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A Queueing Network Model for Analyzing a Class of 

Branch and Bound Algorithms on a Master-Slave Architecture 

O.J. Boxma, G.A.P. Kindervater 
Centre for Mathematics and Computer Science, Amsterdam 

Partitioning methods lend themselves very well to implementation on parallel computers. In recent years, 
,branch and bound algorithms have been tested on various types of architectures. In this paper, we develop 
a queueing network model for the analysis of a class of branch and bound algorithms on a master-slave 

.architecture. The analysis is based on a fluid flow approximation. Numerical examples illustrate the con
cepts developed. Finally, related branch and bound algorithms are studied using a machine repair queueing 
model. 
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1. INTRODUCTION 

Parallel computers will make it possible to solve large problem instances in little time. In the field of 

combinatorial optimization, we may expect to benefit from parallelism especially for 'hard' problems. 

Using traditional sequential computers, we can only solve small problem instances to optimality. With 

the advent of parallel machines, the range of tractable problem instances will be extended enormously 

although, due to bounded parallelism, a speedup from exponential to polynomial time algorithms can 

never be hoped for. 
Hard combinatorial problems are usually solved by some form of implicit enumeration of the set of 

feasible solutions. A widely used technique is branch and bound. Branch and bound algorithms gen

erate search trees in which each node has to deal with a subset of the solution set. A subproblem 

corresponding to a node is either solved directly, or its solution set is split and for each subset a new 

node is added to the tree. The process can be improved by computing a bound on the solution a node 

can produce. If this bound is worse than the best solution found so far, the node is excluded from 

further examination. The nodes are given a priority, determined by some heuristic function, and from 

among the available nodes the one with the highest priority is considered next for evaluation. 

On a parallel computer, the processors can examine different parts of the search tree at the same 

time. This idea has been tested on various architectures; see, for example, Finkel & Manber [1985], 

Trienekens [1986], and Kindervater & Trienekens [1987]. Often the algorithms exhibit an anomalous 

behavior. It may happen that P processors together are more than P times as fast as a single proces

sor. This can be explained by the fact that a parallel search algorithm may find a good (or the 

optimal) solution much earlier than the corresponding sequential algorithm. Unfortunately, it can also 

be the other way around: adding a processor may slow down the computation [Lai & Sahni 1984; Lai 

& Sprague 1985, 1986; Li & Wah 1986]. 
In this paper, we analyze the performance of a class of branch and bound algorithms on a master

slave architecture. In a master-slave architecture, we have a central master processor which is con

nected to a number of slave processors. An appealing implementation of branch and bound algo

rithms, is the following. The master processor keeps track of the search tree generated so far, orders 
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the nodes according to their priorities, and sends the node with the highest priority to a slave proces
sor as soon as one becomes idle. The slave processors evaluate the nodes they receive and send the 
results back to the master processor. In this implementation, the master processor has full knowledge 
of the search tree generated so far and can ensure that the 'most promising' part of the search tree is 
examined by the sfave processors. However, the master processor must have a high enough processing 
speed to handle the communication requests of the slave processors and to maintain the priority 
queue of available nodes. Otherwise, the benefits of this implementation are likely to disappear: valu
able information may not reach the master processor in time and the slave processors may be forced 
to do what turns out to be useless work, or the slave processors may become idle. 

The goal of this study is to obtain insight into the performance of the master-slave architecture for 
the class of branch and bound algorithms, described above, under various conditions; in particular, 
we are interested in the effect of changing the speed of the master or the slaves, and of changing the 
number of processors. This goal will be accomplished via a queueing theoretic approach. 

In the next section, we will describe a queueing network model for the parallel evaluation of branch 
and bound nodes. We will analyze two different cases, giving rise to two variants of the queueing 
model. In Section 3, a slave processor evaluates a node, puts the results in a queue at the master pro
cessor, and immediately continues with a new node, sent by the master processor. The corresponding 
queueing model is analyzed by means of a fluid flow approximation. The techniques developed are 
illustrated by some numerical examples in Section 4. Section 5 studies the case where a slave proces
sor receives a new node only after the master processor has consumed the slave's latest results. Here, 
the appropriate queueing system turns out to be a so-called machine repair model. The main conclu
sions are presented in Section 6. 

Throughout the paper, we assume that at any point in time there are enough nodes available for 
evaluation by the slaves. This is not a serious restriction since parallel computers are particularly use
ful for solving problem instances that require large search trees for finding the optimal solution. 

