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. *) Process algebra semantics for queues 

by 

. **) J.A. Bergstra & J. Tiuryn 

ABSTRACT 

An unbounded queue over a finite set of data values is modeled as a state 

transition system. After behavioural abstraction its behaviour is a process 
• 00 • 

Qin A where A is the collection of the input and output actions for the 

queue. A specification of Q by means of recursion equations is provided, 

using a new auxiliary operator on processes. It is shown that this operator 

is necessary in the sense that it is not possible to specify Q using recur­

sion equations built from sequential, alternative and parallel composition 

only. Sequential composition of two queues is shown to realise another 

queue. 

KEY WORDS & PHRASES: Process aZgebra, queue, fixed point equations, bisimuZa­

tion 

*))This report will be submitted for publication elsewhere 
** . . University of Warsaw. 





INTRODUCTION 

An unbounded queue~ (or buffer working in FIFO mode) is a device able 

to sequentially receive data values from a domain D, to store them and to 

deliver them in the order in which they were received. 

In order to describe the behaviour of queue Q it is assumed that Dis 

finite, moreover the input actions and output actions together form an 

alphabet of actions for Q. These actions exclude one another in time. In 

particular, for each d ED there are these actions: 

d input d 

d output d 

Sets D and A are defined by Q = {~ I d E D}, A = D u !!_. Then Q can be seman­

tically described as a state transition system over A. 

After behavioural abstraction a process Qin A00 is obtained. A00 is the 

projective limit model of processes introduced in BERGSTRA & KLOP [3]. 

In ;fact, behavioural abstraction yie1ds a process 1T (s) for each state 

s of the transition system for Q. A states is characterised by the sequence 
* 00 s ED of data that can be output before new input is received. Within A 

there are identities that relate the various ,r(~) to one another: Amongst 

these identities there is an elegant but infinite subset which completely 

describes all ,r (s) : 

{
,r(~) = l d.,r(d), and for alls: 

dED 

,r(s*d) = l e.1r(e*s*d) + ~.,r(s). 
eeD 

Assuming that Q is initially empty its behaviour is given by 

,r(~) = Q 

00 

Working in the two sorted system, containing both A and the state transition 

system as sorts as well as the auxiliary operator 1r, the above equations 

rrovide a finite equational specification of Q. 
00 

The main problem addressed here is how to specify Qwithin A without 

the use of an extra state transition system. Besides it is shown that the 
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sequential composition of two queues again yields a queue, This involves 

ACP, algebra of connnunicating processes from [3], the method of [4] to 

combine two queues into a network and the abstraction mechanism from [SJ. 

The results of this paper are these. 

(l) There are auxiliary operators /1\i, /},i for d € D, on A°'' which can be 

specified by means of finitely many recursion equations which allow to 

specify Q by means of a single recursion equation over 

(2) Q cannot be defined using a finite system of guarded fixed point equations 

over 

Aco ( +, •, II , [lJ • 

(3) Let a,S,y be three locations, and let Qa,S, QS,Y, Qa,y be queues which 

take inputs in a,S,a and produce outputs in S,y,y respectively. 

Now sequentially composing Qa,S and QS,y produces Qa,y. 

In ACP terms: 

s 

y 

I. PROCESS ALGEBRA 

Let A be a finite set of atomic actions. Processes are configurations 

of actions of A. Composition tools for processes are: 

+ alternative composition 

• sequential composition 

II parallel composition (merge) 

ll_left merge. 
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The axioms of PA below, taken from [1] describe the operators; a varies over 

A. 

X+Y=Y+X 

X + (Y+Z) = (X+Y) + Z 

X + X = X 

(X+Y).Z = X.Z + Y.Z 

(X.Y).Z = X.(Y.Z) 

xllY = x[LY + YILX 

alLX = a.X 

(a.X)ILY = a(X!IY) 

(X+Y) lLZ = XlLZ + YILZ • 

Because A is finite PA is finite too. As an equational specification it has 

an initial algebra, called A. 
w 

For each none may identify processes which differ at depth n only, 

thus obtaining a congruence= on A. A =AI= is a model of PA as well. n w n w n 
The structures A (nEw) have a projective limit A00 which contains A as a n w 
proper substructure. (A00 was introduced in [3] and is in fact an algebraic 

reconstruction of the topological process semantics in DE BAKKER & ZUCKER 

[1,2]). A00 serves us as a standard model for processes. 

For processes XE A one defines projections (x) as follows: w n 

(a) = a 
n 

(aX) 1 = a 

(aX)n+l = a(X)n 

(X+Y) = (X) + (Y) • n n n 

The congruence= can be formally defined by X = Y ~ (X) = (Y) • n n n n 
An element of A00 is just a sequence 

with P EA (i.e. (P) =P) and for all n: (P +I) = P • The operations n n nn n n n n 
+,·,II and lL are defined componentwise. 
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REMARK. PA does not describe composition with communication. In the framework 

of ACP (see [,~,5] for an introduction), communication requires the following 

extra features. 

