
 Network Support for Social 3-D Immersive Tele-Presence
with Highly Realistic Natural and Synthetic Avatar Users

Rufael Mekuria
Centrum Wiskunde & Informatica

Sciencepark 123
1098 XG Amsterdam, NL

+31(0)20 592 4020

Rufael.mekuria@cwi.nl

Antonella Frisiello, Marco Pasin
Istituto Superiore Mario Boella

Via P.C. Boggio 61
10138 Turin, Italy

0039 011 2276201

frisiello@ismb.it, pasin@ismb.it

Pablo Cesar
Centrum Wiskunde & Informatica

Sciencepark 123
1098 XG Amsterdam, NL

+31 (0)20 592 4332

P.S.Cesar@cwi.nl

ABSTRACT
The next generation in 3D tele-presence is based on modular

systems that combine live captured object based 3D video and

synthetically authored 3D graphics content. This paper presents

the design, implementation and evaluation of a network solution

for multi-party real-time communication of these types of content.

This prototype includes a UDP/TCP multi-streaming kernel that

includes media synchronization support, packet scheduling, loss

resilient real-time transmission and an easy to use blocking and

non-blocking API. To compress the live reconstructed 3D data

streams that represent the natural user, two categories of 3D mesh

codecs were integrated: a highly adaptive real-time geometry

driven mesh codec and a fast single rate codec that provides better

performance at high resolutions. Subjective tests with 16 subjects

indicate that only modest perceptual degradation of the highly

realistic 3D natural user is introduced, especially when the users

in the virtual world are at a distance. We developed a session

management protocol for setting up streams based on the specific

3DTI capabilities allowing device scalability from light (render

only) to heavy clients (rendering and 3D Capturing). Additionally,

a distributed messaging system via web-sockets and cloud

infrastructures based on publish and subscribe was integrated for

real-time delivery of avatar and other AI data.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: 3D Tele-Immersion,

Media Synchronization, Mesh Compression, Tele-Presence,

Virtual Worlds, Media Streaming

General Terms

Performance, Design, Experimentation, Human Factors

Keywords

3D Tele-presence, 3D Mesh Compression, 3D Humans

1. INTRODUCTION
http://dx.doi.org/10.1145/2723695.2728605Recent work has shown

that it is possible to obtain photo-realistic full 3D animated mesh

objects in real-time with inexpensive consumer grade depth

cameras (such as Microsoft’s Kinect [1] [2]). In such a case, the

representation is a segmented 3D object (i.e. 3D mesh or 3D point

cloud) defined in the 3D space that can be compositely rendered

in the virtual world with other synthetic assets or specific 3D

rendering modules. In Figure 1 we show an example of a live

reconstructed mesh rendered in a 3D scene with synthetic 3D

avatars. This mesh was reconstructed in real-time from streams of

the first generation of Microsoft's Kinect based on the

Figure 1 A natural user rendered in a virtual scene with

synthetic users

work in [2]. To obtain a real-time distributed shared experience

that combines such natural and synthetic contents, the

development of appropriate framework for real-time data

transmission and compression is a key challenge.

The contributions of this paper are the implementation and

evaluation of a complete framework to support networked multi-

site 3D tele-presence with highly realistic natural users generated

from depth cameras with 3-D reconstruction techniques

combining synthetic avatar based users. We introduce the multi-

purpose UDP/TCP streaming kernel to address the streaming

needs. This includes error resilient real-time transmission and

support for basic media synchronization between heterogeneous

streams. We briefly discuss the implemented session

management protocol for signaling custom data types that can be

deployed on top of the XMPP presence protocol. For natural

users, this framework integrates novel 3D Mesh compression.

We included a subjective study of the perceived quality of the

decoded and original natural human in the 3D virtual room with

16 subjects and two different contexts (i.e. near camera, far

camera) to allow subjective optimization of the transmission and

compression settings. For avatar based users and messaging data,

this framework integrates and evaluates different real-time

messaging solutions based on available publish and subscribe

protocols. Lastly, we integrated this solution in a larger 3D tele-

immersive test bed that includes 3D audio, avatar users, natural

users and rendering in a virtual 3D room. We evaluate the overall

streaming performance in a 3-way scenario with heterogeneous

sites.