2. QuEUEING MODEL DESCRIPTION 

In the queueing network representation of the parallel processing of branch and bound nodes, the 
master processor is represented by a single server M, and the P slave processors are represented by P 
parallel servers Si. ... ,Sp, gathered in a service station S; cf. Figure I. The nodes are represented 
by customers. To further specify the queueing network, we have to describe the routing of customers 
and th~ service processes at M and S. 

The routing of customers 
When a customer arrives at M, he may have to wait in a queue until his service starts. After having 
obtained his serviCC? requirement, the customer leaves and immediately arrives at S, where he usually 
has to wait in a queue. In this queue each customer has a priority which determines the order in 
which the customers are served by S. Since, in the implementation of branch and bound algorithms 
under consideration, the priority queue is maintained by the master processor, it is part of service 
center M. In the queueing network modeL however, it is more natural to identify the priority queue 
with the queue at service center S. Now there are two possibilities: 

(i) Before the customer is taken into service, that part of the queue at S to which this customer 
belongs is thrown away: the customer is instantaneously removed from the queueing network. This 
corresponds to the situation that the master obtains information from a node which makes the 
analysis of the nodes in a part of the priority queue obsolete. Customers who are thrown out of the 
queue at S are not replaced by other customers. 

(ii) P,Jter a (possibly zero-length) waiting period, the customer is taken into service by one of the P 
servers; after having obtained his required service, he leaves S. 
A customer who has successfully completed a service in S leaves the queueing network, but he is 
immediately replaced by 0, 1 or 2 new customers, with probabilities p0 ,pi.p2 respectively; 
p0 +p 1 +p2 =I (we assume that a branch and bound node has at most two descendants; the analysis 
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M 

FIGURE 1. The queueing network model. 

to be presented in Section 3 remains valid when this assumption is relaxed). These new customers 
immediately arrive at M. In Figure 1, B&D symbolizes the birth and death of customers. The proba
bilities p; may vary with time; we denote them by p;(t). The mean increase of the number of custo
mers ~ the network after a service completion in S at time t will be denoted by 

(2.1) 

In approximation, q,(t) will be a decreasing function of t, with qi(_O) = 1 and qi(_ oo) = - 1. In the branch 
and bound setting, this corresponds to the observation that the number of nodes generated by a node 
usually equals two in the beginning of a tree search, and that this number decreases to zero in the 
course of time. 

The service process at M 
The single server M serves customers in order of arrival ('first-come first-served'). M's service of a cus
tomer consists of two parts: 

(i) a constant part of length a, which reflects the master's processing of the information contained 
in a node; 

(ii) a part of length b ln(l +y), which reflects the master's putting a node in a priority queue of size 
y. Note that insertion in a priority queue requires O(lny) time units when its size is y. 

Hence the total service time of a customer in M, in the case that this customer has to be inserted in 
a priority queue of size y, equals 

a+ b ln(l +y). 

Instead of constants, a and b may also be stochastic variables; in the analysis of this paper, that will 
turn out to be of minor importance. 

In the following, the queue length of waiting customers in Mat time twill be denoted by YM(t). 
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The service process at S 
When a server in S becomes idle, the customer at the front of the queue (if any) is immediately taken 
into service. When a newly arriving customer finds several servers idle, he chooses an arbitrary idle 
server. We assume that the P slave processors - and hence the P servers - are identical. 

The service times of customers at S are independent, identically distributed stochastic variables 
with mean 11 a. Generally it will not be necessary to specify the service time distribution at S further, 
but at a few places in the text we will consider the case of a negative exponential distribution. 

Apparently the 'capacity' of S is Pa: S is able to handle Pa customers per unit of time, on the 
average. Throughout this paper we assume that lla >>Pa, i.e., Ms maximum speed of handling cus
tomers is much higher than that of S. Of course a large queue at Swill slow down M considerably. 

The length of the queue at Sat time twill be denoted by Ys(t). 

Remark 
In a parallel computer, communication between processors will take a certain amount of time. We 
assume that the time to send messages between the master and the slaves has been taken into account 
in the service times. 

