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1o Summary 

The transport of particles 1 caused by axial and radial diffusion 

and axial flow of convection 1 will be considered in a docoarc and in a 

laminar flameo The following mathematical model will be discussed. 

Assuming a steady state in both cases the mass transport may be 

described in cylindrical coordinates (r,z) by the following partial 

differential equation 

..!. !- (Dr l£) + 2- (D !£) 
r ar ar az az 

ac w- = o. az ( 1 0 1 ) 

where C means the particle concentration, D the coefficient of diffusion, 

and W the axial velocityo D and Ware taken constant; various boundary 

conditions, corresponding to different approximations of the physical 

situation, are considered. Solutions of (1.1) are obtained in an 

explicit formo 

2o Mass tr!Ulsport through a docoarc 

2o1o Introduction 

We shall consider some mathematical models 9 originating from 

investigations by Boumans C,J and de Galan [aj concerning the transport 

of particles through a doCo arco 

At the lower electrode (the a.node), a vapour of an element enters 

the dischange zone at a rate of Q particles per seco The vapour 

consisting of atoms and ions in a proportion depending on the temperature 

spreads by diffusion (coefficient of diffusion D). Directed transport 

forces originating from the electric field and the flow of convection 

cause an additional axial velocity component W acting upwards. 

When the steady state is reached, the transport of the atoms and ions 

through the arc may be described by equation (1o1), where r means the 

distance to the axis of the arc and z the vertical distance to the anode. 

Boundary conditions are imposed at the surface of the anode (z = 0) and 

at the edge of the flame (r = R)o Since the arc temperature falls rather 
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steeply at the edge of the core 1 we 

must e~1>ect D to drop rapidly as wello 

A different situation arises for the 

axial transport velocity Wo When 

ionisation of an element is large in 

the arc core~ W can be shown to 

decrease rather sharply at the edge 

of the coreo On the other hand if an 

element ionizes only weakly, W equals 

the speed of convection 8 which does 

not vary greatly over the arc cross-sectiono 

In this t~eatment D and Ware taken constanto The following 

boundary conditions may give an acceptable approximation of the physical 

situation as regards the edge of the coreo 

a) As a first approximation the solution of (1o1) is considered in the 

cylindrical half-space O ~ r < =• 0 ~ z <=with the boundary condition 

C = 0 at r = =o This mathematical model will be discussed in section 2o2o 

b) Since at distances r >Rall atoms and ions have recombined to 

molecules because of the low temperature, a better boundary condition 

would be C = 0 at r = Ro This approximation can be used for the lower 

values of the transport velocity Wo Since the decrease of D at the edge 
----

is ignorede a solution based on it will predict too large mass losses 

by radial diffusiono 

c) In the hot core of the arc the rate of diffusion is much greater than 

in the cooler fringeo The low-temperature envelope virtually acts as an 

impenetrable wall for particles diffusing outward from the coreo This may 

be described by the condition*= 0 at r = R (R being taken smaller than 

in the foregoing case)o This model may lead to rather good results for 

large values of the transport velocity Wo 

d) As a compromise between the cases b) and c) we may use the condition 
ac 'ar - hC = 0 at r = R, where his a non~negative constanto The case h = 0 

corresponds to case c), the case h ==to case b)o The solutions of (1.1) 

satisfying this boundary c:ondition will be considered in section 2, 3. 
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At the anode (z = 0) we shall impose the boundary condition that 

the mass transport through the plane z = 0 vanishes outside the sourceo 

In the mathematical model we consider a point source at the origin first 

and a disk source with the centre at the origin and radius a next o 

2o2o ~ions in the cllindrical half~sEace 0 

a) Point source of intensiti g at r = Oa z = 0 

< r < - < z < 00 
!Iii? 

Writing v =~in equation (1o1) with constant D and W, the partial 

differential equation takes the following form 

The boundary conditions are 

r = 0 z 'f 0 

z = 00 

r = 00 

z = 0 

C 

C 

C 

ac 
2v~=Oo 

regular, 

bounded 9 

= Qi 

- l£ + oz 
2vC = go(r) 

2TirD ~ 

(2o2o2) 

(2o2o3) 

(2o2o4) 

(2o2o5) 

where 2°(:d, is the distributional notation of a plane point source at the 
Tir 

origin in polar coordinateso 

The treatment of this case is similar to that of the problem considered 

in Lauwerier [3]o The equation (2o2o1) with the conditions (2o2o2) 8 (2o2o3), 

and (2o2o4) is satisfied by the elementary $Olution 

where A is an arbitrary real parametero From this we may construct the 

general solution 

The unknown function f(A) has to be determined from condition (2o2o5)o 
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As is well=known a solution of (2o2o1), satisfying the conditions 

