
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

F.W. Vaandrager

A simple definition for parallel composition
of prime event structures

Computer Science/ Department of Software Technology Report CS-R8903 March

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. 1t is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Simple Definition for Parallel Composition

of Prime Event Structures

Frits W. Vaandrager
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A simple, non-inductive construction is presented for parallel composition of prime event structures with
binary conflict. It is shown that the construction determines the same operation as the categorical con
struction of W1NSKEL (6] by proving that it is a product in the category of prime event structures with binary
conflict.

1985 Mathematics Subject Classification: 68005, 68055.
1980 Mathematics Subject Classification: 68810.
1982 CR Categories: F .1.1, F .3.3.
Key Words & Phrases: theory of concurrency, prime event structures, binary conflict, conflict event struc
tures, parallel composition, categories of event structures, product, stable families, configuratio ns.
Note: Partial support received from the European Communities under ESPRIT project no. 432, An
Integrated Formal Approach to Industrial Software Development (METEOR).

1. INTRODUCTION

Prime event structures were introduced by NIELSEN, PLOTKlN & WINSK.EL [4]. They form a simple and
intuitive model of concurrent processes, on the one hand related to Petri nets and on the other hand
related to finitary prime algebraic domains. However, many people think that prime event structures
have one severe drawback: some operations, especially parallel composition, are difficult to de.fine.
WINSKEL, for instance, used this argument when he motivated the introduction of stable event struc
tures ([6], p. 336). Stable event structures are certainly very interesting, but they are more compli
cated than prime event structures. The representation of domains by means of prime event structures
is more direct. Furthermore stable event structures can be related to Petri nets only in an indir<ect
manner.

One of the main applications of event structures is that they can be used to give semantics to CCS
li.ke languages. As it turns out prime event structures with binary conflict (also called conflict event
structures (CES's) by DEGANO, DE NICOLA & MONTANARI [2]), are appropriate for this purpose in
principle. All CCS-like operations are easily definable on CES's except for parallel composition. If
someone wants to compute the parallel composition of two CES's in the way proposed by WINSKEL,

(s)he has to determine the families of configurations associated to these event structures, next turn the
configurations into stable event structures, next compute the parallel composition of these stable event
structures, then translate the result back to a· family of configurations, and as a last step turn the
configurations into a prime event structure again.

A number of authors have looked for more direct definitions of parallel composition. LoooEN &
GoLTZ [3] present a very complicated definition in the setting of TCSP. In [2], DEGANO, DE NICOLA

& MONTANARI actually work out the inductive definition which WINSKEL did not give to 'avoid a
messy inductive nammg of events' ([5], p. 564). Presumably the definition in [2] is less messy than

Report CS-R8903
Centre for Mathematics an.d Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

WINSKEL thought it would become, but it is certainly not simple. Furthermore one can argue that
this definition, due to its inductive nature, is too 'operational'. Finally, we mention the solution of
BOUDOL & CASTELLANI [1]. Like WINSKEL, they introduce a more general form of event structures,
mainly because of trouble with parallel composition. But whereas the ingredients of a stable event
structure bear no resemblance to the ingredients of a CES, the flow event structures of BOUDOL &
CASTELLANI just have the same ingredients. The only difference with CES's is that certain restrictions
on the ordering and conflict relations have been dropped. It is for instance no longer required that the
ordering relation is a partial order. Every CES is a flow event structure and conversely, every fiow
event structure can be turned in a standard way into a CES. Advantages of the approach of BOUDOL
& CASTELLANI are that the definitions of various operations become rather simple and that there is a
close connection with Petri nets. A disadvantage is that it is difficult to have a good intuition about
the behaviour of these structures: the relation with the domain of configurations is not so simple.

Summarising, one can say that many people have been intrigued by the question how to define
parallel composition on CES's, but that a satisfactory solution has not been found. This brings us to
the topic of this note, which is a simple, non-inductive definition of parallel composition on CES's.
In length it is comparable to the length of the definition in {6] of parallel composition on stable event
structures. What the construction essentially does is that it characterises the finite configurations of
the product of two CES's and then builds a CES out of that by taking the primes.

