
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

G.A.P. Kindervater, J.K. Lenstra

The parallel complexity of TSP heuristics

Department of Operations Research and System Theory

~- liblio~lfc . -~,__
~voorWiskoode en lnforrm!ilie9

AmSierdam

Report OS-R8609 September

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright (~' Stichting Mathematisch Centrum, Amsterdam .

The Parallel Complexity of TSP Heuristics

GAP. KindeNater, J.K. Lenstra
Centre for Mathematics and Computer Science, Amsterdam

The problems of finding an (approximate) traveling salesman tour by the nearest neighbor, nearest merger,
nearest insertion, cheapest insertion and farthest insertion heuristics are log space complete for <IP. We
show this by giving log space transformations from the circuit value problem. Hence, it is unlikely that such
tours can be obtained in polylogarithmic work space on a sequential computer or, by the parallel computa­
tion thesis, in polylogarithmic time on a computer with unbounded parallelism. We also show that the dou­
ble minimum spanning tree and nearest addition heuristics can be implemented in polylogarithmic time on a
polynomial number of processors.

1980 Mathematics Subject Classification: 90C27, 68015, 68025, 68R05.
Key Words & Phrases-. parallel computing, computational complexity, polylog parallel algorithm, log space
completeness for <IP, traveling salesman problem, heuristics.
Note: This paper has been submitted for publication.

1. INTRODUCTION

With the advent of parallel architectures the design of algorithms has to be reconsidered. For a com­
puter with p parallel processors, the best one can hope to achieve is to develop algorithms that run p
times as fast as they do on a traditional sequential machine. To realize this, the intrinsic parallelism in
the problem at hand has to be optimally exploited and the overhead due to the communication
between processors, usually through a fixed interconnection network, has to be kept within limits. In
theoretical models, an unbounded number of processors is available and the processors communicate
with each other through a shared memory in unit time. For such a model, new complexity classes can
be identified.

Within the class 0' of decision problems which are solvable in polynomial time by a random access
machine (RAM), there exist problems that can be solved in polylogarithmic work space (logn)0 (1>, i.e.,
work space that is polynomial in the logarithm of the problem size n; they belong to the class
POLYLOGSPACE. On the other hand, 0' also contains problems that are unlikely to admit solution in
polylogarithmic work space. These are the problems that have been shown to be log space complete for
0', i.e., they belong to 0' and each problem in 0' is reducible to them by a transformation using loga­
rithmic work space. If any such problem would belong to POLYLOGSPACE, then it would follow that
0' k POLYLOGSPACE, which is not believed to be true. The first log space complete problem in 0' was
identified by Cook [Cook 1974]. To prove that a problem P 1 in 0' is log space complete for 0', it is
sufficient to show that every instance of a problem P 2 which is already known to be log space com­
plete for 0' can be mapped on an instance of P 1 such that 'yes' instances of P 2 are mapped on 'yes'
instances of P 1 and 'no' instances of P 2 on 'no' instances of P 1, where the transformation requires
logarithmic work space [Garey & Johnson 1979]. It is said that P 2 is log space transformable to P 1•

These concepts have found application in the field of parallel computing. The most common model
for parallel computations is the PRAM. This is a synchronized machine with an unbounded number
of processors and a shared memory. It allows simultaneous reads from the same memory location but
disallows simultaneous writes into the same memory location. The computation starts with one pro­
cessor activated; at any step, an active processor can do a standard operation or activate another pro­
cessor; and the computation stops when the initial processor halts. By the parallel computation thesis,

Report OS-R8609
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

,.

2

which is generally believed to be true, the class of problems solvable in F(n)O(l) time by a PRAM is
equal to the class of problems solvable in F(n)O(l) work space by a RAM [Chandra, Kozen & Stock­
meyer 1981; Goldschlager 1982]. It follows that problems which can be solved in polylogarithmic
work space by a RAM are solvable in polylogarithmic time on a PRAM, and that the solution in
parallel polylogarithmic time of problems which have been shown to be log space complete for <!JI is
very unlikely. In other terms, a dramatic speedup from polynomial to polylogarithmic time by paral­
lelism can be expected only for those problems in <!JI that belong to the class POL YLOGSPACE.

