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On specifying sets of integers*) 

by 

**) J.A. Bergstra & J.-J.Ch. Meyer 

ABSTRACT 

We consider the problem of deriving an algebraic specification for a 

rather simple set-theoretical data type called SOI#. SOI# is merely a 

collection of finite sets of integers equipped with an operator to insert 

a number into a set and another to determine the cardinality of a set. We 

show SOI# has a finite conditional specification, but no finite equational 

specification, under the initial algebra semantics for specifications 

invented by the ADJ Group. 

KEY WORDS & PHRASES: set-theoretical data types, initial algebra semantics, 

equational and conditional specifications 
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0. INTRODUCTION 

Set-theoretical data structures play an important role as an example 

subject in data type specification theory. Axiomatisation of data types in 

general can be done in several ways. For instance, as in [3], one can use 

sets of equations or sets of conditional equations under initial algebra 

semantics. But also a method called structural recursion, introduced in 

KLAEREN [4], can be applied for specifying data types. 

In [5] Klaeren considers the example of a collection of finite sets of 

non-negative integers equipped with an operator to insert a natural number 

into a setand another to determine the cardinality of a set (Example 3.2). 

This special set-theoretical data type is modelled as a two-sorted algebra 

SOI# = ((w;S,Q_) ,.(SETS;~) ,IN,~), 

an algebra with natural numbers and sets of these as sorts and successor s 
on the set w of natural numbers, insertion IN of a natural number into a set, 

and cardinality # of a set as operators. 

Klaeren uses this example to show that it can be treated by his method 

of structual recursion, although as he presumes, it has no finite equational 

specification under initial algebra semantics. 

In this paper we shall prove that his presumption is right, but also 

that a finite specification can be made, if conditional equations are 

allowed: 

THEOREM. SOI# has a finite conditional specification but fails to posses a 

finite equational specification. 

We shall prove the first statement in Section 2, the second in Section 

3. Section 1 contains some preliminary material. 

The theorem just stated is also another neat example indicating the 

difference in power of equations and conditional equations as means of 

specifications of infinite data structures. (In [1] the use of conditional 

equations in final algebraic specification is exploited, but without proof 

that conditionals are essentially needed. That conditional equations also 

have more power that equations in specifying finite data structures, is 
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shown in [2], where a certain result on specification is obtained much 

easier when one is allowed to use also conditionals.) 

In the following we shall assume that the reader is familiar with the 

work of the ADJ Group, at least up to the level of their basic paper [3]. 

Knowledge of Klaeren's work is obviously desirable but not formally necessary. 

We thank J.V. Tucker and J.W. Klop for discussions and suggestions 

concerning this paper. 

l • PRELIMINARIES 

Initial algebra semantics assigns to a specification (L,E) in which L 

is a signature, i.e. a set of names of operators and individual constants, 

and Eis a set of equations, a unique meaning in the class ALG(L,E) of all 

L-algebras satisfying the equations of E in the following way: two terms t 

and t' over Lare identical iff t and t' can be proved equal from the axioms 

in E. (See [l,3,7]; the semantics of conditional equations is given in [6].) 

We shall now resume the main notions of initial algebra specification. 

An (n-sorted) algebra V of signature Lis a structure (V 1, ... ,Vn;L) 

in which the V. are sets of elements, called the domains of V and Lis a set 
i 

of symbols naming functions cr which are each defined on some cartesian 

product of the V.: 
i 

and naming special elements of the V., the so-called individual constants 
i 

of V. Lis called the signature of V naming the constants of V. 

The following facts hold: 

Let V and W be algebras of signature L, both finitely generated by their 

constants (i.e. V and Ware minimal). 

Then: (I) any L-homomorphism ¢: V +Wis surjective. 

(2) if¢, ijJ: V + W arc L-homomorphisms then¢= ijJ. 

(3) if there are L-homomorphisms ¢: V +Wand ijJ: W + V then V = W 

(by either ¢ or ijJ). 

Let= be an equivalence relation on then-sorted algebra V; then we 

call a family of sets J. c V. (l~i~n) such that Vb EV. 3 1 a E J. for which 
i - i i i 
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b - a, a traversal for=· 

If Eis a signature, then T(E) denotes the E-algebra of all terms over 

E and TE [X1, ••• ,X] denotes the algebra of polynomials in the indeterminates 
p • • 

x 1, ••• ,Xp. For convenience we let T(E) ~ TE[X] for every vector X. 

