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ABSTRACT 

We address technical issues to do with the mathematical investigation 

of the idea that a programming language semantics can be sensibly determined 

by proof rules for the "before-after" assertions required, true of programs 

in the language. It is shown that the theory of program correctness based 

on first-order logic can in a natual way specify the basic semantical con

cept of program equivalence in the case of programs terminating throughout 

any given class of data structures, but that diverging programs require 

rather delicate investigations into the associated classes. 

KEY WORDS & PHRASES: program semantics specification, first-order correct

ness theories, program equivalence. 

*) This report will be submitted for publication elsewhere. 

1) Department of Computer Science, University of Leiden, Wassenaarseweg 80, 
Postbus 9512, 2300 RA LEIDEN, The Netherlands. 

2) Mathematics Institute, University of Warsaw, PkiN 00-901 WARSAW, Poland. 
Through the course of this collaboration visiting Department of Computer 
Science II, RWTH Aachen, Buchel 29-31, 5100 AACHEN, West Germany. 





1 

1. INTRODUC'J~ION 

Algorithms are written in a definite program formalism~ and are de

signed to compute functions in a definite class of data structures K. Cen

tral to the theory of computation are the basic semantical notions of the 

termination,, correctness, equivalence and isomorphism of programs in ~ as 

these are defined by the systems of K. Here we reveal, and attempt to clar

ify, certain perplexing technical problems which arise in the attempt to 

analyse program equivalence in classes~' intended to operate on classes K, 

by means of (proof systems founded on) the first-order logical assertion 

method so successfully developed for program correctness, see the survey of 

K.R. APT [1]. One reason for doing this is that in I. GREIF & A. MEYER's 

[10, 11] is to be found the beginnings of an interesting mathematical in

vestigation of the thesis that a programming language semantics could be 

usefully spE~cified by proof rules for the "before-after" assertions to be 

deemed true of programs in the language, an idea advocated by several 

writers: E.W. DIJKSTRA [6], C.A.R. HOARE [12, 13], R.W. FLOYD [7], Z. MANNA 

[17]; see also HOARE & WIRTH [15], HOARE & LAUER [14], a point of departure 

for [10]. And essential to a denotational semantics approach, such as Greif 

and Meyer's,, is program equivalence. Another reason is to draw attention to the 

need of significantly deeper logical understanding of the relation of pro

gram equivalence - perhaps the most notable contribution to which is 

DE BAKKER's [2]; for example, on that relation must be founded any axiomatic 

work on proqram transformations in the fashion of V.K. SABELFELD's [26]. 

Henceforth we involve ourselves only with the following technical issues 

whose formulation derives from several interesting questions about partial 

correctness theories asked by A. MEYER [19] in connection with his interest 

in semantic specification: for these we wish to express our thanks to him. 

Let P be some kind of program scheme over a finite signature Z: and let 

K be a class of relational systems or data structures of that type Z:. For 

each A EK, P computes a partial function on A and one defines two programs 
n 

P, Q to be K.-equivalent, P =K Q, if for any A EK and every a EA, P(a)-::::: 

Q(a) (that is, either P(a), Q(a) are both defined and are equal or are both 

undefined) . 

Let L == L(Z:) be the first-order logical language of Z: with equality. 
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The total correctness theory of Pin L with respect to K is 

2 = { (a (x) 'e (y)) E L : for all A E K, A F a (x) ➔ [P (x) + A sP (x) J} 

and the partial correctness theory of Pin L with respect to K is 

[ (P (x)+ A SP (x)) V p (x)t ]} 

where the x = (x1, ••• ,xn) and y are the only free variables of a and S, and 

are determined by P; and the meanings of P(x)+ and P(x)+ are convergence and 

divergence although these are not first-order. 

We enquire into the circumstances where 

(1) implies P =K Q 

(2) implies P= K Q 

In §1 we quickly provide evidence of a paucity of such situations and so 

turn instead to these modified theories (cf. the discussion of correctness 

in MANNA [18, pp. 164-5]). 

The modified total correctness theory of Pin L with respect to K is 

2 = {(a(x),S(x,y)) EL: for each AEK, AF a.(x) ➔ 

[P(x)+ A S(x,Px)]} 

and the modified partial correctness theory of Pin L with respect to K is 

2 = {(a.(x),6(x,y)) EL: for each AEK, AF a.(x) ➔ 

[ (P (x)+ A 6 (x,Px)) V P (x) t]}. 
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For any always terminating programs over any K we find that 

(3) implies P -K Q, 

(4) implies P -K Q, 

and so we begin, in §2, to examine arbitrary programs over various classes 

seeking this so-called logical determinateness for their semantics. Here 

MTCK(P) may be seen to factor out the distinction between MPCK(P) and PCK(P) 

and although (3) and (4) may fail even for a Ka variety (§3) the behaviour 

of (4) can be intriguing: we study local classes and axiomatisable classes 

(§4) and complete and w-categorial axiomatisable classes (§5), the class of 

all structures ALG(E) (§7), and subclasses of Peano Arithmetic (§8 and Appen

dix 1). The need for determinateness in some general form is satisfied in 

§6 by extending the logic L to include some arithmetic. 

Whatever the final resolution of the problem of determinateness and 

its r6le in investigations such as Greif and Meyer's, it seems to us that 

these mathematical studies persued further will provide considerable techni

cal insight into the logical aspects of computation: one area of obvious 

importance is to calculate the affect of Peano Arithmetic on simple-minded 

programming on the natural numbers (see §8 and Appendix 1). Hopefully, there 

can be developed a rich, classically styled, model theory of programs. 

For unexplained ideas in the theory of computation, logic or algebra 

we refer the reader to MANNA [18], CHANG & KEISLER [SJ, and MAL'CEV [16] 

respectively. The use of correctness theories is well established in the re

ferences previously cited, see also the text-book DE BAKKER [3]; the account 

of computations in algebraic systems in [29] may be useful for background 

material. 

0. PROGRAMS ON ALGEBRAS 

The concept of determinateness involves the three parameters of a pro

gram language~, a class of data structures, or data type, Kand a logical 

language L. Of these the last two require most attention in the technical 

work which follows, for any of the common designs of (deterministic) program 
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schemes, appropriate for abstract structures, may serve as E providing they 

contain statements allowing the evaluation of basic operations and relations 

of the algebras, and are closed under if* then * else statements and composi

tion; thus straight-line programs are about the weakest formalism for which 

all our results remain valid. 

If we have a specific computing formulae in mind it is the various 

classes of finite algorithmic procedures, or faps, developed in FRIEDMAN [8], 

MOLDESTAD, STOLTENBERG-HANSEN & TUCKER [22, 23] and SHEPHERDSON [27]; or, 

possibly, the effective definitional schemes of FRIEDMAN [8], but this re

presents only one computational power equivalent to the finite algorimic 

procedures with both stacking and counting on natural numbers (fapCS's), in 

[23], and to finite algorithmic procedures with index regieters (fapirs), 

in [27]. (In [24] six disparate methods of defining computability on algebras 

are explained and classified in terms of the fap formali~m; the power of 

fapCS-computability turns out to be maximal among the truely constructive 

computing strengths possible in an abstract setting.) The semantics of faps 

are determined by them being assembler code for straightforward types of 

register machines generalized to abstract algebras, for details see [8, 23, 

24, 27, 29]. However, the reader familiar with MANNA [18] or GREIBACH [9] 

should find no difficulty whatever in following all arguments here presented. 