In proving that our construction gives in fact the same operation as the existing constructions, we
profit from the categorical setup of WINSKEL [6]. In [6] it is shown that parallel composition of CES's
is a product in certain category ~#. Since products are determined uniquely up to isomorphism, it is

sufficient to show that our construction gives a product in this category. A proof of this fact is
presented in section 3 of this note. The advantages of this way of proving correctness are that (1) it
makes the paper self-contained in a simple way, and (2) it illustrates that CES's have an existence of
their own and that one does not have to move to any other model of concurrency if one wants to
prove something about them.

WINSKEL [7] generalised the result of section 3 to stable families of configurations using the charac
terisation of configurations of the product of stable families which he gave in [:5, 6]. A sketch of
WINSKEL'S proof is included in section 4. This section leans heavily on the results of [6]; the observa
tion that it generalises our result follows from the coreftection between the categories of prime event
structures and stable families. Section 4 is included because it can give some additional insight to
those readers who are acquainted with WINSKEL'S work. No attempt has been made to make this part
of the paper self-·conilaioed.

We would like to make a few remarks about the specific type of prime event structures for which
we give our construction. Firstly, we work with prime event structures with binary contlict. However,
as the result of section 4 shows, a generalisation to general prime event structures is trivial. Most
readers will be more familiar with event structures with binary conflict. Moreover, the most important
application of our construction will be to give semantics to CCS-like languages where conflict is
always binary. A second choice that we made was to pay no attention to the issue of labels. Often
event structures have as an additional ingredient a labelling function I :E-+A which associates to each
event a label in some action alphabet A. However, WINSKEL [5, 6] has C-Onvinciogly shown that it is
possible to separate the issue of labels from other important questions. Using the notion of synchroni
sation algebra, the construction of this paper generates a whole family of parallel composition opera
tors for labelled event structures. This family contains the parallel combinators of CCS, CSP, MEDE
andACP.

The introduction of stable event structures and flow event structures has been motivated with the
argument that parallel composition is difficult to define on prime event structures. Stable event struc
tures and flow event structures are very interesting and worth studying. However, this paper shows
that one has to motivate them in a different way. One argument for stable event structures and flow
event structures could be that in many cases they provide a better model of physical reality, in the
sense that an entity which we would like to consider as a single event (like for instance the printing of

3

a certain file) can indeed be modelled as a single event in this type of event structures. In prime
event structures on the contrary one obtains a multitude of events for every possible history leading to
such a 'real' event.

ACKNOWLEDGEMENTS
I would like to thank Gerard Boudol for encouraging me to write this note, and Glynn Winskel for
allowing me to include his generalisation to stable families of my result.

2. CES's AND PARALLEL CoMPosmoN

2.1. DEFINITION. A prime event structure with binary conflict or conflict event structure (CES) is a triple
(E, .;;, #),where

E is a set of events;
...; C E X E is a partial order satisfying the principle of finite causes:

{e'eEle'E;;;e} is finite for eeE;

#~EXE is an irreflexive, symmetric relation (the conflict relation) satisfying the principle of
conflict heredity:

e#e'<e" ~ e#e";

As usual we write e'<e for e'~e & e'=f=e, ~ for .s;;; - 1 , and > for < - 1 • We write f el for the set
{e 'eE le'<:e}. The components of a CES E will be denoted by respectively EE, <!O;E and#£- The
derived relations will be denoted <£, ~E. >E. We also write r lE-

2.2. Graphical representation. In the graphical representation the partial order relation is indicated by
arrows. We draw no arrow between events if, by means of the transitive and reflexive closure of the
arrows, it can be deduced that they are ordered. The conftict relation is denoted by means of dotted
lines. We draw no dotted line between events if conflict can be deduced by means of the principle of
conftict heredity.

2.3. DEFINITION. Let Ebe a CES and let X be a subset of EE. We say that X is left-closed if:

e' <:E eeX ~ e'eX

X is conflictfree if X does not contain a pair of events which are in conflict, so if #E n(XXX)= 0. A
configuration of E is a left-closed, conflict-free subset of EE. By ~) we denote the set of finite
configurations of E.

2.4. Notation. In this note we use partial functions. We indicate that 8 is a partial function from £ 0
to E 1 by writing 8:E0 -+. E 1• Then it may not be the case that 8(e) is defined and sometimes we use*
to represent undefined, so 8(,e)= • should be seen as a notation expressing that 8(e) is undefined. We
adopt the convention that predicates are always defined (they either hold or do not hold) and are
strict in the sense that they only hold if all their. arguments are defined. The image of a set under a
partial function is represented by:

8(X) = {O(e)leEX and IJ(e) is defined}.