In this paper we analyze a number of heuristics for the traveling salesman problem (TSP) with
respect to the theoretical PRAM model. Each of these heuristics can be turned into a decision prob­
lem by posing a question about the result of the algorithm, such as, for example, 'does. the tour
obtained by starting the nearest neighbor heuristic in vertex v1 visit vertex v2 as the last one before
returning to vertex v 1 ?' or 'does the tour obtained by the nearest merger algorithm contain
edge {i,j}?'. We show that the nearest neighbor, nearest merger, nearest insertion, cheapest insertion
and farthest insertion problems thus obtained are log space complete for <!JI by giving a log space
transformation from the circuit value problem. Hence, it is unlikely that the corresponding heuristics
can be implemented to run in polylogarithmic time, even if unbounded parallelism is allowed. The
double minimum spanning tree and nearest addition problems are shown to belong to the class 'Dle,
i.e., the corresponding heuristics are implemented in polylogarithmic time on a polynomial number of
processors. The status of Christofides' heuristic remains unresolved.

General references on parallel combinatorial computing are [Cook 1981; Valiant 1983; Johnson
1983; Kindervater & Lenstra 1985, 1986]. Sequential TSP algorithms are dealt with in [Lawler, Len­
stra, Rinnooy Kan & Shmoys 1985].

2. THE TRA VELING SALESMAN PROBLEM
Given a complete undirected graph and a length for each edge, the traveling salesman problem is the
problem of finding a Hamiltonian cycle (i.e., a cycle passing through each vertex exactly once) of
minimum total length. This well known 0L-hard problem has been extensively studied. There are n
vertices, numbered from 1 up to n, and the length of edge { i,j} (the distance between vertex i and
vertex J) will be denoted by dij (i,j = I, ... ,n). The transformations that we will present in this paper
are partly defined by means of figures. Edges not shown in the figures are assumed to have a
length oo. To assure that the transformations require only logarithmic work space, we substitute
(-)en for (-)oo, where c = 100 can be seen to be sufficient.

We will discuss the implementation of a number of heuristics on a PRAM. The tours produced by
the heuristics considered below are the same when a constant is added to each edge length. If we add
lOcn (with c the same as above) to the edge lengths in the TSP's constructed by the transformations,
the resulting problems will satisfy the triangle inequality: dij ~d;k + dkj for all i,j,k. So, if we show
that the nearest neighbor, nearest merger, nearest insertion, cheapest insertion and farthest insertion
problems are log space complete for <!JI, this is still true for the problems restricted to distance matrices
that satisfy the triangle inequality.

In the rest of this section we will describe the heuristics in detail.
(1) Nearest Neighbor

(i) Start at a given vertex.
(ii) Among all vertices not yet visited, choose as the next vertex the one that is closest to the

current vertex. Repeat this step until all vertices have been visited.
(iii) Return to the starting vertex.

(2) Nearest Merger
(i) Start with n partial tours, each consisting of a single city and a self-loop.
(ii) Merge the tours T1 and T2 for which min{d;kjiETi.kET2 } is as small as possible. Let {i,j}

be an edge of T 1 and { k, l} an edge of T 2 for which d;k + djl - dij - dkt is minimal. The merged tour is
then constructed by replacing edges {i,j} and {k,l} by {i,k} and LJ,l}. Repeat this step until there is
one tour left.