(i) a larger set of atoms, say B such that B ~ A. 

(ii) a constant o, for deadlock in B - A 

(iii) a communication function ·I·: Bx B-+ B which is commutative and 

associative and satisfies alb= o, and alb= o (for a EA). 

(iv) a subset H of B - A of subatomic actions. Usually b E H ~ 3b' E B 

bib' ,f, iS. 

The axioms of ACP, (not repeated here) will define an initial model B, 
w 

finite models lB and a projective limit B00
, which contains A00 as a substructure. 

n 
Typically a process of the form 

with p,q E B00 will be in (A u 1) 00 where I c B - A 1.s a set of so called 

internal,, actions. 

In order to obtain a process r* in A00 which is equivalent tor an abstraction 

mechanism is required which allows to conclude that 

* r +-+ r --1 

* (r is equivalent tor modulo internal steps I). Such a mechanism is described 

in [5] and inspired by MILNER [9]. 

An equation X = T(X 1, ••• ,~) over A 

preceded in T by some atomic action. 

00 

is guarded if each X. in Tis 
l. 

A system of guarded fixed point equations 

X. = T.(X., ... ,x_) 
i i i --k i = 1, ... ,k 

always has a unique solution !i, ... ,~ in (A 00
) k. 

Pis called recursively definable if there exists a (finite) system of 

guarded fixed point equations with solutions !i, ... '~k such that ! 1 = p. 

Recursive definitions are the most appropriate specification method in 

process algebra. 



2. TWO SPECIFICATIONS OF QUEUE 

Dis a finite set of data values, D denotes {~Id€ D}, where dis a 

disjoint copy of d. 

Consider the following equational specification for an algebra 

(SEQ;*,~,d€D) = I(E,E); 

I: SORTS SEQ 

FUNCTIONS: SEQ X SEQ-+ SEQ 

CONSTANTS: ~, d € D. 

E: ~ * X = X * ~ = X 

(X*Y)*Z = X*(Y*Z) 

5 

According to [6] (E,E) is extended to a transition system specification, with 

actions A and transitions T as follows: 

A: Du D 

T: d: X + d*X (ford€ D) 

d: X*d + X (ford€ D). 

(E,E,A,T) is an algebraic specification of a state transition system in the 

sense of [6]. I(E,E) denotes the initial algebra of (E,E). 

We define a state of the system to be a point in I(E,E) from which at 

least one transition is possible. Clearly in the present case all points in 

I(E,E) are states. According to [6] one assigns to each states of I(E,E) 

a process rr(s) in Am. This step is called beha:viour>aZ abstraction. 

Rather than giving a formal definition of rr(s) in generalwe describe the 

properties of the rr(s) in our particular case: 

{
rr(~) = d~D d.rr(d) 

rr(s*d) = ~.rr(s) + l e.rr(e*s*d). 
e€D 

This is an infinite system of guarded equations which uniquely determine each 
m 

rr(s) €A. 

rr(~) corresponds toQ with empty initial state. This is the first specifi­

cation of Q. The second specification aims at a finite system of fixed 

point equations for Q. We will prove that Q is the unique solution of the 
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equation 

Q = l d • ( Q IA~_) • 
de:D 

00 00 

Here for each de: D, Ad is an auxiliary operator: A +A, called Q-merge, 

which was introduced in [4]. 

The operators Ad and additional auxiliary operators£~ are simulta­

neously defined by means of these equations, (again a ranges over the atomic 

actions). 

X /A d = d.X + xii:. d QMl 

a /1:,. d = a.d QM2 

b/A d = 0 QM3 

a.X /A d = a (X IA ~) QM4 

a.X fl::. d = 0 QM5 - -
(X + Y) fl::. d = X /1:,. d + y IA. d QM6 

Here one works in (Au {o})00 with the following axioms for o: 

X + o = X 

o • X = o 

which are axioms A6 and A7 of ACP. 

In order to show that QMI - 6 serve as a proper definition of A~ and 

IA Q and do not introduce unwanted identifications on (Au {o}) or 
w 

(Au {0}) 00 a prooftheoretic analysis of QMl - 6 is required. We will not 

perform this analysis here as it is essentially straightforward. Its results 

can be concisely summarised as follows: 

PROPOSITION. 

(i) A (+,·,II, lL, Ad, £d,o), the initial, aZgebra of Al-7, Ml-4, QMl-6 is an 
w - -

enrichment of Al-7, Ml-4. 

(ii) X = Y irrrpZies X A d = Y IA d and X /A d = Y £ d. This gua,rantees 
n - n - n 

that IA ~ and, £ i can be extended to A 00 
( +, • , 11 , ll, o) • 

We will now establish this theorem: 



THEOREM. ir(0) = l d.(ir(0)~i). 
dED 

From the the theorem it follows that the equation 

\ X = L 
dED 

d. (Xb\i) 

specifies Q = ,r(~) because it has exactly one solution. 