4

2.5. DEFINITION (parallel composition). Let E; = (E;, ~;, #;) (i =O, 1) be CES's. Let the set of pre
events be defined as

E0 x.E1 = {(e,*) leeE0 }U{(*,e)leeEt} U{(e,e')leeEo. e'eEi}.

Let projections w;:E0 X.E 1-+.E; be given by w;((e0 ,e1))=e; for i=O, 1. Call a subset X of EoX.E1
a preconfiguration iff:
i) w0(X)e<U-0) and 1T1 (X)ea:E1);
ii) Et;;x, the transitive closure of~ n(XXX), is a partial order, where ~ CE0 x.E1 is defined by:

e ~ e' ~ w0(e) ~o w0(e') or '17'1(e) ~1 1T1(e').

If X moreover has a unique maximal element w.r.t. :o;;;;;x, then X is called a complete prime. The pro
duct or parallel composition ~ X E1 is the structure (E, ~, #)with:

E = {XIX is a complete prime},

X~Y~X<;;;;Y,

X # Y {=> XU Y is not a preconfiguration.

Let us try to give some intuition for this definition. The basic idea of the construction is that we first
characterise (what essentially are) the finite configurations of the product event structure. U Eo and E 1
execute in parallel, then events of ~ and E1 can either occur in isolation (this corresponds to pre
events of the form (e, *) resp. (•,e)), or an event of Eo can synchronise with an event of E1 (in which
case we have a pre-event of the form (e,e')). Now at any moment during execution of Eo XE1 a set of
pre-events has occurred. The notion of preconfiguration gives a characterisation of these sets. Condi
tion (i) says that if we project a preconfiguration onto one of the two components, the result must
denote a state (finite configuration) of this component. Condition (ii) says that the events of the com
ponent may occur only once and that both components must agree on the causal relations between
events in the parallel composition: causal loops are not allowed. Once we have characterised the
finite configurations of the product event structure, there exists a standard procedure to turn this into
a CES. There is a natural choice of events viz. the complete primes. A complete prime corresponds to
some pre-event together with the history which tells how this pre-event occurred.

2.6. PROPOSITION. Let E;=(E;, ~;, #,:) (i =0,l) be CES's and let E=(E, ~,#)be the product of~
and E1• Then E is a CES.
PROOF. From the definition of product it is immediate that .,,;;; is a ·p.o. satisfying the principle of
finite causes. We show that E satisfies the principle of conflict heredity. Let X, Y,Z eE with
X#Y,.;;;z. Suppose that,(X#Z). This means that XUZ is a preconfiguration. We will derive a con
tradiction by showing that XU Y is a preconfiguration too. 1To(XU Y) is finite and conflict-free since
'ITo(XU Y)<;;;;'ITo(XUZ)eCXEo). Further w0(XUY) is left-closed since both '1T0(X) and .,,.0 (Y) are left
closed. Hence 'ITo(XU Y)e<U-0). In the same way one can show that '1T1(XU Y)eG(E1). ~xur is a
p.o. because .s;;;xuz is a p.o. Hence XU Yis a preconfi.guration and we have a contradiction. 0

2. 7. Example. As an example of our construction we consider the product of the following two CES's.

5

0 x 2

!
FIGURE l.

In figure 2 below, the pre-events associated to this pair of CES's are depicted. With arrows the rela
tion ~ is indicated. We did not draw the arrow from a pre-event to itself; note that the relation ~ is
always reflexive.

(O,•) ... ,.t-__ _, (0,2) ... ,. ___, ... _ (•,2)

lXI/
(I,•) _____ ... (1,2)

FIGURE 2.

Now the preconfigurations are given in figure 3. Here an arrow denotes extension of a
preconfiguration with a single element. The complete primes are the preconfigurations with exactly
one incoming arrow.

{(O, *),(l ,2)}

((0.2~ I ~J.)}
1 ((<,2~ 1 ~).(I,•)}

((0,2),(1,•)} ((0,•),(~ 1
{(O,•),(l,•),(*,2)}

FIGURE 3.

It is trivial to go from figure 3 to figure 4 which depicts the product event structure: conflict is intro
duced between those complete primes for which there is no preconfiguration which is a superset of
both; next all the preconfigurations which are not complete primes are dropped including the associ
ated arrows.

6

{(0,~)1,(1,2)}
.· ·.

......
. .

