sort Bou/ 
hidden functions 

true, false: Boo/ 
hidden sort Sim Var 
hidden functions 

~: SimVar 
S: Sim Var--> Sim Var 
eq: Sim Var x Sim Var -+Boo/ 

variables u, r: Sim Var 
equations 

(!) eq(u,u)=true 
(2) eq(~, S(u)) =false 
(3) eq(S(u), O=fi1/se 
(4) eq(S(u), S(1')) = eq(u, 1') 

hidden sort SimOpenTerm 
hidden functions 

i: Nwn -+SimOpenTerm 
j: Sim Var-.SimOpenTerm 
m: SimOpenTerm x SimOpenTerm--+SimOpenTerm (counterpart of p) 
a: Num x SimVar x SimOpenTmn--+ SimOpenTerm (substitution) 

variables x, y: Num 
u,v:SimVar 
11 , t 2 : SimOpenTerm 

equations 
(5) m(i(x),i(y))=i(p(x,y)) 
(6) a(x,11,i(y))=i(y) 
(7) a(x,u,j(11))=i(x) 
(8) e<1(11, t')=fa/se = a(x, u,j(1•)) =)(1:) 
(9) a(x, 11, m(t 1 , t2 )) = m(a(x, u, t 1 ), a(x, u, t 2 )) 

(10) a(O, 11, t il = a(O, u, t2 )& a(l, u, t 1)=a(I, 11, t 2 ) & a(2, u, t 1 )= a(2, u, t 2 ) => 11 = t 2 

hidden sort NumList 
hidden functions 

nil:NumList 
list : N wn x N umList --> N 11mList 
first: Num/ist --+Nwn 
tail: NumList --+N11mList 

variables x: Num 
I: NumList 

equations 
(11) .first(nil)=O 
(12) .first(/ist(x,l))=x 
(13) tai/(ni/)=nil 
(14) tail(list(x,l))=l 

hidden function 
apply: SimOpenTerm x NumList --+Num 

variables x : N um 
u:SimVar 
l:N11mList 
11 , t 2 : SimOpenTerm 

equations 
(15) apply(i(x),l)=x 
(16) apply(j(~),l)=first(/) 
(17) apply (j(S(u)),l)=apply(j(u),tail(l)) 
(18) apply(m(t 1 , t 2 ), I)= p(apply(t 1 , /), apply(l z, I)) 
end M' 

Fig. l. 

155 
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defined in equations ( 15)-( 18). For example, the equation 

11(x,2)=x, 

which is valid in J(M) but not an equational consequence of M, now obtains the 
following equational proof: first note that the corresponding closed equation of sort 
SimOpenTerm 

m (j(~). i(2)) = j (~) 

follows from equation (10) with u = ~ and equation (5). Next, using apply and 
equations (15)-(18) the left- and right-hand sides can be transformed into the original 
open terms 

apply(m(j((), i(2)), list(x, nil))= µ(x, 2) 

apply(j(~), list(x, nil)) =x. 

Similarly, the equational proof of 

is 
p(x, p(y, x)) = p(x, y) 

µ(x, t<(y, x)) = apply(m(j( ~), m(j(S( ~) ),j( ()) ), list(x, list ( y, nil)))'~ 1 

apply (m(j( ~),j (S ( rn ), list(x, list( (y, nil)))= µ(x, y)_ 

For reasons of readability we put equations (8) and (10) in positive conditional form, 
but this is not strictly necessary. The value 0 assigned to first(nil) by equation (11) is 
arbitrary; 1 and 2 would have done equally well. 

An w-complete specification similar to M' can be given for all data types with 
a recursively enumerable equational theory. The introduction of hidden signature 
elements such that the corresponding closed terms mimic the open terms over the 
original signature as well as the use of apply to transform closed identities into open 
identities are generally applicable. For infinite data types equations (6)-(10) have to be 
replaced by other ones, however, so as to obtain a proper definition of the equational 
theory of the data type in question (possibly by means of additional hidden sorts and 
functions)_ We will prove the corresponding general theorem, which is our main result, 
in Section 4. 