3

(3) Nearest Addition
(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find vertices j and k with k belonging to the tour and j not for which djk is minimal, and insert

j directly before k. Repeat this step until all vertices are inserted.
(4) Nearest Insertion

(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find a vertex not on the tour which is closest to a vertex already contained in the tour.
(iii) Insert this vertex between two neighboring vertices on the tour in the cheapest possible way. If

the tour is still incomplete go to step (ii).
(5) Cheapest Insertion

(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find a vertex not on the tour which can be inserted between two neighboring vertices on the

tour in the cheapest possible way.
(iii) Insert this vertex between two neighboring vertices on the tour in the cheapest possible way. If

the tour is still incomplete go to step (ii).
(6) Farthest Insertion

(i) Start with a tour consisting of a given vertex and a self-loop.
(ii) Find a vertex not on the tour for which the minimum distance to a vertex on the tour is maxi­

mal.
(iii) Insert this vertex between two neighboring vertices on the tour in the cheapest possible way. If

the tour is still incomplete go to step (ii).
The nearest, cheapest and farthest insertion heuristics differ only in the second step from each other.
They choose the next vertex to be inserted in the tour on different grounds but the actual insertion is
done in the same way.
(7) Double Minimum Spanning Tree

(i) Construct a minimum spanning tree.
(ii) Double the edges of the minimum spanning tree and construct an Euler circuit.
(iii) Start at an given vertex and traverse the edges, skipping vertices visited before.

(8) Christofides
(i) Construct a minimum spanning tree and a minimum perfect matching on the vertices of odd

degree in the tree.
(ii) Construct an Euler circuit through the edges of the tree and the matching.
(iii) Start at a given vertex and traverse the edges, skipping vertices visited before.

3. THE CIRCUIT VALUE PROBLEM
A logical circuit is a sequence a = (aJ, ... ,am), where each ak is an input gate (having a value TRUE or
FALSE) or a NAND gate (ak = a; NAND aj = -,(a;l\aj), for some i,j<k~m). The circuit value prob­
lem is the problem of determining whether the last gate am receives the value TRUE or FALSE, given a
truth assignment to the input gates. An example is given in Figure 1.

This problem has been shown to be log space complete for 0' [Ladner 1975], even if the input gates
have fan out one (they appear once as input to another gate) and each NAND gate ak (k<m) has fan
out at most two [Goldschlager, Shaw & Staples 1982].

4. NEAREST NEIGHBOR
For the nearest neighbor heuristic we define the nearest neighbor problem in the following way: given
a distance matrix (dij) and two vertices v 1 and v 2 , does the nearest neighbor tour starting at vertex v 1

visit vertex v 2 as the last one before returning to vertex v 1? We will show that this decision problem is
log space complete for 0'. For each instance of the circuit value problem, we construct a graph in such
a way that the circuit value of the considered instance is TRUE if and only if the nearest neighbor
problem returns a 'yes' answer.

Each gate in the circuit is represented by a subgraph. The nearest neighbor tour will visit the

4

?

FIGURE 1. A logical circuit.

subgraphs in the order in which the corresponding gates are numbered in the circuit. This ensures
that if the tour visits a subgraph corresponding to a non-input gate, it has passed the subgraphs
corresponding to its input gates.

input i
I I I I

I I I I
inputj

FIGURE 2. The representation of NAND gate k.

For NAND gate k (k<m) with fan out two (ak =a; NAND aj), we construct the subgraph as shown
in Figure 2. The vertex pairs © - CD are used to connect the different subgraphs. If gate i is input to
gate k, a © - <Y pair appears as output in the subgraph for gate i and also as input in the subgraph
for gate k. The edge length zero assures that corresponding vertices 1 and 2 are always neighbors in
the obtained tour. If the fan out is one (zero), we construct the same subgraph with one arbitrary
© -<Y pair of output vertices (without output vertices). The subgraph is constructed in such a way
that if the nearest neighbor tour enters the subgraph at vertex A from subgraph k - 1, it leaves this
subgraph through vertex B to subgraph k + 1. We associate a TRUE (FALSE) value with this subgraph if
the nearest neighbor tour on its way from A to B passes (does not pass) through the output vertices.

When the tour arrives at vertex A from subgraph k-1, there are three possibilities.
(i) Inputs i and j have both been visited already. In this case the tour must go directly to vertex B

and then it will choose the edge of length zero to subgraph k + 1. This will be the only case where the
output vertices are not immediately visited. Note that as a result either output vertex 2 has its
corresponding vertex 1 left as its only unvisited neighbor within the subgraph. See Figure 3a.