PROOF. The proof rests on a more general lemma: 

LEMMA. For aU s 

Given this lemma the equation follows immediately: 

,r(0) = l d. (1r(0)b\d). 
dED 

PROOF of the lemm.a. By induction on n we show that for alls: 

(,r(s*d)) = (,r(s)b\d) , 
n -n 

from which the required identity follows by definition. For each n there 

are two cases s = 0 ands= s'*e. 

(n=l) s = 0: 

(ir(d)) 1 = ( l a.ir(a*d)+i.ir(0)) 1 = l, a+ d 
aED aED 

(ir(0)b\i)t = (i.ir(0))1 + (( l a.1r(a))~i)1 = 
aED 

i + ( l a.(ir(a)b\i)) 1 = d + l a. 
uD uD 

s = s' .e: similar. 

(n=m+l) s = s '*e: 

7 
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(n(s*d)) = (n(s'*e*d)) = 
n n 

(n(s)~d) . = (n(s'*e)h-d) = -n -n 

d.(n(s'*e)) + (n(s'*e)£d) • 
- m -n 

Consider the second summand: 

(n(s'*e)£~)n = (( t a.n(a*S'*e)+~.n(s'))A~)n = 
aED 

This proves the identity for the cases= s'*e. The cases=~ is similar 

but shorter. D 

This concludes the proof of the theorem, and makes a definition of Q 

within PA0 available. 

3. CONNECTING TWO QUEUES IN SERIES YIELDS ANOTHER QUEUE 

Suppose there are three locations a,S and y and a finite set of data 

D. Pairwise both a and S, and Sandy are connected with a queue that 

transmits values from D. 

a y 



Actions of Q("J.' s are l": input d at a. and dS: output d at S ford ED. 

Actions of q18,y are dS: input d at Sand dy: output d 

In previous sections we have described the queue 
CX) 

(D U D) • 

f . a.,S De 1.ne ¢ : D u D + Da. u DS by 

<j>a.,S(d) = da. 

<j>a.,S(~) = dS 

Du D + DS U Dy by 

<j>S,y(d) = dS 

<j>S,y(i) = dY. 

The mapping of <j>a.,S induces an isomorphism 

A f 1 d · .. f Qa.,S . h b orma esc.r1.pt1.on o 1.s ten g1.ven y 

Similarly 

at y. 

as a process Q 

The problem is then to manufacture a queue Qa,y connecting a. and y by 
a S S Y · 11 a., Y · · b composing Q ' and Q ' • Semant1.ca y Q 1.s g1.ven y 

in 

Cl, s s y In order to compose both queues Q' and Q' there is communication 

at S. The actions d8 (from Qa.'f3) and d8 (from QS'y) must be simultaneously 

performed: 

a8 stands for: take d from Qa.,S and put it in QS,Y. There are no other 

communicating pairs of atomic actions than these, i.e., for all other 

pairs <X,Y> of actions, XjY = 8. 

Technically this is described 1.n ACP, an extension of PA (see [3]). 

9 
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We work with alphabet A: 

Communication on atomic actions is in our case as follows: 

{
as Ids= ds ford€ D 

a I b = o in all other cases. 

Moreover, H 5::.. A, the set of subatomic actions consists of the dS ford ED, 

and I, the set of internal actions, consists of the ds, d ED. 

The composition of Qa,S and QS,y is now given by 

This is a process in (Dau Ds u nY) 00
• We write B for Dau nS u nY, I for nS 

and E for Dau nY. 

The relation between Rand Qa,y is as follows: 

R ++ Qa,y 
-I . 

This means that Rand Qa,y bisimulate one another in the sense of [5]. The 

verification of 

should be considered a correctness proof of the realisation of Qa,y via 
Qa,S and QS,Y. 

00 

The verification takes place within B, and consists of proving that 

for each n 

Here (X)e is then-th external projection of X, inductively defined by 
n 

e (ax) 1 = a for a EE 

e 
(aX)n+l = a(X)e 

n 
for 

(X+Y)e 1 = (X)e + (Y)e 
n+ n n 

(iX)e = i(Xe) 
n n 

(i)e = i 
n 

a € E 



PAI is PA augmented with the following equations: 

i = j 

Xi= X 

iX + X = iX 

It 

12 

13 

a(iX+Y) +ax= a(iX+Y) 14 

1 1 

where i,j range over I.£ B. PAI was introduced and investigated in [5]. The 

laws correspond to Milner' s -r-laws, from [9]. For the sake of abbreviation 

we write: 

and ~a,y(,r(cr)) = ir0 'Y(cr). We will now establish several propositions. 