Specific items we use all the time are these. 

Given a program P applied to input a 1 , ••• ,an EA we take as understood 

formulations of the state descriptions of the computation P(a1 , ••• ,an) and 

its length of computation denoted IP(a1 , ••• ,an) I. It is also easy to show 

these facts, [29]: 

0.1 LOCALITY OF COMPUTATION LEMMA 

In any computation P(a1, ••• ,an) the elements of A appearing in every 

state description of P(a1 , ••• ,an) all lie within <a1 , ••• ,an>, the subalgebra 

of A generated by a 1 , ••• ,an. In particular, the output P(a1 , ••• ,an) E 
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0. 2 UNIQUEN:E1SS OF COMPUTATION LEM.MA 

Let A and B be algebras of signature E isomorphic by cf>. For any program 

P over E and any input a 1 , ... ,an E A, cf>P (a1 , ... ,an) ~ P (cf>a1 , •.. ,cf>an). 

1. PROGRAMS WHICH ALWAYS TERMINATE 

First of all it is trivial to see that over the natural numbers, w, 

both (1) and ( 2) are true of any kind of program. This is an instance of 

the equally obvious fact that they hold when K consists of a single prime 

algebra A (that is, an A containing no proper subalgebras). For example, 

when K contains just one of the prime rings with identity, :;z or :;z , or just n 
one of the prime fields Q or 72: • The purpose of this first proposition is 

p 
to generate some equally simple counter-examples. 

THEOREM 1.1 .. Let~ be a class of programs over E and Ka class of data struc

tures of type E satisfying these two properties: there is an f E P such that 

(i) there exist A EK, a EA where f(a) :/- a, and (ii) for each A EK, f com

putes an automorphism of A. Then implications (1) and (2) fail for P and K. 

PROOF. Take P to be f and Q a program for the identity map. Hypothesis (i) 

asserts that P %K Q. We show TCK(P) = TCK(Q) and since both P and Qare 

total this suffices to prove (1) and (2) fail. Assume for a contradiction 

that these sets do not coincide. 

Case 1. There exist (a,B) such that (a,B) E TCK(P) but (a,B) r/. TCK(Q). Using 

the termination of P, Q and the definition of Q we can write this precisely 

as 

(a) VA EK, A I= a(x)-+ SP(x) 

and 

(b) 3B EK, B ~ a(x)-+ B(x). 

Given (b), choose B E K and b E B so that B }f a (b) -+ f3 (b); hence B I= a (b) A 

7S(b). From (a), BI= a(b)-+ SP(b) and B 1= SP(b). Since B }f S(b), P(b) :/- b 
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while P(b) = f(b) entails BF Sf(b). By hypothesis (ii) f computes an auto

morphism of B say~ and, since Sis first-order, S(x) if, and only if, S~(x). 

Hence BF S~(b) entails BF S(b) which is a contradiction. 

Case 2. there exist (a,$) such that (a,$) E TCK(Q) but (a,$) t TCK(P). This 

leads to a contradiction in the same way. Q.E.D. 

In applying 1.1 we desire E to be as simple a programming formula as 

possible, in our examples Pis the class of straight-line programs in the 

appropriate signature. 

ABELIAN GROUPS 1. 2. Let f (x) = nx = x + ••• + x (n times). For any torsionn 
free divisible abelian group A and any n ~ 0, f is an automorphism of A. n 
So take K to be any class of such groups for which one can choose an n such 

that f is not the identity on some group in K. 
n 

FINITE FIELDS 1.3. Let F be a finite field of characteristic p. Then f(x) = 
~ is a field automorphism of F. If Fis not 71; then f is not the identity. 

p 
So take K to be any class of finite fields of characteristic p containing 

at least one GF(pn) for n ~ 0,1; in particular take K = {GF(pn)} for any 

n F 0,1. (Remember (1) and (2) hold for K = {71; } • ) 
p 

INVOLUTIONS 1.4. An involution* of a (not necessarily conmutative) ring R 

** is an automorphism such that for all r ER, r = r. Take K to be any class 

of rings with involution containing at least one R where the involution is 

not the identity. For example, let K contain just the complex number field 

C with complex conjugation a+ib ➔ a-ib. or, to cite an example from the 

theory of linear equations, use the ring of 2x2 matrices over a field with 

the symplectic involution defined (a bd)* = (d -b). 
C -C a 

Of course in this section where programs always terminate there are no 

distinctions between (1), (2) and (3), (4); henceforth we explicitly mention 

only the total theories. 

THEOREM 1.5. Let P be a class of programs over E and let K be a class of 

data structures of type E. If P,Q E P define total functions on each A EK = 
then 



implies P -K Q. 

n 
PROOF. Assume P tK Q. Then there exists A EK and a EA such that P(a) ~ 

Q(a) in A. Let P(a) terminate int steps. Since the entire computation of 

P(a) takes place within the subsystem <a> of A (Lemma 0.1) there exists a 
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I polynomial T such that P(a) = T(a) and, moreover, we can syntactically un

fold the computation of P(a) into a first-order boolean formula of n vari-
n 

ables ~(x) which is true of b EB, for BEK, if, and only if, P(b) follows 

precisely the same route as P(a) in terminating int steps with P(b) = T(b). 

Define O (x,y) - ~ (x) ➔ y = T (x). It is easy to see that the pair (x = x, 

O(x,y)) lies in MI'CK(P) but not in MTCK(Q). Q.E.D. 

Despite this initial success of the modification to the correctness 

theories for total programs non-termination introduces elaborate technical 

difficulties as the following sections will illustrate. In hindsight it can 

only be to the advantage of everyone interested in these problems if further 

classification of the determinateness properties of the unimodified theories 

is made. R. Parikh has recently proved an attractive theorem in this con

nection, and has independently observed the possibility of non-determinate

ness in the case of Example 1.3, see [25]. 

We have one result worth mentioning here. 

THEOREM 1.6. Let I be a finite signature containing at least one function 

symbol and let K be the species of I, that is the class ALG(I) of all struc

tures of type I. Let~ be a class of programs over r. If P,Q E P compute 

total functions throughout K then 

•implies P -K Q. 

n 
PROOF. Suppose P FK Q and let A EK, a EA be such that P(a) ~ Q(a) in A. 

The computations of P(a) and Q(a) lie within the subsystem <a> of A generat

ed by a. So let those elements of <a> appearing in these computations be the 

list a= (ao, ••• ,~) where a0 = a and ~ = P(a). 

Let D be the set of all open formulae of N+l variables in L which are 
!! 

true of a in A. The set D is equivalent to a single formula d EL. Notice ~ ~ ~ 
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that d = d is consistent with respect to Kand that for any BEK, if dis 
~ 

realized in B then P and Qare not equivalent over B. We propose to define 

from d a new formula b = b such that 
a ~ (i) b(x) + d(x); 

(ii) b(x) is consistent with respect to K; 

(iii) there exist formulae~. (x.), 0 ~ i ~ N, such that if BEK realizes 
i i 

b(x) at£= (b0 , ••• ,bN) then {b EB: ~i (b)} = {bi} for O ~ i ~ N. 