{(0,2)} · . . . · . · · .. · · · · · . /. · · · -{(O, *}} .

l
·. : ~

"·· ... ·{.(*,2)} {(o.~);p,*)}

{(0,2),(1,*)}

FIGURE 4.

2.8. LEMMA. Let }1 = (Ei, ~i, #;) (i=0,1) be CES's and let E=(E, ~.#)be the product of~ and
E1• Let max:E-+Eo X~E 1 be the function that associates to each complete prime X its unique maximal
element w.r. t. ~x- Let X be a preconfiguration of E 0 X. E 1.

i) If eEX then Y = {e'eXle' <;x e} eE and max(Y)=e,
ii) If Yc;X and YeE then Y = {e'eXle' <;x max(Y)}.
PROOF.

(i) It is not hard to see that .o;;y= ~xn(YX Y). Hence ~Y is a p.o. and Y has e as a unique maxi
mal element w.r.t. ~y. Since '1T0(X) is finite and conflict-free, '1T0 (Y) is finite and conflict-free too.
Let /e Y and geE0 with g <o 'IT0(j). In order to prove that '1T0(Y) is left-closed, we must prove
gewo(Y). Since 'IT0 (j)Ew0(X) and w0(X) is left-closed, ge'ITo(X). Hence, there exists an f eX such
that wo(/')=g. Because "'oif') < 0 "'oif), f' ~x f Thus f'eY and gEwo(Y). We have now shown
that 11'0(Y)e~). Analogously one can prove that w1(Y)e~1).
(ii) Let e'eY. Then e' ..;y max(Y). Since Yc;X we have ...;;y c; ~xn(YXY). Hence
e' ~x max(Y). Now conversely, let e'eXwith e' <;x ma.x(Y). We must prove e'e Y. There exists an
n>O ande0, ... ,en EX with:

e' = eo ~ . . . ~ en = max (Y).

Suppose e' fl Y. Then e; ~ Y and e; + 1 E Y for some i <11. By definition of ~, either w0 (e;) ..;;;0 w0(e; + 1)

or '1T1(e;) E;;1 w1(e;+1). It cannot be that wo(e;)=wo(e;+1) or "'1(e;)='IT1(e;+1) because this would
imply e1~e1 +1 and e;+1 ~e; even though e;=;6e; +1 which is in contradiction with the fact that ~x is a
p.o. It is also not possible that "'o(e;) <o '1To(ei+1). Since w0 (e;+ 1)E'1T0 (Y) and w0 (Y)ea:F-0) (and thus
left-closed) this would imply "'o(e;)E Y. Consequently there would be an fin Y with w0 (/)='1To(e;).
But this is again in contradiction with the fact that ~x is a p.o. For the same reason it is not possible
that w1(e;) < 1 w1(e; + i)- 0

2.9. PROPOSITION. Let E; = (E;, ~;. #;) (i = O, l) be CES's and let <;re be the set of preconfigurations of
Eo X .EI· Let E=(E, E;;, #) be the product of Eo and Et. Let for X E<;w f (X) be given by:

f(X) = {{e'eXle' ~x e}leeX}

Then f (X) e f{.E) and f: <;re ~ff..E) is a bijection.
PROOF. Routine and left to the reader. 0

7

3. CATEGORICAL CHARACTERISATION

3.1. DEFINITION. A morphism between CES's (£0 , ~0• #o) and (E 1t ~1' #1) is a partial function
fJ:Eo-. E 1 such that:

'VeEE0 'V/EE1 • f < 1 8(e) => 3e'eE0 . e' < 0 e and B(e')=f & (a)

'Ve,e'EEo . fJ(e) #1 8(e') or B(e)=B(e') ==> e #o e' ore =e'. (b)

The next proposition shows that the above notion of morphism is in fact the same as the one used by
WINSKEL [6] (see proposition 3.4.7).

3.2. PROPOSITION. Let Ei =(E;, ~;. #;) (i =0, 1) be CES's and let 8:E0~.E 1 be a partial function.
Then (J is a morphism iff

lrleeEo. IJ(e) is defined ==> ro(e)lE, s O(feh,
0

) & (i)

lrle,e'EE0 . fJ(e) #1 B(e') or 8(e)= 8(e') ==> e #o e' or e=e'. (ii)

PROOF.