J-4_ Related work 

Plotkin has shown that the ..iK/317-calculus is w-incomplete [26]. Paul [25] intro
duced the notion of inductive completeness while analyzing possible failure modes of 
the inductive completion (also called inductionless induction or proof by consistency) 
algorithm [13]. The equivalent notion of w-completeness was used in [11] in an 
attempt to understand what "making maximal use of incomplete information" might 
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mean in the context of partial evaluation or mixed computation [6]. The problem of the 
w-completability of initial algebra specifications addressed in the current paper arose 
in that context [11, Open Question 2.6]. 

After we finished this paper, we learned that Gagliardi and Tulipani had indepen
dently solved the w-completability problem for initial algebra specifications of 
finite data types [7]. We discuss their proof, which is rather different from ours, 
in Section 3. In the same paper they have given a sufficient condition for an infinite 
data type to have a nonrecursively enumerable equational theory. Recall that such 
a data type cannot have a finite w-complete initial algebra specification. Their 
condition, which involves the definability of a discriminator function of the 
data type in terms of its fundamental operations, applies, for instance, to the 
natural numbers with addition, multiplication, and cut-off subtraction discussed in 
Section 1.3. 

The standard reference on initial algebra semantics is the survey by Meseguer and 
Goguen [21]. A systematic treatment of the power of initial algebra specification can 
be found in [ 1]. One of its main results, which plays a crucial role in the proof of our 
main theorem in Section 4, says that every semicomputable data type has an initial 
algebra specification with hidden sorts and functions. For relevant work on 
(non)finitely based algebras the surveys by Taylor [30] and McNulty [20] may be 
consulted. A survey of results on functional completeness and related matters has been 
given by Rosenberg [29]. 

Moller has studied some of the axiom systems for process algebra from the 
viewpoint of w-completeness [22]. Strategies for proving (u-completeness of initial 
algebra specifications are discussed by Lazrek et al. [ 15] and Groote [8]. 

2. Preliminaries 

We consider only finite specifications. Provable always means equationally provable. 
We do not allow algebras with empty carriers or partial functions as models of 
a specification, so the usual rules of equational logic apply without reservation (see 
[21, Section 4.3] for a discussion of the effects of allowing models with empty carriers 
on the rules of equational logic). In the context of a signature function always means 
n-adic function (n ~ 0). Zero-adic functions are sometimes called constants. Signatures 
never have void (empty) sorts. 

As specifications may contain hidden sorts and functions, it is necessary to define 
the meaning of hiding at the semantic level of equational theories and initial algebras. 
Let S be a specification with visible signature I and total signature Er. IT- I consists 
of the hidden sorts and functions of S. Since hidden functions may be defined on 
visible sorts, Er-I: need not be (and virtually never is) a self-contained signature. Let 
ST be the specification obtained from S by making the entire signature L: T visible. In 
keeping with [ l] and the informal discussion in the previous sections we adopt the 
following conventions: 
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(1) The set of equations provable from S consists of the l:-equations provable from 
ST, i.e., 

EqTh(S) =Eq(X) nEqTh(ST ), 

where Eq(l:) is the set of all .E-equations. Similarly, the set of closed equations 
(equations without variables) provable from S consists of the closed I-equations 
provable from ST, i.e., 

CIEqTh(S)=Eq(l:)n CIEqTh(ST ). 

(2) The initial algebra of S is the X-reduct of the initial algebra of ST, i.e., 

J(S)=l"oJ(ST). 

The reduct r o I (ST) can be interpreted in two ways (cf. [I, Section 2] ), namely 
(a) as the algebra J(Sy)l.c consisting of the carriers and functions of !(ST) named in 

X (the usual interpretation), or 
(b) as the subalgebra of I (Sy) lr generated by the functions named in E (the 

subalgebra interpretation). 
To avoid any possibility of confusion between the two interpretations, we consider 

only specifications for which they coincide. This is the case if J(ST) Ix is l:-minimal ('"no 
junk"), i.e., if every closed L"rterm of a sort in r is equal to a closed l:-term. The 
hidden functions of such specifications do not generate any "new" elements of visible 
sorts. 

