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Te Summazx

The transport of particles, caused by axial and radial diffusion
and axial flow of convection, will be considered in a d.c.arc and in a
laminar flame, The following mathematical model will be discussed.
Assuming a steady state in both cases the mass transport may be
described in cylindrical coordinates (r,z) by the following partial

differential equation

13 3C, . 9 ac aC _
?-é?(Dr-a—;)+—a°z-(D-a-E-)-W3—z-—O, (1.1)

where C means the particle concentration, D the coefficient of diffusion,
and W the axial velocity., D and W are taken constant; various boundary
conditions, corresponding to different approximations of the physical
situation, are considered. Solutions of (1.1) are obtained in an

explicit form,

2, Mass transport through a d.c.arc

2.1, Introduction

We shall consider some mathematical models, originating from
investigations by Boumans D] and de Galan Eﬂ concerning the transport
of particles through a d.c. arce

At the lower electrode (the anode), a vapour of an element enters
the dischange zone at a rate of Q particles per sec, The vapour
consisting of atoms and ions in a proportion depending on the temperature
spreads by diffusion (coefficient of diffusion D). Directed transport
forces originating from the electric field and the flow of convection
cause an additional axial velocity component W acting upwards.

When the steady state is reached, the transport of the atoms and ions
through the arc may be described by equation (1.1), where r means the
distance to the axis of the arc and z the vertical distance to the anode.
Boundary conditions are imposed at the surface of the anode (z = 0) and

at the edge of the flame (r = R), Since the arc temperature falls rather



:Cathode steeply at the edge of the core, we
T must expect D to drop rapidly as well,
g A different situation arises for the
i axial transport velocity W. When

ionisation of an element is large in

the arc core, W can be shown to

decrease rather sharply at the edge

of the core. On the other hand if an

r=0 element ionizes only weakly, W equals
the speed of cbnvectionD which does
not vary greatly over the arc cross=section.

In this treatment D and W are taken constant. The following
boundary conditions may give an acceptable approximation of the physical
situation as regards the edge of the core.

a) As a first approximation the solution of (1.1) is considered in the
cylindrical half=space O < r < =, 0 < z < = with the boundary condition
C=0at r ==, This mathematical model will be discussed in section 2.2,
b) Since at distances r > R all atoms and ions have recombined to
molecules because of the low temperature, a better boundary condition
would be C = 0 at r = R, This approximation can be used for the lower
values of the transport velocity W, Since the decrease of D at the edge
is ignored, a solution based on it will predict too large mass losses

by radial diffusion.

c) In the hot core of the arc the rate of diffusion is much greater than
in the cooler fringe. The low=temperature envelope ﬁirtually acts as an
impenetrable wall for particles diffusing outward from the core. This may
be described by the condition %% = 0 at r = R (R being taken smaller than
in the foregoing case). This model may lead to rather good results for
large values of the transport velocity W.

d) As a compromise between the cases b) and c) we may use the condition
%% = hC =0 at r = R, vhere h is a non=negative constant. The case h = 0
corresponds to case c), the case h = = to case b), The solutions of (1.1)

satisfying this boundary condition will be considered in section 2,3,



At the anode (z = 0) we shall impose the boundary condition that
the mass transport through the plane z = O vanishes outside the source,
In the mathematical model we consider a point source at the origin first

and a disk source with the centre at the origin and radius a next.

2,2, Solutions in the cylindrical half-space 0 < r < =, 0 < z < =

a) Point source of intensity Q at r =0, z = 0

Writing v = %3 in equation (1.1) with constant D and W, the partial

differential equation takes the following form

3m% * %:%% + Bm% - 2V %% = 0, (2:2,1)
or 9z

The boundary conditions are
r=0 2z #0 C regular, (2,2.2)
z = C bounded, (2.2,3)
ro= o c=0, (2,2.4)
z =0 - %g + 2v(C = %%é%lg (2,2,5)
where %%%L is the distributional notation of a plane point source at the

origin in polar coordinates,

The treatment of this case is similar to that of the problem considered

in Lauwerier [ﬁ]o The equation (2:2,1) with the conditions (2.2.2), (2.2.3),
and (2.,2.4) is satisfied by the elementary solution

J ()\I‘)GEZ( V V2+}\2-\I)

0 R (2,2.6)

where A is an arbitrary real parameter., From this we may construct the

general solution

o

2. .2
Clr,z) = I f(A)JO(Ar)e“Z( VRS, (2.2.7)
0

The unknown function f()A) has to be determined from condition (2.2.5).



