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1. Introduction. 
Let E be a vector space over the field F of dimension n < oo. Whereas the problem of classifying bili­
near alternating forms on E is well known and very elementary, the classification of trilin~ alternating 
forms seems quite intractible. By the classification of r-linear alternating forms on E we mean the,deter­
mination of equivalence classes of these forms with respect to the following equivalence relation: 
Two r-linear forms f ,/' on E are said to be equivalent if there is a linear transformation g EGL(E), the 

(x 1, ••• ,X7 EE). (1) 

Letting g EGL(E) act on the vector space of r-linear forms f on E by means of 

g·f(x1,·•·,xr) = f(g- 1x1, ... ,g-1xr) (x1, ... ,X7 EE), (2) 

we can rewrite (1) as gf = /'. An r-linear form/ on E is called alternating if for all x1, ... ,x7 EE with 
x;=xj, for at least two distict i,j (I:;;;;;i,j,;;;;;r), we have/(x1, ... ,x7 )=0. The vector space of all r-linear 
alternating forms on E will be denoted by Alt7 (E). The classification of r-linear alternating forms on E 
consists of the determination of all GL(E)-orbits in Alt7 (E). We shall write G =GL(E), and 
Gt= {g EG lgf = f} for any/ EA/t7 (E); we shall refer to Gt as the stabilizer (in G) off. Obviously, 
Gt is an algebraic group defined over F; in fact, it is a Zariski closed subgroup of G. If K is an exten­
sion field of F, then any r-linear form/ on E has a unique extension to an r-linear form JK on 
E ® F K. Two r-linear forms f ,f..: on E are called K -equivalent whenever their ~tensions J K..J. (f 'f ~e 
equiv~ent,_ We shall denote by F the algebraic closure of F and we shall write E =E (i!hF, G =GL(E), 
and/=/F.:... _ _ _ 
Now, dim G and dim G7 are well-defined integers and the orbit Gf off has the structure of an alge-

braic variety of dimension dim G-dim (Gf), see Borel [1). Since dim G=n 2 and dim Alt,(E)= [;], 
this yields 

dim G1 ;;;. •'- [; l . (3) 

If G has only finitely many orbits in Alt7 (E), then G has finitely many orbits in Alt7 (E), so there must 

be a form [ in Alt,(E) for which equality holds in (3). But equality implies n2
:.. [: l · Hence, Alt,(E) 

has finitely many equivalence classes only if either r:;;;;;2, or r =3 and n :;;;;;8. This illustrates why the prob­
lem of classifying trilinear alternating forms differs from its bilinear counterpart. 
If r =2, there are finitely many G-orbits, see Dieudonne [4]. We shall see in the sequel that for arbitrary 
F this is no longer true if r =3 and n =7. However, if F is algebraically closed, r =3 and n ,;;;;;7, there 
are finitely many G-orbits. The classification in this case was carried out by J.A. Schouten [7] in 1931 for 
F=C, and, independently, by Cresp [3) in 1976 for F algebraically closed of characteristic ¥=2,3. 
Gurevich [5] gives an answer to the classification problem with F=C, r =3 and n =8. In this paper, we 
present a relatively short proof of the classification for F algebraically closed of arbitrary characteristic, 
r = 3 and n = 7. Furthermore, we compute the stabilizers in G of representatives of each of its orbits and 
derive the classification for n ,;;;;;7 and r =3 over certain non-algebraically closed fields -including all fin­
ite fields- by use of (noncommutative) first order Galois cohomology. 

After finishing this work, it has come to our knowledge that Migliore [10) has also studied trilinear alter­
nating forms on F 1 for finite fields F. 

The outline of the paper is as follows. The main results are stated in Section 2. In the hope that for finite 
fields this classification will be of some relevance to finite geometry and combinatorics, we have included 
two corollaries of this classification. Section 2 ends with an elementary but basic lemma for the 
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classification over an algebraically closed field. The classification over these fields appears in Section 4, 
while Section 3 is devoted to the computation of the stabilizers of the forms given in Section 2. Finally, 
in Section 5 the necessary Galois cohomology is introduced and an account is given of-the classification 
over a field of cohomological dimension at most 1. 

2. Notation and Statement of Results. 
In this section, we let E = pn be the standard vector space over the field F of dimension n, consisting of 
column vectors, and denote by e 1, ••• ,en the standard basis vectors. The dual E* of E will be interpreted 
as a vector space of row vectors. Thus, e f, ... ,e;, where x T is the transposed of x EE, is a dual basis of 
e1, ... ,en, i.e., is a basis of E* with 

{
l if i = j 

er ej = 0 otherwise. 

By well-known theory, cf. Bourbaki [2], the space Altr(E) may be identified with the skew-symmetric ten-
r 

sor product AE* of r copies of E*. In fact, we shall identify the two by viewing xf "xf " ... x; for 
X1, ... ,xr EE as elements of Altr(E) by means of 

r 
xf A···" x;(u1,•••,ur) = ~ sg(o)_II xrua(i)• (ui, ... ,Ur EE) 

aES, z=l 

where Sr stands for the symmetric group on r symbols and sg(o) is the sign of oESr. Obviously, 

{et"··· /\et I Io;;;;i1<i2< ... <ir .,;;;n} 

is a basis of Alt-,.(E). 
The action of g EG =GL(E) on Altr(E) defined in (2) is determined by 

(4) 

g(xf" · · · /\ x;) = xfg-I" · · · A x;g- 1 (xi, ... ,Xr EE), (5) 

where xTh for x EE and h EG is the element of E* satisfying (xTh)v =xT (h v) for all v EE. In order 
to simplify notation, we shall often abbreviate er to i. Also, we shall write ij for i I\ j and ijk for 
i_Aj "~,where Io;;;;i,J,ko;;;;n. Wearenowreadytoformulatethemainresults.- - - -

2.1. Theorem. Let E be a vector space of dimension 7 over an algebraically closed field F. Then any 
nonzero trilinear alternating form on E is equivalent to exactly one of the nine forms f; for i = 1, ... ,9 of 
Table I. The stabilizer G; off; in G =GL(E) has the structure as given in Table 1. 



name 

!1 
!2 
f3 
f4 

ls 
!6 
!1 
ls 
f9 
f 10,A 

!11,>.. 