"==>" Suppose (J is a morphism. Then condition (ii) is trivially satisfied. In order to see that condition
(i) holds, let e eE0 with B(e) defined. Then:

r8(e)lE, = {flf<1 8(e)}U{8(e)) ~ {O(e') le' <o e)U{8(e)) = 8<fel~.).
"~" Suppose (J satisfies conditions (i) and (ii). Condition (b) is clearly satisfied. We prove condition
(a). Let eeEo, jeE, with f <1 9(e). Then fe re(e)lE,· Hence feB(relF..) and there exists an
e'EEo suchthate' <o eandfJ(e')=f 0

3.3. PROPOSITION. CES's with morphisms of event structures form a category with the usual composition
of partial functions as composition and the identity junctions on events as identity morphisms.
PROOF. Straightforward. 0

We write ~II for the category of CES's with morphisms of CES's. At first sight, the notion of mor

phism in ~II looks complicated and not intuitive. The next proposition however supports the view

that in fact these morphisms are fundamental and also rather natural.

3.4. PROPOSITION. Let Ei =(E;, ,.;;;;;;, #;) (i =0, 1) be CES's, let 8:E0 -.E 1 be a morphism and let X be
a configuration off-0. Then O(X) is a configuration of E1.
PROOF. fJ(X) is confiict-free because if for some e,e' EX we would have fJ(e) #1 fJ(e'), this would imply
e #o e' which is a contradiction since X is conflict-free. Let eEX and /EE1 with f < 1 6(e). Then
there exists an e'eE0 with e' <o e and fJ(e')=f Smee Xis left-closed we have e'eX. Hencefe8(X)
and thus (J(_X) is left-closed. 0

3.5. PROPOSITION. Let Ei =(E;, ~;, #;) (i = 0, 1) be CES's and let E=(E, ~. ~)be the product of l-0
and E1. Define the partial.functions </>;:E-.E; (i =O, 1) by:

<1>1(X) = w1(max (X)).

Then 4'0 and <?1 are morphisms.
PROOF. For reasons of symmetry it is enough to prove that <l>o is a morphism., i.e. that condition (a)
and (b) hold in 3.1.
(a) Let XEE and feE0 with f <o <l>o(X). X is a preconfiguration so 'l7'0(X)e~). Since
ctio(X)E'lTo(X) and 'lTo(X) is left-closed, fE'l7'0(X). So there exists a gEX with 'lTo(g)= f By lemma

8

2.8(i) Y = {g'EXlg' ~x g}EE and max(Y)=g. Clearly Y<X. Furthermore <Po(Y) = f
(b) Let X, YeE with 4il:J(X) #o <flo(Y). Since both <flo(X) and <Po(Y) are in 'ITo(XU Y), 'ITo(XU Y)eE{F.o).
Hence XU Y is not a preconfiguration and thus X#Y. Now suppose X, YEE with X=;6Y and
<tio(X)=<flo(Y). We show that X#Y by proving that XU Y is not a preconfigucation. W.l.o.g. we may
assume that there is some feX - Y. If ma.x(X)=;6max(Y) we are ready: XU Y cannot be a
preconfigucation since max(X)~max(Y) and max(Y)~max(X). So let us assume that
max(X)= max(Y)=e. Since f ~x e, there is an n >0 and there are e0 , ••• ,en EX such that:

f = eo ~ · · · ~ e,, = e.

Now fe Y and eE Y. Hence, for some i <n, e;e Y and e; + 1 E Y.
If '1T0(e;);'1T0(e;+ 1) then we have a contradiction since then e;~e;+1 and e; +1 ~e; so ..:;;x cannot be a
p.o. In the same way we can derive a contradiction if '1T1(e;)='1T1(e;+ 1).

Assume '7To(e;) < 0 '77'0(e;+1). Since '77'0 (Y)e<S(EQ) is left-closed there is age Y with '17o{g)='1To(e;). But
then g~e; as well as e;~g. This means that ~xuY is not a p.o. and hence XU Y is not a
preconfiguration. The case 1T1(e;) < 1 1T1(e; +1) is similar. 0

3.6. THEOREM. Let E; =(E;, ~;, #;) (i =O, I) be CES's. The product~ XEI> with projections <Po and
cp1 as in proposition 3. 5, is a product in the category ~ #.