3. MATHEMATICAL ANALYSIS OF THE NODE PROCESSING MECHANISM 
In the previous section, a queueing network model was introduced to describe the node processing 
mechanism in parallel branch and bound. In this section, we present a mathematical analysis of the 
queue length processes in that queueing network. This analysis is basically of a nonstochastic nature. 
Of course YM(t) and Ys(t) are stochastic processes, which may exhibit considerable fluctuations. Infor
mation concerning the (random) behavior of Ys(t) and YM(t) requires a detailed queueing analysis. 
The problem of analyzing the transient behavior of queues is notoriously difficult, even when arrival 
and service rates are constant. In our case, a detailed mathematical analysis of the evolution of, say, 
YM(t) requires analysis of the transient behavior of a single server queue with complex time dependent 
arrival and service rates. Hardly any results are available in the literature concerning such problems. 
Massey [1985] studies the asymptotic queue length behavior of an MIMll queue (i.e., a single server 
queue with Poisson arrival process and negative exponentially distributed service times) with time 
dependent arrival and service rates. Rider [1976] and Rothkopf & Oren [1979] derive approximations 
for the mean queue length at time t in this MIMI 1 queue; their approximations are fairly compli
cated. These models are considerably less complex than the model under consideration, with its 
interaction between M and S. As there seems to be little hope of obtaining useful exact results, we 
have taken recourse to a standard type of approximation. The approximation, simple as it may be, 
will turn out to yield much insight into the behavior of both queue length processes. In queueing 
literature it is called a.fluid.flow approximation (cf. Newell [1971]). 

Fluid flow approximations are based on the following observations: (i) In a system with a large 
queue, 1many customers must arrive and depart before the queue changes much (in a relative sense). 
(ii) In a period of time sufficiently long for many arrivals and departures to occur, the effect of ran
dom fluctuations - due to the stochastic nature of the arrival and service processes - will be relatively 
small. 7be latter observation can be theoretically supported by Laws of Large Numbers and Central 
Limit Theorems. As an example, consider the departure process from the saturated service station S. 
Assume that successive service times in S are independent, negative exponentially distributed stochas
tic variables with mean I/ a. Then successive departure intervals are independent, negative exponen
tially distributed stochastic variables with mean I/Pa. The number of departures, D(t), in an interval 
of length t is Poisson distributed with mean Pat and variance Pat. According to the Strong Law of 
Large Numbers, 

D(t)- E[D(t)] = D(t) - Pat ~o 
E[D(t)] Pat ' 

t~oo. (3.1) 
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with probability one. Supplementary information is provided by the Central Limit Theorem, which 

shows that for large t, 

D(t)- Pat 1 y 
Pr{ -y <'IP;; <y} ~ _ r;;;- J exp(-x 2 /2)dx. 

Pat v 2w -y 

(3.2) 

Based on the above observations, we can replace the discrete and rand9m arrivals and departures at 

Mand S by nonrandom continua (cf. Newell [1971], Ch. 2): we can view Mand Sas reservoirs, with 

fluids flowing in and out. In this setting, a reservoir can be considered to be empty for a lengthy 

period of time, without really being completely empty; it is empty only on a scale of measurement in 

which fluctuations in cumulative flows are negligible. 

In our fluid flow analysis of the node processing mechanism, we distinguish two possible states in 

which the system can be, viz. 
ME: M is empty; 
MNE: M is not empty. 
Once more, at a time to at which the system is in state ME, YM(t0 ) is not necessarily zero; but on 

the scale of measurement, it is negligible. Note that y is not printed boldface, as the queue length pro

cess is no longer assumed to be stochastic. 
Throughout the analysis, Swill be considered to be nonempty, even with all P servers being occu

pied. When Ys(t) would become zero, M would serve so fast that S would very soon saturate again. 

This is no longer true when there are hardly any customers in the system, but that situation is of not 

much interest. 
For arbitrary q,{_.), the system state can switch back and forth between ME and MNE several times. 

In Subsection 3.1 we describe, in detail, the behavior of the queue length processes in each of these 

two states. In Subsection 3.2 we follow the evolution of JM(t) and y5(t) from beginning to end, in the 

case of1 a non-increasing function q,(_.) with q,{_O) = 1 and <P( oo) = - 1. 