!12,,. 

Table 1 

Alternating trilinear forms on a 
vector space of dimension 7 over a perfect field F. 

form 

123 

123+ 145 

123+456 

162+243+ 135 

123+456+ 147 

152+ 174+ 163+243 

146+ 157+245+367 

123+ 145+ 167 

123+456+ 147+257+367 

123+A(156+345+426) if char F=/=2 
126 + 153 + 234+ A(l56 + 345 + 426) +(A2 + 1 )456 

if char F=2 

f 10,A + 147 

µf 9 

description of G1 

F!2·(SL(3,F)-GL(4,F)) 

F;4 ·(GL(2,F)-(Sp(4,F)-F*)) 
(F!·(SL(3,F)-SL(3,F)-F*))-Z2 

F;4 ·(GL(3,F)-F*) 

(F!·(GL(2,F)·GL(2,F)))-Z2 

F!2·(SL(3,F)-F*) 
F!-((GL(2,F).GL(2,F)) / F*) 
F!-(Sp(6,F)-F*) 

Gi(F)/L3 

(F! ·(F*· SL(3,K)))Z2 

(F ; 0GL(2,K))Z2 

Gi(F)µ.3 

3 

Here, F'!;, form EN, denotes a group with composition series of length m all of whose m factors are 
isomorphic to the additive group of the field F. F* denotes the multiplicative group of F, and µ3 the 
subgroup { x E F Ix 3 = 1}. Furthermore, A,µ. are such that 

{ 

X2-A if F has odd characteristic 
p (x)= 

>.. x2 + U + l otherwise 

and Pp.(X)=X3-µ are irreducible in F[X]. We note that Table 1 contains only a rough description of 
the isomorphism type of G1 . A full description can be found in Section 3. 

A form f EAltJ(E), where E =Fn, can conveniently be represented by a diagram in the following way. 
A diagram consists of vertices and lines which are labelled 3-cycles of vertices. The vertices are the 
coordinates l, ... ,n. A line is a 3-cycle (i,j,k) with A=f(e;,ej,ek)=l=O whose label is A. In a picture of a 
diagram only the labels for (i,j ,k) with i <j <k are drawn. If f (e;,ej,ek)= 1, the label is not drawn at 
all. See Figure 1 for an example. 
A perfect field is said to have cohomological dimension at most 1 if the Galois group of its algebraic clo­
sure has cohomological dimension at most 1; cf. Serre [8], where it is also shown that finite fields have 
cohomological dimension at most l. 

2.2. Theorem. If E is a vector space of dimension 1 over a perfect field F of cohomological dimension at 
most 1, then any nonzero trilinear form is equivalent to one of the forms f;(lo;;;;i o;;;;9), fp(j = 10,11), f 12,,. of 
Table I. Moreover, the only pairs of equivalent forms in Table 1 occur among the pairs h ,aJi,P, where 
either j = 10,11 and P a(X), P p(X) define isomorphic extension fields of F in the respective cases, or j = 12 

3 

and X 3-a, X 3-{J define isomorphic cubic extension fields of F(v=-i). 
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2.3. Corollary. Let E ,F be as in Theorem 2.2. If H is a subgroup of GL(E) which is irreducible on E and 
fixes a nonzero trilinear alternating form on E, then H is a subgroup of the Chevalley group of type G2 over 
F extended by JLJ={x EF*lx3=1}. ------

Proof. By inspection of the stabilizers of Table I and their action on E (see Section 3), it is immediate 
that Gt,, Gt,,.,. are the only stabilizers of trilinear alternating forms which are irreducible on E. Since H is 
irreducible and fixes a nonzero element of Alt3(E), it must be a subgroup of a conjugate of Gt,, Gt,,.,., 
and hence of G2(F)p.3. 

2.4. Corollary. Let F be a finite field of order q. Then the number of forms in AltJ(E), with E =F1, 
equivalent to one of the forms in Table I is as given in Table 2. 

Proof. Given / EAlt 3(E), the number in question is I GI/ I Gt I, where G =GL(E) has order 
7 

q2\f}/q; -1). Since I Gt I= I Gt, I if f is equivalent to/;, and the right hand side is known by Table l, 

the result follows by straightforward computation. 

Table 2 

The number of forms in Alt 3(F1), F a finite field of order 
q, equivalent to one of the forms in Table 1. 

form IG/Gt,I degree 

/1 (q1- I)(q5 - l)(q3+ 1) / (q - 1)2 13 

/2 (q1- l)(qs- l)(q4+q2+ l)(q2+q + l)q2 20 
1 

/3 -(q1- l)(qs- l)(q3+ l)(q2+ l)q9 26 
2 

/4 (q1- l)(q6- l)(qs- I)(q3+q2+q + l)q4 25 

Is 
1 . 
2(q1 - l)(q6- l)(qs- l)(q2+ l)(q2+q + l)q9 31 

/6 (q1- l)(q6- l)(qs- l)(q4- l)q6 28 

/1 (q1- l)(q6- l)(qs- l)(q3- l)(q2+ l)qll 34 

Is (q1-l)(qs- l)(q3- l)q6 21 

/9 f.(q1- l)(qs- l)(q4- l)(q3_ l)(q- l)q1s 35 

f 10,A _!_(q1- I)(qs- l)(q3- l)(q2_ l)q9 
2 

26 

f 11,>. _!_(q1- l)(q6- l)(qs- l)(q3_ l)(q- l)q9 
2 

31 

f 12,µ 
1-f. -2-(,q1- I)(qs- l)(q4- l)(q3- l)(q- l)q1s 35 

f 12,µ2 
1-f. 4 3 35 -(q7-l)(q5 -l)(q -l)(q -l)(q-l)q15 

2 

Here, f.= l if gcd(q -1,3)= 1 and f.=½ otherwise; A,/J. are as in Table 1. (Observe that if gcd(q -1,3)= 1, 
then f 12,,.. and f 12,,..2 do not occur.) 