The structure of the paper is as follows, in section 2 we present

the structure of the envisioned 3D tele-immersive framework, the

real-time data streaming framework (data plane) and the session

management protocol (control plane). In section 3 we present the

integration of 3D mesh compression in the framework and their

evaluation based on subjective testing. In Section 4 we further

evaluate the networked performance for the avatar and natural

user transmission in a realistic 3-way scenario.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MMVE'15, March 18-20, 2015, Portland, OR, USA

Copyright 2015 ACM 978-1-4503-3354-2/15/03…$15.00

http://dx.doi.org/10.1145/2723695.2728605

callto:0039%20011%202276418
callto:978-1-4503-3354-2
http://dx.doi.org/10.1145/2723695.2728605

2. SYSTEM ARCHITECTURE AND

IMPLEMENTATION
In this section we detail the design and implementation of our

system. The full framework architecture is presented in section

2.1. The real-time TCP/UDP streaming engine is presented in

section 2.2. Last, the session management scheme is discussed in

section 2.3. Together they provide the networked infrastructure

for social immersive 3D communication with natural and

synthetic users.

2.1 Modular 3D Immersive Communication

Framework Architecture
Figure 2 shows a simple outline of the modular 3D tele-immersive

system architecture. Any user runs a main application that loads

modules for specific render and capture capabilities based on its

local configuration (which are stored in an xml format for

convenience). For example, there exists a module for natural 3D

reconstruction via depth cameras, one for animating pre-recorded

data via skeleton tracking, for real-time complex human shape

pose modeling, 3D audio rendering and capturing, 3D computer

controlled avatar characters and for navigation and representation

of the world. For example application A loads natural user data

(module A), audio capture (Capture B) and has a module to render

incoming natural user streams (i.e. Render A). The information

about the loaded modules is shared at login to the session

management system which provides authentication and user login

and setup of streams. When user B, that can only render natural

users (it is a passive user), logs in it can request the natural user

stream from user A, but user A will not request any such streams

from user B. We deploy this modular architecture to allow

terminal scalability from passive, very light users to users with

powerful capture and render capabilities. To allow stream setup

between corresponding modules, we keep track of module and

payload types and their correspondence in a centrally

administered table specific to the framework.

Figure 2 Modular 3D immersive Architecture with Terminal

Scalability

2.2 Real-Time Streaming Framework
The streaming framework for real-time data is illustrated in Figure

3. We highlight that it is needed to develop such specific

streaming framework based on custom transport protocols, as

existing standard protocols and popular media streaming

frameworks do not support the data types that we aim to transmit.

They work with registered standardized data types as registered

by internet assigned naming authority (IANA) (e.g. mostly audio

and video defined on a rectangular grid [3]). For our needs, the

framework in Figure 3 can handle different types of incoming and

outgoing media streams (UDP/TCP) representing 3D data and

real-time messaging. Critical for real-time communication of

natural users are pure TCP and UDP with real-time FEC as

described in [4]. For command and avatar messaging we use the

Publish and Subscribe paradigm based on web-socket, UDP and

XMPP. The media synchronization module operates

independently of the incoming/outgoing streams and their specific

implementation. It provides media synchronization services to the

modules by keeping track of end-to-end latencies of the relevant

streams. This allows modules to request target inter-sender and

target inter-media skews and do synchronization based on a local

play-out buffer on a best effort basis. To facilitate this, the

streaming framework includes a virtual clock for global time

synchronization based on a PTP like synchronization protocol and

a function that allows receiver modules to report stream

processing latency (i.e. decoding time).