In Section 2 (see 'The routing of customers') we have mentioned an important feature of branch 

and bound: the master obtains information from a node which makes the analysis of the nodes in a 

part of. the priority queue obsolete. In the queueing network setting, this corresponds to the situation 

that, upon departure of a customer from M, the tail of the queue at S is removed from the network: 

y8 (t) instantaneously is reduced by a certain number. In describing the queue length processes in 

states ME and MNE, we first ignore such sudden reductions of the queue at S. In Subsection 3.3 we 

point out which simple changes are required to take reductions of the queue at S into account. 

3.1 Queue length behavior in the states ME and MNE 
We shall mainly concentrate on the queue length process y5(t); YM(t) follows from the relation 

t 

Ys(t) + JM(t) =Pa J 4'(.u)du, t;;a.O. (3.3) 

0 

This relation holds for general q,{_.), ignoring the possibility of a sudden reduction of the queue at S. 

The state ME 
In state ME, M is clearly nonsaturated: its input rate is lower than its maximum possible processing 

rate. The output rate of S is Pa, all P servers being occupied; so the input rate to M, and accordingly 

the input rate to S, is Pa(l +4'(.t)). Therefore, with to the entrance time of the system in state ME, 

t t 

Ys(t) = ys(to) +Pa J q,(_u)du =Pa J q,(_u)du. (3.4) 

10 0 
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The last equality follows from (3.3) because, by definition, 

YM(t) = 0, 

when the system is in state ME. 
If qi(_.) is such that Ys(.) grows, this may slow down M so much that M becomes saturated; the sys

tem will switch to state MNE. The epoch at which the system changes from state ME to state MNE, 
t 1, is determined by the condition 

t, 

Pa(l +4i<.t1)) =[a +b ln(l +ys(t1))]- 1 =[a +b ln(l +Pa J qi(_u)du)]- 1, 

0 

with t 1 the smallest solution larger than t 0 • 

The state MNE 

(3.5) 

Suppose that, at a time ti, the system enters state MNE. The server in Mis now continuously busy; 
the input rate at M still is Pa(l +qi(_t)), but its output rate - and the input rate to S - equals 
[a+ b ln (1+Ys(t))r 1. The queue length process Ys(t) (or rather its fluid flow approximation) evolves 
according to the following differential equation: 

d 1 
dtys(t)= -Pa+ a+bln(l+ys(t))' t;:i:t1. (3.6) 

The initial condition is determined by (3.5): 

t, 

l 
1 a 

Ys(ti) =Pa qi(_u)du =exp[ bPa(l +4i<.ti)) - b] - 1. (3.7) 

The differential equation (3.6) plays a central role in our analysis of the queueing effects of the paral
lel proC:essing mechanism. Rewrite (3.6) into 

a +b ln(l +ys) 
f dy = fdt 

1 - Paa - Pab ln(l +ys) s ' 

or, with C1 some yet unknown constant, 

1 1 f 1 
- Pays+ Pa l - Paa - Pab ln(l +ys) dys = t + Ci. 

Introd1t1ce 

and the exponential integral (cf. Abramowitz & Stegun [1965)) 

00 

E1(z):= J exp(-v) dv, z>O. 
z v 

Substitution of v = C-ln(l +y) in (3.10) shows that (3.8) can be rewritten into 

(3.8) 

(3.9) 

(3.10) 
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- PI :Ys(t) + I 2 ec E1(C - ln(l +ys(t))) = t + C 1. 
a (Pa) b 

(3.11) 

The initial condition determines the constant C 1 : 

- PI :Ys(t1) + \ 2 ec E1(C - ln(l +ys(t1))) = t1 + C1. 
a (Pa b 

(3.12) 

Subtraction of the relations (3.11) and (3.12) finally gives us a relation between Ys(t) and t: 
I 

It seems impossible to find an explicit expression for Ys(t) as a function oft, t~t1> but (3.13) is 

already very useful. Firstly, for each given value of ys(t) it is easy to explicitly calculate the 

corresponding t-value (the exponential integral E 1(.) is extensively tabulated [Abramowitz & Stegun 

1965]). Secondly, standard knowledge about E 1(.) allows us to obtain useful insight into the behavior 

of Ys(t). 
It is clear from the differential equation (3.6) that, independently of the choice of <P(_.), ys(t), t~t1> 

increases as long as this differential equation holds, tending to the limit exp( C) - 1. Let us now study 

the following question: at what time tE will Ys(t) + 1 reach the level exp(C(l-£))? According to 