We finish this section by introducing the basic tools of the proof of the above theorems. 
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Let E, f ,G be as before and r;;;.. I. For f .EAllr(E) we define the kernel off as the linear subspace 
{x EE lf(x,x2,•••.Xr)=O for all x 2, ... ,x3EE} of E, and denote it by Ker f. The number 
dim(E / Ker f)=dim E -dim Ker f is called the rank off and will be denoted Jry' rk f. As 
Ker(g·f)=g Ker f for every g EG, the rank is constant on G-orbits in Altr(E). 
Now, let r =3. Suppose x EE and consider the bilinear alternating formfx on E defined by 

Jx(y,z)=f(x,y,z) (y,z EE). (6) 

Its equivalence class, i.e., its G-orbit, is determined by its rank rk fx (cf. Dieugonne [41), which is an 
even number and will be called the local rank off at x. Since rk(gff =rk Jg x for every g EG, the 
sets 

Ri(f) = {x EE Irk fx =2i} (0,s;;;2i,s;;;n) 

are transformed by g E G according to the equation 

R;(gf)=gR;(f) (7) 

In Schouten's terminology [7], the set R;(f) is the 'i-th domain off'. These domains play an important 
role due to the following lemma. Let di(f) be the dimension of the linear subspace of E spanned by 
Ri(f) for each i (O,s;;;2i,s;;;n). 

2.5. Lemma. Let i be a natural number such that 0:i;;;2i ,s;;;n Then 

(i) The map f~d;(f) on AltJ(E) is constant on G-orbits. 

(ii) The domain R;(f) is invariant under Gt· 

Proof. Obvious. 

Instead of R 0(f)UR 1(f)U · · · UR;(f) we shall often write R.;;;,;(f). 

3. The forms and their stabilizers 
In this section, Fis a field (not necessarily closed), Eis the vector space F 7 and G=GL(E)=GL(1,F). 
For each of the trilinear alternating forms f; (1 ,s;;;i ,s;;:;9), f;).. (10,s;;;i ,s;;; 12) given in Table 1, we determine 
its stabilizer G; = G1, (1 ,s;;;i ,s;;:;9), G;).. = Gf,).. (10,s;;;i ,s;;; 12). 
The form f;, or f; )" is treated in Subsection 3.i, which begins by a claim of the form G; = A , or Gi).. = A , 
for some explicitly given subgroup A of G. The verification of the inclusion A ,s;;; G; is always straightfor­
ward from (5), so we shall only bother to prove G; :i;;;A .(And similarly for G;;>.. instead of Gi .). For this, it 
suffices to establish that, given g E Gi, a representative of AgA is contained in A . 
By paxb for a,b EN, we denote the vector space of a Xb matrices over F. The multiplicative group of 
the field Fis denoted by F*. As in Table 1, the symbol F':', where m EN, denotes a group with a com­
position series with m factors all of whose factors are isomorphic to the additive group p+ of the field 
F, and H.K, for two groups H and K, indicates a group L with normal subgroup H such that L / H is 
isomorphic to K. If H X K is written, a group L = H · K is meant with K a subgroup of L ( a socalled 
semidirect product of H and K). If a is an element of the symmetric group S 7 on 7 letters, then '110 

denotes the element g EGL(E) that maps e; onto eo(i)· Finally, the cyclic group of order m is denoted 
by Zm. 

3.1. The form f 1 = 123 has stabilizer G 1 =A, where 

-{[h1 o]lh1ESL(3,F),h2EGL(4,F)} 
A - b h2 b EF4x 3 • 
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Thus, G 1:!!!f.F}2 Xl(SL(3,F)XGL(4,F)). 

Proof. Clearly, Ro(f 1)= <e4,e5,e6,e1>, the linear subspace of E spanned by e4, ... ,er:--Suppose g EG1• 

Then g stabilizes R0(f 1) (setwise) by Lemma 2.5. After left multiplication by an element of A, we may 
assume that g is a diagonal matrix with entries (A,l,l,l,l,l,l) for some AEF*. Since 
1 = f 1(e1,e2,e3)=gf 1(e1,e2,e3)=A-1, we obtain A= 1. Hence g EA. 

A 0 0 0 000 
A- 1 0 0 000 AEF*, a EF2x4, b EF2x 1, c EF4x 1, 

0 1 0 000 
A1= 

C 0 oA-1000 h EGLi(F) 
0 0 0 100 

b a h 

and A2 is the subgroup of G fixing e1,e6,e1 and preserving the form 23+45 on <e2,e3,e4,e5>. (Thus, 
A 2:!!!f.Sp(4,F).) Then G2=A, so that - -

G2 ::!f. F}4 Xl(GL(2,F)X(Sp(4,F)XlF*)). 

Proof. Direct computation yields R 0(f 2)=<e6,e1>, and R,,;;. 1(/2)= <e2, ... ,e7>. Suppose g EG2. Then 
g stabilizes R 0(f 2) and R,,;;. 1(f 2), so after left multiplication by an element of Ai, we may assume that 

ge6=e6,ge1=e1, ge 1 =ei, and that g stabilizes <e2, ... ,e5>. But then g fixes 1;• =23+45, whence 
gEA2. - -

3.3. Theform/3 =123+456 has stabilizer G2=A, where 

A 

h1 03x303x1 

03x3 h2 03x1 

a /3 

so G3:!!!f.(FJ Xl(SL(3,F)XSL(3,F)XF*)). Z2 

Proof. For a =(ai, ... ,a1)EE, we have 

h 1,h2 ESL(3,F), 
a EF1x6, /3EF* <'IT(I4)(25)(36)>, 

Jj = a312-a213+a123+a645-a546+a456. 

It readily follows that R0(f 3)= <e1> and that 

R,,;;. 1(/3) = <ei,e2,e3,e1> U <e4,e5,e6'e1>. 

Suppose g E G3• Then g either stabilizes each of the two linear subspaces whose union is R ,,;;.1(f 2), or 
interchanges them. Moreover, g stabilizes <e1 >. Hence, after multiplication of g by an element of A , 
we may assume that g is of diagonal form with entries (A,1,1,/L,1,l,l) for some A,/LEF*. As in 3.1, it fol­
lows that A=/L = 1, so that g EA. 