From this the theorem follows because by (i) and (iii) 

but by (ii), 

bis defined as follows. First let O(y) be the statement "for each 

function (symbol) f of E, y ¢ im(f)". Since Eis finite, O(y) is first-order 

expressible. Now choose some k-ary function f of E and define, for O ~ i ~ N, 

the formula~. (x) to first-order express the statement "xis that unique 
i 

element such that for exactly i+1 distinct elements z., 0 ~ j ~ i, O(z.) and 
J J 

x = f(z., ••• ,z.)". Clearly,~- can be satisfied by at most one element of 
J J i 

any K-alqebra. 
N 

Set b(x0 , •.. ,~) = d(x0 , ... ,~) A i~O ~i (xi). 

Conditions (i) and (iii) are immediate. To show (ii), startinq from 

a0 , ••• ,~ EA, we construct a BEK satisfying b(x). Let T[X] be the E-term 

algebra on the indeterminates x0 , ••• ,XN. By the freeness property of T[X] 

for K, there is a congruence= on T[X] such that T[X]/ = is isomorphic to 
~ ~ 

<~> on which d(x) is satisfied. Now for each O ~ j ~ N we take the j+1 in-

determinates YJ1. , ••• ,Y~ 1 and the equations f(Y~, ••• ,Y~) = X., for 1 ~ i ~ j+1. 
J+ . i i J 

Let T[X,Y] = T[X][Y~: 1 ~ i ~ j+1, 0 ~ j ~ N] and divide it by the con
i 

gruence = generated by= together with the equations. Setting B = T[X,Y]/= 
~ 

it is routine, if tedious, to verify that in B the only elements satisfying 

0 are the Y~ and that the only elements satisfying~. and d(x) are the x .• 
i i i 

Q.E.D. 
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The class of all interpretations of a program formalism is of very 

limited semantical interest. One significant case where Theorem 1.6 is re

levant is the class of all groupoids (that is, of all non-associative semi

groups) which is the species of a single binary operation: the data struc

tures on which one parses syntactic expressions are members of this category. 

A theroem about this class is also available for general programs, but with 

some considerable effort, see §7. 

2. SOME GENERAL PROPERTIES OF PARI'IAL CORRECTNESS THEORIES 

Theorem 1.5 rests on the simple technical advantage of the modified 

correctness theories that they may contain first-order expressions of 

the structure and output of any computation of program P which runs for a 

fixed time t. Formally, to each program P, considered as having n input 

variables (n ~ 0), there corresponds sequences of first-order formulae 

~:cx1 , ••. ,xn) and polynomials •!<x1 , ••. ,xn) such that for all t E wand any 

input a 1, ••• ,an from data structure A 

and, 

In particular, 

if, and only if AF 

It is important to observe that (godel numbers for) the formulae and poly

nomials can be recursively calculated uniformly in the (codes for) programs. 

And whilst there is a single program S over ALG(E) (necessarily of the power 

of finite algorithmic procedures with stacking and counting) which decides 

~: on inputs from A, uniformly in codes 9p for proqrams P and run times t, 

S(ep,a,t) = 0 

= 1 

if A F ~.~ (a) 

otherwise 
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{see [23] where step counting is proved to be a complexity measure for fapCS 

computation on abstract alqebras), the business of deciding for fixed P and 

t whether or not qiven a E An, AF ~~{a), can be accomplished by a straight

line proqram. 

The formal proofs of there observations we leave as an instructive 

exercise to the reader. This section collects toqether some formal relation

ships between partial correctness theories and their modifications and con

cludes with an important technical lemma. 

Let S = {(a{x),8{y)): a,8 EL}. Then for any program P over any class, 

and so 

LEMMA 2.1. For any programs P, Q over any class K, if MPCK(P) = MPCK(Q) then 

PCK(P) = PCK(Q). 

That the converse is false, even for total programs, follows from 1.1 

and 1.5, of course. However, 

THEROEM 2.2. For any programs P,Q over any class K, if MTCK(P) = MTCK(Q)then 

PCK(P) = PCK(Q) if, and onlu if, MPCK(P) = MPCK(Q). 

PROOF. From the hypothesis on total correctness we deduce that 

Contrapositively, suppose (a,8) E MPCK(P) - MPCK(Q). Then 

K F a(x) + [(P(x)i A S(x,P(x))) v P(x)t] 

K ~ a(x) + [(Q{x)i A 8(x,Q(x))) v Q(x)t] 

n 
Choose A EK and a EA such that 

AF a(a) A 7[(Q(a)i A 8(a,Q(a))) v Q(a)t]. 
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Then AF a(a) A Q{a)i A 7B(a,Q(a)). Now we express the computation of Q(a) 

in the formula <I>~ and polynomial T ~, for t = IQ (a) I , so that A F <I>~ {a) and 

AF <f>i(a) + Q{a) = T~(a); notice that (<f>~{x), y = T~(x)) E MTCk{Q) and con

sider the pair (<f>~(x) A 7B(x,.~(x)), y ~ y). 

This pair does not lie in PCK(Q) because AF <f>~(a) A 7B(a,T~(a)) A 

Q(a)i. However, it does lie in PCK(P). To see this let BEK and b E Bn such 

that BF <f>~{b) A 7B(b,T~(b)). As MTCK{P) = MTCK{Q), (<f>~(x), y = T~(x)) E 

MTCK{P) and we have BF P(b) = T~(b), and hence that B ~ P(b)i A B(b,P(b)) 

and BF P{b)t. This establishes for any BEK and any b E Bn 

BF <f>~{b) A 7B(b,T~(b)) + [(P{b)i A P(b) ~ P(b)) v P(b)t]. 

Q.E.D. 

It is convenient to remark at this point that properties of termina

tions of general programs are not determined by partial correctness although 

the proof requires work of later sections: 

PROPOSITION 2.3. There is a class Kand programs P, Q for which 

but 

PROOF. This anticipates a construction of the appendix: choose P, Q and K 

as in example A.3. To see that MTCK(P) ~ MTCK(Q) observe that (x=x, x=x) E 

MTCK(P) - MTCK(Q) because otherwise Q would be everywhere total on K. Q.E.D. 

We now prove a technical result which in localizing the semantics of 

computations across classes of· structures pin points the source of certain 

difficulties in obtaining logical determinateness; it also enables us to 

avoid repeating some patterns of argument later on. 

Let A be an algebra of signature Land let r be a signature extending 

L, so that L c r. The L reduct of algebra B of signature r is the structure 

BIL with domain that of Band whose operations and relations are those of 

B named in I; Bis said to bear expansion of A if BIL= A. 

If K is a class of structures of signature Land L c r then by K(r) we 



12 

denote the class of all r expansions of all K-algebras. In particular, if 

r = Z: u {_£1 ,,. •• ,~} where £1 , ••. ,~ are new constant symbols relative to z: 
then K(r) consists of all algebras of the form (A,a1 , .•. ,an) where A E K 

n 
and (a1 , ••• ,an) EA. The sort of localization of semantics we have in mind 

is suggested by this obvious equivalence: for any first-order formula 

~(x 1 , ••• ,xn) over Z:, 

where ~ (c 1 , •..• ,c ) is a first-order sentence over r. 
- ---n 

Call a program closed if it has no input variables. 