(3) The set EqTh(I(S)) consists of the I-equations valid in J(S). According to (2) we 
assume J(S) to be l"-minimal, so an open equation is valid in J(S) if and only if all 
closed equations that can be obtained from it by substituting closed 2.'-terms for its 
variables, are valid in J(S). A closed equation is valid in I (S) if and only if it is provable 
from Sin the sense of (1), i.e., ClEqTh(l(S))= ClEqTh(S) {"no confusion"). 

Keeping these conventions in mind, we can now give a precise definition of 
w-completeness: 

Definition 2.1. An algebraic specification S with hidden sorts and functions is w
complete if EqTh(S) = EqTh(I (S) ). 

The w-completeness of a specification S does not imply the w-completeness of the 
specification ST obtained from S by making the entire signature of S visible. Open 
equations that are valid in I (ST) need not be equationally derivable if they contain 
functions that were hidden in S. 

3. Finite data types 

Theorem 3.1. Every finite minimal algebra A has an w-complete initial algebra specifica
tion with hidden functions. If A is single-sorted, the number of hidden fimctions required 
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module P11 

begin 
sort E 
functionse;:E (O~i~n-1) 

C; : E --> E (0 ~ i ~ n - 1) 
V :ExE-->E 
/\ :ExE-->E 

variables x, y, z: E 
equations 

(I) C;(e;)=en-t 
(2) C;(ej)=e0 (j#i) 
(3) e; V ej=ek (k=max(i,j)) 
(4) e; /\ ej=ek (k=min(i,j)) 
(5) xVy=yVx 
(6) x/\y=y/\x 
(7) xV(yVz)=(xVy)Vz 
(8) x /\ (y /\ z)=(x /\ y) /\ z 
(9) xVx=x 

(10) x/\x=x 
(II) x/\(xVy)=x 
(12) x V (x /\ y)=x 
(13) x V (y /\ z)=(x Vy)/\ (x V z) 
(14) e0 V x=x 
(15) x/\e11 - 1 =x 
(16) C;(x) /\ C/x)=e0 (i#j) 

n-1 

(17) V C;(x)=e11 _ 1 

i=O 

(18) 

(19) 

(20) 

C;(X v y)=(C;(x) /\ v Cj(y)) v (c;(.V) /\ v Cj(.x)) 
;~O J=O 

Co(x /\ y)=C 0 (x) V C 0 (y) 
11- l 

x = V (e; /\ C;(x)) 
i= 1 

end P11 

Fig. 2. 

(i> 1) 
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is ~ 1. Otherwise, it is ~ 2Nsorts + Nrunctions, where Nsorts is the number of sorts and 

Nrunctions is the number of functions in the signature of A. 

Proof. (a) Let A be a minimal algebra with n elements, signature I:, and single sort E. 

If n = l an w-complete specification S of A is obtained by adding the equation x = y to 

S with x, y variables of sort E. If n? 2 consider the specification P,, given in Fig. 2. 

Apart from a few insignificant differences, P,, is the equational axiomatization of 

n-valued Post algebras given by Epstein [5]. Post algebras bear the same relationship 
to many-valued propositional calculi as do Boolean algebras to ordinary proposi

tional calculus. In fact, two-valued Post algebras are Boolean algebras. In that case C0 

is negation, C1 is the identity function, and V and A are ordinary disjunction and 

conjunction. We only consider the initial algebra of P,,, which is the n-valued 
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Post algebra with n elements Pn. It is already fully determined by equations (1)-(4). 
The other equations are valid in Pn as is easily verified by substituting constants 
e0 , ...• e11 _ 1 for the variables occurring in them. _ 

P,, is a distributive lattice by equations (5)-(13). P11 has the following two properties: 
(i) Its initial algebra Pn isjimctionally complete. Indeed, every k-ary function/ on Pn 

can be represented by a term in disjunctive normal form: 

f(x 1 , •• .,xk)= V [j\e;" .. .,e;")/\C;,(x1)/\ ··· /\ C;Jxd]. 
O~ij~n-1 

1 ~j~k 

This is easily verified by noting that C;,(e; 1 )/\···/\C;"(e;J=e11-1 and 
C;,(xi)/\ ··· /\C;Jxd=e 0 otherwise, and by applying (15), (14) and the equation 
x /\ e0 = e0 • which is valid in P"' 