3.4. The form f 4= 162+243+ 135 has stabilizer G4=A, where 

A 

so G4 !='!: F}4 ">4(GL(3,F)XF*). 

h EGL(3,F), A.EF* 
a EF1x6, r EF3x3 

Trace r=O 
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Proof. A simple computation shows that R 0(f)=<e1> and that R 1(f)=<e4,e5,e6> \ {O}. Suppose 
g EG. Then g stabilizes R 0(f) and R 1(f)U{O}, so after multiplication by an element of A, we may res­
trict attention to g of the form 

g = [· 

for some aEF and a =(aij)EGL(3,F). Now, 

g-1f 4 = (a11a22-a12a21)162+(a11a23-a13a21)l63+ 

(a 12a23-a 13a22)263 + a(a23a 32-a22a 33) 123 + 

(a22a31 -a21a32)124+(a23a31-a21a33)134+ 

(a23a32-a22a33)234+(a 11a33-a 13a31)135 + 

(a12a33-a13a22)235, 

by straightforward use of (5), so that g-J 4= f 4 implies a=O and a =+/3. It follows that g EA. 

3.5. Theformf5=I23+456+I41 hasstabilizerG5=A, where 

det h1-
1 01x3 h1,h2EGL(2,F) 

a2 
h1 

-A.1 A.1, ... ,~EF 
a1 A2 04x3 a1, ••. ,~EF 

A 0 0 0 det h2-
1 . <'11'(14)(25)(36)>, 

-A.3 0 0 ~ 

-~ 0 0 a3 h2 02x1 

a5 A2A1 ~ ~ A.3 det h1h2 

so G5 '=!!(FJ ">4(GL(2,F)XGL(2,F))). Z2. 

Proof. By computation, R,;;, 1(f 5)= <e5,e6,e1> U <e2,e3,e1>, and 

R,;;,2(f 5)= <e1,e2,e3,e5,e6,e1> U <e2, ... ,e1>. 

Suppose g E G 5• Then either g stabilizes each of the two 3-dimensional subspaces in R ,;;,2(f 5), or inter­
changes them. Hence g stabilizes their linear span <e2,e3,e5,e6,e1> as well as their intersection <e1>. 
After multiplication of g by a suitable element of A, we may, therefore, assume that g stabilizes 
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<ei,e4>. But then g either interchanges <e1>,<e4> or stabilizes each of them (as it stabilizes 
R,;;;;.2(/ 5)n <ei,e4> ). In the former case, multiply by '11'(14x25x36>EA, so as to reduce study to the case 
where g <e; > = <e; > for each i (i = 1,4). In fact, by multiplication with a suitable diagonal element of 

A, we may even assume ge;=e; for i=l,4. Since R,;;;;. 1(f5)nKerf~'=<e5,e6> and 

R,;;;;. 1(f 5)nKer J~• = <e2,e3>, these subspaces must beg-invariant. It readily follows that g belongs to 
A. 

3.6. The form f 6= 152+ 174+ 163+243 has stabilizer G6=A, where A =A 1A2 with 

A1-
1 O O O O O O 

A2IOOOOO 
A3 0 I O O O 0 

A 1 = A4 0 0 I O O O A1 EF*, Ai., ... , }1qEF 
As O A4 A3 Ai O 0 
~ 0 O A2 0 A1 0 
A1 0 O O O O A1 

h EF3x3, a ESL(3,F) l 
h =hT I' 

so G6=!!.p}2 Xl(SL(3,F)XF*). 

Proof. Notice that R,;;;;.1(/ 6)= <e5,e6,e1> and R,;;;;.2(/ 6)= <e2, ... ,e7>. Suppose g EG6. After multipli­
cation of g by an element of A 1 from the left, we may assume that ge 1 = e 1. Since g stabilizes 
<e5,e6,e1>, after multiplication of g by an element of A 2, we may restrict attention to the case where g 
has the form 

1 0 0 0 
0 
0 a 04x3 
0 
0 0 a4 a3 a1 0 0 
0 0 0 a2 0 I 0 
000000 I 

for some a EGL(3,F), with a1 EF*, and a2,a3,~EF. By a computation, using (5), we obtain 

/6 = g-1/6=a1~@aT)+a314(~aT)+a413@aT)+ 

17~T)+ l6QaT)+a214QaT)+ 

(det a)243. 

It follows that laT =1, ~T =i and '!:_aT =a1-
1~, so that 

[ 

-I a1 

a= ~ 
0 0 
I 0 
0 l 



Hence, 

243 = f 6-152- l74-163= 14(a1-
1a3~+a2~+ Q(a4~+(det a)243. 

This implies a 1 =(det a)- 1=1 and a2=a3=a4=0, so that g = 1 EA, indeed. 

3.7. Theformf 1=146+ 157+245+367 has stabilizer G1=A where A =A 1A2 with 

a2 /J2 /J1 -a1 a1,a2,a3,/Ji,/J2,/J3,y3,/33EF 
a1 /J1 /J3 -a3] 

a3 /J2 Y3 /33 

14 

and 

[ aH/fy 
ay ~] det h 

2a/J a2 p2 03x4 
) (a/3-/Jy) 
I 2y/3 y2 132 

Ai= 0 y 
l,h-1 

-y 0 
04x3 0 -p 

ahT 

/J 0 

so G1 ~F! °>4((GL(2,F)XGL(2,F)) / F*). 

Proof. A direct computation leads to the relations 

R-..1(/1) = {x1e1+x2e2+x3e3 lxr =x2x3}, and 
7 

R-..2(/1) = {~x;e; lx4x6+x5x1=0}. 
i=l 

h EGL (2,F) and 
a,/J,y,/3 EF, a/3=/=/Jy 

9 

Suppose g EG7• Since <e1,e2,e3> is the linear subspace of E spanned by R,..2(/ 7), it is left invariant 
by g. Write W 0 =<e4,e5,e6,e7>. 
Let W be a 4-dimensional subspace of E with Wn<ei,e2,e3>={0} andf1(W,W,W)=O. Then there 
is an element r E G of the form 

with a =(a••)EF3x4 
I] ' 

such that W=rW0• The requirement thatf 1(W,W,W)=O implies 

0 = g-1/ 7( e 4,e 5,e 6) = - a 12 + a 23 

O=g- 1/ 1(e4,e5,e1)=a11 +a24 

O=g-1/ 1(e4,e6,e1)=a31 +a14 

O=g- 1/ 1(e 5,e6,e1)=a32-a13 
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Hence, r EA 1• Thus, up to multiplication of g by an element of A 1, we may assume that g stabilizes W 0• 