To control admission of incoming and outgoing streams, the

allowed streams table is managed by the session management

protocol discussed in the next section. The monitor component

keeps track of all the processing and network latencies that

streams experience (i.e. compression, FEC, rendering, capturing,

network delay etc.) which allows the system to detect anomalies

and problems in the pipeline. The UDP Src and Sink Components

handle the socket based network communication. For UDP

streams based on [4], per packet decoding (progressive decoding)

of the incoming packets needs to be performed, to achieve this we

implemented an efficient multi-threaded process in UDPSrc to

simultaneously receive and decode packets. The API to the 3D

tele-immersive framework (pull/push frame API) includes both

blocking and non-blocking methods for sending and receiving

data, serving the specific needs of the module. The instance of the

streaming framework resides in the main application, and can be

used by the different render/capture modules. This allows

modules that are otherwise unaware of each other to perform the

synchronization of media streams and share a network service.

The streams all follow an RTP like format where the

payload_type specifies the specific administered payload type for

the 3D module. The sequence number is only used by UDP and

signals the ordering of the packet in the overall frame. The ssrc is

a unique randomly generated identifier for the stream; frame_id is

the frame count number, timestamp the globally synchronized

capture time of the frame (or an approximation of this). Source Id

uniquely determines the sending host, The NC_header_size

signals the existence of a forward error correction that contains

additional information for packet FEC decoding. Session Id and

Routing are reserved for distinguishing session and overlay

routing.

Figure 3 Data Streaming Framework Implementation

 Session

management

Main Application A

Main Application B

Render A Capture A Capture B

Render A

Site at User A

Site at User B

Network

2.3 Basic Session Management Protocol and

Implementation
We chose the open source XMPP presence protocol for user

presence and signaling. We chose the XMPP 0030 Device

Discovery extension to exchange capabilities of the 3D tele-

immersive network entity (i.e. configuration as described in

section 2.1.). Clients that log in provide their capture and render

modules as discovery items which are triplets of the form

<name,type,category>, where we use the category field to signal

the module name and the type field for possible additional

parameters. Additionally, we defined XMPP messages

MEDIA_STREAMS, for requesting an overview of the available

media streams, REQUEST_STREAMS to request a specific

stream from a 3DTI terminal and ACK_REQUEST_STREAMS

to acknowledge or decline such requests. In Figure 4 we show the

sequence diagram with two users. First TLS/SASL based

authentication happens. Once this is successful XMPP messages

can be exchanged. The user’s module configuration is exchanged

to the server via discovery items. When another user logs in,

XMPP signals presence and the server updates stream information

in the MEDIA_STREAMS. This message lists the available 3D

streams, (aggregated from the discovery information provided at

login times by each user). In this case the second client requests

the stream from client 1 first (this updates the allowed streams

table in Figure 3). When client 1 receives this request it checks if

it can send the stream, and sends an

ACK_REQUEST_MESSAGE which indicates if the stream

request was acknowledged or not. If it is, the media stream is

transmitted via UDP or optionally TCP.

Figure 4 3DTI Session Management based on XMPP

Table 1 Common Header for TCP/UDP based streams

payload_type Sequence number

ssrc Frame_id

Time_stamp

Packet count Routing id

Source id Session id

Nc_header_size xxxxxxxxxxxxxx

3. NATURAL USER COMPRESSION
The 3D Mesh data representing the natural human is large

(~15MB) and requires lossy compression, in the next section we

describe the integrated codecs and in section 3.2. we do a

subjective evaluation of the resulting decoded quality.

3.1 Natural User 3D Mesh Compression

Objective Results
To reduce the size of the natural user that is reconstructed as a

mesh from kinect streams, we integrated two lossy real-time 3D

mesh codecs: imtpc from [5] and geometry driven from [6]. The

original and mesh decoded with the first codec are shown in

Figure 5 which achieves compression ratio of 12-14 x without

vertex decimation. The decoded results with [6] are shown in

Figure 6 with a setting (0.008 used throughout the paper) that

gave 115 x compression rate and decimated around 9 in 10 of the

vertices in the original mesh. The 5 Kinect Scans are

reconstructed with the same system as in [7].

Figure 5 Original reconstructed natural user (left) and the

imtpc decoded version with [5] (right) (upper body only)

Figure 6 Decoded mesh based on [6] with and without

enhancement layers (geometry driven 0.008)

3.2 Subjective Results
To evaluate further the compression performance, we look at the

human perception. It is commonly known that the objective

assessment methods of video quality might not reflect the human

judgment. For that reason subjective assessments have been

carried in related works such as [8] , [9] and [10]. How do the

used compression methods influence the end-user perception?