(2o2o2) 1 (2o2o3) and (2o2o4), which describes the effect of a point 

source of intensity Q at the origin 9 is given by 

\ I 2 2 v 
-v( v z +r - z) .1L _e ______ _ 

2'1TD , / 2 21 
vz + r 

0 

The latter property may be easily verified by considering the mass 

transport through a small hemi-sphere around the origino 

From the Laplace transform 

v 2 2· p +a 

(cfo Erd,lyi et al.~ Integral transforms I, 4o 1509) 
we may derive the following result 

which shows that (2o2o8) is of the form (2o2.7)o 

,, ·2 2' 
e-v ( V z +r - z ) 

9 (2o2o9) 
, I 2 2' 
V z +r 

The boundary condition (2o2o5) suggests the following choice for 

rO,h 

(2o2o10) 

where $(A)~ 0 for A~ =o 

This means that C(rtz) is written as 

\/ -2 2· 
Cl Ee-v( V z +r = z) Im (, I 2 2• ) ~ 

C(rez) = ~2 D --~-:::- - 0 $(A)JO(Ar)e-z vv +X - v dA c 
'IT ,I 2 2' vz +r 

From condition (2o2o5) we obtain 

-vr e 
V .......,_., o 

r 



Using the relation (2o2o9) for z = 0 we find 

Substitution of this expression into (2o2o7) and (2o2o10) gives the 

following explicit result 

{2o2e11) 

+ V 

b) Disk of uniform source density 

Next we consider equation (2o2o1) with the conditions (2o2o2) 9 

(2o2o3) 1 (2o2o4) and with the additional boundary condition of no mass 

transport through the plane z = 0 outside the disk source of radius a 

and total intensity Q 

- .1£ + 2vC = _s,__2 e(a-r), az 
1ra D 

e(x) being the wellwknown unit-step functiono 

First we take a point source of constant intensity QO at the 

variable point P(r0 ,~0 ) of the plane z = 00 

The solution is obviously 

2 2 1 
where r 0 = (r + r 0 - 2rr0cos(~ - ~0 )) 2 is the distance to the 

translated vertical axis through Po 

(2o2o12) 

In order to obtain the solution for a uniform disk source with 

total intensity Q and radius a 8 we may proceed as followso 

For each surface element 6S the contribution to the concentration is 

C1(r 9$ 9r0 ~~otZt~ 6S)o 
1Ta 
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Thus the total concentration becomes 

Using the addition formula (Watson (4], 4082) 

co 

r 2+r~-2rr0cos(~-$0 )) = J 0 (Ar)J0 (Ar0 )+ 2 l Jm(Ar)Jm(Ar0 )cos m($-$0 ) 
m=1 

we obtain 

!co 

- _s_ 
- iraD O 

(2o2o13) 

The former result (2o2o11) can be recovered from (2a2a13) by taking the 

limit for a -+- Oo 

2o3o Sol~tions satisfY:ins the boundarl condition~ - hC = 0 at r = R 

It is convenient to introduce the following dimensionless variables~ 

WR * r = r R~ V =-=- ~ 2D 
* a= a Ro 

Substitution in equation (1o1) leads to 

ac 
2v - = Oo # az 

(2o3o1) 

For the sake of simplicity the asterisks will be omitted from now ono 

a) Point so':E..ce of intensity Q at z = o5 r = 9 

In this section the solution of (2o3o1) will be derived with the 

following boundary conditionsg 
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r = 0 z ,f, 0 C regular 8 (2o3o2) 

z = 00 C bounded, (2o3o3) 

1 
ac 

(2o3o4) r = =- = hC = Oe ar 

0 
ac Qo(r) (2o3o5) z = = - + 2vC = 0 az 2'1TrRD 

In order that the elementary solution (2o2o6) satisfies the condition 

(2o3o4) A must be a root of 

{2o3o6) 

It is known (see Watson [4] 15025) ~ that equation (2o3o6) has no complex 

roots and that there are an infinite ntllllber of real roots.:!:. a19 ! a29 
! a3 , ooo (a. > 0 for all j)o For a ntU11ber of values of hi the first 

J -
few a are: tabulated in [5] ~ table III o · 

n 
The general solution of (2o3o1) satisfying (2o3o2)i (2o3o3) and 

(2o3o4) may be written as 

00 V 2 2u 
\ J ( ) =Z ( V +a = V) 
L c O ra e n n n n=1 

The unknown coefficients c have to be determined from condition (2o3o5)o 
n 

It is well-known that the functions J 0 (ran) form a complete orthogonal 

set (see ~]t page 172)i in the sense that J~ J 0 (ran)J0 (rar;,hdr = 0 if 

m :/: no 

This suggests the following distributional expansion of o(r) 
r 

which gives 

a 
n 

o(r) 
"""""""° = 

"" 

r 
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Imposing c~ondition (2o3a5) on the solution (2a3o7) and equating the 

corresponding terms of the series (which may be done because of the 

completeness of the set {J0 (ran) }) we obtain 

so that 

C 
n n = 19 29 3, ooo o (2.3.8) 

