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ABSTRACT 
The next generation in 3D tele-presence is based on modular 

systems that combine live captured object based 3D video and 

synthetically authored 3D graphics content. This paper presents 

the design, implementation and evaluation of a network solution 

for multi-party real-time communication of these types of content. 

This prototype includes a UDP/TCP multi-streaming kernel that 

includes media synchronization support, packet scheduling, loss 

resilient real-time transmission and an easy to use blocking and 

non-blocking API. To compress the live reconstructed 3D data 

streams that represent the natural user, two categories of 3D mesh 

codecs were integrated: a highly adaptive real-time geometry 

driven mesh codec and a fast single rate codec that provides better 

performance at high resolutions. Subjective tests with 16 subjects 

indicate that only modest perceptual degradation of the highly 

realistic 3D natural user is introduced, especially when the users 

in the virtual world are at a distance. We developed a session 

management protocol for setting up streams based on the specific 

3DTI capabilities allowing device scalability from light (render 

only) to heavy clients (rendering and 3D Capturing). Additionally, 

a distributed messaging system via web-sockets and cloud 

infrastructures based on publish and subscribe was integrated for 

real-time delivery of avatar and other AI data.  

Categories and Subject Descriptors 

H.4.3 [Information Systems Applications]: 3D Tele-Immersion, 

Media Synchronization, Mesh Compression, Tele-Presence, 

Virtual Worlds, Media Streaming 

General Terms 

Performance, Design, Experimentation, Human Factors 

Keywords 

3D Tele-presence, 3D Mesh Compression, 3D Humans 

1. INTRODUCTION 
http://dx.doi.org/10.1145/2723695.2728605Recent work has shown 

that it is possible to obtain photo-realistic full 3D animated mesh 

objects in real-time with inexpensive consumer grade depth 

cameras (such as Microsoft’s Kinect [1] [2]). In such a case, the 

representation is a segmented 3D object (i.e. 3D mesh or 3D point 

cloud) defined in the 3D space that can be compositely rendered 

in the virtual world with other synthetic assets or specific 3D 

rendering modules.  In Figure 1 we show an example of a live 

reconstructed mesh rendered in a 3D scene with synthetic 3D 

avatars. This mesh was reconstructed in real-time from streams of 

the first generation of Microsoft's Kinect based on the  

 
Figure 1 A natural user rendered in a virtual scene with 

synthetic users 

work in [2].  To obtain a real-time distributed shared experience 

that combines such natural and synthetic contents, the 

development of appropriate framework for real-time data 

transmission and compression is a key challenge. 

The contributions of this paper are the implementation and 

evaluation of a complete framework to support networked multi-

site 3D tele-presence with highly realistic natural users generated 

from depth cameras with 3-D reconstruction techniques 

combining synthetic avatar based users. We introduce the multi-

purpose UDP/TCP streaming kernel to address the streaming 

needs. This includes error resilient real-time transmission and 

support for basic media synchronization between heterogeneous 

streams. We briefly discuss the implemented session 

management protocol for signaling custom data types that can be 

deployed on top of the XMPP presence protocol. For natural 

users, this framework integrates novel 3D Mesh compression. 

We included a subjective study of the perceived quality of the 

decoded and original natural human in the 3D virtual room with 

16 subjects and two different contexts (i.e. near camera, far 

camera) to allow subjective optimization of the transmission and 

compression settings. For avatar based users and messaging data, 

this framework integrates and evaluates different real-time 

messaging solutions based on available publish and subscribe 

protocols. Lastly, we integrated this solution in a larger 3D tele-

immersive test bed that includes 3D audio, avatar users, natural 

users and rendering in a virtual 3D room. We evaluate the overall 

streaming performance in a 3-way scenario with heterogeneous 

sites.  