Which aspects are more affected by the different compression

methods? Does the best compression suit both for the network

performance and the user experience? As we used reconstructions

based on Kinect 1st generation, what is the quality compared to the

original reconstructed mesh?

A laboratory test has been performed according the procedures

suggested in ITU Standards [11], [12]. 16 volunteer representative

users have been recruited. The core criterion for inclusion in the

experiment was the attitude toward technology, assessed

according the TAM [13]. The participant sample population was

gender balanced, the age range from 25 to 38 years old (mean

30,8), with a high educational level (degree, master or PhD),

mainly in engineering branches. The users provided their

informed consent to participate to the experiment when invited.

A within test has been designed: in order to estimate how

individual behaviour changes when the stimuli and variables

change, each subject has been asked to assess all the

configurations to be tested [14]. Two iterations have been

performed with different subjects. The stimuli to evaluate were a

sequence of randomized videos, presenting the same subject, a 3D

human moving at 8 fps in a virtual environment created with the

full 3DTI framework that includes a high quality 3D rendering

and degradation introduced by the compression method. The

independent variables observed were:

• The compression methods: original, imtpc [5], geometry

driven [6] (parameter 0.008, basic and enhanced

versions)

• The virtual distance of the 3D replicant (far vs close to

the virtual camera in the 3D space)

The subjects have been welcomed in the laboratory, and before

starting the test received the introduction to the experimental

goals, highlighting the focus on the 3D human and the context of

the study. The possibility to interrupt the test if needed was

provided. Before evaluating the videos, each subject had the

possibility to interact with the real system to become more

familiar with the context of realistic users in a 3D virtual room.

Then, they were asked to watch pre-recorded stimuli videos one at

a time (in a randomized order). After each video the subjects

expressed an evaluation of the perceived video quality of the 3D

reconstructed human. Additional rating dimension of the

perceived realism into the scene (explained as the integration of

the 3D human render with the virtual environment) was given.

Each dimension has been evaluated by using the MOS – Mean

Opinion Score [11], allowing to collect the average of the

opinions ("votes") on the single given conditions. The rating scale

(on 5 points: Excellent 5, Good 4, Fair 3, Poor 2 , Bad 1) was

printed and left on the table as reference for helping the subject to

reply. The test protocol applied allows collection of the subjective

evaluations on the single video just after it is watched, on the

basis of the immediate impression. For each test variable, the

mean value and the standard deviation of the statistical

distribution of the assessment grades has been calculated.

Table 2 shows modest differences between original and decoded

meshes. Pairwise comparison of each codec setting with the

original mesh via paired samples t-tests, showed that only for the

codec with voxel simplification (0.008) [6] the mean difference

was significant (p<0.05). Next, we investigate the effect of nearby

and far away camera views in the 3D world shown in Table 3 and

Figure 7. For geometry driven both near and far were tested

significantly lower compared to the original mesh (p<0.05). On

the other hand, differences of the original with imtpc were not

found significant.

Table 2 – MOS on the perceived quality

 MOS and Compression method

Original [2] IMTPC [5] VoxBasic [6]

Vox enhanced

[6]

 mean st.dev mean st.dev mean st.dev mean st.dev

quality 3,2 0,9 3,0 1,0 2,7 0,9 2,9 1,0

realism 3,3 0,8 2,9 0,9 3,0 0,9 2,9 1,0

Table 3 MOS at different virtual distances

 MOS and Virtual distance

 Near Far

 mean st.dev mean st.dev

quality 2,8 0,9 3,1 1,0

realism 2,9 0,9 3,2 0,9

Figure 7 Subjective results evaluation natural user quality

(original, imtpc, voxel based (geometry driven))

4. FRAMEWORK EVALUATION

4.1 AI and Avatar Commands messaging
We experimented with 3 implementations of publish and

subscribe messaging for avatar animation and commands, based

on XMPP XEP 0060 via open fire server, WebSockets (via a real-

time cloud service) and native UDP. Our preference went to the

web-socket implementation as we experienced less connectivity

problems (i.e. firewalls, NAT), modest delay, no occasional losses

as in UDP, and we could use the massive real-time distribution

services offered by the real-time elastic cloud (real-time.co) for

massive distribution.