(ii) Either input i or input j is still unvisited. The tour will choose vertex I of this unvisited input as
next vertex, since the edge length is less than the distance to vertex B. From here it goes to the
corresponding vertex 2 (edge length is zero). As noted under (i), this vertex 2 has no unvisited neigh­
bors in the subgraph where it appears as output. Therefore, the next vertex must belong to

from
k-1

from
k-1

from
k-1

from
k-1

®·0 0··®

(a) TRUE NAND TRUE ~ FALSE

(b) TRUE NAND FALSE ~ TRUE

(c) FALSE NAND TRUE ~ TRUE

(d) FALSE NAND FALSE ~ TRUE

FIGURE 3. The possible situations.

B
to

k+I

to
k+I

to
k+I

to
k+I

5

6

subgraph k, i.e., the tour arrives at the outputs. Because edge lengths in a subgraph are proportional
to the number of that subgraph and outputs belong to subgraphs with a higher number, the nearest
neighbor algorithm will visit all output vertices and after that vertex B before leaving subgraph k to
subgraph k + 1. Cf. Figures 3b and 3c.

(iii) Both inputs are unvisited. The tour will pass through all vertices of subgraph k before going to
subgraph k + I (Figure 4d).

Note that in all cases all unvisited input vertices are included in the tour.
To summarize the results, the nearest neighbor tour from A to B passes through the output vertices

if and only if at least one of the input vertices is not yet visited. In the circuit value problem, this
corresponds to the fact that a NAND gate produces the value TRUE if and only if at least one of the
inputs is FALSE.

from
k-1

I I I I
output

(a) The representation of a TRUE input

~
I I I I

output

to
k+I

(b) The representation of a FALSE input

FIGURE 4 .. The representation of input k.

For TRUE and FALSE inputs we construct the subgraphs as shown in Figure 4. The representation of
NAND gate m (the last one) has a somewhat special structure. The output vertices are replaced by a
vertex C. Both vertex B and C are connected to input 1 (see Figure 5). If the tour arrives at vertex A
of this gate and we are in situation (i), the tour will go directly to vertex B and from there to vertex C
before it leaves subgraph m. Otherwise vertex B will be the last vertex to be visited of this last sub­
graph.

from
m-1

input i
I I I I

I \ I I
input}

FIGURE 5. The representation of NAND gate m.

to
I

It should now be clear that a nearest neighbor tour starting at the A-vertex of input 1 visits the B­
vertex of the last gate as the last vertex if and only if the circuit computes the value TRUE. Since the
transformation can be performed using work space which is logarithmic in the size of the circuit, the

7

nearest neighbor problem is log space complete for ~. So, the construction of a nearest neighbor trav­
eling salesman tour will probably require superpolylogarithmic work space or superpolylogarithmic
parallel time.

5. NEAREST MERGER

Given a distance matrix and an edge {i,j}, the nearest merger problem is the problem of deciding
whether the tour produced by the nearest merger heuristic contains { i,j}. We will show that this
problem is log space complete for ~ by giving a transformation from the circuit value problem.

I I I I

I I I I

FIGURE 6. The representation of an arc.

Consider an instance of the circuit value problem. For each arc, we construct a graph as shown in
Figure 6. Gates with fan out zero (for example, the last gate) are assumed to have an arc from itself
to a dummy vertex. The dashed edges have a length greater than zero and will be described later. The
nearest merger heuristic first builds the tours A-D-A and B-C-B, and then merges them together to
the tour A-B-C-D-A.

FIGURE 7. The extra graph.

We also construct the graph of Figure 7, where m is the number of gates of the circuit. In the
beginning of the algorithm tours of the form (2k)-(2k + l)-(2k) are made, fork= l, ... ,m. The edge
lengths -(m -1), ... , -1,0 assure that the original tour (2m)-(2m + l)-(2m) is merged with the
other cycles of length 2 and finally with the self-loop (1)-(1). The result is the tour
(2m + 1)-(1)-(2)-... -(2k - l)-(2k)- ... -(2m -l)-(2m)-(2m +I).