Consider the group H generated by the elements of A 2 restricted to W 0. This is a subgroup of index 2 in 
the full subgroup of the linear group on WO preserving the quadric _,.-----

{.± x; e; lx..x6+x 5x1=0}, 
1=4 

see Dieudonne [4]. In fact, H is isomorphic to (GL(2,F)XGL(2,F))/ F*, the central product of two 
copies of GL(2,F). Multiplication of g by a suitable element of A2, therefore leads to the case where we 
have either glw.=l or glw.=wc46>. However, wc46> cannot be extended to a linear transformation on E 
preserving / 7 (i.e., to a member of G7), for, denoting such an extension by h and writing 
he2=x1e1 +x2e2+ x 3e3, we would then have 

3 
1 =h-1/(e2,e4,e5)= /(he2,e6,es)= ~x;f (e; ,e6,es)=O, 

i=l 

which is absurd. The conclusion is that we are left with the case where g I w. = I. Explicit verification of 
f 1=g-1f 7 by means of (5), yields that g = 1, so that g EA. 

3.8. The form f 8 = 123+ 145+ 167 has stabilizer G8=A with A =A 1A:z, where 

x- 1 000000 
l\00000 
0 1 0 0 0 0 

a OOl\000 
0 0 0 1 0 0 
ooooxo 
0 0 0 0 0 1 

a EF6x 1, XEF* 

[

l 01x6 h EGL(6,F) 

01x6 h 
h preserves 23 + 45 + 67 

, and 

Proof. Observe that R •• a(f 8)=<e2, ... ,e7>. Let g EG8. Since g stabilizes R 1(f 8), we may assume that 

G fixes e 1 (after multiplication by a suitable element of A 1). But then g fixes /;1
, whence g EA2, so 

gEA. 

3.9. Theformf 9=123+456+147+257+367 has stabilizer G9=A, with A =Gi(F)µ3, where G2(F) is the 
Chevalley group of type G2 over F, and µ3 = { a EFla3 =I}. 

Proof. Direct computation shows 
7 

R,,;;2(/9)=R2(/9)U {O}={ ~x;e; EE Ix} =x1x4+x2xs+x3x6}-
i=I 



Let H denote the full subgroup of G preserving the quadric R i(f 9) and set H 1 = H n SL (E ). 
preserves the quadratic form 

Q(x):::::: -x? +x1x4+X2X5+X3X6 (x =(x1, ... ,X7)EE) 

11 

Then H 1 

and each h EH is of the form Ah 1 for some l\EF* and some h 1 EH1• Moreover, G2(F) is the subgroup 
of H 1 preserving f 9, cf. Springer [9]. In fact, one can show that the bilinear multiplication · on E 
defined by f 9(x ,y ,z )= B (x·y ,z) for all x ,y ,z EE, where B is the bilinear form associated with Q, is the 
restriction to the orthoplement of unity of the multiplication in the 8-dimensional split algebra of the 
octaves. In order to see this, take the 8-dimensional split algebra of the octaves to be the set of matrices 
of the form 

[: ; ] where a,/lEF and v ,w EF3 

supplied with the usual matrix addition, with multiplication 

[a vl [a1 
v

1
] - [ aa

1
-v·w

1 
av

1
+P

1
v +w Xw

1 l 
w p w 1 p1 - a1w +Pw 1+v Xv 1 PP1-v 1·w 

where · and X stand for the standard inner and outer product on F 3, respectively, and with quadratic 
form Q given by 

The unity of this algebra is [ ~ ~] ; its orthoplement is spanned by the basis 

e,= [~ ~I], •;+1= [~ : ] , •1+<= [: ~] 

where i = 1,2,3 and (£; ); is the standard basis of F 3
• A straightforward computation shows that the res­

trictions of Q and (x,y,z)~B(x.y,z) to the orthoplement of the unity are as indicated above when taken 
with respect to e1, ... ,e1• 

We need two properties of the group A in order to finish the proof. They are formulated in the follow­
ing lemma. 

Lemma. (i) The group Gi(F) viewed as subgroup of G preserving f 9 and B is transitive on the set of unor­
dered pairs of mutually non-orthogonal (with respect to B) totally isotropic I-dimensional subspaces of E. 
(ii) If g EG andµ. EF* satisfy gf 9=µ.f 9, then there is l\EF* with µ.=l\- 3 and g EM. 

Statement (i) is a well-known property of G2(F), see for instance Springer [9]. 
Before proving part (ii) of the lemma, let us show how it leads to G9=A. Suppose g EG9• Write g =Ah 
with l\EF* and h EH1• Then f 9=gf9=l\-3(hf9), so hf9=l\3f 9. By part (ii) of the lemma, we have 
h Eµ.3 l\-

1A =l\-1A, whence g =Ah EA, as wanted. It remains to prove part (ii) of the lemma. To this 
end, let g ,µ. be as in the hypothesis. Notice that g preserves Ri(f 9), the quadric defined by Q. By part (i) 
of the lemma, we may assume that g<e 1>=<e1> and g<e4>=<e4> (after multiplication of g by 
a suitable member of A). Thus, g preserves et and et, where-Lis taken with respect to B. The follow­
ing subspaces of E are preserved by g: 

Rolf;' )net net= <e5,e6>, R 0lf;•)net net= <e2,e3>, (Rolf;')+ Rolf;•yt= <e1>- Therefore, g 
must have the form 
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a 

b 

Since 

a 

where ai,a4,a7 EF* 

and a,b EGL(2,F). 

det a for a EGL(2,F), 

I 

represents an element of G2(F), we may restrict attention to the case where ge2=e2 and ge 3=e3• But 
then g preserves et n <e5,e6> = <e6> and et n <e5,e6> = <e5>, so g has diagonal form 
(ai,l,l,a4,a5,(X(;,a7). From gf9=µf9, we get µ- 1=a1=a4a5(X(;=a1a4a7=a5a7=a6a1, whence a1=µ-•, 
a 3= 11 a =,.,=a,,,_-I a =a-1 Set A=,.,-I Then 11 =A.3 and g has diagonal form (A.3 11 A- 1 ' 2 A.2 A)= 4r,5-o 'fl"'>7 4• -<t• r ,,, ,A,, 
A(A.2,A-1,A-1,A-2,A,A,l), whence g EM. 