Substitution in (2a3o7) gives the required explicit expression 

00 

C(r~z) = =S.., 1 
'ITRD n=1 

b) Uniform disk source of radius a and total intensity Q 

Here we have equation (2o3o1) with the boundary conditions (2o3o2), 

(2o3o3) and (2o3o4) with the additional condition: 

z = 0 
ac 

= =- + 2vC = az 

The expansion of e(a-r) in the set {J0 (ra.n)} is 

where 

b 
n 

00 

e (a=r) = l 
n=1 

b J 0 (ra. )~ 
n n 

(2o3o 10) 

The solutic:m of (2o3o 1) may be written in the form (2o3o7) againo Following 

the same procedure as in the preceding case we find 



9 

3o Mass transport through a laminar flame 

3a1o Introduction 

In the homogeneous hot part of a laminar flame a small pearl of an 

element is suspended by a platinum wireo The material is spread by 

diffusion and convection (due to the air convection and the gas stream)n 

In order to give a mathematical description of the mass transport through 

the flame~ we consider a cylindrical coordinate system, where the pearl 

is reduced to a point source of intensity Q at the origino The z-axis is 

chosen along the axis of the flame; r means the distance to the z-axiso 

The mass transport is described by equation (1o1) 1 if a steady state 

is assumeda 

If we restrict ourselves to not too large values of rand lzl the 

axial velocity component due to the convection W may be regarded as 

constantE whereas the coefficient of diffusion D may be considered 

independent of Za In the mathematical model treated here D and Ware 

chosen constanto As in section 2o3 we try to compensate the neglect of the 

radial decrease of D by imposing the boundary condition ¥r, - hC = 0 at 

r =Rat the edge of the flame 9 where his a certain non-negative parameter, 

the value of which has to be determjned experimentallya 

Introduction of dimensionless variables in the same way as in section 

2a3 leads to the following partial differential equation and boundary 

conditions g 

a2c 1 ac a2c ac (3a1a1) =-=--=+--+=-=--:,- 2v - = 0 9 
3r2 r ar az2 az 

z = + 00 C boundedt (3a1a2) -
r = 0 z V: 0 C regular, (3a1a3) 

1 ac hC = o, (3o1c4) r = --ar 

r = 0 z = 0 C ~ s 
0 {3a1a5) 

V 2 2· 4,rDRz +r 
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3o2o Derivatrion of the solution 
"""""""'""""'"""""""""'"""'""'°"""""'°"""""""'""""'=-

This problem will be solved by using two-sided Laplace transform.ationo 

The solution of equation (3o1o1) with diffusion from a point source of 

intensity Q at the origin with diffusion in the whole space - 00 < z < 00 9 

0 < r < ©Ct is well known~ vizo 

The constant Q is equal to the mass transport through a small sphere 

around the origin o 

Therefore we take 

-v(~= 

= 4$DR e ~' 
z +r 

C(r,z) 

• 0 ~ I+co -pz * . . Two-sided. Laplace transformation C = _
00 

e C dz applied on equation 

(3o1o1) yields 

2 2 where q = 2pv =po 

The bound.ary conditions become 

r = 0 
~ 

C regular, (3o2o3) 

r = 1 ~c _ he= - _s__ rqK' (q)-hK (q)] 0 

or 2-rrDR I~ 0 0 

We have used here 0 after the substitution x = i(p - v) 9 the relation 

V , J00 2 2 ' e =S x +a 2 2 
cos(xy)~ ........ dx=Ko(a.Vs+y) 

0 ~ 2+ 2° ,x a 

(cfo Erdelyi 0 Integral transforms I~ 1o4o(27))o 



The solutions of.(3o2o2) are linear combinations of the modified 

Bessel functions r0 (qr) and K0(qr)o 

Because of condition (3o2o3) we may take 

Application.of condition (3o2o4) gives 

Hence 

and 

0 

The nummerator is a regular function of p, because the logarithmic 

parts cancelo In additioo 9 both nummerator and denominator are even 

functions of q = V2pv - p2: which means that there are no branch pointso 

We now apply the inversion fonnula for Laplace transformsg 

C(r,z) 

0 
v- v-

a 

d+ioo 

"'2 2" v+ v +a1 

at least for 



The poles; of the integrand are situated at the points V p2 = ;;; = a 

or p = v + V v2 + o.'2." e where the numbers {a } satisfy equation (2o3o6) o 
= n n 

For positive values of z we are closing the path of integration by 

means of a large semicircle to the left o The contribution o;f this 

semicircle to the integral tends to zeroo 

Taking the residues of the denominator and using the relation 

I 0 (z)K0(2,) = I 0(z)K0 (z) = = i (see Watson [4] ~ 3o71 (19)) and the fact 

that the numbers {a } satisfy (2a3o6) 8 we finally obtain 
n 

00 

C(riz) = ~ l 
n=1 

t Z > Q o 

For negative values of z we close the path of integration by means 

of a large semicircle to the right a We easily find 

C(r~z) - Q }: 
-2rllli n=1 

v) 
$ z < 0. 

For small values of lzl the convergence of the right-hand sides of 

(3o2o5) and (3o2o6) is very slowa HoweverJ in the region of physical 

interest the convergence is satisfactoryo 
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