We will now describe how the graphs are connected. The edge lengths are chosen such that the
nearest merger heuristic will merge the cycles of Figure 6 with the (extended) tour of the extra graph
of Figure 7 in the order of the numbers of the gates where the corresponding arcs begin. If a cycle of
Figure 6 is added, an edge of length zero or one will remain in the tour. At this point, we associate a
value TRUE (FALSE) with the arc if the edge of length one (zero) still belongs to the tour.

8

I I I I I I I I

FIGURE 8. The representation of the input gates;
(a) input gate k is TRUE; (b) input gate k is FALSE.

The cycles corresponding to arcs from input gates are connected to the extra graph as shown in
Figure 8. If it is a TRUE (FALSE) input, the edges {A,B} and {2k -l,2k} ({C,D} and {2k - l,2k}) are
replaced by {2k -1,A} and {2k,B} ({2k -1,D} and {2k,C}).

I I I I I I I I

FIGURE 9. The representation of NAND gate k (fan out 1).

For NAND gate k with fan out one, the subgraphs are connected as shown in Figure 9. Let us
assume that there are no edges in the tour connecting the two inputs. We consider the case where one
input (left) has the associated value TRUE and the other one the value FALSE in detail (see Figure 10).

(a) Situation before merging (b) Situation after merging

FIGURE 10. TRUE NAND FALSE~ TRUE.

9

There are two candidates for the merge operation: replace the edge {C,D} of the left input and the
edge {C,D} of the output by the edges between the C and D vertices, or replace the edge {A,B} of
the right input and the edge {A,B} of the output by the edges between the A and B vertices. The last
replacement will be chosen, since it is cheaper.

I I . I I I I I I

4k +3 4k +3

4k +3 4k+3

FIGURE 11. The representation of NAND gate k (fan out 2).

If NAND gate k has fan out two, we connect the subgraphs as shown in Figure 11. The case
TRUE NAND FALSE~ TRUE is illustrated in Figure 12.

The other cases are left as exercises to the reader. Note that the output vertices of a subgraph are
always inserted between two edges of length - oo of one of the inputs.

So far, we have assumed that there are no edges in the tour connecting both inputs of the same
gate. Because of the way output vertices are inserted in the tour, connecting edges can only occur
when the inputs are outputs from the same gate. These edges stretch between vertices with the same
label (A or C). It is, however, impossible to remove them from the tour at low cost. Therefore, the
same replacements will be made as in the case where there are no interconnecting edges between the
inputs.

Considering all above, it follows that the circuit value of an instance of the circuit value problem is
TRUE if and only if the nearest merger heuristic produces a tour which contains edge {C,D} of the
subgraph corresponding to the arc starting from the last gate of the circuit. The transformation can be
done in logarithmic work space. Hence, the nearest merger problem is log space complete for '?Jl.

10

(a) Situation before merging.

(b) The two merging steps.

FIGURE 12. TRUE NAND FALSE ~ TRUE.

6. NEAREST INSERTION, CHEAPEST INSERTION AND FARTHEST INSERTION

Given a distance matrix, a starting vertex and an edge {i,j}, the nearest insertion (cheapest insertion,
farthest insertion) problem is the problem of deciding whether the nearest insertion (cheapest inser­
tion, farthest insertion) heuristic produces a tour which contains edge {i,j}. The transformations from
the circuit value problem showing that these problems are log space complete for P are similar to the
one for the nearest merger problem. We will give only the crucial part of the transformation, leaving
the details and the verification to the reader.

FIGURE 13. The representation of NAND gate k.
The edges from output vertex A to the vertices A and B of both inputs have length 2k;

all other edges between input and output vertices have length 2k + 1.