(3.13), 

_PI [exp(C(l-£))-l-ys(t1)]+ 
1

2 
ec[E1(£C)-E1(C-ln(l+ys(t1)))]=tE-t1. (3.14) 

a (Pa) b 

Now we use the fact that (Abramowitz & Stegun [1965]) 

oo (-lfzn 
E 1(z) = -y - lnz - ~ - I , z>O, 

n=I nn. 
(3.15) 

with y=0.57721 ... denoting Euler's constant. Hence 

(3.16) 

so 

(3.17) 

These calculations enable us to estimate the behavior of Ys(t) close to its limiting value. In particular 

one can show that an 0(£) increase of Ys(t) in this time region requires 0(1) time (one can, in fact, 

also derive this directly from the differential equation (3.6)). If <P(_t)= 1 in close approximation in a 

large time span in state MNE, Ys(t) + YM(t) grows linearly with Pa customers per unit of time. There

fore, when Ys(t) is close to its limiting value, the queue at M grows linearly with time in the time 

region under consideration. 
The queue length process YM(t) follows from (3.3) once ys(t) has been determined. It depends on 

the choice of <P(_.) and of the various parameters whether a situation as sketched above (with the bulk 

of the growth of the customer population contributing to YM(t)) actually occurs. See also the numeri

cal examples in Section 4. 
For the system to switch back to state ME, it is required that M's input rate Pa(l +<P(.t)) is less 
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than its output rate [a+bln(l+y8(t))r 1 for some period of time. Let us suppose that cp(.) and the 
various parameters are such that the system switches back to state ME. The epoch at which the sys
tem switches from state MNE to state ME, t 2, is determined by the condition YM(t 2 )=0, or 
equivalently: 

12 

Ys(t2) =Pa [ cp(u)du. 

Substitution in (3.13) yields: 

12 12 1, 

- J cp(u)du + \ 2 ec [E1(C - ln(l +Pa[cp(u)du)) - E 1(C - ln(l + Pa[cp(u)du))] = t 2 - t1> 
11 (Pa b 

(3.18) 

with t 2 the smallest solution, larger than t1> of this equation. It has to be determined numerically. 

3.2 Evolution of the queue length processes 
We no}V restrict ourselves to the case of a non-increasing function cp(.) with cp(O)= 1 and cp(oo)= -1. 
We follow the evolution of YM(t) and y8(t) from beginning to end. 

Initially there is only one customer in the system (the root of the search tree). This customer is 
served in M, and subsequently in S; it is replaced by 2 new customers, who arrive at M; shortly 
thereafter there are 3 customers, etc. Very soon all processors of Sare continuously busy. If, e.g., all 
service times at Sare negative exponentially distributed with mean l/a and Mis much faster than the 
P processors, the length of the initial period is approximately 

l.+_l_+ ... +--l
a 2a (P-l)a 

(indeed, when j servers are active in S, the time until the first departure from S is negative exponen
tially distributed with mean 11 Ja; the departing customer is almost certainly replaced by two other 
customers, who - after a very short visit to M - increase the number of active servers in S to j + 1 ). 
After the initial period, Pa customers leave S per unit of time (on the average), and Pa(l +4>(t)) cus
tomers arrive at M per unit of time. M is extremely fast as long as the queue length at S, y8(t), is not 
too large: M has at first no difficulty handling its input stream, so its output stream also has intensity 
Pa(l +cp(t)). In the fluid flow approach, Mis still considered to be empty: the system is still in state 
ME. y8(t) grows at a rate Pacp(t), cf. (3.4). There are now two possibilities: 

(i) M slows down so much that its maximal output rate equals its input rate: M starts to saturate, 
and the system enters state MNE; 

(ii) M's speed is not reduced enough to reach the saturation point, and all customers are being pro
cessed without the system ever entering state MNE. 

Case (i) obviously is the more interesting one. The system enters state MNE. The queue length pro
cess y8(t) now evolves according to the differential equation (3.6). M's queue length initially grows 
but, as a counteracting force, cp(t) decreases; finally, the input rate Pa(l +cp(t)) in M becomes lower 
than the output rate and M's queue length starts to decrease. This process continues until M becomes 
empty again: the system switches back to state ME. 