3.10. Fix AEF such that the polynomial 

{

X 2-A 
P.,JX) = x2+u + 1 

if F has odd characterictic 
if F has even characteristic ' 

is irreducible, and set K =F(a), where a is a root of P-,,..(X). Then, the form 

{

123+A(l56+345+426) if F has odd characteristic, 

f IO). = 126+ 153+234+A(l56+345+426)+(A2 + 1)456 otherwise 

is K -equivalent but not equivalent to f 3• Furthermore, let o denote the generator of the Galois group of K 
over F, and set 

l 1, 
-a13 O,xi] if F has odd characteristic, 

l3 al3 03x1 

01x3 01x3 ¼ 

a 0 0 I 0 0 0 

g= 0 a+A 0 0 aA+A2+ 1 0 0 

0 0 A-I 0 0 aA- 1+1 0 otherwise. 

a+A 0 0 1 0 0 0 

0 a 0 0 aA+l 0 0 

0 0 A-I 0 0 aA-l 0 

0 0 0 0 0 0 A-I 



Then the stabilizer off IO)< is G1o)l = g- 1Ag, 

where A 

In particular, Gio)l :!!!(F! ><J(F*XSL(3,K)))-Z2• 

Proof. Since 

k ESL(3,K) 

a EK3 
<'71(14)(25)(36)>. 

pEF* 

• K -{4/ f if F has odd characteristic, 
g f 10,A - ff otherwise, 

13 

f IO,A is K -equivalent to f 3• Put Gf = Gft. For h E Gf, its conjugate g- 1 hg belongs to G if and only if 
it is fixed by o, i.e., if and only if 

ha = (gag-l)h(gag-l)-1. (8) 

But gag- 1 = [~:x
3 

~:x 3 06x 11, so by use of 3.3, we readily. 

01x6 1 

find that the elements h E Gf satisfying (8) are contained in A . The conclusion is that any x E G IO)< is 
of the form x =g- 1hg with h EA, so that G10)l=g- 1Ag. 

It may be worthy of note that (f 10)\) l<e1, ... ,e.> can be obtained as TraceK; Fiff l<ei,e,,e,>)-

3.11. Let A,P'J,.(X),K=F(a), o,g be as in 3.10. The form fu)l=f 10.A+147 is K-equivalent but not 
equivalent to f 5. The stabilizer off ll),. is G ll)l = g- 1 Ag, where 

det k- 1 00 0 0 0 0 

a2 -Ai 0 0 0 
k 

A2 0 0 0 k EGL(2,K) a1 
A 0 00 (det k- 1)° 0 0 0 < '11(14)(25)(36) > · 

-Af 00 ai 0 A1,A2,a1,a2,a5 EK 

Ai 00 af 
ka 

0 

a5 A2A1 0'.5 Ai Af det(kak) 

In particular, Gu)< :!!!(Fl0 ·GL(2,K))-Z2• 

Proof. Since gfu)l=µ.fs, with µ.=4 if F has even characteristic and µ=I otherwise, fu)l is K­
equivalent to f 5• 

Put Gf =Gfe, and recall that this group has been described in Section 3.5. For 
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det g1-
1 00 0 00 0 

a2 -Ai 00 0 
a1 gl A2 00 0 ~ 

h 0 00 det g2-
1 00 0 EGf, 

-A3 00 Q'.4 0 
A4 00 Q'.3 g2 0 
Q'.5 A2A1 ~ A4A3 det g1g2 

with a1,a2,a3,a4,a5,a6,A1,A2,A3,A4EK and gi,g2EGL(2,K), we have g-1hgEGu;. if and only if h 0 EG, 
i.e., if and only if h EA . This settles 3.11. 

3.12. Suppose K=F(a) is a cubic field extension of F with a3=µfor some µEF*. Then f 12,,,_=µf 9 and 
f 12,,l = µ2f 9 are mutually inequivalent forms, both inequivalent but K -equivalent to f 9, and the stabilizer G9 

off 9 coincides with the stabilizer G 12,,,. off 12,,,. and with G 12,,l• 

Proof. This is immediate from the lemma in 3.9. 

4. The Classification over an Algebraically Oosed Field. 

In this section, we prove Theorem 2.1. Thus, we assume that F = F is an algebraically closed field, and 
set E=F7

• 

The following result will be used frequently. 

4.1. Lemma. Suppose D is a linear subspace of E of dimension m ;;;.,,3_ If f EAlt3(D) and ei,e2,e3ED 
satisfy f (e 1,e2,e3)=/=0, then e1,e2,e3 can be extended to a basis e1, ... ,em of D such that 

(9) 

Proof. The intersection of the kernels of the three linear functionals x • f(e;,ej,x) for l,s;;;,i<J,s;;;,3 is a 
linear subspace of E of dimension 7-3=4. Take e4, ••• ,em to be a basis of this subspace. 

Notice that the relations in (9) are invariant under linear transformations preserving the subspaces 
<ei,e2,e3> and <e4, ••• ,em >. Let f EAltJ(E). Write C =Ker f and let D be a complement of C in E, 
so that E=C©D. Let m be the dimension of D. Now, G=GL(E) is transitive on ordered pairs of 
subspaces of given dimensions forming a decomposition of E. Hence, for any basis e i, ... ,e7, we can 
replace f by a suitable equivalent form in such a way that D = <e 1, ••• ,em > and C =<em+ 1, ••• ,e7 >. 
From now on, let f EAlt3(E). 

4.2. Lemma. Suppose f =/=0. Then rk f ;;;.,, 3. If, moreover, rk f ,s;;;,4, then rk f = 3 and f is equivalent to 
f1-

Proof. Set r = rk f, and let D be a complement of Ker f with basis e 1, ••• ,e,. If r < 3, then f ID = 0, so 
f =0, a contradiction. Hence r ;;;.,,3_ If r ,s;;;,4, then f ID is equivalent to f dD, whence f is equivalent to 
f I by Lemma 4.1. 

4.3. Lemma. If rk f =5, then f is equivalent to f 2• 

Proof. Let e 1, ••• ,e 5 be a basis of a complement D of Ker f such that (9) is satisfied for f ID. Since 
rk f =5, one of the values f (e;,e4,e5), for i = 1,2,3, must be nonzero. Without loss of generality, we may 



assume/ (e 1,e 4,e 5) = 1. Thus, 

f = 123+ 145+A245+µ345 for some X,µEF. 