PROOF. By proposition 2.6 ~ XE1 is a CES, which we shall assume is E=(E, ~. #). By proposition
3.5 <1>i<J and <1>1 are morphisms. Assume 60 :£'-+.Eo and 61 :E'-+.E1 are morphisms from a CES
E'=(E', .,;;;;', #'). In order to have a product, we require that there is a unique morphism fJ:E'-+.E
making the following diagram commute:

FIGURE 5.

For the definition of morphism 8 we need two auxiliary functions. The partial function
61,~:E'-+.EoX.£1 is given by:

{
* if 60(e)=* and 91(e)=*

6pre(e) = (80 (e),81(e)) otherwise

Cu.IM I. Let e,e'EE' with -.(e #' e') and 01,e(e)-<6pre(e'). T'hen e <' e'.
PROOF. By definition of ~ either 8o(e) ...;o 6o(e') or 81(e) ~1 01(e'). Since 80 is a morphism
8o(e)=Oo(e') implies e #' e' or e =e', which is a contradiction. In the same way one can prove that
81(e)*81(e'). Now suppose 8o(e) <o 8o(e'). Because 60 is a morphism there is an e''EE' such that
e'' <' e' and Oo(e")=6o(e). Again using that 80 is a morphism we obtain that either e'' #' e or e''=e.
Since -,(e #' e') and E' satisfies conflict heredity, it is not possible that e'' #'e. Hence e''=e and thus
e <' e'. Similarly we can derive that 81(e) < 1 81(e') implies e <' e'. D

Next we define another auxiliary partial function 0:E'-+.Pow(E0 X.E1) by:

CLAJM 2. ut eeE' with 0(e) defined. Then E>(e) is apreconfiguration of E 0 X , E 1.

PROOF. Since

'1To(0(e)) = wo({(8o(e'),81(e'))le' .;;;;' e}) = 8o(felE·)

9

and re l E' E EXE') and since by proposition 3.4 finite con.figurations are preserved under morphisms, we
have 7To(0(e))=Bo<relE')eE(E-O). Similarly one can show that '1T1(0(e))eE(E1).

Next we prove that .;;;;9(e) is a p.o. Suppose it is not. Then 0(e) must have a causal loop, i.e. for
some n >0 and eo, ... , en E f elE':

(Jpre(eo) -< (Jpre(e l) -< . . . -< epre(en) -< epre(eo).

But now application of claim l, combined with the fact that .;;;;'is a p.o., gives a contradiction. 0

We are now in a position to define the morphism 8:

{

" if epre(e)=*
8(e) = {fe0(e)lf .;;;;0(e) 8pre(e)} otherwise

CLAIM 3. IJ is a morphism from E' to E.
PROOF. From claim 2 and lemma 2.8(i) we can conclude directly that fJ is a partial function from E'
to E. Let e'eE' and XeE with XCO(e). In order to prove that 8 satisfies condition (a) of 3.1 we
have to find an e' eE' such that e' <' e and IJ(e') = X. From claim 2 and lemma 2.8(ii) we conclude:

X = {feE>(e)I/ .;;;;0(e) max(X)}.

Using that XC8(e) we find that there exists an e' <' e such that fJp,.,.(e')=max(X). Clearly 8(e')=X.
Next we prove that() satisfies condition (b) of 3.1. Let e,e'eE'. We distinguish between two cases:
(1) e=f=e' and IJ(e)=8(e'). We prove that e #' e'. W.l.o.g. we may assume that there exists an
fe f elE' - relE'· Since (Jpreif)e8(e) and 8(e)=8(e') there exists an j'E fe'lE' with fJpreif) = IJpreif').
This means that 80 (/)=80(/') or 81(j)=fJ1(j'). Because 80 and 81 are morphisms thls implies f #' f'.
Applying conflict heredity twice gives e #' e'.
(2) 6(e) # fJ(e'). We prove e #' e'. Write fJ(e) =X and O(e')=Y. So XU Y is not a precon.figuration of
E o X. E 1 . We distinguish between three cases:
2.l. '1T0(XU Y)f1~). 7To(XU Y) is left-closed because '1T0(X) and '1T0 (Y) are left-closed. So it must be

that '1To(XU Y) is not conflict-free. Thus we can find f,f'E'1To(XU Y) with f #of'. W.l.o.g. we
may assume that there exist g,g'eE' with g.;;;;' e and g' EO;' e' satisfying 8o(g)=/and IJo(g')=f'.
Now use that 80 is a morphism to obtain g #' g'. Applying conflict heredity twice gives e #' e'.