We tested the performance with a test module sending data via the

main application outgoing message queue over the web socket to

the cloud. The message is then again received in another module

on another host. We send both small messages (20 bytes) and

large messages (500 bytes) at different frequencies from 10 Hz to

200 Hz. We utilize the clock synchronization service of the Real-

Time Streaming module to measure the latency of the message

dissemination. The module runs in realistic conditions were other

network traffic and system processes are also running. All delays

were tested below 50 ms on average upto 100Hz, only at 200 Hz

end-to-end delay becomes over 100 ms upto uncontrollable. As

we do not want this in our framework, we limit the outgoing

message sending rate to a maximum of 100 messages per second

which is sufficient to support the avatar and AI based user

modules.

4.2 Natural User Transmission
For the multi-site transmission with 3 or more users, we prefer the

geometry driven codec [6] that gives smaller frame sizes resulting

in better frame rates. The experimental setup was deployed in a

LAN network with 3 machines connected via a switch as shown

in Figure 8. PC1 is a natural user reconstructed from 5 Kinects,

PC2 is a natural user reconstructed from 1 Kinect and PC3 runs an

avatar based synthetic user. The Machine and setup specifications

are given in Table 4, users receive all streams. We use the

network emulator for Windows [15] to emulate losses, delays (10-

100 ms) and jitter (10-50 ms, 50 % of the delay each time) on

incoming packets on each site. Additionally the incoming

bandwidth is limited to 100 Mbps. The PC 3 avatar user site is a

relatively modest laptop computer, while PC1 and PC2 are

0,0

1,0

2,0

3,0

4,0

near far

M
O

S
Sc

o
re

 (
5

-1
)

Subjective Mesh Quality

original imtpc geometry driven (0.008)

stronger machines. We deploy both UDP based plus fec based on

[4] and TCP. For TCP we apply rate control on the data by

skipping late frames from the sender queue, (i.e. a last in first out

policy towards the TCP socket, LIFO). For UDP transmission we

fixed the sending frame rates. We measure delays from capture

time to render time including codec delays.

Figure 8 Experiment setup, 3 sites are connected via a switch

and network impairments are introduced via a network

emulator on incoming data at each site

Table 4 Machine and component specs

Component Specs

PC 1 Desktop Intel i7 2,8 GhZ , 8 GB Ram, Win 7 64-bit,

NVIDIA GeForce GTX 760

PC 2 Desktop Intel i7, 3,4 GhZ, 16 GB, Win 7 64 Bit,
NVIDIA Geforce GTX 470

PC 3 Laptop Intel i7 , 1,6 GhZ, 4GB, Win7 64 Bit, AMD
Radeon

Switch NetGear GS 105 Gigabit Switch

Network Emulator Network Emulator for Windows [15]

We have performed measurements across each site, but we only

show the results for PC3 that is a modest laptop receiving both of

the natural user streams (results were consistent across sites). The

UDP based transmission limits the end-to-end delay to the

computational and network latencies that could even be further

reduced by implementation. On the other hand, transmission with

TCP introduces delay in network conditions with loss and delay.