Talcing g EG with g! =!-~-µ~and gj_ =!_ for i > 1, we get gf = f 3, whence the lemma.,.----< 

4.4. Lemma. Suppose XEF*, µEF, and let 

h'),.,,.= 123+ 146+356+M56+µ236, and 

h,.= 123+ 146+M56. 

Then h '),.,,. and h'J.. are both equivalent to f 3• 

Figure 1. 
The diagram of the form h'),.,,. and h'J... 

6 

1 
µ 

6 

5 

2 

15 

3 

Proof. Take g EG with g·i=i-x-•~, g·~=~-(X- 1-µ)~, g·!_ =!_ for i =1,3,5,6,7. Then g·h'J..,,.=h,.. 
It therefore remains to prove that h'J.. is equivalent to/ 3• Take g1 EG with gr5=5-x- 11 and gri =i for 
i=t=5. Then grh'A. = 123+M56, which is clearly equivalent to/ 3• - - - - -

4.5. Lemma. For X,µ EF, suppose f = 145+246+356 + µ123+M56. Then f is equivalent to f 4 when-
ever µ=O or X2µ= -4, and equivalent to f 3 otherwise-. - -- --

Proof. H µ=0, it is readily checked that / is equivalent to / 4• Thus, let µ=t=O. There is x EF* with 
x:-=µ (since F is algebraically closed). Now, h EG, determined by h·4=x4 , h·i =x-1i for i = 1,2, 
hj=j for }=3,5,6,7 applied to/ yields h·/=145+246+356+123+Xx456. Therefore, Without loss of 
generality, we assume thatµ= I. Let a,/J;y,8J;q EF satisfy a/J;y6J11=t=I, and take g EG with g·?_=?_ and 

g·l=!+a~ g·~=~+-yt g·~=~+~, (10) 

g·~=~+/J!, g-~=~+6~, g·i=i+11~-
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Then 

g-J = 

(I-py+/Jt-rt+P>..)145+ 
(P-8- f38t + t-PM) 124+ 
(1/-PYTI + p-y+ P>-11)135 + 

(-811+ P11-P8+ I -/38>..11)123+ 
(a-y+f-fya+>..)456+ 
(-a8+ 1-f8-af-M)246+ 
(1 +a.,,-'{'Tl-ay+>..11)356+ 
(11-8- OTJ8 + a ->..118)236. 

(11) 

First of all, assume that F has odd characteristic. Putting 11=8=a=0 and /J=y= -E=½A, we get the 
form g-J =(l +¼>..2)145+ 123+246+356. lf >..2+4=0, then the form is equivalent to f 4• Otherwise, res­
caling 1 reduces the proof to the case where >..=O. Thus we may assume f = 145+246+356+ 123. Now, 
applying the transformation g of (10) again, but now with /3=8=11= 1 and a=y=f= -1, we get by (11) 
that g·f =2 (135+246), so that f is equivalent to f 3• This settles the case of odd characteristic. From 
now on in this proof, assume that F has even characteristic. Take i[IEF* such that f +>..i[!+ 1 =0, and 
consider the transformation g of (10), but now with a=8=11=0 and /J=y=f=i[!. Then 
g·f = 123 + 246 + 356 + M56. Thus, f is equivalent to f 4 if A =0, and equivalent to f 3 otherwise accord­
ing to Lemma 4.4-. - --

4.6. Lemma. If rk f =6, then f is equivalent to either f 3 or f 4. 

Proof. Let e1, ... ,e6 be a basis of a complement D of Ker f such that (9) is satisfied for /ID• First, sup­
pose that f ( e 4,e 5,e 6)=¥=0. Then, up to rescaling ~. we have 

3 
f =123+456+ ~(a;i45+/3;i46+y;i56) for a;,/3;,Y; EF 

i=I 

Applying a suitable tranformation in E preserving the subspace of E* spanned by 1, 2, 3 and the sub­
space spanned by 4, 5, 6, we can easily reduce study to the case where f = 123+456-taT45+/3246+y356 
for a,/3,y EF. If at ieast two of a,/3,y are zero, we are done. Without loss of generality, suppose /Jy=¥=0. 
After rescaling by g EG with g·4=/34, g·5=y5 and g·6=p- 1y- 16, we may assume that f = 123+ 456+ 
>..145+ 356+246 for some AEF'. IC>..=O, then f is equivalent to /J by Lemma 4.4, and if >..=¥=0, the 
desired result follows from Lemma 4.5 after rescaling of 1 by >..- 1• Next, suppose that f (e 4,e5,e6)=0. 
Since rk f =6, without loss of generality we may assume that f (e1,e4,e5)= 1. Replacing e2,e3 by a basis 
of the kernel of the linear functional x • J(x,e 4,e5) on <ei,e2,e 3>, if necessary, we get 
f (e2,e4,e5)= f (e3,e4,es)=0. Replacing e6 by e6+ f (e1,es,e6)e4 - f (e1,e4,e6)e5, we also have 
f(e1,e 5,e6)=f(ei,e4,e6)=0. Thus we are left with the case where f =123+145+a346+{3356+ 
y246+8256, for some a,{3,y,8EF. Since rk f =6, at least one of a,/3,y,8 must be nonzero. Thanks to 
symmetry, we only need consider /3=¥=0. After rescaling, 6, we may put /3= 1. Let g 1 EG be such that 
/'}_='}_- 8~, g 1~=~-ai and gil_ =i for i=¥=3,5. Then -

g-J = 123+ 145+356+(y-a8)246. 

Thus, either y = a8 and f is equivalent to f 4, or y=¥=a8 and after rescaling 2, we arrive at the form dis­
cussed in Lemma 4.5 (with >..=0). Hence f is equivalent to f 3 or f 4 in all cases. 

If f and f I are forms on E and D ,D 1 are linear subspaces of E, then f ID is said to be equivalent to f 1 

on D1, if there is g EG =GL(E) with g(D)=D 1 and (g.f)ID'= f 11D'· Furthermore, given the standard 
basis e1, ... ,e1 of E, we shall write W; for the subspace spanned by {ej lj=¥=i}. 
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4. 7. Lemma. If rk f = 7 and E has a 6-dimensional subspace W such that f I w is equivalent to f 3 on W 1, 
then f is equivalent to one off s,f 1,f 9. 