2.2. 771(.Xu Y)f1<:(£1). This case is similar to case 2.1.
2.3. ~xuY is not a p.o. Then for some n > 1 and e 0 , •.• ,ene f elE' U f e'lE· we have eo=en and

8pre(eo) -< 8pre(e1)-< · · · -< 8pre(en)·

If, for some i <n, e1 #' e1+ 1 we are done: conflict heredity gives e #' e' in that case. Now this
situation occurs since otherwise we can derive a contradiction using claim l.

This finishes the proof ·Of claim 3. D

It is obvious that I) makes the diagram of figure 5 commute. Suppose that fJ':E'~.E is also a mor
phism that makes the diagram commute. We prove O= fJ'. The requirement that the diagram should
commute immediately gives:

fJ'(e) = " <=> 8pre(e) = "' <=> 8(e) = *, (1)

10

D'(e) is defined => max(8'(e))=8pre(e). (2)

Now let eeE' with 6'(e) defined. We show 6'(e)k:0(e). Let fe9'(e). If f=fJpre(e) then clearly fe0(e)
so assumef#pre(e). By lemma 2.8(i) Y = {f'EfJ'(e)lf' <l'(e)f}eE and max(Y)= f. Since YCO'(e)
and 6' is a morphism there exists an e' eE' with e' <' e and O'(e')= Y. But then:

f = max(Y) = max(O'(e')) = (}pre(e')e0(e).

Now apply claim 2 and lemma 2.8(ii) to obtain: fJ'(e) = (e'e0(e)le' .s;;0Ce> 8ye(e)} = 8(e). This con
cludes the proof of theorem 3.6. 0

4. GENERALISATION TO STABLE FAMll..IES
In this section we present a generalisation of theorem 3.6 to stable families of configurations. This
result was kindly made available to us by WINSKEL (7). First we recall some basic definitions.

4.1. DEFINlTION. Let F be a family of subsets of a set E. Say a subset X of Fis compatible, and write
Xj, iff 3y EF 'Vx EX x Q. Write Xjfin when every finite subset of X is compatible.

4.2. DEFINmON. Let F be a family of subsets of a set E. Say F is a stable family of configurations on
E when it satisfies:
(i) finite-completeness: vxc;F. x-r- => UXeF,
(ii) stability: VXk:F. X=/=0 & Xj => n XEF,
(iii) finiteness: Vx EF Ve Ex 3y eF. (y is finite & e ey & y Cx),
(iv) coincidence-freeness: 'VxeFVe,e'ex. e=l=e' => 3yEF.yk:x & (eey <=>e'~y).

4.3. DEFINlTION. Let F be a stable family of configurations on a set E. Let x be a configuration. For
e,e'ex define

e' <x e ~ VyEF. eEy &yCx => e'ey.

When e ex de.fine

rel.x = n (yeFleEy & y~x}.

4.4. PRoPosmoN. Let x be a configuration of a stable family F. Then ..;;;x is a partial ()rder and re 1 x is

a configuration such that

fel.x = {e'exle' <;x e}.

Moreover the configurations y k:x are exactly the left-closed subsets of .s;;x·
PROOP. See (6), proposition 1.2.6. 0

Recall the definition of configurations of the product of stable families from (6) (there stated as
theorem 2.5.10).

4.5. DEFINITION. Let Fo,F1 be stable families of configurations on E 0 ,E1 • Then xEF0 XF1 iff
x ~Eo x.E1 and
(a) 'ITo(x)eFo and ?T1(x)e F1;
(b) Ve,e'ex. 'ITo(e)=.,,.o(e') or 1T1(e)=1T1(e') => e =e';

(c) Ve,e'ex. e=l=e' ==> 3y c;;;;x. ?T0 (y)EFo & 'IT1(y)eF1 & (eey ~ e'ey);
(d) Ve ex 3y c;;;;x. ?To(y)eFo and ?T1(y)eF1 & e ey & IY I <oo.

11

4.6. PROPOSITION (Winskel). Let F0,F1 be stable families of configurations on £ 0,E 1 and Jet
x ~Eo x.E1 be finite. Then x is <1jinile configuration in F0 X F1 if!
i) 'ITo(x)eFo and 11'1 (x)eF1;

ii) ~, the transitive closure of ~ 1, is a partial order, where

e ~I e' ~ wo(e) ,,;;;;,.
0
(x) 'ITo(e') or '1T1(e) ..;;;;.,,.,(x) '1T1(e').