In the current implementation both the 5 Kinect and 1 Kinect

streams are received within 300 ms bounds for UDP as shown in

Figure 9 and Figure 10. Also, the frame rates achieved for the

received streams are shown in Figure 10. For UDP the achieved

frame rates are stable in varying network conditions and at

heterogeneous sites (contrary to TCP which was not shown)

Figure 9 End to End delay of PC1 stream received at PC3

Figure 10 End-to-End delay of PC2 stream received at PC 3

Figure 11 Achieved frame rates for each stream at each site

4.3 Frame Skew and Media Synchronization
Currently, support for media synchronization at the rendering tier

is provided via play-out buffering. The basic support procedure is

listed in Table 5. The streaming module keeps track of all the

streams and their latency based on the synchronized timestamps

from the virtual clock in the payload headers. As some incoming

streams experience extra computational latencies before rendering

(i.e mesh decoding), modules report back these times to the real-

time streaming framework via a function (such that they can be

accounted for). In step 3, modules can request the target sync

latency, which is the extra time the module needs to wait before

rendering frames to achieve the required sync with the other

streams (as long as it is within real-time bounds 300 ms). Such

waiting can be done using a play-out buffer implemented in the

modules. We found the design of the play-out buffer for 3D audio

trivial, as based on the audio sample rate and frame buffer-size,

we could calculate the amount of frames needed to buffer and

achieve synchronization as such. For buffering meshes with

possibly varying rates, we made continuous running estimates of

the instantaneous frame--rate and buffer K mesh frames based on

these estimates. We implemented a play-out buffer in a 3D Audio

module that captures and transmits monophonic 44.1 Khz 16 bits

PCM samples over TCP such that it can synchronize with the

mesh streams. In Table 6 we detail the achieved average media

skews and deviations between audio and mesh data at PC1 and PC

2, and between incoming meshes from PC1 and PC2 at PC3. The

0

1000

2000

3000

4000

5000

6000

10 ms 20 ms 30 ms 50 ms 100 ms

D
el

ay
 [

m
s]

Average e2e delay PC1->PC3
UDP no jitter , 0.1%loss

UDP 50% jitter 0,1% loss

UDP 50% jitter 1% loss

TCP no jitter , 0.1% loss

TCP 50% jitter 0,1% loss

TCP 50% jitter 1% loss

0

200

400

600

800

10 ms 20 ms 30 ms 50 ms 100 ms

D
el

ay
[m

s]

Average e2e delay PC2->PC3(avatar user)

UDP no jitter , 0.1%loss
UDP 50% jitter 0,1% loss
UDP 50% jitter 1% loss
TCP no jitter , 0.1% loss
TCP 50% jitter 0,1% loss
TCP 50% jitter 1% loss

0

1

2

3

4

5

6

10 20 30 50 100

Fr
am

e
 r

at
e

 [
fp

s]

Network condition (delay in ms plus 50%
jitter)

Achieved Frame Rate at Receiver sites
(UDP)

PC1 stream at PC3 UDP PC2 stream at PC3 UDP

PC 1 stream at PC2 UDP PC2 stream at PC 1 UDP

measurement is done with PC1 sending 5 Kinect meshes at 6 fps,

PC2 Sending meshes with 8 fps, 25 ms delay, 10 ms jitter and

0.1% packet loss. We report both the mean skew and the standard

deviation to better assess the acquired synchronization quality.

The implemented play-out buffers reduces the skew to negligible

proportions.

Table 5 Media Synchronization Support

1. MediaSync in Real-Time Streaming Framework

Tracks all network stream delays

2. Modules provide their computational processing

latency (decoder time etc..)

3. Modules request target latency (either per sender)

4. Modules based playout buffer provides mean

synchronization

Table 6 Achieved Skews with Play-out Buffers

 Sync control

Off

Sync control

On

skew type Loc. mean

[ms]

Stddv Mean

[ms]

Stddv

PC2-Mesh –

PC2 3D Audio

PC1

32

28

2

16

PC1 5-K-Mesh

PC1 3D Audio

PC2

150

35

10

26

PC1 5-K-Mesh -

PC2 1 K -Mesh

PC3

178

25

33

18

5. DISCUSSION AND CONCLUSION
We described the design, implementation and evaluation of a

practical network support system for modular social 3D tele-

immersive interaction with natural and synthetic users. The most

challenging aspect was the multi-site real-time transmission and

compression of natural user data represented as 3D Meshes. We

deployed subjective evaluations, as there are no good objective

ways to measure the quality of this type of content and objective

network experiments. The session management system was

deployed on top of XMPP, and user credentials from a social

network portal can be easily imported, linking 3D immersive

communication to the social network. In our future work we will

focus on improvements for mesh compression and more efficient

multi-site transmission strategies.