The structure of the paper is as follows, in section 2 we present 

the structure of the envisioned 3D tele-immersive framework, the 

real-time data streaming framework (data plane) and the session 

management protocol (control plane). In section 3 we present the 

integration of 3D mesh compression in the framework and their 

evaluation based on subjective testing. In Section 4 we further 

evaluate the networked performance for the avatar and natural 

user transmission in a realistic 3-way scenario. 
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2. SYSTEM ARCHITECTURE AND 

IMPLEMENTATION 
In this section we detail the design and implementation of our 

system. The full framework architecture is presented in section 

2.1. The real-time TCP/UDP streaming engine is presented in 

section 2.2.  Last, the session management scheme is discussed in 

section 2.3. Together they provide the networked infrastructure 

for social immersive 3D communication with natural and 

synthetic users. 

2.1 Modular 3D Immersive Communication 

Framework Architecture 
Figure 2 shows a simple outline of the modular 3D tele-immersive 

system architecture. Any user runs a main application that loads 

modules for specific render and capture capabilities based on its 

local configuration (which are stored in an xml format for 

convenience). For example, there exists a module for natural 3D 

reconstruction via depth cameras,  one for animating pre-recorded 

data via skeleton tracking, for real-time complex human shape 

pose modeling, 3D audio rendering and capturing, 3D computer 

controlled avatar characters and for navigation and representation 

of the world. For example application A loads natural user data 

(module A), audio capture (Capture B) and has a module to render 

incoming natural user streams (i.e. Render A). The information 

about the loaded modules is shared at login to the session 

management system which provides authentication and user login 

and setup of streams. When user B, that can only render natural 

users (it is a passive user), logs in it can request the natural user 

stream from user A, but user A will not request any such streams 

from user B.  We deploy this modular architecture to allow 

terminal scalability from passive, very light users to users with 

powerful capture and render capabilities. To allow stream setup 

between corresponding modules, we keep track of module and 

payload types and their correspondence in a centrally 

administered table specific to the framework.  

 

Figure 2 Modular 3D immersive Architecture with Terminal 

Scalability 

2.2 Real-Time Streaming Framework 
The streaming framework for real-time data is illustrated in Figure 

3. We highlight that it is needed to develop such specific 

streaming framework based on custom transport protocols, as 

existing standard protocols and popular media streaming 

frameworks do not support the data types that we aim to transmit. 

They work with registered standardized data types as registered 

by internet assigned naming authority (IANA) (e.g. mostly audio 

and video defined on a rectangular grid [3]). For our needs, the 

framework in Figure 3 can handle different types of incoming and 

outgoing media streams (UDP/TCP) representing 3D data and 

real-time messaging. Critical for real-time communication of 

natural users are pure TCP and UDP with real-time FEC as 

described in [4]. For command and avatar messaging we use the 

Publish and Subscribe paradigm based on web-socket, UDP and 

XMPP. The media synchronization module operates 

independently of the incoming/outgoing streams and their specific 

implementation. It provides media synchronization services to the 

modules by keeping track of end-to-end latencies of the relevant 

streams. This allows modules to request target inter-sender and 

target inter-media skews and do synchronization based on a local 

play-out buffer on a best effort basis. To facilitate this, the 

streaming framework includes a virtual clock for global time 

synchronization based on a PTP like synchronization protocol and 

a function that allows receiver modules to report stream 

processing latency (i.e. decoding time). 

To control admission of incoming and outgoing streams, the 

allowed streams table is managed by the session management 

protocol discussed in the next section. The monitor component 

keeps track of all the processing and network latencies that 

streams experience (i.e. compression, FEC, rendering, capturing, 

network delay etc.) which allows the system to detect anomalies 

and problems in the pipeline. The UDP Src and Sink Components 

handle the socket based network communication. For UDP 

streams based on [4], per packet decoding (progressive decoding) 

of the incoming packets needs to be performed, to achieve this we 

implemented an efficient multi-threaded process in UDPSrc to 

simultaneously receive and decode packets. The API to the 3D 

tele-immersive framework (pull/push frame API) includes both 

blocking and non-blocking methods for sending and receiving 

data, serving the specific needs of the module. The instance of the 

streaming framework resides in the main application, and can be 

used by the different render/capture modules.  This allows 

modules that are otherwise unaware of each other to perform the 

synchronization of media streams and share a network service.  