PROPOSITION. The following identities hold for the ir(cr,-r): 

(i) ,r(~,~) = rd€D d0 .ir(d,~) 

(ii) 

a 
= rb€D b .ir(b*O*d,-r*e) 

+ d8.ir(cr,d*T*e) 

+ eY.ir(cr*d,-r) 

(iv) a 
= rb€D b .,r(b,T*e) 

+ ey,r(~,T). 

PROOF. All identities follow from straightforward calculations in ACP. We 

take one example: 

ir(cr*d,~) = 3H(~a,'3(,r(cr*d))) 11~'3,Y(,r(~))) = 

aH(~a,S(ir(cr*d))i~S,y(,r(~))) + 

aH(l'Y(,r(~)) u_~a,8(,r(cr*d)) + 

3H(~0 ' 8(ir(cr*d)) I l'Y(,r(~)). 
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Now 

T1 = clH(<l>a,S(}:be:D b.1r(cr*d) + ~1r(cr)) tLl'Y (,r(~))) 

= H((Ebe:D ba .<j,a,8(,r(b*cr*d)) + de .<j,a,8(,r(cr))) .lL<1>8,y (,r(~))) 

= a (E ba(<l>a,e,r(b*cr*d)II <1> 8 'Y(1r(~)) 
H be:D 

+ clHde.(<1>a,81T(cr) II <1>8,y(,r(~))) 

T2 = clH(<j,8,YO::be:D b.1r(b)) lt,<t>a,$(,r(cr*d))) 

= aH Ebe:D b8(<t>8'Y II <l>a,8(1r(cr*d))) = o. 

T3 = cl (<t>a,S(E b.,r(b*cr*d) + d1r(cr)) I <t>8'1 (E D e.1r(e))) 
H be:b - ee: 

= aH Ebe:D Eee:D (ba I es)(<t>a'~(,r(b*cr*d) II <l>S'y(,r(e))) 

+ aH Eee:D (ds I e8)(<1>a,S(,r(cr)) II <l>S,y(,r(e))) 

= d8 .aH(<1>a,S(1T(cr)) II l'Y(,r(d))) 

"'S = d .1r(cr,d). 

a "'8 
We conclude that T1 + T2 + T3 = Ebe:D b .1r(b*cr*d,<j,) + d 1r(cr,d). This proves 

theequation(ii) for ,r(•,•). The other identities are established similarly. 

PROPOSITION. POT' aU cr ,r, n 

PROOF. The proof proceeds by double induction on n and on the length l of cr. 

i stands for any fixed element of I. 

(n=l): the case l=O is immediate, so let l = l'+l, and write cr = cr'*d. 

There are two cases: lth(T) = 0 and lth(T) > O, we consider the 

second case only, let T = T1 *b, then 
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e e (n(a,T)) 1 = (n(a'*d,T 1*b)) 1 = 

I ea+ a8(n(a',d*~'*b))el + by ,eED 

= (induction hypothesis on l) 

(because iX + X = iX). 

(n=m+ 1): again the case l = 0 is immediate. So suppose l = l'+l a= a'*d. 

Again there are two cases lth(T) = 0 and lth(T) > O. This time 

we consider the case 1th(T) = O, (the other case leads to a 

similar calculation) 

= E ea(n(e*a'*d,~))e + a8(n(a',d))e = 
(l) eED m n 

= E ea(TI(~,e*O'*d))e + i[E D ea(n(e*a' ,d))e + (n(a' ,d))e] 
(Z) eED m eE m n 

= i[E D ea(n(~,e*a'*d))e + (n(a',d))e] = 
( 3 ) eE m n 

= i(n(a',d))e = i(n(,,a'*d))e. 
(4) n (5) n 

Comments. 

(1) by equations for n(·,·). 

(2) ind. hyp. on m, equations for n(·,·). 

(3) according to i(X+Y) + X = i(X+Y), a derived rule of PAI. 

(4) by equations for n(·,·) 

(5) ind. hyp. on l. 

PROPOSITION. For all a,n 
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PROOF. Induction on n 

Connnents. 

(n=l) cr = 0: 

cr = cr'*d: 

(n=m+l) cr =0: 

(1/Y.,Y (0)): = 2::dED da. (1r(d)): (i) E·dED da • (1r(0,d)): (1) 

EdED da.i.(1r(d,0)): (3) EdED da(,r(d,0)): (4) 

(1r(0,0))e. 
n 

(1) ind. hypothesis. 

(2) application of the previous proposition. 

(3) Xi= X from PAI. 

(4) equation for 1r(0,0). 

The case cr = cr'*d is similar. 

Finally the required result follows from 

This completes the verification of 

Qa,y - R 
-I . 

4. QUEUE CANNOT BE RECURSIVELY DEFINED IN A00 (+, • ,II, llJ 

In this section we are going to prove the above statement. We assume 

that A has two different input actions a and b. A queue over a one-element 
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set of input actions ·is just a "bag" and it is easily definable in Ar:o(+, ·,II, [1) 
(see [4]). 