LOCALIZATION LEMMA 2.4. Let K be a class of algebras of signature Z:. The 

following statements are equivalent: 

(i) for all programs P, Q over Z:, 

implies P -K Q 

(ii) for all finite extensions of Z: by constants tor, and for each closed 

program P over r, if P diverges on some A E K(f) then there is a sen

tence 0., first-order over r, which is consistent with K(r) and such 

that K(][') = 0 -+ Pt. 

PROOF. Consider (i) implies (ii). Let P be a closed program over r :::i Z: in

volving constants S:..i, ••• , En E r - L Obviously one can take P = PO (_£1 , .•. , ~) 

where P0 (x1 , ..•• ,xn) is a program over L Suppose A I= Pt for some A E K(r). 

We must make a trivial technical case distinction: assume n ~ 0. Let Q, R 

be these pro9rams over Z:: 

Clearly, Q ;tK R since Q is everywhere convergent whereas R is not. By their 

definition, MPCK(Q) c MPCK(R) while hypothesis (i) entails there is 



(a,8) E MPCK(R) - MPCK(Q). We show we can take the following first-order 

formulae over r to be a O which satisfies (ii): 

0 = a ( C l , • • • , C ) A 78 (Cl , ••• , C , C ) • 
- -n - -n -1 
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First examine consistency. Since (a,8) E MPCK(Q) there is a BEK and 

b = (b1 , ... ,bn) E Bn such that B ~ a(b) ➔ [Q(b)i A S(b,Q(b))] V Q(b)t. So 

and (B,b1, ••• ,bn) E K(f) is a structure on which O is satisfied under the 

interpretation of c. as b., 1 ~ i ~ n. 
-1 1 

Next suppose BF O for some BE K(r). As (a,8) E MPCK(R) we see that 

Since R converges precisely where P converges we can deduce 

which together with BF O implies Pt on B. 

In the case n = 0 we have only to consider the case where E contains 

a constant c where the argument above works for Q, R redefined as Q = c and 

R = if Pi then c else t fi. 

Consider (ii) implies (i) .• Suppose P ~K Q. We must show MPCK (P) =1-

MPCK (Q) on the basis of (ii). There are essentially two cases. 

First, for some A EK and a E An, P(a) and Q(a) converge but P(a) =1-

Q(a). Here we can use the first-order expression of their computations: if 

IP(a) I = t and IQ(a) I = s then the pair <<1{<x) A 4>;<x) A T~(x) =I- T;(x), y= 

T~(x)) lies in MPCK(P) but not in MPCK(Q). 
n Secondly, for some A EK and a= (a1 , ••• ,an) EA, P(a) converges but 

Q(a) diverges. (The third case exchanges the hypothesis between P and Q and 

follows mutatis mutandis.) 
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Let IP (a) I = t and define a new program R by 

Notice that R does not require programming features beyind those assumed 

for P and Q depends upon the observation that a straight-line program can 

be written to decide any given <j>:(x). 

From our hypothesis it follows that R(a) t. Let B = (A,a1 , ••• ,an) and 

r = I u {c 1 , .... ,c} where the c. are constant symbols new to I. Clearly, - -n -J_ 

B I= R(c 1 , ••• ,,c ) t as c. is interpreted as a., 1 :;; i :;; n. By statement (ii) - -n --]_ l. 

there is a SEmtence O, first-order over r, which is consistent with K(f) and 

such that K(r) I= 0 ➔ R(£1 , ... ,~) t. Let 00 be O with variables xi replacing 

constants £i ,, 1 :;; i :;; n. We claim that (00 {x), y -:/: y) E MPCK (Q) - MPCK (P). 

The pail:: cannot lie in MPCK (P) because K I= 00 {x) ➔ P (x) -l- and y -:/: y is 

false. On thE3 other hand the pair does lie in MPC {Q) because K I= 00 {x) ➔ 
p p K 

[R(x)t A <j>t(x)] and KI= [R(x)t A <j>t(x)] ➔ Q(x)t. Q.E.D. 

3. A COUNTER--EXAMPLE TO DETERMINATENESS ON A VARIETY 

Whilst the modified correctness theories worked perfectly for always 

terminating programs they fail to characterize partial programs: 

THEOREM 3.1. Let L be a signature containing two unary functions f, g let K 

be the variety of algebras of type I defined by the equation 

fg(x) = gf(x) = x. 

Then there exist flowchart programs P and Q such that 

PROOF. Let P compute the two argument projection function P(x,y) = x through

out K. For Q we require 

Q(x,y) = X if <x> or <y> is finite or x E <y> or y E <x>, 

= t otherwise. 
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Given the equation defining K, it is straightforward to design a flow chart 

program which is such a Q. Clearly P tK Q. 

Assume for a contradiction that MPCK(P) and MPCK(Q) are distinct. Clear

ly, MPCK(P) C MPCK(Q) so let a,S EL such that 

K F a(x,y) + [(Q(x,y)+ A S(x,y,Q(x,y)) v Q(x,y)t] 

K ~ a(x,y) + [(P(x,y)i A S(x,y,P(x,y)) V P(x,y)t]. 

Applying the known properties of P, Q these expressions simplify to 

K F a(x,y) + [(Q(x,y)+ A S(x,y)) v Q(x,y)t] 

K F a(x,y) + S(x,y). 

Let y(x,y) = a(x,y) A 7S(x,y) and observe that K F y(x,y) + Q(x,y)t and so 

for A EK if AF y(x,y) then <x> and <y> are infinite and x ¢ <y>, y ¢ <x>. 

Choose A EK and a,b EA such that AF y(a,b); to'this step we produce a 

contradiction. 

To L we add a constant symbol a to obtain L, then AF y(a,b) and 
- a -

AF y(a,y) + Q(a,y). Let T = Th(A,a), the set of all sentences of L true 
- - a 

in A with~ assigned a. To make an elementary embedding of A into a certain 

BEK we add a new constant symbol£ to L and define the subset of L 
a ~,£ 

T' = {7y(a,_£), <c> is infinite, c ¢ <a>} 

where it is easy to express "<E,_> is infinite" and"£¢ <a>" in first-order 

terms, given the special definition of K. 

By a routine application of the Compactness Theorem [5, p. 67], the 

set of sentences Tu T' can be shown to have a model BEK. And clearly in 

such B there are a, b, c such that 

BF y(a,b) and BF 7y(a,c). 

We now use the following fact, which is easy to prove from the specifications 
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of K: if A EK and a,b,c EA are such that <b>, <c> are infinite, and a, b, 

c do not appear in oneanother's subalgebras, then there exists$ E Aut(A) 

for which $(a) = a and $(b) = c; Therefore b,c EB can be exchanged, by an 

automorphism fixing a, in the pair of valid formulae above to reveal the 

sought for contradiction. Q.E.D. 