If Vis a E-algebra, then we mean by term evaluation in Va map 

valV: T(E)-+ V which evaluates each term t E T(E) by substituting the 

constants of V for their names int. The map valV can be uniquely defined 

as an epimorphism T(E)-+ V. If~: V-+ Wis a homomorphism between E-algebras, 

then the following diagram connnutes: 

T (E) 

valv j \valw 

v-4w 

We define polynomial evaluation in Vas the substitution of some 

1 = (a1, ••. ,ap) E (u:=l Vi)p for indeterminates X = (X 1, •.• ,Xp) (where ai 

is an element of that domain over which X. ranges), and of the constants 
l. 

of V for their names into polynomial t(X) E TE[x 1, ••• ,Xp] followed by the 

evaluation of t(1) in V. 
An equation is a pair (t(X),t'(X)) of polynomials from some TE[x1, ••• ,Xp] 

written as t(X) = t'(X), where it must be noted that t(X) and t'(X) need 

not have any indeterminate in connnon. 

A conditional equation is a formula of the form 

• • • • 
NI. (t.(X) = t!(X))-+ t(X) = t'(X). 
• l. l. 
l. 

If E is a set of (conditional) equations· over E and V is a I-algebra 

such that VF E, we say that Vis an E-algebra. We define ALG(E,E) as the 

class of all E-algebras and T(E,E) as the initial algebra for ALG(E,E), 

constructed from T(E); T(E,E) = T(E)/=E where SE denotes the smallest 

congruence on T(E) that identifies terms of T(E) by means of the equations 

of E. If t E 1'(E) we mean by CE(t) the =E-equivalence class E T(E,E) that 

contains t. 
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An algebra V of signature Iv has a finite equational (conditional) 

specificati(m (I,E) if IV= I, Eis a finite set of (conditional) equations 

over I, and T(I,E): V. More details can be found in [1,3,6,7]. 

2. A CONDITIONAL SPECIFICATION OF SOI# 

We shall begin this section with repeating the formal definition of the 

structure SOI#: 

1.n which 

SOI#= ((w;S,_Q_),(SETS;!),IN,!) 

cv is the set of natural numbers, 

SETS is the class of finite sets of natural numbers, 

S names the successor functions: w-+ w defined by s(x) = x+l, 

IN names the insertion function in: w x SETS-+ SETS defined by 

in (x,~) = ~ u {x} where x E wand~ E SETS, 

1¥ names the cardinality function #: SETS -+ w defined by 

#(~)=the number of elements in~ E SETS, 

0 names OE w, and 

(a names the empty set (/J E SETS. 

(SOI# can also be written in the usual form (V 1, ... ,Vn;I) as 

(w,SETS;S,IN,~,_Q_,!), but the notation above is more suggestive of the 

working of the operators and the relation of the constants to the domains 

and is therefore preferable.) 

Now we can prove the following. 

THEOREM. SOI# ha,s a finite conditional specification. 

PROOF. We shall prove the theorem by showing that a specific set E0 of 

conditional equations specifies SOI#. 

In the following we shall denote variables over w by X, Y (with indices 

if necessary) and variables over SETS by - (with indices if necessary), and 

refer to term t E T (I) with val SOI# ( t) E w as first sort terms and to terms 

, E T(I) with valSOI (,) E SETS as second sort terms. 
# 

In E0 we take the equations: 



(e 1) IN(X,IN(X,3)) = IN(X,3) 

(e2 ) IN(X,IN(Y,3)) = IN(Y,IN(X,E)) 

(e3) a(X,Y) A S(X,E) A S(Y,E) • ~(IN(X,IN(Y,E))) = ss(#(E)) 

where a(X,Y) stands for the formula 

~ ( IN (X, IN (Y, !) ) ) = S S (_Q_) 

5 

thus expressing in equational language the statement X f Y, and S(X,E) 

stands for the formula 

~ ( IN (X, E)) = S (~ ( E)) 

expressing in equational language the statement Xi -· 
(e4 ) ~(IN(X;j~)) = S(Q_) 

( e 5) ~ (!) = ~~ 
(e6 ) ~(IN(Q_,IN(S(X) ,!))) = SS(Q_) 

(e7 ) ~ (IN(S (X), IN(S (Y) ,!) ) ) = ~ (IN(X, IN(Y ,!) ) ) . 