This section is organized as follows. We start with preliminary 

definitions in section 4.1, and prove some auxiliary results in section 4.2. 

In section 4.3 the problem in first reduced to the same problem without 

II a~d lL. Then the latter question is settled in the negative. 

4.1 Preliminaries 

4.1.1 DEFINITION 

r:o 
Let p €A. By the set of states of p we mean the least set ST(p) 

satisfying the following conditions 

(1) p € ST(p) 
r:o 

(2) If c.q + r € ST(p), then q € ST(p), for c € A, q,r €A. 

4.1.2 DEFINITION 

The set of all semistates of p, SST(p), is the least set satisfying 

these conditions 

(3) ST(p) ::_ SST(p) 
r:o 

(4) If q + r € SST(p), then q € SST(p) for q,r €A. 

4. 1 • 3 DEFINITION 

r:o 
We say that a process his a factor of a process p if for some q €A, 

h.q = p. 

In the context of this proof, however, a factor will be any process 

which is a factor of a semistate of Q. Let F(Q) denote the set of all 

factors. 

A trivial factor is a factor in F(Q) n A. All other factors will be 

called nontrivial. 

The following inclusions are obvious. 

ST(Q) c SST(Q) ::_ F(Q). 

* r:o 4.1.4 Let cr €A, p,q €A. We are going to define the relation cr: p + q 

which intuitively means that cr is a path in p which leads to q. 
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* If ¢ E A 
00 

is th~ empty word, then ¢: p + q iff there exists r E A such 

that p = q+r. 

Let CE A,, 

Finally, 

The following 

4.1.5 Fact 

00 

c: p • q iff p = cq+r for some q,r EA. 

ac: p • q iff for some r E A00 a: p + r, and c: r • q. 

fact is easy to prove by induction on the length of a. 

* 00 (i) For every a E A and for every p,q E A , if a: p • q, then q E SST(p). 

(ii) Moreover, * for every q E SST(p) there exists a EA such that a: p + q. 

In the case of Q we can deduce more. 

4.1.6 Fact 

(i) * For every q E SST(Q) there exists a unique a E {a,b} such that 

a: Q + q. 

(ii) For every q E ST(Q) and for every a EA*, a: Q + q iff rr(a) = q. 

The proof of this fact is easy and w~ leave it for the reader. 

00 

4.1.7 Now we are going to define the notion of a trace of a process p EA. 

A finite word a EA* is a trace if there exist c EA and TE A* such 

that 

0 = TC 

and 

T! p • C, 

An infinite word VE Aw 1.s a trace of p if there exists a sequence 

of initial fragments of V, 

11.. < a < 
n 

and a sequence of semistates of p, 

such that for every n E w 

an: p • qn and qn+I E SST(qn). 

Let tr(p) denote the set containing all finite and infinite traces ofp. 



A process is called perpetual iff it contains no finite traces. The 

following fact is obvious. 

4.1.8 Fact 

* 00 Let a E tr(p) n A. Then for every q EA, a: pq + q. 

17 

00 • • 
Another general property of A which we will use later has a straightforward 

proof as well. 

4.1.9 Fact 

00 

For all q,r,p EA and c EA, if q + r = cp, then q = r. 

4.1.10 We introduce two functions 

w * w O,I: A + {a,b} u {a,b} • 

They are uniquely determined by the following properties 

If VE {a,b}w, then O(V) = ~ 
w If VE{~,£_} , then I(V) = ~ 

w If c E {a,b} and VE A, then 

I(cV) = cI(V), and O(CV) = O(V). 

w If c E {~,E,_} and VE A, then 

I(£_V) = I(V), and O(~V) = cO(V). 

Intuitively I(V) (respectively O(V)) is the sequence of all input 

(output) actions of Vin the order in which they occur in V. 

Call VE Aw input periodic if there exists cr E {a,b}+ such that 

I(V) = crw. Otherwise V will be called input nonperiodic. 

VE Aw is said to have infinitely many output actions if O(V) E {a,b}w. 

The last result of this subsection is the following lemma. 

4.1.11 LEMMA Let p0 ,p 1 E SST(Q) be such that tr(p0) n tr(p 1) contains an 

input nonperiodic trace with infinitely many output actions. Then for some 

* cr E {a,b} , cr: Q + Po and a: Q + P1 • 
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PROOF. Let o0 : Q + Po and o 1: Q + pl for some o0 ,o 1 E {a,b}*. 

Assume that o0 r o 1• Let VE tr(p0) n tr(p 1) be a trace with infinitely many 

output actions. We are going to show that Vis input periodic. 