The streams all follow an RTP like format where the 

payload_type specifies the specific administered payload type for 

the 3D module. The sequence number is only used by UDP and 

signals the ordering of the packet in the overall frame. The ssrc is 

a unique randomly generated identifier for the stream; frame_id is 

the frame count number, timestamp the globally synchronized 

capture time of the frame (or an approximation of this). Source Id 

uniquely determines the sending host, The NC_header_size 

signals the existence of a forward error correction that contains 

additional information for packet FEC decoding. Session Id and 

Routing are reserved for distinguishing session and overlay 

routing. 

 

Figure 3 Data Streaming Framework Implementation 
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2.3 Basic Session Management Protocol and 

Implementation 
We chose the open source XMPP presence protocol for user 

presence and signaling. We chose the XMPP 0030 Device 

Discovery extension to exchange capabilities of the 3D tele-

immersive network entity (i.e. configuration as described in 

section 2.1.). Clients that log in provide their capture and render 

modules as discovery items which are triplets of the form 

<name,type,category>, where we use the category field to signal 

the module name and the type field for possible additional 

parameters. Additionally, we defined XMPP messages 

MEDIA_STREAMS, for requesting an overview of the available 

media streams, REQUEST_STREAMS to request a specific 

stream from a 3DTI terminal and ACK_REQUEST_STREAMS 

to acknowledge or decline such requests.  In Figure 4 we show the 

sequence diagram with two users. First TLS/SASL based 

authentication happens. Once this is successful XMPP messages 

can be exchanged. The user’s module configuration is exchanged 

to the server via discovery items. When another user logs in, 

XMPP signals presence and the server updates stream information 

in the MEDIA_STREAMS. This message lists the available 3D 

streams, (aggregated from the discovery information provided at 

login times by each user).  In this case the second client requests 

the stream from client 1 first (this updates the allowed streams 

table in Figure 3). When client 1 receives this request it checks if 

it can send the stream, and sends an 

ACK_REQUEST_MESSAGE which indicates if the stream 

request was acknowledged or not. If it is, the media stream is 

transmitted via UDP or optionally TCP. 

 

Figure 4 3DTI Session Management based on XMPP 

Table 1 Common Header for TCP/UDP based streams 

payload_type Sequence number 

ssrc Frame_id 

Time_stamp 

Packet count Routing id 

Source id Session id 

Nc_header_size xxxxxxxxxxxxxx 

3. NATURAL USER COMPRESSION  
The 3D Mesh data representing the natural human is large 

(~15MB) and requires lossy compression, in the next section we 

describe the integrated codecs and in section 3.2. we do a 

subjective evaluation of the resulting decoded quality.  

3.1 Natural User 3D Mesh Compression 

Objective Results 
To reduce the size of the natural user that is reconstructed as a 

mesh from kinect streams, we integrated two lossy real-time 3D 

mesh codecs: imtpc from [5] and geometry driven from [6]. The 

original and mesh decoded with the first codec are shown in 

Figure 5 which achieves compression ratio of 12-14 x without 

vertex decimation. The decoded results with [6] are shown in 

Figure 6 with a setting (0.008 used throughout the paper) that 

gave 115 x compression rate and decimated around 9 in 10 of the 

vertices in the original mesh. The 5 Kinect Scans are 

reconstructed with the same system as in [7].   