Note that SOI#~ E0 (proof by inspection of cases). 

In order to prove that this E0 specifies SOI#, i.e. SOI#= T(I:,E0 ) where 

I:= {S,IN,~,~~,!}, we shall show first that the pair (J 1,J2) of sets with 

J 1 = {Si(Q_)ji E w} 

and .n .n 
00 i i I 

J 2 = u {IN(S 1(Q_),( ... ,IN(S n(Q_),!) ... )) i7< •.• <i: E w} 
n=O 

(where n in i~ is an upper index and not an exponent!), is a traversal 

for ::Eo on T ( I:) . 

For notational convenience we shall abbreviate 

. . 
i i 2 in 

IN ( S . I ( 0) , IN ( S (Q_) , ... , IN ( S (Q_) , !) ... ) ) 

as 

IN ( i I , IN ( i 2 , . • . , IN ( in , !) . . . ) ) . 

So we must prove that for every first sort term t there is a unique a E J 1 
such that t ::Ea a and for every second sort term T there is a unique a E J 2 
such that T -Eo a, and to show this we must establish the following state

ments: 
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(ii) 

(iii) for every first sort 

a e: JI such that a -E 

(iv) for every second sort 

(l € J 2 such that a =E 

< ••• < j . Then: 
m 

term t e: T(I), there 

t. 
0 

term T e: J(I), there 

T. 
0 

is an 

is an 

(i) and (ii) are trivial, because they are true in SOI#, which was a model 

for E0 ; (iii) and (iv) can easily be seen by applying the equations (e 1) 

up to (e) to rewrite an arbitrary term into one in the J .• 
7 1 

Now we define the function~: SOI#+ T(I,E0) as follows: 

~ (z) 

CE (Sz(Q_)) if z E w 
0 

CE (IN(r 1(z), ••• ,IN(rm(z),!) ••• )) if z e: SETS and r 1(z)< ••• <rm(z) 
= 0 

are the elements of z, in increasing order and after deleting 

equal elements. 

Obviously this function~ is bijective. It is also a homomorphism, for it 

holds that 

(1) SHz) - ~(s(z)) (for all z E w) (trivial), 
EO 

(2) IN(~(z),~(s)) =E IN(Sz(Q_),IN(r 1(s), ••• ,rn(s),!)) =E 
0 0 

IN(r 1(su{z}), .•• ,IN(rm(su{z}),!) ••• ) = ~(su{z}) = ~(in(z,s)), for all z E w 

and s e: SETS 

(3) !!._~(s) ~(#(s)) (for alls E SETS), because for s = ~: -EO 



E Q_ = cp(O) 
0 

= cp(#(~)), and for~ I~: 

cp(m) = cp(#(~)). 

Consequently SOI#= T(I,E0) (by cjl), which we had to prove. D 

3. SOI# HAS NO EQUATIONAL SPECIFICATION 

In this section we prove the following 

THEOREM. SOI# can not be specified by mPans of some finite equational 

specification. 

PROOF. In the following we shall make use of the same terminology as we 
• • • • 

used in Section 2. Furthermore we shall call polynomials t(X,2) E TI[X,2] 

with X = (X1,···,Xp) and!= (21,···,2q), that produce first sort terms 

7 

if first sort terms are substituted for the X. and second sort terms for the 
l. 

2., first sort polynomials. Analogously we define second sort polynomials 
1 • * k l# _ . T(X,~). E.g. S (X) and S _(IN(X,IN(X,~))) are first sort polynomials, and 

IN(X,!!_) and IN(Q_,IN(X,3)) are second sort polynomials. 

In order to prove our theorem we start with a finite equational 

specification, say (I,E), where I= {S,IN,~,Q_,!!_} and Eis some finite set 

of equations that is sound. in the sense that SOI# FE. We will show that 

T(I,E) 1 SOI#. 