(ii) P11 is uJ-complete. By virtue of [ 4, Theorem 13], equations ( 1 )-(20) are sufficient 
to bring any term t[x 1 , ...• xk] (k?: 1) in disjunctive normal form 

V [e, 1 ... .,ik /\ C;, (xi) /\ · ·· /\ C;"(xd]. 
0 ~iJ~ri-1 
l~j~k 

Next, all nonessential variables, i.e., all variables whose value does not affect the value 
oft if viewed as a function on P11 , can be removed by means of equation (17). This 
yields the reduced normal form 

V [e1 1 .... 11 /\ C;,(yi) /\ ··· /\ C;,(y,)], (1 ~l~k), 
O~i1 ~11- l 

1 ~j~ l 

where {y 1 , ... , y1} is the subset of { x 1 ,. .. , xd consisting only of the essential variables 
oft, or the reduced normal form e; if all variables oft are nonessential (l = 0). Two such 
reduced normal forms are equal in Pn if and only if they are syntactically identical 
modulo associativity and commutativity of V and /\ (equations (7), (8) and (5), (6) ). 
Hence, Pn is w-complete. 

An w-complete specification of A can now be obtained by taking P11 , hiding ail its 
functions, adding I:, and adding for each function f of I its representation as an 
(eo, ... , en-1, Co, ... ,Cn-1• V, /\)-term t1. (We assume that the functions of Pn are not 
in I. Otherwise, they have to be renamed first.) This yields the following specification 
:S: 

module S 
begin 

import P11 

hidden functions e Q, ••. , e 11 - I , C Q, ••• , C n - 1 , V , /\ 
import r 
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variables Xi. ... ,xm:E (m=maxarity(l:)) 
equations 
f(x1, ... ,xd=t1[e0 , ..• ,e11 _ 1,C0 , ••. ,C11 _ 1, V, /\,xi.···•xk] 

(JE'L, k= arity(/) ;:::O) 
end S. 
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To obtain an w-complete specification with only a single hidden function, we replace 
all functions of P11 except e0 with the generalized Sheffer function [32] 

xly= -(x Vy), 

where 

n-2 

-x= V [e;+ 1 /\ C;(x)] 
i=O 

is a single step rotation, using the identities 

C;(x)= "' ("' ( ,...,n-l -ix V e,.- 2 ) V e,.- 2 ) 

x /\ y= -(-x V -y) 

n-2 

-x= V -(-(- 11 - 1 -ix Ve,,_ 2 ) Ve11 -2-j) (-e;=en-1-d 
j=O 

e;= ,...,ie0 (i#O) 

x V y=-"- 1 (xly) 

-x=xlx. 

Ap~rt from its smaller signature, the resulting specification P~ has the same properties 
as P11 • Since A is minimal, each of its elements corresponds to a closed l:-term, so 
E contains at least one constant. Without loss of generality we may assume this 
constant to be e0 . Using P~, the desired specification of A becomes: 

module S' 
begin 

import P~ 
hidden function I 
import l: 
variables Xi. ... ,xm:E (m=maxarity(l:)) 
equationsf(xi. ... ,xd=t1 [e0, j,x1 , •.. ,xk] (JEE,f #e0 ,k=arity(f);:::O) 

end S'. 

This proves the theorem for the single-sorted case. 
(b) Let A be a finite many-sorted minimal algebra with signature l: such that 

N.0, 1.;;::: 2. Let S be an initial algebra specification of A without hidden sorts or 
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functions. Such a specification can be obtained simply by giving an appropriate table 
of values for each fundamental operation of A. Since A is minimal, each of its elements 
corresponds to a closed I-term, so this does not require the introduction of hidden 
items. Let Ebe a sort in I such that the number of elements n of the corresponding 
carrier of A is at least as large as the number of elements of any of the other carriers 
and consider the specification given in Fig. 3. 

module S' 
begin 

import S 
functions i,: s-+ E (sEl:') 

j,:E-+s (sEl:') 
rr:Ex ··· xE__,,£ (JEX, arity(rrl=arity(f);;::O) 

variables x,: s (sEE) 
Xi, ... ,xm: E (m=maxarity(.l)) 
equations ... (equations defining injections i, for all sorts s # E) 

... (equations defining surjections j, for all sorts s # E) 
(I) iE(xe)=Xe 
(2) j,(i,(xJ)=x, 
(3) r1 (xi, ... ,xd=i,0 (f(jsi(xi), ... ,j,.(.xd)) (type(.f)=s 1 x ··· xsk--"So) 
end S'. 