At this epoch, the input rate at S switches to Pa(l +4>(t)). If cp(.) has already become negative, the 
queue length at S immediately starts to decrease, and continues to do so (4>(.) being a non-increasing 
function). Consequently M speeds up, and the system stays in state ME until there are no customers 
left. However, if 4>(.) still is positive, then in principle both possibilities (i) and (ii) discussed above 
again exist, and the system may switch back to MNE, etc. Such an alternating series of states ME and 
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MNE r;nay, for example, occur if shortly after entering state MNE the function cp(_.) drops from almost 

one to a small positive value and keeps this value for a substantial period. The system will react by a 

change from state MNE to state ME, and since the number of customers is still growing M will get 

saturated once more. 

Number of nodes 
per time unit 

500 

400 

300 

100 

0 

0 50 100 150 200 
Time 

FIGURE 2. M's input rate v1 and service speed v2 

(v1 = Pa(l +cp(_t)) and v2 =[a+ b ln(l +y8(t))r 
1 ); 

Pa= 50, a = b = 0.0020, and cp(_.) is linearly decreasing. 

Figure 2 depicts the typical behavior of M's input rate Pa(l +cp(_t)) and its service speed 

[a +b ln(l +y8 (t))r 1
• 

3.3 Reductions of the queue at S 
Neither Figure 2, nor the global description of the queue length processes, considers the phenomenon 

that instantaneously part of the queue at S is thrown out of the system. This phenomenon, which also 

implies a sudden increase of M's speed, can easily be captured in the mathematical analysis. Suppose 

that a reduction of the queue at S occurs at an epoch td, and that x customers are removed from the 

networ~. If this happens while the system is in state ME, the output rate, Pa(l +cp(_td)), of Mis not 

affected. Much more interesting is the situation in which the sudden drop in the queue length of S 

occurs while the system is in state MNE. Instantaneously the output rate of M increases to 

The queue length at S still behaves according to the differential equation (3.6), but with a new initial 

value y8 (td + ). The speedup of M may soon lead to an empty queue at M, so that the system enters 

state ME. Of course, it is possible that several considerable reductions of the queue at S occur. Not 

much is known about the frequency with which this phenomenon occurs, nor about the sizes (x) of 

the corresponding jumps. Therefore we do not discuss the issue in much detail here. It suffices to 

observe that our model is able to determine the influence of sudden reductions of the queue at S on 

the speed of the master, and on the subsequent behavior of the queue sizes. 

In Section 4 we present some numerical examples which, for various choices of the function cp(_.) and 
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the parameters P, a, a and b, exhibit the global behavior of Ys(t) and YM(t). In one example, the 
phenomenon of a reduction of the queue at S is also taken into account. 

Remark 
f/l(_.) has so far been considered as a process independent function. In reality, f/l(_.) may depend on the 
queue length process; it might in particular be realistic to decrease f/l(_.) after the occurrence of a sud
den reduction of the queue at Sas described above (and this decrease should be related to the size of 
the reduction). Such process dependent behavior of f/l(_.) can be incorporated in the model. The 
behavior of Ys(t) would initially be still determined by the differential equation (3.6), but the input 
rate in M would suddenly decrease. 

4. NUMERICAL EXAMPLES 

To give a global idea of the behavior of Ys(t) and YM(t), we will now present the results of some 
numerical computations. In all cases, we have considered a linearly decreasing function f/l(_.), with 
f/l(_O) = 1. The process stops at a time T with f/l(_T) = -1. The total number of customers served by the 
slaves at time T is PaT. In all examples, we chose this number to be 10.000. 

Queue length 
2000 

1500 

1000 

500 

50 100 150 200 
Time 

FIGURE 3. Ys and YM for Pa= 50 and a = b = 0.0020. 

In Figure 3, the case Pa =50 and a= b = 0.0020 is shown (see also Fig. 2; and note that Panda 
are occurring as a product in all formulas). In the beginning, Ys is increasing very fast and M is get
ting saturated almost immediately. At that moment, the queue length YM starts to grow. Since f/l(_.) is a 
decreasing function, the number of customers arriving at M is decreasing. Therefore, M will eventu
ally become empty and the system changes from state MNE to state ME. At this point in time, Ys 
starts to decrease since f/l(_.) is already negative. 

Figure 4 shows the effect of changing Pa, which corresponds to altering the number of slaves or the 
processing speed of the slaves. For Pa= 20, the master is fast enough to serve the incoming custo
mers and YM~o. If Pa= 80, the master gets into serious trouble. The speed of the master is much 
too slow compared with the number of incoming customers. Here, we can observe the fact that Ys is 
approaching an asymptotic value if the system is in state MNE for a long enough period. 