E defines the usul.l congruence relation =E on T(I) x T(I). Next we 

define the congruence relation =soI on T (I) x T (I): 

t=SOI t' iff valSOI (t) = valSOI (t') 
# # 

for each t, t' E T(I). 

(In the sequel we shall abbreviate valSOI# (t) to val (t).) Further, for 

each N E w we define the congruence relation =N on T(I) x T(I) by: 

(1) -N is reflexive, synnnetrical and transitive. 
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(3) l·c!!_(-r)) =N sk+l(Q) for every l E w iff !!_(-r) -SOI Sk(Q) and k :,; N (i.e. 

#(val(-r)) = k:,; N), where Tis a second sort term and k E w. 

(4) Sk(!!_(-rl)) -N lc!!_(-r2)) iff Sk(!!_(-rl)) =soI S.e.(!!_(-r2)) and #(val(Tl)) > N, 

#(val(T2)) > N, where T1, T2 are second sort terms and k,l E w. 

This relation =N has the following properties: 

(i) 

( ii) - C -=N f:. =N+l. 

Property (i) is obvious, in (ii) the inclusion is also obvious. 
Claim 1, the inclusion in (ii) is strict. 

Proof of claim 1: 

For each N E w we define the structure SOI: = ( (w u ;;;N; S ,Q_,N+I), (SETS;!), 

IN,!!_), where wN = {N+I,N+2, ... }; S names the function sN defined by 

and 

,...,,..,,..,,. 
Q names O E w; N + 1 names N + 1 E wN; SETS is again the class of finite sets 

of natural numbers E w; ! names the empty set~ E SETS,# names the function 

#N: SETS • (w u ;N) defined by 

#N(~) ={#(~)if#(~):,; N 

#'fil if#(~)> N 

and IN names the function inN: ((w u ;:;N) x SETS) • SETS, given by 

and 

i~(~,~) = ~ u {x} (xEw,x>N,~ESETS). 

SOI! can be pictured as follows: 
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fsN sNf 4/'N 

f5N SN! 

T5N SN! 
inN (. ,0) 

N + 2 ~N SNf N~2 {N + 2} 
N + 1 t N SN! N + 1 

N ! SN 

!5N 
inN(.,0) 

r; with 4,=(fJ ~ N f s~I 
fsN 

*N 0 1 sN 0 

~ -:f/'N 
w UWN SETS 

It is easy to see that SOI: I= =N, i.e. if two terms are -N - congruent, 

then they are equal when evaluated in SOI:. 

Take some second sort term , 1 such that val(~.' 1) = N + l. Then: 

SN+l(Q_) =N+l !!_(,) (by definition of =N+l), but since 

N LL N+l N+l SOI# ~S (Q) =!!_(,)we have that S (Q) t-rJ!_(,). 

Hence, =N 'f =N+l, and we have a strict inclusion. This completes the proof of 

Claim 1. Next we proceed to prove a second claim. 

Claim 2: Suppose the length of an equation e is~ N for some N E w. Then 
e e 

SOI# I= e ~ = c =N , where = is the congruence relation induced by e. e - e e 
Using claim 2 we can finish our proof as follows: 

Let NO = max length (e). Then for each e E E, length (e) ~ NO and SOI# I= e, 
eEE 

so = e· ~ =No for every e E E. So =E ~=-No. However we know =No~ =so I, so =E 1: =so I• 

Therefore, T(E,E) = T(E)/=E ~ T(E)/=soI ~ SOI#, i.e. E can not specify SOI#. 

The only thing left for us to do is to prove the last claim. 

Proof of Claim 2: First we make a classification of the equations that may 

occur (taking into consideration that e is satisfied by SOI#). Equations 
• +:t +-;t +-;t +-;t of the kind , 1(x,~) = , 1(x,~) where , 1(x,~) and , 2 (x,~) are second sort 
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polynomials are no problem: if we have such an equation e, and(.,.') E = , 
e 

then SOI# l=e implies that val(T) = val(.'), so T =soI .' and therefore we 

have that for all NE w: T =N •', and also T =N •' for N ~ length (e). 
•• •• e e 

Equations of the kind t 1(X,3) = t 2 (X,3) (between first sort polynomials) are 

more problematical. In general, we can have them in the following forms 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Sk(x1) = Sl(X2) where k,l E w. (Including the special cases of k = l 
and/or x 1 = x2 .) 