ACKNOWLEDGEMENTS
The research leading to these results has received funding from

the European Community's Seventh Framework Programme

(FP7/2007-2013) under grant agreement no. ICT-2011-7-287723

(REVERIE project). We thank all the partners in REVERIE

project for their useful contributions to the project. We thank prof.

Klara Nahrstedt from the University of Illinois for her very useful

advice and valuable discussions.

REFERENCES
[1] C. Zhang, Q. Cai, P. A. Chou, Z. Zhang, R. Martin-Brualla.,

"Viewport: A Distributed, Immersive Teleconferencing

System with Infrared Dot Pattern," IEEE Multimedia

Magazine, vol. 20, no. 1, pp. 17-27, Jan-March 2013.

[2] D. Alexiadis, D. Zarpalas, and P. Daras, "Real-Time, full 3-

D reconstruction of moving foreground objects from multiple

consumer depth cameras," IEEE Transactions on

Multimedia, vol. 15, pp. 339-358, 2013.

[3] IANA. Session Description Protocol (SDP) Parameters.

[Online]. http://www.iana.org/assignments/sdp-

parameters/sdp-parameters.xhtml

[4] R. Mekuria, M. Sanna, E. Izquierdo, D. Bulterman, and P.

Cesar, "Enabling 3D Tele-Immersion with Live

Reconstructed Mesh Geometry with Fast Mesh Compression

and Linear Rateless Coding," Multimedia, IEEE

Transactions on , vol. PP, no. 99, 2014.

[5] R. Mekuria , P. Cesar , D. Bulterman., "Low complexity

connectivity driven dynamic geometry compression for 3D

Tele-Immersion," in IEEE ICASSP, Florence, Italy, 2014, pp.

6162 - 6166.

[6] R. Mekuria , P. Cesar., ., "A Basic Geometry Driven Mesh

Coding Scheme with Surface Simplification for 3DTI," IEEE

Communication Society: Multimedia Communications

Technical Committee E-letter, vol. 9, no. 3, pp. 6-8, May

2014.

[7] A. Doumanoglou, D. Alexiadis, D. Zarpalas, P. Daras.,

"Towards Real-Time and Efficient Compression of Human

Time-Varying-Meshes," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 24, no. 12, December

2014.

[8] Z. Wang and C. Bovik, "Mean Squared Error: love it or leave

it? A new look at signal fidelity measures," IEEE Signal

Processing Magazine, vol. 26, no. 1, pp. 98-117.

[9] A. Ciancio, J.F.L. Oliveira, F.M.L Ribeiro, E. ABda Silva.,

A. Said.,., "Quality perception in 3D interactive

environments," in IEEE International Symposium on Circuits

and Systems (ISCAS), 2013.

[10] W. Wu, A. Arefin, G. Kurillo, P. Agarwal, K. Nahrstedt, R.

Bajcsy., "Color-plus-Depth Level-of-Detail in 3D Tele-

immersive Video: A Psychophysical Approach," in

Proceedings of the 19th ACM international conference on

Multimedia (MM '11), pp. 13-22.

[11] ITU-T , "Methods for objective and P.800.2 subjective

aassessment of speech quality. Mean opinion score

interpretation and reporting," ITU Recommendation P.800.2,

2013.

[12] ITU-T, "P.910 Audiovisual quality in multimedia services.

Subjective video quality assesment methods for multimedia

appilcations," P.910,.

[13] V. Venkatesh V., Morris, M.G., Davis, G.B. Davis, F.D..,

"User Acceptance of Information Technology: Toward A

Unified View," MIS Quarterly, vol. 27, no. 3, pp. 425-478,

2003.

[14] G. Charness, U Greezy, U., Kuhnc, M.A.., "Experimental

methods: Between-subject and within-subject design,"

Journal of Economic Behaviour & Organization, pp. 1-8,

Aug. 2012.

[15] Microsoft Asia, "NEWT Network Emulator for Windows,"

Microsoft Software, 2013.