4. DETERMINATENESS FOR LOCAL CLASSES 

Let K be a class of algebras. An algebra A is locally a K-algebra if 

each finite subset of A is contained within a subalgebra of A which belongs 

to K; write L(K) for the class of all locally K-algebras. 

PROPOSITION 4.1. For any programs P, Q over any class K, 

if, and only if, 

PROOF. Now P =L(K) Q implies P =K Q because L(K) ~ K. Conversely, assume 

P =K Q. Let A E L(K) and consider an arbitrary computation of P, Q on 

a E An. If BEK is a subalgebra of A containing (the components of) a then 

P(a) z Q(a) in A if, and only if, P(a) z Q(a) in B, by the Locality of Com-

putation Lemma 0.1. So P -K Q implies P =L(K) Q. Q.E.D. 

PROPOSITION 4.2. Let K be a first-order axiomatizable class and let K0 be 

the class consisting of its countable structures. Then for any programs P, 

Q over K 

if, and only if, 

Moreover, for any program P over K, MPCKo(P) = MPCK(P). 

PROOF. Obviously, P =K Q implies P =Ko Q as K0 c K. By Proposition 4.1, 

P =Ko Q implies P =L(KQ) Q: we show Kc L(K0 ). Let A EK and a 1 , ••• ,an EA. 

By a Downward Lowenheim-Skolem Theorem (for example, Theroem 3.1.6 in CHANG & 

KEISLER [5, p. 109]), there is a countable elementary substructure A0 of A 

containing a 1 , ••• ,an which is a K-algebra as K is axiomatizable since 

Ao€ Ko, A€ L(K). 
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Now MPCK(P) c MPCKo(P) since K0 c K. Assume for a contradiction that 

(a,S) E MPCKo(P) - MPCK(P). Then there exists A EK such that A~ a(x) + 

(P(x)+ A S(x,P(x))) v P(x) • So there is a E An such that AF a(a) and P(a)+ 

but A~ S(a,P(a)). Since P(a)+ we can first-order express this computation 

and assert AF ~:(x) + 7S(x,T!(x)). Again by Lowenheim-Skolem, there is a 

countable elementary substructure A0 of A so that A0 F ~:(x) + 7S(x,T!(x)). 

From this it follows, from propositional manipulation and the locality of 

computations, that (a,S) ¢ MPCK0 (P), the required contradiction. Q.E.D. 

We may now easily deduce this corollary. 

THEOREM 4.3. Let K be a first-order axiomatizable class and let KO be the 

class consisting of its countable structures. Then for all programs P, Q 

over K the following are equivalent: 

(i) 

(ii) MPC (P) = MPC (Q) 
Ko Ko 

implies 

implies 

p = Q 
K 

5. DETERMINATENESS AND COMPLETE AXIOMATIZABLE CLASSES 

By a complete axiomatizable class K we mean that K is the class of all 

models of a complete first-order axiomatizable theory. 

THEOREM 5.1. Let K be a complete axiomatizable class and let P, Q be pro

grams over K. Then the following properties are equivalent. 

(1) lv"iPCK (P) = MPCK (Q); 

(2) for some countable A E K, p = 
A 

Q; 

(3) for some countable A E K, MPCA (P) = MPCA(Q). 

PROOF. First we prove (1) implies (2). Now for A EK, P -A Q iff for no 
n 

a EA any one of the following are true: 

(i) ~: (a) A ~Q(a) 
p 

-:/ TQ(a); for some t, s, A Tt(a) s s 
p 0 

(ii) for some t, ~t(a) and for all s, 7~-(a); 
s 

~Q(a) 
p 

(iii) for some s, and for all t, 7~t(a). s 
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By now, the reader should recognize that case (i) is irrelevant for, in the 

presence of the hypothesis MPCK(P) = MPCK(Q), when both P and Q converge 

their outputs must coincide. So we rephrase the situation thus: 

Let T! == {q,! (x) ,7q,~ (x): s E w} and TQ = {q,Q(x),7q,P: t E w}. Then for 
s s t 

any A EK, P =A Q iff no a EA satisfies or realizes one of the types (to 

use the terminology of mathematical logic) TP, TQ (t,s E w). To prove (2) 
t s 

we look for some countable A EK which omits these types. Because K is com-

plete and we can apply the Extended Omitting Types Theorem, CHANG & KEISLER 

[5, p. 82], :Lt is sufficient to prove K locally omits all these types. 

Suppose, for a contradiction, that 'I·! is locally realized, so there 

is a formula O consistent with Kand such that K F O(x) ➔ q,!(x) and K F 

0 (x) ➔ 7q,~ (x) for all s E w. We claim that (0 (x) ,y -f. y) E MPCK (Q) - MPCK (P); 

this is easy to see. Let A EK, a E An. If AF Q(a) then A p A 7q,Q(a) 
SEW S 

and Q(a)t. HE,mce AF O(a) ➔ [Q(a)+ A Q(a) -f. Q(a)] v Q(a)t. And AF O(a) im-

plies A= q,!(a) and P(a)+ and so (0,y -f. y) i MPCK(P). 

Applying the same argument to TQ shows all the types are locally omitted 
s 

and the implication is proved. 

That (2) implies (3) is immediate. 

Thirdly, that (3) implies (1) follows from this fact: 

LEMMA 5. 2. LE":Jt P be a program over the complete axiomatizable class K. Then 

for each A EK 

PROOF. Since {A} c K, MPCK(P) c MPCA(P). For the reverse inclusion, suppose, 

for a contradiction, that (a(x) ,(3(x,y)) E MPCA(P) - MPCK(P). Thus there 

exists BEK and b E Bn such that BF a(b) A P(b)+ A 7(3(b,P(b)). Let 
p p 

IP(b) I = t and set O(x) = a(x) A q,t(x) A 7S(x,Tt(x)); clearly B p O(b) and 

BF 3x.O(x). Since K is defined by a complete first-order axiomatic theory T, 

T f- 3x.0 (x) and A p T implies A p 3x.O (x). Whence it is easy to see that 

this contradicts (a,/3) E MPCA(P). Q.E.D. 

Determinateness for a complete axiomatizable class of K ,is not always 

possible (see Example A.4, Appendix 1), but the property in this case can 
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be neatly expressed in terms of a logic of effective definitions, LED, de

veloped in [4] and [28], where it is equivalent to the class being V-LED 

complete. 

By an w-categorial class K we mean a class containing a countable 

structure and having the property that any two countable K-algebras are 

isomorphic. 

COROLLARY 5.3. Let K be an w-categorial axiomatisable class. Then for any 

programs P, Q over K, 

implies 

PROOF. Assume MPCK(P) = MPCK(Q). Since K is complete and axiomatizable (Pro

position 3.1.10 CHANG & KEISLER [5, p. 113]) we can apply Theorem 5.1 to 

obtain a countable K-algebra A such that P =A Q. Let K0 be the class of all 

K-algebras. Then since each structure in K is isomorphic to A, P =Ko Q. 

Whence by Proposition 4.2, P =K Q. Q.E.D. 

6. DETERMINATENESS VIA EXTENDED SEMANTICS 

Let I:p = {o,s,+,•} and let I: be a second signature disjoint from I:P. 