 

Figure 5 Original reconstructed natural user (left) and the 

imtpc decoded version with [5] (right) (upper body only) 

 

Figure 6 Decoded mesh based on [6] with and without 

enhancement layers (geometry driven 0.008) 

3.2 Subjective Results 
To evaluate further the compression performance, we look at the 

human perception. It is commonly known that the objective 

assessment methods of video quality might not reflect the human 

judgment. For that reason subjective assessments have been 

carried in related works such as [8] , [9] and [10]. How do the 

used compression methods influence the end-user perception? 

Which aspects are more affected by the different compression 

methods? Does the best compression suit both for the network 

performance and the user experience? As we used reconstructions 

based on Kinect 1st generation, what is the quality compared to the 

original reconstructed mesh? 

A laboratory test has been performed according the procedures 

suggested in ITU Standards [11], [12]. 16 volunteer representative 

users have been recruited. The core criterion for inclusion in the 

experiment was the attitude toward technology, assessed 

according the TAM [13]. The participant sample population was 



gender balanced, the age range from 25 to 38 years old (mean 

30,8), with a high educational level (degree, master or PhD), 

mainly in engineering branches. The users provided their 

informed consent to participate to the experiment when invited. 

A within test has been designed: in order to estimate how 

individual behaviour changes when the stimuli and variables 

change, each subject has been asked to assess all the 

configurations to be tested [14]. Two iterations have been 

performed with different subjects. The stimuli to evaluate were a 

sequence of randomized videos, presenting the same subject, a 3D 

human moving at 8 fps in a virtual environment created with the 

full 3DTI framework that includes a high quality 3D rendering 

and degradation introduced by the compression method. The 

independent variables observed were:  

• The compression methods: original, imtpc [5], geometry 

driven [6] (parameter 0.008, basic and enhanced 

versions) 

• The virtual distance of the 3D replicant (far vs close to 

the virtual camera in the 3D space)  

The subjects have been welcomed in the laboratory, and before 

starting the test received the introduction to the experimental 

goals, highlighting the focus on the 3D human and the context of 

the study. The possibility to interrupt the test if needed was 

provided. Before evaluating the videos, each subject had the 

possibility to interact with the real system to become more 

familiar with the context of realistic users in a 3D virtual room. 

Then, they were asked to watch pre-recorded stimuli videos one at 

a time (in a randomized order). After each video the subjects 

expressed an evaluation of the perceived video quality of the 3D 

reconstructed human. Additional rating dimension of the 

perceived realism into the scene (explained as the integration of 

the 3D human render with the virtual environment ) was given. 

Each dimension has been evaluated by using the MOS – Mean 

Opinion Score [11], allowing to collect the average of the 

opinions ("votes") on the single given conditions. The rating scale 

(on 5 points: Excellent 5, Good 4, Fair 3, Poor 2 , Bad 1) was 

printed and left on the table as reference for helping the subject to 

reply. The test protocol applied allows collection of the subjective 

evaluations on the single video just after it is watched, on the 

basis of the immediate impression. For each test variable, the 

mean value and the standard deviation of the statistical 

distribution of the assessment grades has been calculated. 

Table 2 shows modest differences between original and decoded 

meshes. Pairwise comparison of each codec setting with the 

original mesh via paired samples t-tests, showed that only for the 

codec with voxel simplification (0.008) [6] the mean difference 

was significant (p<0.05). Next, we investigate the effect of nearby 

and far away camera views in the 3D world shown in Table 3 and 

Figure 7. For geometry driven both near and far were tested 

significantly lower compared to the original mesh (p<0.05). On 

the other hand, differences of the original with imtpc were not 

found significant.  