Fig. 3. 

S' takes the original specification S of A as its point of departure and adds a pair of 
functions is: s """"E and j,: E-+s for each sort sEI in such a way that equations (1) and 
(2) (of Fig. 3) hold and A is equal to I o I (S'), the I-reduct of I (S') (cf. Section 2). 
Furthermore, for each f EIS' adds a function T / of the same arity as f but operating 
entirely within the confines of E and defined by equation (3). Let I E consist of E and 
the functions r1 . To each I-term u corresponds a l:cterm Tu which is obtained by 
replacing each function symbolf in u by r1 and each variable x of sorts by a variable 
Tx of sort E. Repeated application of equations (3) and (2) immediately yields 

(3') 

for suitable sorts s0 , •.. , sk. A 27-equation u = v and its associated I £-equation ru = rv 
hold simultaneously. Indeed, ifu=v holds, then i50 (u)=i, 0 (v) and by substitutingj,(Tx) 
for each s-sorted variable x throughout u and v and applying (3') Tu= Tv follows. 
Conversely, ifru=rv holds for some equation u=v, then u=v itself holds as well by (3'), 
(2) and substitution of is(x) for Tx throughout u and v. As a consequence, an w
complete specification of J(S') can be obtained from an w-complete specification of 
I E o J(S'). The latter is a single-sorted minimal algebra so part (a) of the proof applies. 
With A= I o J(S') this yields the following w-complete specification of A given in 
Fig. 4. 
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module S 
begin 

import S' 
hidden (!!actions is.ls· t I 

import P~ (with n the cardinality of carrier E of .4) 
hidden functions e 0 , I 
variables x 1 , •.• ,.'<m: E (m = maxarity(l')) 
equations 

(4) _t1 (x1, ... ,xd=t,,[e0 ,l.x1, ... ,xk] 
end S. 

Fig. 4. 

163 

The number of hidden functions of Sis 2Nsorts + Nrunctions + 2, but the identity functions 
iE and jE were introduced only for reasons of convenience and can be omitted. This 
proves the theorem for the many-sorted case. D 

Remarks. (i) The functional completeness of Pn (with fundamental operations 

"'n= ~"- 1 and Vn= V) was first pointed out by Post [27, Section 11]. 

(ii) A somewhat different equational axiomatization of Post algebras was given by 

Traczyk [31]. It is based on the fundamental operations C and Di (1 ~i~n-1) with 
C=C0 and 

n- 1 

Di(x) = V Cj(.x). 
j=i 

The latter are used as auxiliary functions in [4]. They obey the simple laws 

DM V y)=Di(x) V D;(y) 

Di(x A y)=.Di(x) A Di(y). 

(iii) In the terminology of [1] Theorem 3.1 says that every finite data type has an 

w-complete (FIN, EQ, HE) specification. Owing to the existence of finite algebras that 

are not finitely based the hidden functions cannot in general be dispensed with 

(Section 1.3.1), so (FJN,EQ,HE) cannot be improved to (FIN,EQ). 
(iv) Gagliardi and Tulipani [7] prove Theorem 3.1 in the single-sorted case by 

adding the ternary discriminator as a hidden function. This yields a short proof using 

well-known properties of the discriminator. They also show that a single equation is 

sufficient. Our proof is somewhat more concrete and requires only a single binary 

function, namely, the generalized Sheffer stroke. We have not attempted to minimize 

the number of equations. 