Set I:w = I: u I:p and recall from §2 the meaning of a I:w expansion of a I: 

structure. A I: structure A is called a standard expansion if Al~ = (w;O, 
W Lp 

+1,+,•), the algebra of natural numbers with constant zero and operations 

successor, addition and multiplication. 

If K is a class of I: algebras then set K(I:) to be the class of all I: w w 
expansions of K algebras. 

THEOREM 6.1. Let K be a class of countable structures of signature I:. Let 

P, Q be programs over K. Then 

implies 

PROOF. The first step is to formulate an arithmetization of the ~:(x) in the 
t first-order logic over I:. Fort E w, we denote by! the term S (0) over I:. w w 
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REPRESENTATION LEMMA 6. 2. Let {Qt (x): t E: w} be a recursively enumerable se

quence of open formulae of first-order logic over L. Then there exists a 

sentence ijJ and a formula Q(y,x) in the first-order language over L such 
w 

that (i) ijJ is true in all standard L structures and (ii) for each t E: w, 
w 

We do not stop to prove this lemma as it is a reasonably straightfor

ward adaptation of the usual proof of the representation of recursive ftmc

tions in arithmetic. 

Next, observe that P =K Q iff P =K(Lw) Q so it is sufficient to prove 

determinatenE~ss for K(L ). By the Localisation Lemma 2.4f it is sufficient 
w 

to consider closed programs over finite extensions of L by constants. Let 
w 

P be a closed program over such a signature extension rand containing re-

ference to only these constants new to L and the constants and operations 
w 

of L Suppose A E: K ( r) and A I= Pt. Without loss of generality assume A is 

standard: if A were not standard we can choose BE: K(r) such that BIL= AIL 

and BIL is standard arithmetic. 
p p 

Since A I= Pt we have for all t E: w, A I= 7¢t. 
p 

-Write Qt= 7¢t and apply 

Lemma 6.2 so as to choose appropriate ijJ and Q(y). Thus, as A is standard, 

A I= ijJ and as A I= Qt(x) +-+ Q(!_) we get A I= Q(!_), for each t E: w. Let O = 

ijJ A VtQ(t) a first-order formula over r. Again because A is standard we have 

A I= 0 so O is consistent. 

Now suppose B E: K(r) and B I= 0. Then BI= ijJ and for all t E: w, BI= Q(t). 

Using ijJ 1-- 7¢~~ +-+ Q (!_) we deduce B I= /1.tE:W 7 ¢~ which, of course, means B I= Pt. 

Q.E.D. 

Notice that if K is any axiomatizable class then one obtains determinate

ness for K from K(L) in view of Theorem 4.3. 
w 

7. DETERMINA'l~ENESS FOR ALG ( L) 

By an aJgebraic signature we mean a signature without relations. The 

purpose of this section is to prove this single theorem. 

THEOREM 7.1. Let L be an algebraic signature. Let K = ALG(L) be the class 

of all struct:ures of signature L. Then for all programs P, Q over L, 
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implies 

Actually, our methods can be used to establish determinateness for 

ALG(E) for E possessed of relations except in the case of E containing any 

number of constants but one unary function and all its relations unary; in 

this exceptional case we conjecture there is no determinacy forthcoming from 

the modified theories. 

Meyer has announced [20] that he has obtained similar determinacy theo

rems for ALG(E) which are to appear in MEYER & HELPERN [21]. 

The argument for Theorem 7.1 is quite involved technically and we have 

decided to assume a greater measure of familiarity with mathematical logic 

on the part of the reader. 

PROOF OF THEOREM 7.1. If E contains only constants then computations in K 

trivialize and determinateness is easily checked. The argument proper divides 

into the singular case, where E contains one unary function and some con

stants, and the general one of those algebraic signatures which remain. The 

theroem is proved by applying the Localisation Lemma 2.4 to the Lemmas 7.2 

and 7. 3 below. 

LEMMA FOR SINGULAR CASE 7.2. Let Ebe (a finite extension by constants of) 

an algebraic signature containing one unary function and let K be any class 

of E algebras which is closed under taking subalgebras. Then for any closed 

program P over E, if for some A EK, AF Pt th~n there is a sentence 0, first

order over E, which is consistent with Kand such that K F O + Pt. 

PROOF. Assume A and P = P(c1 , ••• ,c) are given and AF Pt. We make a special - -n 
decomposition of the subalgebra <c 1 , ••• ,cn> of A. For f the unary function 

i 
in E and c EA, k E w define orbk(f,c) = {a E A: 3i < k, f (c) = a} and 

orb (f ,c) = UkEw orbk (f ,c). Then <c1 , ••• ,en> = orb (f ,c1) u ••• u orb (f ,en). 

There arises just a few possible types of orbit in this decomposition of 

interest to us, illustrated in the figure below: (i) orb (f ,c.) is finite; 
1 

(ii) orb(f,c.) is infinite and meets no other orbit; (iii) orb(f,c.) is in-
1 1 

finite but intersects some orb(f,c.). 
r J 

a E orb(f,c.) n orb(f,c.) then f (c.) 
f+k s4k 1 

for all k, f (c.) = f (c.). 
1 J 

In this third case notice that if 

=a= fs(c.) for some r, sand hence 
J 
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u 

• • case (i) 
• 

case (ii) 

case (iii) 

Choose k0 so large as to bound the cardinalities of the finite orbits and 

the finite parts of intersecting orbits which remain distinct; set 

U = Uk<k "< arbk(f,c1..). We aim to represent this subalgebra structure in 
- 0 l.-n 

a first-order sentence over E. 

Then 

Let 

i 
Let Ube defined by the formula U(x) = v.<k v. x = f (c,). 

1.- 0 JS:n --:J 
Let R define all equalities and inequalities in U in this way: set 

T(i,j,p,q) = fi(c) = -p 

= fi(c ) 'F -p 

R = A T(i,j,p,q). 
i,jS:ko 
p,qS:n 

fj(c 
-q 

fj(c 
-q 

) if fi(c ) = fj (c ) in A 
p q 

) otherwise. 

S = (Vx)[7U(x) ➔ f(x) ¥ x A 7U(f(x)) A ('v'y,z) (f(y) = f(z) = x 

➔ y = z)] 



And choosing those cA 1, ••• ,cAt such that for all a EU, f(a) f cAi 

( 1 :s; i :s; t) we define V = '\:s;t (v'x) [f (x) f £Ai J 
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Let O =RAS AV. We claim Oto be K-consistent and that K F O + Pt. 

The consistency of O follows from its construction from <c 1 , ••• ,cn> and the 

hypothesis that subalgebras of K-algebras are again K-algebras. To obtain 

K F O + Pt one proceeds as follows. Let BEK and BF 0. Let B' be the sub

algebra of B generated by the elements named by the constants in P. One can 

now show that B' F O implies B' is isomorphic to <c 1 , ••• ,cn> whence Pt on B', 

by Lemma 0.2, and so BF Pt, by Lemma 0.1. The proof of the isomorphism we 

leave to the reader. Q.E.D. 

LEMMA FOR USUAL CASES 7.3. Let Ebe (a finite extension by constants of) an 

algebraic signature containing at least two unary functions or at.least 

function of arity greater than one and let K = ALG(E). Then for any closed 

program P over E, if for some A EK, AF Pt then there is a sentence 0, 
first-order over E, which is consistent with Kand such that K F O + Pt. 