As is well-known a solution of (2.2:1), satisfying the conditions
(202:2), (25203) and (2.2.4), which describes the effect of a point

source of intensity Q at the origin, is given by

e~v( 24r° = z)
21D °

(2,2,8)

The latter property may be easily verified by considering the mass
transport through a small hemi-=sphere around the origin,

From the Laplace transform

2, 2
o0 f‘""‘"ﬂ =b Vp +a
f ethJo(a t2‘b2)dt = Em
b \/ngu-ﬁﬂ
p+a

(ef, Erdélyi et al, Integral transforms I, L4,15.,9)

we may derive the following result

o 2, 2
A ~z(vv2+>\Ei - V), _ e‘v( z7+r” - z)
mJO()\r)e d)\ = ) (20209)
0 VAZ'FVQ z2+r2

which shows that (2.2.8) is of the form (2.2.7)- .
The boundary condition (2.2.5) suggests the following choice for
£(A)s

A 1
£(A) = i = $(A) 1, (2.2,10)
2mD
2, 2
ATy
where (L) » 0 for A + o,
This means that C(r,z) is written as
Q emv(' 22+ - z) g - Ry )
Clr,z) = - p(A)J (Ar)e = Vax|,
2D 0
2, 2 0
z +r

From condition (2.2,5) we obtain

® 2 .2 e~ VY
f v (V3202 s Ge)ar = v S
0 0 r



Using the relation (2,2,9) for z = 0 we find
- A v
\/&2+v2 v&2+kz + v

Substitution of this expression into (2.2,7) and (2.2,10) gives the

vir)

[¢]

following explicit result

2.2
Clry,z) = ol J (Ar)e’z( v - V)dxo (262,11)

” A
~2m j N 0
0 v2+A2 + v

b) Disk of uniform source density

Next we consider equation (2.,2.1) with the conditions (2.2.2),
(2:2,3), (2.2,4) and with the additional boundary condition of no mass
transport through the plane z = 0 outside the disk source of radius a

and total intensity Q
z =0, - m%m +2VC = 0{a=r), (2,2,12)
8(x) being the well-known unit=step function,
First we take a point source of constant intensity Qo at the

variable point P(ro,¢0) of the plane z = 0,

The solution is obviously

%

o0 2..,2
- A oy =2 YvTEr© = v)
Cj(r,¢,r09¢09ngo) = o jo = JO(Ar e ax,
Vv +AT * v
. 2 2 1. .
where r' = (r° + ry = 2rrocos(¢ = ¢O)) is the distance to the

translated vertical axis through P.

In order to obtain the solution for a uniform disk source with
total intensity Q and radius a, we may proceed as follows,
For each surface element AS the contribution to the concentration is

C1(r9¢,r09¢09z9-3§ AS),
ma.



Thus the total concentration becomes

a p2T =
Clr,z) = -8 r dr. dé 1 i A J ()\rg)e=z( v LT = v)d)\e
i 040 1a2 0 0 21D [\ rEo 0
na v kA kv

Using the addition formula (Watson [hjg 4.82)

I
JO(A%f;2+r§m2rrocos(¢m¢0§) = J

o(Ar)TgUamg) 2 L 3, (Ar)3, (g )eos ml4-0)

m=1

we obtaln

Clr,z) = )

® A
2 ,( 2 5 0
ma D 0 v2+A2 . v

Q fm J1<Aa) I (Ar)emz( v2+A2 = V)
0

maD 0
vvg*}\g * oy

The former result (2.,2.11) can be recovered from (2,2,13) by taking the

’ 2..2 a
VAR (xr)(j rod, (hrg)drg)an

0°0

ao (2.2013)

limit for a =+ 0,

2,3, Solutions satisfying the boundary condition %% = hC=0at r=R

It is convenient to introduce the following dimensionless variables:

3% 3% WR ]
r =r Ry z = 2 R, VESE a = a R,

Substitution in equation (7,1} leads to

2 2

3°C 1 3C 3°C 3¢ _
—ErtI TRt o TR (2:301)
or r or 9z 3z

For the sake of simplicity the asterisks will be omitted from now on,

a) Point source of intensity Q at z = 0, r = 0

In this section the solution of (2:3,%) will be derived with the

following boundary conditionss



r=0 z#0 C regular, (203.2)
z = ® C bounded, (2.3.3)
r =1 2 - ne = o, “ (2.3.4)
_ 2C _ 8s(r)
z=0 : =%z F V0 = oEE (2:3.5)

In order that the elementary solution (2.2,6) satisfies the condition
(2,3:,4) X must be a root of

AJ1(A) = hJ.(A) = 0, (2:306)

of
It is known (see Watson Dﬂ 15.25), that equation (2,3.6) has no complex

roots and that there are an infinite number of real roots * Gy X 0Oy

Cgp oo (a > 0 for all j). For a number of values of h, the first

ow o are tabulated in [5], table III,
The general solution of (2.3.1) satisfying (2,3.2), (2.3.3) and
(2.3.4) may be written as

Clryz) = ) anO(ran)e
n=1

=z({ v +a2 V)

(2:3,7)

The unknown coefficients c, have to be determined from condition (2.3.5)-
It 1s well=known that the functions J (ran) form a complete orthogonal
set (see [Ej page 172), in the sense that f Jo(ran)Jo(ram\rdr =0 if
m# n,
S(r)

This suggests the following distributional expansion of —_= 3

LIEIN 2 (ra ).

r n=1
The coefficients a_ can formally be calculated from

n
1
1 12a) + 5B(a ) e fo 8(r)3,(ra_)ar = 1,

which gives

a_ = 9 n=‘§92933ccoo



Imposing condition (2,3,5) on the solution (2,3,7) and equating the
corresponding terms of the series (which may be done because of the

completeness of the set {Jo(ran)}) we obtain

5 2 _ .9 1
cn( Voo - v)JO(ran) + 2cano(rozn) = == Jz(a >+J2(a ) Jo(roan)
0'™n 1" 'n
so that
[¢] ="&" “L L ® n = 1’ 2, 3, 666 o (20368)

n mRD = 2 2
(Vv2+ai + v) Jo(“n) * J1(un)
Substitution in (2,3,7) gives the required explicit expression

® 2
Clr,z) = =i | ! 'ﬂ 2 (Yvoray = v) (5.5.0)

J (ro )e
mRD _& == 2 2 0" ™n
n=1 VV2+a§ + v JO(un>*J1(an)

b) Uniform disk source of radius a and total intensity Q

Here we have equation (2,3.,1) with the boundary conditions (2.3.2),
(2:3,3) and (2,3.4) with the additional condition:

7z = 0 gmig;i- 2vC :% e(amr)o (203010)
3z 2
ma DR

The expansion of 6(a=r) in the set {Jo(ran)} is

= T
8(a=r) L anO(ran)D
n=1
where
Y
. 2aJ1(aun, oo
n*— ) 5 ) = lpapdpoooc o
QLn{JO(OLGMJ?(mn”

The solution of (2.3.1) may be written in the form (2.3.7) again., Following

the same procedure as in the preceding case we find

e J,(aa ) ‘/ 2. 2"
C(rgz) = mﬁggxn z 1_ ] £ J (I“G )GEZ( v +an - V)o
mabR |24 2 2 ) {J2(a §+J2(a )} 0" "n
v+o_ +v nt 0 n’ "i'n , (2.3.11)

n



' 3, Mass transport through a laminar flame

3.7, Introduction

In the homogeneous hot part of a laminar flame a small pearl of an
element is suspended by a platinum wire, The material is spread by
diffusion and convection (due to the air convection and the gas stream).
In order to give a mathematical description of the mass transport through
the flame, we consider a cylindrical coordinate system, where the pearl
is reduced to a point source of intensity Q at the origin., The z-axis is
chosen along the axis of the flame; r means the distance to the z=-axis,

The mass transport is described by equation (1.1), if a steady state
is assumed.

If we restrict ourselves to not too large values of r and |zl the
axial velocity component due to the convection W may be regarded as
constant, whereas the coefficient of diffusion D may be considered
independent of z, In the mathematical model treated here D and W are
chosen constant. As in section 2.3 we try to compensate the neglect of the
radial decrease of D by imposing the boundary condition %% - hC = 0 at
r = R at the edge of the flame, where h is a certain non=negative parameter,
the value of which has to be determined experimentally.