Table 2 – MOS on the perceived quality  

 MOS and Compression method  

 
Original [2] IMTPC [5] VoxBasic [6] 

Vox enhanced 

[6] 

 mean st.dev mean st.dev mean st.dev mean st.dev 

quality 3,2 0,9 3,0 1,0 2,7 0,9 2,9 1,0 

realism 3,3 0,8 2,9 0,9 3,0 0,9 2,9 1,0 

Table 3 MOS at different virtual distances 

 MOS and Virtual distance 

 Near  Far 

 mean st.dev mean st.dev 

quality 2,8 0,9 3,1 1,0 

realism 2,9 0,9 3,2 0,9 

 

Figure 7 Subjective results evaluation natural user quality 

(original, imtpc, voxel based (geometry driven)) 

4. FRAMEWORK EVALUATION 

4.1 AI and Avatar Commands messaging 
We experimented with 3 implementations of publish and 

subscribe messaging for avatar animation and commands, based 

on XMPP XEP 0060 via open fire server, WebSockets (via a real-

time cloud service) and native UDP. Our preference went to the 

web-socket implementation as we experienced less connectivity 

problems (i.e. firewalls, NAT), modest delay, no occasional losses 

as in UDP, and we could use the massive real-time distribution 

services offered by the real-time elastic cloud (real-time.co) for 

massive distribution.  

We tested the performance with a test module sending data via the 

main application outgoing message queue over the web socket to 

the cloud. The message is then again received in another module 

on another host. We send both small messages (20 bytes) and 

large messages (500 bytes) at different frequencies from 10 Hz to 

200 Hz. We utilize the clock synchronization service of the Real-

Time Streaming module to measure the latency of the message 

dissemination. The module runs in realistic conditions were other 

network traffic and system processes are also running. All delays 

were tested below 50 ms on average upto 100Hz, only at 200 Hz 

end-to-end delay becomes over 100 ms upto uncontrollable. As 

we do not want this in our framework, we limit the outgoing 

message sending rate to a maximum of 100 messages per second 

which is sufficient to support the avatar and AI based user 

modules.  

4.2 Natural User Transmission 
For the multi-site transmission with 3 or more users, we prefer the 

geometry driven codec [6] that gives smaller frame sizes resulting 

in better frame rates. The experimental setup was deployed in a 

LAN network with 3 machines connected via a switch as shown 

in Figure 8. PC1 is a natural user reconstructed from 5 Kinects, 

PC2 is a natural user reconstructed from 1 Kinect and PC3 runs an 

avatar based synthetic user. The Machine and setup specifications 

are given in Table 4, users receive all streams. We use the 

network emulator for Windows [15] to emulate losses, delays (10-

100 ms) and jitter (10-50 ms, 50 % of the delay each time) on 

incoming packets on each site. Additionally the incoming 

bandwidth is limited to 100 Mbps. The PC 3 avatar user site is a 

relatively modest laptop computer, while PC1 and PC2 are 
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stronger machines. We deploy both UDP based plus fec based on 

[4] and TCP. For TCP we apply rate control on the data by 

skipping late frames from the sender queue, (i.e. a last in first out 

policy towards the TCP socket, LIFO). For UDP transmission we 

fixed the sending frame rates. We measure delays from capture 

time to render time including codec delays. 

 

Figure 8 Experiment setup, 3 sites are connected via a switch 

and network impairments are introduced via a network 

emulator on incoming data at each site 

Table 4 Machine and component specs 

Component Specs 

PC 1 Desktop Intel i7 2,8 GhZ , 8 GB Ram, Win 7 64-bit, 

NVIDIA GeForce GTX 760 

PC 2 Desktop Intel i7, 3,4 GhZ, 16 GB, Win 7 64 Bit, 
NVIDIA Geforce GTX 470 

PC 3 Laptop Intel i7 , 1,6 GhZ, 4GB, Win7 64 Bit, AMD 
Radeon 

Switch NetGear GS 105 Gigabit Switch 

Network Emulator Network Emulator for Windows [15] 

We have performed measurements across each site, but we only 

show the results for PC3 that is a modest laptop receiving both of 

the natural user streams (results were consistent across sites). The 

UDP based transmission limits the end-to-end delay to the 

computational and network latencies that could even be further 

reduced by implementation. On the other hand, transmission with 

TCP introduces delay in network conditions with loss and delay. 