Sk(O) = Sl(O) with k,l E w, possibly k = l. 
- i-

Sk(X) = S (O) with k,l E w. 

Sk(X1) = s1(!(T(X,3))) with k,l E wand T(X,3) a second sort polynomial. 

Sk(O) = Sl(#(.(x,!))) with k,l E wand T(X,3) a second sort polynomial. 
k - + •- l + + . 

S (!(. 1 (X,3))) = S (!(.2(X,3))) with k,l E w (k=l possible!) and the 
( • •) • T. X,3 second sort polynomials. i . 

However, the requirement for equations to be satisfied by SOI# leaves from 

the forms (a) to (c) only the following possibilities: 

(~) Sk(Q_) = Sk(Q_) and Sk(X) = Sk(X) with k E w. 

From (d) and (e) only the only remaining form is: 

k l ± :r + :r (8) S (Q_) = S (!(IN(t 1(x,~), ••• ,IN(tn(X,~),_!) ••• ))) with k ~ l ~ 0. 

Next we ask ourselves how equations of the form (f) must be shaped in 

order to be satisfied by SOI#. 

We name the second sort polynomial.(!) in the polynomial 

•• •• •• 
T.(X,3) = IN(t 1(X,3), ••• ,IN(t (X,3),.(3)) ••. ) 

i n 

(*) . n ~ h (• *) . such that T ~ is~ or a~., t e root of•· x,~ • Now it is obvious that as 
- J i 

far as (f) with k fl is concerned the root on both sides of the equality 

sign may not differ, and we shall prove now that also the case in which both 

roots are the same 3. must be ruled out. (Claim 3) 
J 

Proof of Claim 3: In this case (for some j) 

•• •• •• 
T l ~x, 3) = IN ( t I (X, 3) , •.• , IN ( t n (X, 3) , 3 j ) ) ••• ) 

and 
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(+ + ( I (+ ±) ( I (+ ± - ) ·2 X,E) = IN tl x,~ , ... ,IN tm x,~),~j)) .•.• 

Choose some terms t> and ,?(i:/=j) to substitute for the indeterminates X and 1. 
- (·~·) . 1 . b . + ( O 0 ) f X d ~. 1.rJ respective y, i.e. su st1.tute t 0 = t 1, ... ,t or an 
+i _ 0 0 _ 0 0 ± P 
•a<~.)= (,1,·••,•· I'~., •·+1,•·•,•) for~. J J- J J q 
Note that E. must remain a free variable if and when it occurs. 

J 
(+ + I (+ +) • 1 • • • • For the t. X,E) and t. X,E respective y there are two possib1.lit1.es: 

1. 1. . 
they contain -j as a root or they do not. In the former case it is easy to 

see that 

#val(E.) $ val(t.(t>,:t°(E.))) $ #val(E.) + k. 
J 1. J J 1. 

and 

#val(E.) $ val(t!(t>,:t°(E.))) $ #val(E.) + k! 
J 1. J J 1. 

0 for some fixed k., k! E w, for each substitution T. for the indeterminateE .• 
1. 1. J J 

In the latter case 

0 $ val(t.(t>,:t°(E.))) $ l., and 
1. J 1. 

O $ val(t!(t>,:t°(E.))) $ l! 
1. J 1. 

for some fixed l., l! E w, for each substitution.? for the indeterminateE .• 
1. 1. J J 

Now take 

and 

m' = max { (k. , k ! ) I 1 $ i $ n, 1 $ j $ m} , 
l. J 

M = max {l. ,l!) + 2 I I $ i $ n, I $ j $ m}. 
l. J 

Furthermore let,? be such that 
J 

0 val(,.)= {0,1, ••. ,M-2,M+m',M+m'+l, •.. ,M+2m'}. 
J 

Thus 

#val(,?)= M + m'. 
J 

Then (f) evaluated in SOI# with t for X and :t°(.?) for! becomes: 
J 

k +#val(,?)= l + #val(,?), 
J J 

i.e. k + M + m' = l + M + m' , which is obviously not true in SOI# for k :/= l. 