Introduction of dimensionless variables in the same way as in section
2,3 leads to the following partial differential equation and boundary
conditionss

2 2

-zj%+%3§+=§=;%=2v%%=og (3c101)
z =+ ® C bounded, (3.1.2)
r=0 z#0 C regular, (3.1.3)
ro= 1 2 -ne=o, (301.4)
r=0 2z=0 N o (3.1.5)



10

3¢2¢ Derivation of the solution

This problem will be solved by using two=sided Laplace transformation,
The solution of equation (3.1,1) with diffusion from a point source of
intensity Q at the origin with diffusion in the whole space =* < z < ®,

0 < r <= is well known, viz,

-9 8

The constant Q is equal to the mass transport through a small sphere
around the origin.

Therefore we take

emv( z2+r2 = 2)

Clr,z) = = + ¢ (r,2). (3.2.1)

TR
z +r

Two=-sided Laplace transformation T

(3.1.1) yields

+
z =p2z % . .
e C dz applied on equation

e OO

2:-:* e
3 C 1 8C Dt
?:zﬂ- + ol el C =0, (3.202)

where q2 = 2pV = pzo

The boundary conditions become

r=20 C regular, (3.2.3)
aC e
—1 T o = 9 @
r =1 5= = IC —3«-2“DR [qKo(q) hKO(q)]o (3.2.4)

We have used here, after the substitution x = i(p = v), the relation

xp =8 V X2+a2

2
X +0

I cos(xy) < dx = KO(a 62+y2)
0

(cf, Erdélyi, Integral transforms I, 1.4,(27)),
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The solutions of (3.2.2) are linear combinastions of the modified

Bessel functions Io(qr) and Ko(qr)o

Because of condition (3.2,3) we may take
e
o} =AIO(qr)o
Application. of condition (3.2.4) gives

afazi(a) = nI (@)] = ~ == [ak}(a) = K (a)].

Hence
=3¢ Q qu(q) o hKo(q)
C = - 5w ) = BI, () I,(ar)
and |
S(ro) = S Ko(qr)Eng)(q)mhiQ(q)j = zo(qr)[qxoﬂ(q)-hKo(q)]
rgp 2TTDR an(q) il hIo(q) .

The nummerator is a regular function of p, because the logarithmic
parts cancel, In addition, both nummerator and denominator are even

functions of q = ;f2pv = p_, Which means that there are no branch points.

We now apply the inversion formula for Laplace transforms:

Qi
Clr,z) = 3%? j eP* Tlr,p)dp, holding at least for
A 0 <d < 2v,

d+iw

‘x
?fQ Z 0 o, ‘fﬁ N ‘; 5. 2 ‘?g% ¢
Voo 2+a2 V= Y +a? v+ Vv +a1 v+ W v +a2 v+ Vv +a3

d=ie
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The poles of the integrand are situated at the points v p2 = 2pv = o

or p=v +}/ v" + a, vhere the numbers {an} satisfy equation (2,3.6)o
For positive values of z we are closing the path of integration by
means of a large semicircle to the left. The contribution of this
semicircle to the integral tends to zero.

Taking the residues of the denominator and using the relation
I,(z)k)(z) = I3(2)K,(2) = ==% (see Watson [4], 3,71 (19)) and the fact

0 0
that the numbers {un} satisfy (2,3.6), we finally obtain

Clr,z) =

2 2
-z(Yv +oLn - v) » 2 > 0o

. ) ! ! J (ra_)e
SvoR L 5 5 0\ Te
n=1 \fv2+ai Iolog +aile) (3.205)

For negative values of z we close the path of integration by means

of a large semicircle to the right. We easily find

VA
Clryz) = 2 ) ! ! J_ (ra )ez( Ve, * v)g z <0,
27DR 2 2 0 n
n=1 VV2+a2 JO(an)*Jﬂ(an) (3.2.6)
n .

For small values of |z| the convergence of the right-hand sides of
(3:.2:5) and (3.2.6) is very slow. However, in the region of physical

interest the convergence is satisfactory.
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