In the current implementation both the 5 Kinect and 1 Kinect 

streams are received within 300 ms bounds for UDP as shown in 

Figure 9 and Figure 10. Also, the frame rates achieved for the 

received streams are shown in   Figure 10. For UDP the achieved 

frame rates are stable in varying network conditions and at 

heterogeneous sites (contrary to TCP which was not shown) 

 

Figure 9 End to End delay of PC1 stream received at PC3 

 

Figure 10 End-to-End delay of PC2 stream received at PC 3 

 

Figure 11 Achieved frame rates for each stream at each site 

4.3 Frame Skew and Media Synchronization  
Currently, support for media synchronization at the rendering tier 

is provided via play-out buffering. The basic support procedure is 

listed in Table 5. The streaming module keeps track of all the 

streams and their latency based on the synchronized timestamps 

from the virtual clock in the payload headers. As some incoming 

streams experience extra computational latencies before rendering 

(i.e mesh decoding), modules report back these times to the real-

time streaming framework via a function (such that they can be 

accounted for). In step 3, modules can request the target sync 

latency, which is the extra time the module needs to wait before 

rendering frames to achieve the required sync with the other 

streams (as long as it is within real-time bounds 300 ms). Such 

waiting can be done using a play-out buffer implemented in the 

modules. We found the design of the play-out buffer for 3D audio 

trivial, as based on the audio sample rate and frame buffer-size, 

we could calculate the amount of frames needed to buffer and 

achieve synchronization as such. For buffering meshes with 

possibly varying rates, we made continuous running estimates of 

the instantaneous frame--rate and buffer K mesh frames based on 

these estimates. We implemented a play-out buffer in a 3D Audio 

module that captures and transmits monophonic 44.1 Khz 16 bits 

PCM samples over TCP such that it can synchronize with the 

mesh streams. In Table 6 we detail the achieved average media 

skews and deviations between audio and mesh data at PC1 and PC 

2, and between incoming meshes from PC1 and PC2 at PC3. The 
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measurement is done with PC1 sending 5 Kinect meshes at 6 fps, 

PC2 Sending meshes with 8 fps, 25 ms delay, 10 ms jitter and 

0.1% packet loss. We report both the mean skew and the standard 

deviation to better assess the acquired synchronization quality. 

The implemented play-out buffers reduces the skew to negligible 

proportions.  

Table 5 Media Synchronization Support 

1. MediaSync in Real-Time Streaming Framework 

Tracks all network stream delays 

2. Modules provide their computational processing 

latency (decoder time etc..) 

3. Modules request target latency (either per sender ) 

4. Modules based playout buffer provides mean 

synchronization 

Table 6 Achieved Skews with Play-out Buffers  

 Sync control 

Off 

Sync control 

On 

skew type Loc. mean 

[ms] 

Stddv Mean 

[ms] 

Stddv 

PC2-Mesh –  

PC2 3D Audio 

  

PC1 

 

32 

 

28 

 

2  

 

16 

PC1 5-K-Mesh  

PC1 3D Audio 

       

PC2 

 

150 

 

35 

 

10 

 

26 

PC1 5-K-Mesh -  

PC2 1 K -Mesh  

 

PC3 

 

178 

 

25 

 

33 

 

18  

5. DISCUSSION AND CONCLUSION 
We described the design, implementation and evaluation of a 

practical network support system for modular social 3D tele-

immersive interaction with natural and synthetic users. The most 

challenging aspect was the multi-site real-time transmission and 

compression of natural user data represented as 3D Meshes. We 

deployed subjective evaluations, as there are no good objective 

ways to measure the quality of this type of content and objective 

network experiments. The session management system was 

deployed on top of XMPP, and user credentials from a social 

network portal can be easily imported, linking 3D immersive 

communication to the social network. In our future work we will 

focus on improvements for mesh compression and more efficient 

multi-site transmission strategies. 
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