PROOF.
"*="We verify (a)-(d). Part (a) is immediate. Part (b) trivially follows from the fact that ~ is a par
tial order. In order to verify part (c) we need the following claim.

CLAIM. Let eex and [e] =def {e'ex le'~ e}. Then 11'0([e])eF0 and1T1([e))eF1.

PROOF. By symmetry we only have to show w0 ([eDeF0 • Let fe w0 ([e]) and /'ew0(x) such that
f' .io;;.,,..<x> f Then there are g,gex and g~e with w0(g)=fand w0(g)=f'. But this implies g'~g and,
since < is a partial order, also g'~e. Thus ge[e] and hence f'=w0(g)e'1T0 ([e]). Now we have
shown that 'ITo([e D is a .io;;.,.

0
(x)-left-closed subset of configuration '1T0(x). Application of proposition 4.4

gives that therefore woae]) is itself a configuration. 0

Now we can verify part (c).Suppose e,e'ex with e#. Assume ...,(e~e'). In this case take y=[e'].
By the above claim y ~x, w0 (y)eF0 , '7T1(y)eFi. efiy and e'ey. If, on the other hand, e~e' then take
y=[e]. We then bavey~x, w0 (y)eFo, '17'1(y)eFI> eey and e'fly.

Part (d) is immediate, since set x is finite.
"=>" Suppose x is a finite configuration of F 0 X F 1• We require that ~ is a p.o. Relation ~ is transi
tive by definition and reflexive because ~ 1 is so. Thus we only need to show antisymmetry. However
we observe:

e~e' => e .io;;x e' (*)

So any nontrivial loop in ~ would induce one in the partial order o;;;;x, which is absurd and hence ~
is a partial order. To show(*) it suffices to show:

1T1(e) ..;;.,,.,(x) 'IT;(e') => e <x e' for i =O, 1.

By symmetry we need only do this for i = 0.
Suppose 'ITo(e) ~ ... (x) wo(e'). We require e ~x e', Le. 'fy eFo. e' ey & y kx ~ eey. Let y EFo
with e' ey kX- Then:

17o(e) ~ ... (x) 'ITo(e')E'ITo(y)~'ITo(x)

where '"o{Y) is a subconfiguration of the configuration '17'0 (x). Thus by proposition 4.4 '11'0(e)E'1T0(y).
Thus there is some e''ey such that '1To(e'')='1To(e). But x is a configuration, so e=e''ey. 0

Theorem 3.6 now follows from the corefiection between the categories of prime event structures and
stable families as established in [6].

REFERENCES

[1] G. BOUDOL & I. CASTELLANI (1988): Permutation of transitions: an event structure semantics for
CCS and SCCS. Rapports de Recherche 798, INRIA, Centre Sophia Antipolis, to appear in:
Proceedings REX School/Workshop on Linear Time, Branching Time and Partial Order in Log
ics and Models for Concurrency, Noordwijkerhout, (J.W. de Bakker, W.-P. de Roever & G.
Rozenberg, eds.), LNCS.

[2] P. DEG.ANO, R. DE NICOLA & U. MONTANAJU (1988): On the consistency of 'truly concurrent'
operational and denotational semantics. In: Proceedings Symposium on Logic in Computer Sci
ence (LICS), Edinburgh, pp. 133-141.

12

[3] R. LooGEN & U. GoLTZ (1987): A non-interleaving semantic model for nondetenninistic concw-rent
processes. Aachener lnformatik-Berichte 87-15, RWTH Aachen.

[4] M. NIEi.SEN, G.D. PLonaN & G. W1NSKEL (1981): Petri nets, event structures and domains, part I.
Theoretical Computer Science 13(1), pp. 85-108.

[5] G. WINSKEL (1982): Event structure semantics for CCS and related languages. In: Proceedings
JCALP 82, Aarhus (M. Nielsen & E.M. Schmidt, eds.), LNCS 140, Springer-Verlag, pp. 561-576,
see also DAIMI report PB-159, Computer Science Department, Aarhus University, 1983.

[6] G. WINSKEL (1987): Event structures. In: Petri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced
Course, Bad Honnef, September 1986 (W. Brauer, W. Reisig & G. Rozenberg, eds.), LNCS 255,
Springer-Verlag, pp. 325-392.

[7] G. WrNSKEL {February 1989): Personal communication.