Nearest Insertion

11

For NAND gate k with fan out zero or one of the circuit to be simulated, we construct the graph of
Figure 13. The output vertices are inserted in the tour in the order A, D, Band C between vertices A
and B or B and C of one of the inputs. The representation if the fan out is 2 is straightforward and
not given here (edges between both outputs get the value - l). Representing the inputs to the circuits
and starting up the algorithm is similar ~o the nearest merger case and also straightforward. The result
of the nearest insertion algorithm is a tour which contains the edge with value 1 of the output arc of
gate m if and only if the circuit produces the value true.

The transformation requires only logarithmic work space and hence the the nearest insertion prob­
lem is log space complete for qp_

Cheapest Insertion
The same transformation as described for the nearest insertion problem works for the cheapest inser­
tion problem, because in each step both algorithms will choose the same vertex to be inserted in the
graphs simulating the logical circuit. So, the cheapest insertion problem is log space complete for qJl as
well.

Farthest Insertion
We can use almost the same transformation as in the previous two cases. We construct the same
graph as before. Let xv be the number of the step in which vertex v would be included in the tour by
the nearest insertion heuristic (this number is known before the heuristic is actually executed). We
replace the starting vertex by starting vertices s1o s2 , s 3 , s4 and s 5 , such that the farthest insertion
heuristic, when started in s1o first builds the tour s 1 -s2 -s3 -s4 -s5 -s 1• Edges originally incident
to the starting vertex are made incident to s3 and s4 • In this transformation we have to fill in a value
for (-)oo explicitly; we take (-) 1 OOn. We add edges from all non-starting vertices v to s 1 with value
- lOOn-xv, and to s 2 and s 5 with value 200n. The edges to s 1 are the smallest in the graph and
determine the order in which the vertices are added to the tour. The edges to s2 and s5 prohibit the
exclusion of {s1os2 } and {s1os5 } from the tour. Now, the farthest insertion heuristic will add the ver­
tices in the same order and in the same way to the tour as the nearest insertion heuristic. Herewith,
the farthest insertion problem is log space complete for qp_

12

7. DOUBLE MINIMUM SPANNING TREE AND NEAREST ADDITION

In this section we will give implementations of the double minimum spanning tree and nearest addi­
tion heuristics that require polylogarithmic time on a PRAM with a polynomial number of processors.

We introduce the notation

par [a~i~z] s;

to denote that the statements s; are to be executed in parallel for all values of the index i in the given
range.

Double Minimum Spanning Tree
The double minimum spanning tree heuristic consists of three phases; see Section 2. Phase (i) (con­
structing a minimum spanning tree) can be performed in O(log2 n) time with O(n 2 /log2 n) processors
[Chin, Lam & Chen 1982]. Phase (ii) (doubling the minimum spanning tree and finding an Euler cir­
cuit) can be done within the same time and processor bounds using the techniques from [Awerbuch,
Israeli & Shiloach 1984]. For phase (iii), we first have to find the first occurrence of each vertex and
then eliminate all duplications. Let v J> ••• , V;, •• ., v 2n - I denote the Eulerian tour obtained in the previous
phase, where v; is the ith vertex of the tour. We proceed as follows.

par [l ~i,j~2n -1] if V; = vj then cij ~ 1 else cij ~ 0.

par [l ~i:s;;;2n -1] d; ~min{O, 1- :L~;:~cij}·

par [l~i~2n -1] s; ~ :L~= 1 dj.
Note that d; = 1 if v; occurs for the first time in the tour, d; = 0 otherwise, and that s; denotes the
number of different vertices in v1, ••• ,v;. We obtain the tour t 1 -t2 - ••• -tn-t 1 by:

par [l~i:s;;;2n -1] if d; = 1 then t81 ~V;.

Using the partial sums algorithm from [Dekel & Sahni 1983], we can implement phase (iii) within the
same resource bounds as the previous phases. So, we end up with an algorithm that runs in O(log2 n)
time on O(n 2 /log2 n) processors, which is best possible with respect to the O(n 2) sequential imple­
mentation.