Since o.: Q + p., it follows that o. ~ 0 (V) for i = 0, L Therefore either 
i i i 

o0 < o 1 or o 1 < o0 • We may asssume without loss of generality that o0 < o 1 • Let 
+ TE {a,b} be such that 

01 = oo··· 

Let v0 be a sequence which results from V by removing from it the first 

!o0 1 output actions. Since VE tr(p0), it follows that v0 E tr(Q). 

Let v 1 be a sequence which results from V by removing from it the first 

!o 1 I output actions. Again we have v 1 E tr(Q). Moreover we have the following 

relationships 

(1) I(V0 ) = I(V1) = I(V), 

(2) O(V) = Oo'O(Vo), 

(3) O(V)_ = o0, O(V 1). 

From (2) and (3) we obtain 

(4) O(V0 ) = T O(V 1). 

We claim that 

(5) for every n E w there exist W, U E Aw such that 
n n 

We prove this claim by induction on n. For n = 0 it is obvious. Suppose 

(5) holds for some n E w. By (4) we have 
n+l 

(6) O(V0 ) = T Un. 

Since v0 is a trace of Q with infinitely many output actions, it follows 
w that O(V0 ) = I(V0 ). Therefore for some W 1 EA, 

~1 ~ 
(7) I(V0 ) = T Wn+l" 

Since v1 is a trace of Q, by (1) and (7) we conclude that O(V 1) must start 
. h n+l . f Aw wit • , i.e. or some Un+l E , 

n+l 
(8) O(Vl) =. un+t· 
This proves (5). Obviously (5) implies that 

I(VO) w 
= T • 



This, together with (1) proves the lemma. 

4.2 Auxiliary results 

Let us start with the following result. 

4.2.1 LEMMA Leth be a nontrivial faator. Then 

(i) h has an input-nonperiodic trace uJith infinitely many output aations. 

(ii) there is a unique p E: SST(Q) such that his a factor of p. 

PROOF. We prove (i) first. Leth be a nontrivial factor and let q E: A00 be 

such that hq E: SST(Q). If his perpetual, then hq =hand his a semistate 

of Q. Then h obviously satisfies (i). 

Suppose now that his not perpetual and let o be a finite trace of h. 

By Fact 4.1.8, o: hq + q. Therefore, by Fact 4.1.5 q E: SST(Q). Let 

* T,P E: {a,b} be such that T: Q + q, and p: Q + hq (cf. Fact 4.1.6). 

Since hq is a semistate of Q it can be uniquely presented in the 

following form 

(*) hq = ~ C c.p, 
CE C 

where Cs. {a,b,a,b},and p E: A00 for every c E: C. 
-- C 

Consider these two cases . 

(1) There exists c E: C such that non pc: C + q. 

(2) For all c E: C, pc:·Q + q. 

Notice that (2) may happen only if C is a one element set. 
w Suppose (1) holds. We construct a VE: A such that 

(3) VE: tr(n(pc)) is input-nonperiodic 

(4) for every initial seqment o of V, non pco: Q + q. 

(5) V has infinitely many output actions. 

To see that such V exists take p' E: {a,b}* such that n(p') = n(pc). If p' 

is not an initial subword of,, then we may take as V any trace of Q which 

is input-nonperiodic and which has infinitely many output actions. If, 

however, p' is an initial subword of T, then it follows from (1) that 
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p' I,. Then it is enough to take as V eW, where e E {a,b} is such that p'e 

is not an initial subword of T, and WE tr(Q) is any input-nonperiodic trace 

with infinitely many output actions. 
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Let V be a trace satisfying (3)-(5). By(*) and (3), cV E tr(hq), and 

by (4) we obtain that cV must be a trace of h. 

Suppose now that (2) holds. As we noticed this may happen only if C 

is a one element set, say C = {c}. Since hq = cp and since his nontrivial, 
C 

00 

there exist h 1, h2 EA such that 

Therefore, 

ch1q.+h2q = cpc. 

By Fact 4.1.9, ch 1q = h 2q, and we obtain 

ch 1q-= cpc. 

The latter equality can be simplified to 

hlq = Pc• 

Thus h 1 is a factor of a state of Q, and ~ase (1) is applicable to h 1• We 

may conclude that h 1 contains an input-nonperiodic trace with infinitely 

many output actions, and therefore h contains such a trace as well. This 

completes the proof of (i). 

Now we prove (ii). 
00 

Let p0 ,p 1 E SST(Q) be such that for some q0 ,q 1 e: A 

(6) h.q. = p. for i = 0,1. 
l. l. 

By (i) h has an input-nonperiodic trace with infintely many output actions. 

Therefore, by (6), tr(p0) n tr(p 1) contains such a trace and by Lennna 4.1.11 

* for some cr E {a,b} , 

(7) cr: Q + p., for i = 0,1. 
l. 