This completes the proof of claim 3. 
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Hence from (f) only the following possibilities remain: 

k -+ -+ k -+ -+ • 
(y) S (!!_(Tl(X,=))) = S (!!_(T2(X,=))) with k E w, and 

k +± -+± 
(cS) s (!!_(IN(tl (x,~), .•• ,IN(tn(x,~),!) ••• ) 

= sl(!!_(IN(tj(X,1), •.• ,IN(t~(X,2),!) .•. ))) with k,l E w, k I l. 

So of the (first sort) equations only the possibilities (a), (S), (y) and 

(cS) remain. To prove that SOI# I= e implies = c =N for some N ~ length (e) e - e e 
for these cases we proceed as follows: 

(a) Suppose (t,t') E =Eby means of an equation of form (a). Then trivially 

also (t,t') E =Ne· 

(S) Suppose (t,t') E =Eby means of an equation e of form (S). 
ko lo -+ ± -+ ± 

(y) 

e: s (Q_) = s !!_IN(tl(x,~), ••. ,IN(tn(X,~),!) ••• ), 
kO 

t = S (0) and 
l-

t' = s o#IN(tl(x°,!°), •.• ,IN(tn(x°,!°),~) ..• ). 

Then SOI# I= e implies val(t) = val(t'), i.e. 

kO = l 
0 

+ val(!!_IN(t 1(x°,!°), ••• ,f) ... ), so 

kO - l = val(!!_IN(t 1(x°,!°), ••• ,!) ••• ) ~ NO 0 

which implies 

k -l 
s O o(Q_) =Ne!!_IN(tl(x°,t>), •.. ,!) •.. ). 

So also sk0 (Q_) =Neslo!!_IN(t 1(x°,~), ••• ,!) ••• ) i.e. t =N t'. 
e 

Suppose (t,t') E =Eby means of an equation e of form (y): 

kO -+ :t 
e: S !!_ T l (X, ~) = 

kO 
t = S !!_TI , 

ko -+ :t 
S !!_T /X,=), 

k 
t' = S 0!!_T 2 (where Ti are second sort terms). 

SOI# r=e implies val(t) = val(t') i.e. val(!!_T 1) + k0 = val(_!"t' 2) + k0 • 

So val(!!_,: 1) = val(!!_T 2) • 

Now we have two cases: 

(I) val(#T.) > N (i=l,2). 
- i e 
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(2) val(#,:.):,;; N (i=l,2). 
- i e 

(1) implies directly: !!._T 1 =Ne!!._T 2 and (2).,. !!_Ti 

where k:,;; N0 , so also !!_Tl =NiT2 • 

Thus always !!._T 1 =N #T2 , and as =N is a congruence also: 
k k e- e 

S O!!._Tl =NeS O!!._T 2 , i.e. (t,t') € =Ne• 

(o) Suppose (t,t') E =Eby means of an equation e of form (o): 
k l 

e: s ~!!._IN(t 1(X,!), ..• ,tn(X,!),!-••) = s o#IN(ti(X,!), ••• ,t~(X,!),~ ••• ). 

t = s o#IN(tl(x°,!°), ••• ,t ex°,!°),~) ••• ) 
l- n -

t' = S O#IN(t 1'(x°,!°), ..• ,t'(x°,!°),~) ••• ). 
- ko m lo -

Abbreviate t = S !!._T 1 and t' = S !!._T 2 . 

SOI# ~e implies: val(t) = val(t'), i.e. #val(T 1) +k0 = #val(T2) +l0 • 

As #val(Ti) = n1 :,;; Ne and #val(T2) = n2 :,;; Ne: 
nl n2 

!!_Tl =NeS (Q_) and !!._T 2 =NeS (Q_) with n 1,n2 :,;; Ne. 
ko k +n l l +n 

So S !!_Tl =NeS O 1(.Q_) and S O!!._T 2 =NeS O 2 (.Q_) 
k0 k0+n1 l +n l 

So, as k0 + n l = l 0 + n2 : S # t l =N S ( O) =N S O 2 ( O) = S O# - e - e -Ne _T 2' 

i.e. t =N t'. Therefore we always have that if t and t' are identified by 
e 

some equation e that is satisfied by SOI#: t =N t' for some N ~ length(e). 
e e 

This proves claim 2. 
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