PROOF. We begin with some general machinery which will handle the various 

possible signatures in a uniform way. 

Let r be a one sorted signature. This we expand to a two sorted signa

ture r 2 by adding tor a new sort called SETS, and renaming as DOM the sort 

of r, together with the binary relations£ on SETS x SETS and MAP on SETS x 

DOM. Given an algebra A of type r 2 we denote by AIDOM the reduct to the r 

structure of A and by Al SETS the reduct to the {SETS,£} structure of A. 

Assume the first-order languages L(f) and L(r2), over rand r 2 respec

tively, include only the connectives 7, v, 3; L(r2) has two kinds of vari

ables x~, x~ (i E w) ranging over DOM and SETS although we drop the super-
1 1 

scripts whenever confusion seems unlikely. 

Suppose we are given four formulae from L(f), the list t = QD(x), QS(x), 

QE(x,y), QM(x,y). Such a list determines an interpretation Ht of L(r2) into 

L(f) in an obvious way. 

t s 
H (x.) = x2i+l 1 

Ht (x~) = x2i 1 
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t s s 
H (x. E X.) 

]. J 
t s t s = Q (H (x.),H (x.)) 

e: ]. J 

t s t s t 
H (MAP(x. ,-r)) = Q (H (x ) ,M (T)) 

l. M i 

where f is a k-ary operation of r: -r,-r 1 , ••• ,-rk are r terms and~, ware 

formulae of L(r2). 

LEMMA 7.4. Let O be a sentece of L(f) and let Ht be an interpretation of 

L(r2) into L(f) which together satisfy these two conditions: 

(i) given any closed program P over r which diverges on some r structure, 

there exists a r structure A where AF O and AF Pt. 

(ii) for any sentence w of L(r2), whenever O Aw is consistent with respect 

to ALG(r 2 ) then Ht(O Aw> is consistent with respect to ALG(r). 

Then given any closed program P which diverges somewhere in K = ALG(f), 

there exists a K-consistent sentence~ E L(f) with K F ~ ➔ Pt. 

PROOF. Let r be r with the signature of arithmetic adjoined as in §6. Sup
w 

pose BF O and BF Pt and let A be a countable elementary subalgebra of B 
so that AFOA Pt. Let A be some standard r expression of A. Then just w w 
as in the proof of Theorem 6.1 we can find a sentence~• E L(fw) such that 

A F ~• and ALG(r > F ~•+Pt. w w 
We here state a technical lemma whose proof is a tedious exercise in 

axiomatic set theory which we take the liberty of omitting. 
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LEMMA 7. 5. Let I:. be a finite signature and let 8 be a sentence of L (M • Then 

there is a sentence p of the first-order language of Zermelo-Fraenkel set 

theory, L(ZF) and a formula p' (x) of L(ZF) such that 

(i) ZF I- p 

(ii) if BI= p then for b EB, BI= p' (b) iff bis a I:. structure which satis

fies the sentence o. 

To continue the proof of Lemma 7.4, set/:.= r and o = Q' in Lemma 7.5 
w 

to get appropriate p and p' (x). 

Let$ be a sentence of L(r2 ) which expresses the following of a r 2 

structure B: if p and 3x.p' (x) hold for B then for some b of type SET in B, 

p' (b) holds and MAP restricted to bx BjDOM is the graph of a function 

b ➔ BjDOM which is a monomorphism of r structures. 

We set¢= H(O A p A 3x.p' (x) A$) E L(f) and aim to show¢ is K-con

sistent and K I= ¢ ➔ Pt. Consider the latter property firs·t. Suppose B I= ¢. 

Define 

S:ET(B) {b E B: B F QS (b)} 

OOM(B) = {b E B: BI= Q0 (b)} 

E: (B) {(b,b') 
2 

BI= QE:(b,b')} = E B : 

MAP(B) { (b ,b I ) 2 
B I= Q (b) A Q (b I) A QM(b,b')} = E B : 

s D 

Notice that DOM(B) I= 0 and SET(B) I= PA 3x.p' (x). Morover, let B be the 
D,S 

two sorted r 2 structure determined by these formulae by taking DOM(B) as a 

r structure and adding a disjoint copy S of SET(B) as a structure of sort 

SET. If h: S ➔ SET(B) is the copying bijection then E: and MAP are defined: 

a E a'~ BI= Q (h(a) ,h(a')) and MAP(a,a') ~BI= Q (h(a) ,a'). It should be 
E: t M 

clear from the nature of H that B SI= 0 A p A 3x.p' (x) A$. We conclude 
D, 

that for some b E BD,SISET' bis a rw structure which satisfies¢' and that 

MAP restricted to bx DOM(B) (= domain of B ) is the graph of an injective 
D,S 

r homomorphism from b to BD,SIDOM (= DOM(B)). As b I=¢' and I=¢' ➔ Pt we 

have b I= Pt .. Now all values occurring in the computation P lie within the 

primer subalgebra of b that is embedded in DCM(B). Therefore DOM(B) I= Pt 

and hence BI= Pt and we are done. 
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To prove consistency: let A be a countable r algebra such that AF 

0 A Pt. Expand A to a standard r structure A' with A' F ~ (remember any 
w 

standard expansion of A will satisfy~•). Now add to A' a model of ZF, which 

contains an isomorphic copy A" of A', to make the two sorted r2 structure 

B wherein MAP is a relation which restricted to A" x A' is precisely the 

graph of a r isomorphism between them. It is easy to check that this r 2 

structure B satisfies O A p A 3x.p' (x) A~ and so it follows immediately 

from clause (ii) of Lemma 7.4 that~= Ht(O A p A 3x.p' (x) A~) is consist-

ent. This completes the proof of Lemma 7.4. Q.E.D. 

To complete the proposition's proof is a matter of defining interpreta

tions .Ht for the various signatures and proving true of them the two hypo

theses of Lemma 7.4. We will give two representative cases: 

(a) E contains one binary function f and constant c. Here take 

0 = (3x,y)[x ~ y A Vx.3y(f(y,y) = x)] and 

(b) E contains two unary functions f, g. Here take 

0 = Vx3y.f(y) = x. Let Q (x) = 73y.f(y) = x and define 
C 

- 3z. (Q (z) A f(z) = x A g(z) = y) 
C 
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8. ARITHMETIC PROGRAMS 

We take as the standard model of arithmetic the algebra N = (w;0,+1,+, 

•,~) whose signature we denote Li We shall consider programs over L applied 

to certain types of models of Peano arithmetic over L. Let PA denote the 

class of all models of Peano arithmetic. The following fact is easy to see: 

LEMMA 8.1. For any programs P, Q over L, 

implies 

The question of determinateness for PA, 

implies p = Q PA 

we cannot yet answer, and we offer it as an open problem. We can provide, 

however, the following theorem. 

Let rr1 (N) be the set of all universal first-order sentences over L true 

in the standard model N. Let K be the class of all models of the theory de

fined by Peano arithmetic plus rr 1 (N). 