If Po 'F p 1, then by (7) this is only possible if for some c E A and i 0 e: {O, 1}, 

p. has a trace starting with c and in p 1 . all traces start with a symbol 
1 0 -1.0 

different from c. Since hq. = p. , h must have a trace starting with c. 
l.Q l.Q 

Since hq 1 . 
-1.0 

contradiction 

4.2.2 LEMMA 

= Pt . , Pt • must have such a trace as well. Obtained 
-1.0 -1.0 

proves (ii), and the proof of Lennna 4.2.1 is completed. 

(i) if h 1 + h2 E F(Q) then h 1,h2 e: F(Q) 

(ii) if h 1.h2 E F(Q) then h 1 e: F(Q), moreover if h 1 is not perpetual then 



(iii) 

(iv) 

h2 E F(Q) as weU 

ht II h2 I. F(Q) 

h 1 lL h2 I. F ( Q) provided h 1 is not a sum of atoms. 

PROOF. (i) Suppose (h 1+h2).r = q, q E SST(Q), then h 1.r + h2.r = q thus 

h 1.r~ h2.r E SST(Q) whence by definition h 1,h2 E F(Q). 

(ii) Suppose (h 1.h2).r = q, q E SST(Q), then h 1(h2.r) = q so h 1 E F(Q). If 

cr is a finite trace of h 1 then by 4.1.8. cr: h 1(h2.r) + h2.r, and also 
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cr: q + h2.r. So h2.r E ST(Q) by fact 4.1.5 and by definition h2 E F(Q). 

(iii) Suppose h 1 II h2 E F(Q). Let q E A00 be such that (h 1 II h2) .q e: SST(Q), 

hi II h2 cannot be a,b ,~, or E_ so h 1 II h2 is a nontrivial factor. In view 

of Lemma 4. 2. I h 1 II h2 has an input nonperiodic infinite trace V with 

infinitely many output actions. V must have both infinitely many ~'sand 

k's. Let VI and V2 be traces of hi resp. h2 such that V can be obtained by 

merging VI and V2. 

Choose cr E {a,b}* such that cr: Q + (hi II h2) .q. Then for every sequence 

U obtain.ed by merging VI and V2 crU E tr(Q). We will manufacture a contradic­

tion from this situation. First of all we notice that either VI or V2 

contains no output actions, otherwise VI must contain an action a and V2 

an action~ or conversely. Let us assum:ethat VI= cr 1 ~UI, v2 = cr 2~u2 then 

crcr 1cr2~ul and crcr 1cr2~UI are both traces of Q (because VI is infinite UI is 

infinite and both are cr followed by a merge of VI and V2). Now this is 

impossible because after crcr 1cr2 at most one output is possible. So suppose 

that VI contains infinitely many a's and E_'s and V2 contains only a's and 

h's; crVl is a trace of Q, inserting the first action, say a, from V2 in 

crVl at some position after cr must also produce a trace of Q. However choose 

p,W such that VI= pbW then cr~abW cannot be a trace of Q because the output 

action in v; that corresponds to the displayed input b has now become 

incorrect. Thus we have obtained a contradiction thereby proving (iii) of 

the Lemma. 

(iv) the case for IL is similar to the previous one. 

Let us now consider a recursive definition·of Q: 

X. = T.(X1, ••• ,X) i = 1, ••• n, 
1. i n 

with solutions ! 1, ••• ,Xn' and ! 1 = Q. 
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Without loss of generality we may assume that the system has the following 

properties: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

All X. are infinite (otherwise they can be eliminated by substitution). 
-1. 

All !_i are "used" (i.e. no proper subsystem defines !_1 = Q as well). 

None of the Ti has a subterm of the form (t2+t2).t3 . (Such ·subterm.s 

are eliminated using the equation A4 .,) 

None of the T. 
l. 

has a subterm t 1t 2 with t 1(x1, ••• ,!a_) perpetual (in 

such cases t 2 can just be omitted and the x1, ••• ,!a_ still constitute a 

unique solution). 

In sub terms of the form t 1 tL t 2 , t 1 is not a sum of atoms. (Otherwise 

use CM4 and CM3). 

We can now start the actual proof of the result of section 4 in the following 

lemma. 

-4.3.1 LEMMA. If Q can be recursivel,y defined in A0°(+, ·,II, lU then it can be 
. (X) 

recursivel,y defined in A(+,·). 

PROOF. We assume that the system 

X. = T.(X1, ••• ,X) i = l, ••• ,n 
l. l. n 

satisfies the requirements (i)-(v) above and defines Q. Let Z be the collection 

of all subterms of the T.(X1, ••• ,X ). We can define a distanced(•,·) 
i. n 

between elements of Z. dis not synnnetric, however: 

(i) d(t,t) = 0 

(ii) if t' is an immediate subterm oft then d(t,t') = 

(iii) d(tl ,t2) = min{d(t1,,t')+d(t' ,t2) It' € K}. 

Now it follows that for each t € K d(X,t) is defined. With induction on 

d(X,t) one shows using Lemma 4.2.2 that each t € K is in F(Q). Moreover by 

4. 2. 2 we conclude that II and IL do not occur in any of the t € K. This 

proves the lemma. 