4. The main theorem 

Theorem 4.1. Every minimal algebra A whose equational theory is recursively enum

erable has an w-complete initial algebra specification with hidden sorts and junctions. 
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Proof. (a) Let A be a minimal algebra with signature I and single sort E such that 
EqTh(A) is recursively enumerable. We first define an algebra A' such that 
C!EqTh(A') is similar to EqTh(A). Consider the following specification without 

equations: 

module S0 

begin 
sort SimVar 
functions ~:Sim Var 

S: Sim Var -+Sim Var 
sort SimOpenTerm 
functions j: Sim Var -+SimOpenTerm 

<Pf:SimOpenTerm x ··· xSimOpenTerm -+SimOpenTerm 
(counterpart ofj,jeI, arity(cf>1)=arity(f)~O) 

end S0 • 

Let the variables of sort Ebe x1 , x2 , .•• and let the signature of S0 be 1:0 • With every 
I-term t we associate a closed I 0 -term <jJ1 of sort SimOpenTerm which is obtained by 
replacing each function symbolfin t by cp1 and each variable xk by j(Sk-I (~)).Using 

t/>, we define a congruence = on the free term algebra /(S0 ): 

(i) (u, v closed terms of sort SimOpenTerm) u = v if and only if there is an equation 
s=teEqTh(A) such that </>,=u and cp 1=v; 

(ii) (u, v closed terms of sort Sim Var) u = v if and only if u and v are syntactically 
identical. 

Let A'= I (S0)/ =. Obviously, 

s=teEqTh(A) if and only if cf>,=cf>1eClEqTh(A'). 

Since EqTh(A) is recursively enumerable, C/EqTh(A') is recursively enumerable as 
well, so A' is a semicomputable minimal algebra. Hence, according to Theorem 5.3 of 
[1] there is a specification S' with hidden sorts 1 and functions such that 

l(S')=A' 

and I (S') is I 0-minimal if I is interpreted in the usual way (cf. point (2) of Section 2). 
Hence, with C/EqTh(A')=ClEqTh(J(S'))=C/EqTh(S'), we have 

s=teEqTh(A) if and only if 4>.=4>1eC/EqTh(S'). 

To obtain an w-complete specification S of A we use S' as hidden component and add 
some further hidden machinery linking SimOpenTerm to E (see Fig. 5). 

1 lf A has a recursive equational theory, A' is computable. In that case, S' can do without hidden sorts 
according to Theorem 5.1 of [I]. 
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module S 
begin 

import J: 
import S' 
hidden sorts Sim Var, SimOpenTerm 
hidden functions ~. S,j, c/>r 
hidden sort EList 
hidden functions 

nil: EList 
list: Ex EList --.EList 
first: EList -> E 
tail: EList _,. EList 

variables x : E 
/: EList 

equations 
(I) first(nil)=e 0 (e0 is an arbitrary constant of sort£) 
(2) first (list(x, I))= x 
(3) tail(nil) =nil 
(4) tail(list(x,l))=l 

hidden function 
apply: SimOpenTerm x EList--> E 

variables u : Sim Var 
1: Elist 
t 1 , ••• ,tm:E (m=maxarity(J:)) 

equations 
(5) apply(j(~),l)=.first(l) 
( 6) apply(j(S (u) ), I)= apply(j(u), tail(/)) 
(7) !1pply(</J 1 (t1> ... , td, I) =f (apply(! 1 , l ), ... , apply(tk,/)) (JE:L:, k = arity (f) ;?o 0) 
end S. 

Fig. 5. 
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Without loss of generality we assume that the hidden names of S do not occur in E. 

S has the following two properties: 
(i) Its initial algebra /(S) is E-minimal if I is interpreted in the usual way. Indeed, 

/(S') is I 0-minimal if I is interpreted in the usual way, so we need not bother 

about the hidden functions of S', but may concentrate on the hidden functions 

introduced in S. Let t be a closed term of sort E not containing any of the hidden 
functions of S'. If t does not contain first or apply it is syntactically a l,'-term. If t is of 

the form first(/) with l not containing first or apply it is equal to a closed E-term by 

( 1 )-(4). (Without equation (1) this would not be true. The presence of a constant e0 in 

I; is guaranteed by the minimality of A.) Finally, if t is of the form apply (t', I) with I not 

containing apply, then it is equal to a closed E-term by (5)-(7) and (1)--(4). 