Nearest Addition
The order in which the the nearest addition heuristic adds vertices to the tour corresponds to way in
which the algorithm from [Prim 1957] builds up a minimum spanning tree. Therefore, we first con­
struct a minimum spanning tree and direct the edges towards v 1• By means of this spanning tree, we
can determine for each two vertices i anci j which one will be visited first. There are two possible
situations (Figure 14). In the first situation one vertex is a descendant of the other. Since vertices are
inserted directly before their fathers the descendant will appear earlier in the tour than the ancestor.
In the second situation no vertex is a descendant of the other. Let k be the first common ancestor of i
and j and let i 1 (j 1) be the last vertex on the path from i (J) to k; i 1 = i (j 1 = j) if the path consists
of only one arc. If d;,k<dj,k> vertex i 1 will be inserted before vertex k, and after that vertexj 1 will be
inserted in the tour directly before vertex k and thus behind vertex i 1 •

A detailed description of the algorithm is given below. It has a running time of O(log2 n) on
O(n 2 /log2 n) processors. Without loss of generality we assume that all distances are distinct.

(i) First, we construct a minimum spanning tree and direct it to vertex v I> getting arcs (i, T;) for
i E { l, ... ,n} \ v 1• For convenience, we assume Tv, = v 1• This requires O(log2 n) time and O(n 2 /Iog2 n)
processors [Chin, Lam & Chen 1982; Savage 1977].

(ii) The next step is to construct an n Xn 0-1 matrix (cij), representing the transitive closure of the
tree (cij = 1 if there exist a path from vertex i to vertex j, c;j = 0 otherwise). Let V(i,l) denote the ver­
tex at distance 21 from vertex i, or v 1 if this vertex does not exist. The following statements do the
job:

~ I
I

cp
I

I
I
I
I

cb
I
I

cb

~ I
I

k

I
I

0
tour: v1 - ••• -i-... -j-... -v 1 tour: v 1 - ••• -i-... -i 1 - ••• -j-... -ji- ... -k-... -v 1

par (I .s;;i .s;;n] V(i,O) ~ T;.
for 1~ 1 to flogn l do

FIGURE 14. The two possible situations.

par (1.s;;i.s;;n] V(i,l)~ V(V(i,l-1),l-l).

par [I .s;;i,j .s;;n] cu ~ 0.
par p .s;;; .s;;n] c;; ~ 1.
for I~ r1og n l downto 0 do

par (1.s;;i,j .s;;n] if cu = I then if cw(j,I) = 0 then cw(j,I) = 1.

13

(The 'if cw(j,I) = O' condition is added to avoid simultaneous writes into C;v, .) These operations can be
performed in logarithmic time with O(n2) processors. To reduce the number of processors, we have to
observe that in each iteration of the last for / loop we only have to look at those pairs (i,j) for which

cij = 1. The number of these pairs doubles in each iteration. Therefore, we perform the last iterations
of the for loop in a different way. We replace the computation of the c-matrix by the following, where
the parameter x will be chosen later:

for /~ 1 to x do
par (1.s;;i .s;;n, (/ -1) r 71 + l .s;;j .;;;;;/ r 71] cu ~ 0.

par (l .s;;i .s;;n] c;; ~ 1 & assign a processor to (i,i).

for 1~ r1ogn l downto Llogx J c10
par [I .s;;i,j .s;;n & (i,j) has a processor assigned to it]

if cw(j,I) = 0 then cwv.r> = 1 & assign a free processor to (i, V(j,l)).

for I~ x downto 0 do
par [I.s;;i,j.s;;n & (i,j) has a processor assigned to it] if cw(j,I) = 0 then

cw(j,O) = I & assign the processor, assigned to (i,j), to (i, V(j,O)).

By choosing x = r1og2nl, we can achieve a running time of O(log2 n) with only O(n 2 /log2 n) proces­
sors.

(iii) Now, we compute the total number D; of vertices in the subtree rooted by i:

par [1.s;;i.s;;n] D; ~ ~.cji.
'}

Let P; denote the number of descendants of the father of vertex i which will be visited after vertex i
in the tour:

par [I .s;;i.s;;n] p. ~ "-" {D· I (T = T) & (d·T <d·T)}· P ~ 0.
l ..t::.Jj j I j I I '} j > Vi

Finally, for each vertex i we compute the number of vertices visited later:

14

par (1.;;;;i.;;;;n] AFTERi ~ ~-cij(l +Pj)
'.]