There appears to be a delicate interaction between the processing capacities of the master and the 
slaves. Increasing the processing capacity of the slaves may change an almost continuously idle master 
into a saturated master with a very long queue. The beneficial effect of increasing the processing 
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FIGURE 4. The effect of changing Pa; a = b = 0.0020, 
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capacity of the slaves may now be reduced; for example, a node with information that would make a 
large part of the priority queue obsolete (i.e., a part of the queue at S would be thrown away), is 
delayed for a long time, thus possibly causing a deterioration of the running time of the algorithm. 
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FIGURE 5. The effect of changing a and b; Pa= 50, 
a = b = 0.0015 (left), and a = b = 0.0025 (right). 
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In Figure 5, we consider different speeds of the master. The effects are about the same as when 
changing Pa. 

Sudden reductions of the queue at S may cause an alternating sequence of the states ME and 
MNE. An example is given in Figure 6. In state MNE, a part of the queue at S is thrown away. As a 
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FIGURE 6. An example with a reduction of the queue at S; 
Pa= 50 and a = b = 0.0020. 

consequence, M's speed increases so much that YM becomes zero. Since the total number of customers 
in the system is still increasing rapidly, M gets saturated again, and the system enters state MNE 
again. 

5. THE MACHINE REPAIR MODEL 

For the class of branch and bound algorithms considered in this paper, it can be advantageous that 
the master has full knowledge of the search tree developed so far. An enormous queue length at the 
master can cause a slowdown of the computation. Therefore, we consider in this section branch and 
bound algorithms where a slave does not start with the evaluation of a new node until the master has 
processed the latest information the slave has sent. 

This gives rise to the queueing model of Figure 1 without B&D, with exactly P customers, each cus
tomer corresponding to one particular slave. This is a well known queueing model, often referred to 
as the machine repair model (the P customers being P machines which after breakdown have to be 
repaired in repair facility M). In a computer context, the model also represents a multi-access system 
[Kobayashi 1978]. In such a case, the P slaves correspond to P terminal users. Each of these terminal 
users alternates between an active (think) phase and a passive phase; after a think phase, a job is sent 
to the central processor M. 

For reasons of mathematical tractability, the speed of the master is assumed to be independent of 
the number of nodes that have already been processed; in queueing terminology, the service times at 
M do not depend on time. Still, the steady state analysis that we are about to present will yield some 
insight,into the effect that a change in speed of the master has (see Fig. 7 below). It is assumed that 
the service times at M are independent, negative exponentially distributed stochastic variables, with 
mean 11 /l It is further assumed that the service times at the P servers Si. ... , S p of service station S 
are independent, identically distributed with mean 11 a, and that the service processes at S and M are 
independent. 

It is well known, and easily seen, that under the assumption of negative exponentially distributed 
service times at M, S is equivalent - with respect to the number of busy servers - to the so-called 
M/G/P loss model. This is an open queueing model with a Poisson arrival process, P servers with 
generally distributed service times, and no waiting room; an arriving customer who finds all servers 
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occupied is lost. 
We restrict ourselves to the consideration of the limiting probability distribution of the number of 

busy servers, B, at S (which number equals P minus the number of customers in M). This amounts to 

studying the limiting distribution of the number of busy servers in the M/G/P loss model. This limit

ing distribution is given by (Kelly [1979], p. 13, 79): 

rn/n I 
Pn : = Pr{B=n} = P • , n =O, 1, ... ,P, 

"i. rj I j ! 
(5.1) 

j=O 

with 

r := /J!a. 

We remark that Formula (5.1) can be easily generalized to the case that the mean service time in M 

depends on the number of customers waiting in M, or equivalently, that the arrival rate at the 

M/G/P loss system depends on the number of busy servers. Let 1/ /Jn denote the mean service time in 

M wh~ n customers are present in M. Then (5.1) should be replaced by 

n 
II ({Jp-k+ 1 I ka) 

Pn :=Pr{B=n} = k=I. , n=O,l, ... ,P. 

f fI({JP-k+1/ka) 

(5.2) 

j=O k =I 

The probability that an arriving customer in the M/G/P loss model is lost, Ep(r), is given by 

Erlang's loss formula: 

(5.3) 

The mean number of busy servers at S, N, follows from (5.1): 