(ii) EqTh(S) = EqTh(A ). 

For any I-term t we have by virtue of the definition of cp and equations (1)-(7) 



166 J.A. Bergstra, J. Heering 

with M the largest index of any variable xk occurring in t (0 if t is a closed term) and 
arbitrary/. Now, if s=teEqTh(A), then cf>.=cf>1eClEqTh(S') and therefore 

with M the largest index of any variable occurring in s or t. Hence, s = te EqTh (S) and 
EqTh(S) 2 EqTh(A ). 

Conversely, to show that EqTh(S) s; EqTh(A) it is sufficient to show that 
ClEqTh(S) s; EqTh(A). If s=teCIEqTh(S), then M =0 and 

apply(cf>., I)= apply(cf>1, I) 

with I a variable of sort EList. But this implies cf>.= cf>1eC/EqTh(S') as application of 
equations (4) or (7) is useless and the other ones do not apply. Hence, s= teEqTh(A). 

We conclude from (i) and (ii) that Sis an w-complete initial algebra specification 
with hidden sorts and functions of A. This proves the single-sorted case. 

(b) We omit the proof of the many-sorted case. It is a straightforward generaliz
ation of (a). D 

Remarks. (i) The proof of Theorem 4.1 is a generalization of the construction of M' in 
Section 1.3.2. 

(ii) In the terminology of [1] Theorem 4.1 says that every data type with a 
recursively enumerable equational theory has an w-complete (FIN, EQ, H ES) speci
fication. 

(iii) Gurevic has recently shown that the algebra N of positive natural 
numbers with signature {1,+,., i} (where njm=nm) is not finitely based [9]. This 
surprising result provides the definitive answer to Tarski's High School Algebra 
Problem. As a consequence, N does not have an w-complete initial algebra specifica
tion without hidden signature elements (cf. Section 1.3). On the other hand, N has 
a recursive equational theory [28, 16], so Theorem 4.1 applies and we may conclude 
that it does have an w-complete initial algebra specification with hidden sorts and 
functions. 

(iv) Kleene has shown that each recursively enumerable deductively closed first
order theory without identity is finitely axiomatizable using additional (i.e., hidden) 
predicates [14, 2]. A somewhat similar result for equational theories is an immediate 
consequence of Theorem 4.1. Every recursively enumerable equational theory which is 
the theory of some minimal algebra has a finite equational axiomatization with 
hidden sorts and functions. Not every recursively enumerable deductively closed 
equational theory is the theory of a minimal algebra, however, so this is a limited 
equational analogue of Kleene's result. 
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5. Open problems 

(1) Whereas hidden functions are in general indispensable, we do not know 
whether hidden sorts are ever really necessary. The results obtained by Marongiu and 
Tulipani [18, 19] for ordinary (not necessarily w-cornplete) initial algebra specifica
tion of semicomputable data types may have consequences for the w-cornplete case as 
well, but these remain to be investigated. 

(2) Let ST be the specification obtained from S by making all its hidden sorts and 
functions visible (cf. Section 2). Does every minimal algebra A with a recursively 
enumerable equational theory have an w-complete specification S such that ST 
is w-complete as well? For this to be true, each A whose equational theory is 
recursively enumerable should at least have an w-complete specification S such that 
EqTh(l(ST)) is recursively enumerable as well.This is a question we have not yet 
addressed. 

(3) As was pointed out in Section 4 of[l l], perhaps the main problem is automatic 
w-enrichment of algebraic specifications, i.e., the mechanical addition of identities that 
are valid in the initial model. Even rudimentary automatic w-enrichment will have 
applications in inductive completion (see Section 1.4), unification in equational 
theories, and the automatic derivation of partial evaluators from standard evaluators 
(cf. [10]). Our proof of the existence of an uJ-complete enrichment for initial algebra 
specifications of data types with a recursively enumerable equational theory does not 
contribute much to a solution of the automatic w-enrichment problem except in the 
finite case, in which the proof is constructive and yields an (tJ-enrichment in terms of 
Post algebras. 
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