THEROEM 8.2. For any programs P, Q over L 

implies 

Before proving Theorem 8.2 we prove an interesting observation which 

illustrates that quite basic information about computation on N can be read 

off from information about computations on K. In particular, this next theo

rem shows that programs on N equivalent up to any denotational semantics 

determined by N can be detected as operationally distinct on N from their 

denotational inequivalence on K. 

PROPOSITION 8.3. Let P, Q be programs over L. Suppose that P =N Q but 

P FK Q. Then the relative run times of P and Q over N are unbounded in the 

sense that for any k there exists an input a E Nn such that 

IP (a> I 
IQ (a> I 

IQ(a> I 
+ IP(a) I > k. 
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PROOF. First suppose that for some A EK, a E An it is the case that P(a}+, 
p 

Let IP(a} I= t and IQ(a} I= s so that AF ~t(a} A Q(a}+ but P(a} = Q(a}. 

~; (a} A T: (a} f. T; (a}. Now since all of n1 (N} is satisfied in A, 

NF 3x.~~(x} A ~;<x} A T~(x} f. T;(x} from whence it follows P and Q differ 

somewhere on N; this contradicts P =N Q. So we amy assume that for some 
·n A EK, a EA it is the case that P(a}+ but Q(a}+ (say}. 

Let e:(x} = ~:(x} A Ai~S 7~~(x}. If again IP(a} I= t then for each s, 

A F 3x.e~ (x}. 
s 

As this is an existential sentence and AF n1 (N} we deduce NF 3x.0t(x} 

for each s. Given k choose any s, t such thats> tk and choose a E Nn such 
s 

that N F et (a}. Then 

IP(a} I+ IQ(a} I ~ 
IQ <a> I IP Ca> I 

IQ<a> I 
IP(a} I 

tk t = k. Q.E.D. 

PROOF OF THEOREM 8.2. Contrapositively, assume P 1K Q. If P %N Q then we are 

done because of Lemma 8.1; so assume P =N Q, the hypotheses of Proposition 

8.3. From the proof of 8.3 we can further assume that somewhere in K, P con

verges whilst Q diverges and, moreover, we can choose t such that for alls, 

NF 3x.e:(x} where a: is as defined in the argument of 8.3. 

Let ~(z} be a formula such that 3z.~(z} is satisfied somewhere in PA 

and for any ME PA, a EM if MF ~(a} then a is a non-standard element of 

M; this exists by Godel's Incompleteness Theorem. 

There are now two cases to the proof, one of which must hold since 

3z.~(z} is consistent with PA. 

(1) 3z. (~ (z} A 3x[~i (x} A (Vy < x} .7~Q (y ,x} ]} is satisfied in PA. 

Then we claim 

To see the pair is in MPCPA(Q} is to notice the precondition can be satisfied 

in which case it implies for all standard k, 7~Q(k,x} = 7~~(x} and so Q(x}+. 

Whereas to see the pair does not lie in MPCPA(P} is to note the precondition 

implies the convergence of P(x). 
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(2) is satisfied in PA. 

Let H(x) stand for the least y such that ~Q(y,x) if any such exist. Assume 

~(z) holds then ~~(x) + H(x) ~ z and sup{H(x): ~:(x)} exists; let this 

be defined by the formula yt(w). Set $(x) = 3z.~(z) A 3w.(yt(w) A 

(Vy< w).7~Q(y,x)). We claim ($(x), y # y) E MPCPA(Q) - MPCPA(P). 

To see the pair lies in MPCPA(Q) notice that yt(w) implies w exceeds 

the lengths of all computations of Q under the condition ~:(x); in particu

lar w exceeds all standard numbers as these computations may have arbitrarily 

large standard lengths or standard inputs. It follows that for all standard 

k, 7~Q(k,x) = ~~(x) which entails Q(x)+. 

On the other hand, the pair fails to lie in MPCPA(P) because of the 

consistency of 3x.$(x) and the fact that $(x) implies the convergence of 

P(x). Q.E.D. 
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APPENDIX I 

Here we shall illustrate the complicated behaviour of the modified 

correctness theories for a fixed pair of programs over various classes. 

Starting with a signature E1 containing the unary function symbol g and con

stant O, consider the programs P, Q abbreviated 

P(x) - 0 

Q(x) - while x ~ 0 do x := g(x) od 

where we think of gas a predecessor function. Obviously, for any class K 

of systems of typeE 1 we have MPCK(P) c MPCK(Q); on the other hand in many 

K, P FK Q because Q need not always terminate. Let K1 = ~LG(E 1) the entire 

species of systems of type E1• 

(Al) 

PROOF. Let a(x) = x ~ 0 A g(x) = x and $(x,y) = 0 ~ 0. Then (a,$) E MP~ (Q) -
1 

MPCK (P) because K1 F a(x) ➔ Q(x)+. 
1 . 

Q.E.D. 

Extend E1 to E2 by adding a unary function symbol f and set K2 ·to be 

the class of systems of type E2 satisfying 

g(O) = 0 

Vx(gf(x) = x) 

Vx(x ~ 0 ➔ fg(x) = x) 

Vx(x ~ 0 ➔ f(x) ~ x A g(x) ~ x) 

Vx(f(x) ~ 0) 

So we think off in the rOle of successor. 

(A2) MPC (P) 
K2 

= MPCK (Q). 
2 



PROOF. Use the proof of Theorem 3.1. 

Extend E2 to E3 by adding symbols for the binary functions and symbols 

-, +, •,~and set K3 to be the ciass of systems of type E3 which satisfy 

Peano's axioms for arithmetic. 

(A3) MPCK (P) # MPCK (Q). 
3 3 

PROOF. The programs P and Q differ on precisely the non-standard number 

systems of K3• By Godel's Incompleteness Theorem, there is a formula a(x), 

consistent with Peano arithmetic - the class of K3 - such that K3 F a(x) + 

"xis non-standard". Let f3(x,y) = 0 # 0. It follows that 

K3 F a(x) + [(Q(x)i A f3(x,Q(x))) v Q(x)t] 

but 

K3 ~ a(x) + [(P(x)i A f3(x,P(x))) v P(x~t]. Q.E.D. 

Let K4 be the subclass of K3 of all structures elementary equivalent 

to the standard model of Peano arithmetic, N. 

(A4) MPCK (P) = MPC (Q). 
4 K4 

PROOF. Suppose not; it is easily seen that there is a formula a(x), consist

ent with T = Th(N) such that T F a(x) + Q(x)t. As Tis complete, T ~ 3x.a(x) 

and NF 3x.a(x) and so there is n € N such that Q(n)t; by definition of Q 

this cannot be the case. Q.E.D. 

Notice that as Tis a complete theory, K4 satisfies the hypotheses of 

Theorem 5. 1. 

Finally, extend the signature E4 to E5 by adding a binary relation sym

bol Rand let K5 be the class of all structures of K4 augmented by arbitrar

ily chosen binary relations (which are to interpret R). As still P tK5 Q, 

Tneorem 5.1 proves that 



(AS) MPCK (P) i MPCK (Q). 
5 5 

We think it a useful task to construct an analysis of such bad pheno

mena as the alternations A.1 - A.5 in general algebraic terms with a view to 

understanding the regularities involved in non-termination of programs. 