(if cij = 1, then 1 for j and Pj for the descendants of the father of j), and a nearest addition traveling
salesman tour has been determined. These last steps require the same time and processors bounds as
the previous ones.

8. CONCLUSION
We have shown that several traveling salesman heuristics are sequential in nature, i.e., their
corresponding problems are log space complete for <3'. We have also shown that the double minimum
spanning tree and the nearest &ddition heuristics can be implemented so as to require polylogarithmic
time on a polynomial number of machines. An open problem is presented by Christofides' heuristic,
which constructs a tour from an Eulerian circuit consisting of a minimum spanning tree and a
minimum perfect matching on the vertices of odd degree in the tree. A minimum spanning tree can be
found in polylogarithmic parallel time, but whether this is also true for a minimum perfect matching
is one of the outstanding open problems in parallel combinatorial optimization.

REFERENCES
B. AWERBUCH, A. ISRAELI, Y. SHILOACH (1984). Finding Euler circuits in logarithmic parallel time.

Proc. 16th Annual ACM Symp. Theory of Computing, 249-257.
A.K. CHANDRA, D.C. KOZEN, L.J. STOCKMEYER (1981). Alternation. J. Assoc. Comput. Mach. 28,

114-133.
F.Y. CHIN, J. LAM, I-N. CHEN (1982). Efficient parallel algorithms for some graph problems. Comm.

ACM 25, 659-665.
S.A. CooK (1974). An observation on time-storage trade off. J. Comput. System Sci. 9, 308-316.
S.A. CooK (1981). Towards a complexity theory of synchronous parallel computation. Enseign.

Math. (2) 27, 99-124.
E. DEKEL, S. SAHNI (1983). Binary trees and parallel scheduling algorithms. IEEE Trans. Comput.

C-32, 307-315.
M.R. GAREY, D.S. JOHNSON (1979). Computers and Intractability: a Guide to the Theory of NP­

Completeness, Freeman, San Francisco.
L.M. GoLDSCHLAGER (1982). A universal connection pattern for parallel computers. J. Assoc. Com­

put. Mach. 29, 1073-1086.
L.M. GOLDSCHLAGER, R.A. SHAW, J. STAPLES (1982). The maximum flow problem is log space com­

plete for P. Theoret. Comput. Sci. 21, 105-111.
D.S. JoHNSON (1983). The NP-completeness column: an ongoing guide; seventh edition. J. Algo­

rithms 4, 189-203.
G.A.P. KINDERVATER, J.K. LENSTRA (1985). Parallel algorithms. M. O'HEIGEARTAIGH, J.K. LEN­

STRA, A.H.G. RINNOOY KAN (eds.). Combinatorial Optimization: Annotated Bibliographies, Wiley,
Chichester, 106-128.

G.A.P. KINDERVATER, J.K. LENSTRA (1986). An introduction to parallelism in combinatorial optimi­
zation. Discrete Appl. Math. 14, 135-156.

R.E. LADNER (1975). The circuit value problem is log space complete for P. SIGACT News 7.1, 18-
20.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (eds.) (1985). The Traveling Sales­
man Problem: A Guided Tour of Combinatorial Optimization, Wiley, Chichester.

R.C. PRIM (1957). Shortest connection networks and some generalizations. Bell System Tech. J. 36,
1389-1401.

C. SAVAGE (1977). Parallel Algorithms for Graph Theoretical Problems, Ph.D. Thesis, University of
Illinois, Urbana-Champaign.

L.G. VALIANT (1983). Parallel computation. J.W. DE BAKKER, J. VANLEEUWEN {eds.). Foundations
of Computer Science IV, Distributed Systems: Part 1, Algorithms and Complexity, Mathematical Cen­
tre Tract 158, Centre for Mathematics and Computer Science, Amsterdam, 35-48 . ..