N: = E[B] = r[l - Ep(r)]. (5.4) 

Indeed, with r interpreted as the amount of traffic offered to the M/G/P loss system per unit of time, 

N equals the mean amount of traffic handled per unit of time - and this should equal the mean 

number of busy servers. In this connection, note that aN represents the throughput of S, and hence 

also of M; so the mean cycle time of a job in the closed system is given by PI aN. 
In principle, (5.4) can be numerically evaluated. However, this evaluation may be cumbersome 

when P and/or rare large while, moreover, (5.3) does not yield much insight. Therefore, the behavior 

of N and Ep(r) for large values of P and/or r has been extensively investigated. See Whitt [1984] for 

an interesting .exposition and several early references, and see Newell [1984] for various asymptotic 

expansions. In particular, Newell presents a simple first-order approximation for Ep(r) for r~oo, 

leading to 



14 

N~r, r:;;;;.P, 

N~P, r>P. 
(5.5) 

Newell~s second-order approximation (see also Whitt [1984]) leads to the following approximation for 

N. Introduce 

r p 
IC:= _ r;:-(--1), 

vP r 

and th~ standard normal distribution function 

x 1 
«P(x):= J _ r,:;- exp(-z2/2)dz, -ao<x<ao. 

-oo V2'11' 

The mean number of busy servers in S is for large values of r approximated by: 

( /PV'-1 P-r 
N ~r[l -' L e ], r:;;;;.P, 

'1};;j «P(KP /r) 
(5.6) 

This approximation is based on Stirling's approximation for factorials, and the normal approximation 

to the Poisson distribution. 
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FIGURE 7. Fraction of busy servers as function of {3/a 
for P = 1, 2, 4, 8, 16, 32, 64, 128. 
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Figure 7 di~lays the exact fraction of busy servers in S, NIP, as a function of r = {31 a for P = 1, 

2, 4, 8, 16, 32, 64, and 128. The figure clearly shows the usefulness of the simple first-order approxi

mation (5.5). N grows linearly with {3/a until the speed of the master M, {3, almost equals Pa, the 
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maximal speed of S; further increasing P has hardly any effect. In branch and bound algorithms, the 

speed of the master varies with the number of generated but not yet examined nodes. The effect of 

such fluctuations in the speed of the master processor on the fraction of busy servers can also be 

derived from Figure 7. 
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FIGURE 8. Fraction of busy servers as function of {JI Pa 
for P = l, 2, 4, 8, 16, 32, 64, 128. 

Figure 8 displays the fraction NIP as a function of r IP = /JI Pa, for the same parameter choices as 

in Figure 7. The figure shows that, for P > r (/31 Pa < I), the fraction of busy servers decreases 

rapidly, when /JI Pa decreases. For fixed speeds of the master and the slaves, it is, therefore, only 

worthwhile to add slave processors as long as P < r (/31Pa>1). 

So far we have been mainly concerned with the mean of the number of busy servers in S. Newell 

[1984] also presents approximations for the distribution of the number of busy servers in S. He states 

that, for P large and fixed, and r > P and in particular I - PI r >> r- l/2, the distribution of idle 

servers in S is approximately geometric: 

Pr{nidleservers} =pP-n =(1-Plr)(Plrf,n =O,I, ... ,P, 

with the mean number of idle servers in S approximately equal to P !(r - P). 
i 

6. CONCLUSIONS 

(5.7) 

The queueing network model developed in this paper allows us to analyze the behavior of a class of 

branch and bound algorithms on master-slave architectures. 

For the case where a slave starts evaluating a new node as soon as it becomes idle (Section 3), the 

state of the system can be determined completely at any point in time. It is shown that there is a deli

cate interaction between the processing capacities of master and slaves. For example, increasing the 

speed of the slave processors may tum an almost continuously idle master into a saturated master 

with a large queue. The resulting long delay, at the master, of nodes with valuable information may 

counteract the beneficial effect of increasing the processing capacity of the slaves. 

For the variant of Section 5 where a slave starts evaluating a new node only after the master has 

processed the slave's latest results, we can only give a steady state analysis. Still, this analysis yields 
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useful insight. Increasing the speed of the master, {3, to enhance that the slaves are almost always 

busy, is only useful as long as f3 ~Pa, the total processing capacity of the slaves; similarly, increasing 

the number of slaves, P, is only useful as long as Pa~ {3. 
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