4.3.2 LEMMA. If Q ha.s a recursive definition in ACX)(+,·) then ST(Q) is 

generated (in ACX)(+,·)) by finitel,y many states ~(a 1), ••• ,~(aK) € ST(Q). 

PROOF. According to [7] it is ingeneral the case that the solutions x1, ••• ,X 
- n 

of a system of recursion equations generate all subprocesses of x1, ••• ,X 
- --n 
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and in particular of _!1• 
00 

So let T.(X., ••• ,X ), i = 1, ••• ,n, be a recursive definition in A(+,•) 
l. l. n 

with solution ,!1, ••• ,!.a_ and ,!1 = Q, again satisfying (i)-(v) above, then 

for each q E ST(Q) there is a term t(X1, ••• ,Xn) made from A,+, and. such 

that t(,!1, ••• ,_!n) = q. 

Let$: F(Q) + SST(Q) be the mapping which assigns to each h E F(Q) the 
00 

· unique (in view of Lennna 4.2.1 (ii)) q E SST(Q) such that for some p EA 

h.p = q. 

CLAIM. ~t(X1, ••• ,X) = t(~(X), ••• ,$(X )). 
- -n - -n 

Using this claim one finds that p = $(p) is generated by the semistates 

$(,!1), ••• , (!.a_), Now each semistate ~(,!i) can be written as 

Ci. i * for appropriate EA and cr. E {a,b} • 
J J 

It follows that the subset 

{ 1T (cr~) I 1 :::; j :::; n, 1 :::; i :::; 3} 
J 

of ST(Q) generates all of ST(Q), thus proving the lemma. 

PROOF (of the Claim). Let L = L(X1, ••• ,Xn) be the following inductively 

defined collection of terms: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

X. E L 
1 

c.t EL for c EA, t EL 

X .• t EL if t EL 
1 

t 1 + t 2 EL if t 1,t2 EL 

C € L.for C € A. 

Now each term t over t,·,A,X1, ••• ,Xn in equivalent in PA to a term in L, and 

therefore it suffices to prove the claim for every term in L. With 

induction on the structure oft EL we will show this implication, which 

proves the claim: 

t(X1,···,x) E SST(Q) ~ $t(X1,···,x) = t($X1,···,x ). - -n - -n - -n 

We consider all cases generated by the inductive clauses (i), ••• ,(v). 
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(i) 

(ii) 

(iii) 

(iv)· 

(v) 

is innnediate 

if c.t(X1,···,x) E SST(Q) then t(X1,···,x) E SST(Q). So ~(t(X1,···,x ))= - -n - -n - -n 
t(~(!,1), ••• ,~(!.n)) and ~(c.t(!,1, ••• ,!.n)) = c.t(~(!,1), ••• ,~(!.n)). 

if ~(X.t(X1,···,x )) E SST(Q) then ~(X.t(X1,···,x )) = X.t(X1,···,x) = 
1. - -n -1. - -n -1. - -n 

~(!_i) = ~(!_i).t(~<.!1), ••• ,~(!n)· 
if t 1(!,1, ••• ,!n) + t 2 (!,1, ••• ,!.n) E SST(Q) then both summands are in 

SST(Q) hence ~(t 1(!,1, ••• ,!n) + t 2(!_1, ••• ,!n)) = t 1(~(!_1), ••• ,~(!n)) + 

t 2 ( ~ (!_ 1 ) ' ••• '~ (!n) ) 
c is not in SST(Q). 

4.3.3 LEMMA. There is no finite subset TI(cr 1) ••• TI(crK) of ST(Q) which generates 

aU of ST(Q) within A00 (+,·). 

l 2 3 PROOF. Suppose otherwise. Choose for each TI(cr.) a triple TI(-r.), TI(T~), TI(T.) 
1 1 1. 1 

such that for appropriate C~ EA 
1 

1 l 2 2 3 3 e.: TI(cr.) = c .. TI(T.) + C.TI(T.) + C.TI(-r.), 
1. 1 1 1 1 1. 1 1 

then choose for each TI(-r{) a term t{(x1, ••• ,~) such that 

TI(-ri) = t{(TI(cr 1), ••• ,TI(crk)). 

The term t~ may be chosen such that it contains+ and prefix multiplication 
1 

only because all TI(cr.) are perpetual and TI(cr.).t can be replaced by TI(cr.). 
1 1 , 1 

Substituting these identities into e. one obtains a linear system of 
1 

equations for the processes TI(cr.). According to [7] the TI(cr.) will then be 
1 1 

regular which is certainly not the case. 

Combining lemmas 4.3.1, 4.3.2 and 4.3.3 we obtain the main result of 

this section: 

THEOREM. Q cannot be recursively defined in A00 (+,·,II,~). 
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