Proof. Let e 1, ... ,e6 be a basis of W such that f lw= 123+456. Choose e7 EE such thafj(ei,ej,e7)=0 
whenever i ,j satisfy 1 :,;;;,.; ,j :,;;;,.3 or 4:,r;;;,.i ,j :,r;;;,.6 ( cf. Lemma 4.1 ). Then 

3 6 

f = 123+456+ ~ ~aij ij7 for some aij EF. 
i=lj=4 -

By use of a linear transformation stabilizing the linear subspaces of E spanned by 1,2,3, by 4,5,6, and by· 
?_ respectively, we can restrict attention to the case where --- ---

/ = 123+456+367+a257+,B147 for some a,,BEF. 

If a= ,B = 0, then f is equivalent to f 5. Without harming generality, assume ,B-=/=-0. Rescaling 1 and 2 by 
p-1 and ,B respectively, we may take ,B=l. If a=O, .then f is equivalent to / 7• If a-=f=-0, then choose 
yEF with y3=a and rescale 1,2,3,7 by y,y-2,y,y- 1, respectively. The resulting form is f 9• This proves 
the lemma. - - - -

4.8. Lemma. Suppose rk f =7 and E has no 6-dimensional subspace U such that flu is equivalent to f 3 

on W 7· If there is a subspace W such that f I w is equivalent to f 4 on W 1, then f is equivalent to f 6• 

Proof. Let W be as stated. There is a basis e1, ••• ,e6 of W such that /lw=125+134+236. Choose 
e7 EE such that/(ei,ej,e7)=0 for i,j,1,2,3. Then - - -

6 6 
f =125+134+236+ ~ ~aiij7 for some aij EF. 

i=l j=4 -

Replacing/ by g-J, where g EG is given by g· 1 = 1-a.257, g·2=2-a367, g·3=3+a267, and g·i =i for 
i =4,5,6,7 we have that a 25 =a26 =a36 =0. First of ah, assume -that a 15:;i'O. Then-a.16-=t=-O, because other­
wise /lw.=125+236+a15157+a35357+a56567 would be equivalent to / 3 on W 7• (Take h EGL(W4) 
with h. 1 = 1-a35aj513, h·6=6-a35aj515, and h·i =i for i = 1,2,3,5,7, and apply the 6-dimensional analo-
gue of Lel1lllla 4.4 to h·ifTwJ). - - -
We claim that as6=0. For if a56-=/=-0, then g1 EG with gc 1 = 1-as6ai615, gr4=4-a35a56

1a 167, and 
gr,£ =i for i-=/=-1,4 applied to/ yields - - - - - -

(gd)lw. = (125+236+a1s157+a16l67+yl37) lw. 

for some yEF. This implies by Lemma 4.4 that f lg-'w. is equivalent to /3 on W1, contradictory to the 
assumption. 

6 

Thus, f = 125+236+a35357+a16167+a15 157+ 134+ ~8ii47 , for certain 8i EF. Consider flw., once 
- - - - - - i=I -

again. In view of Lemma 4.4 and the assumption, we have a35-=f=-O, and in view of Lemma 4.5, we have 
ars=4a35a 16. In particular, F has odd characteristic and a1s-=/=-O. Applying g2EG with 
gt!= !-½a15a1t~, gt~=~+½a1s?_, gi-~=~-½a1sa16 1~, g2·?._=a16 1?_, and g2·,£ =.£ for i-=/=-1,2,6,7 to f 
leads to the form 

6 

/ 1 = g2./ = 125+236+ + 134+ 167+ ~8ii47, with 8i EF. 
i=I 

6 

Now, consider (/ 1
) lw,=(236+(~8ii)47) lw,• 

- i=2 --
Clearly, this form is equivalent to / 3 on W1 if it is nondegenerate on W 1• Hence 85=0. Next, consider 
(/1) lw.= 125+ !Q+«'1~(i+?._)+«'22~+?_)+83(~+81~)i(~+?_). 
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By Lemma 4.4, this form is equivalent to f 3 on W1, unless 83=0. Hence, 83=0. Consider 
(f1) lw,=(125+(6+814)71 +82247+86(6+814)47) lw,• 
Again, by Lemma 4.4 and the assumption: we get 86=0. Consider J 11w,=236+ 134+ 167+81147+ 
82247. If 82=0, then 81 =0 by Lemma 4.5; if 81 =0, then 82=0 by Lemma 4.4. But 81 =82=0 yields 
j1 = 125 + 236 + 134 + 167, which is equivalent to f 6. Thus, the case where 81,82,t=0 remains. But then, 
according to Lemma 4.5, we must have 8r= -482. Applying g3EG given by g3·2=2+281-

11, 
gf3=3-281- 17, g3·4=4-281- 16, g3"7=-481-27 and gfi =i for i =1,5,6 to f 1,- we obtain 
gff1,;-125+ 134+236+247, which is clearly equivalent to f 6. This settles the case where a 15,t=0. 

- - - - 6 6 
Thus, for the rest of the proof, we may assume f=l25+134+236+ ~ ~aijij1, with 

i=l j=4 -

a15 =a25 =a26 =a36 =0. 
Suppose that a 14,t=0. If a34 =0, then a pertumutation of basis elements (according to (3,1,2)(4,5,6) on the 
indices) reduces this case to the previous one. If a34,t=0, then apply g 4 E G with g 4· I = I -a34 7 and g· i = i 
for i,t=I to f so as to obtain g4f =J-a34347-a34257; the permutaion (4,5)(2,3fon-the basis elements 
then leads g4f to a form with a 15,t=0 and a25 =a26 =a36 =0, a situation that has been dealt with before. 
Thus we may assume a 14=0. Similarly, we may assume a34=0. Now, 

f = 125 + 134 + 236 + a16 l 67 + a24247 + a35357 + a45457 + a46467 + as6567 

If a46=t=O, then g5EG given by gs-l=l-a56a,it/5, gs-2=2+as6a24a46 17, gs-i=i-a45a46 1t 
gs·~=~-~sa16¾ 11_, gsi =i for; =3,5,7, is such that - - - -

(gs-J) lw,=(125+a16167+a24247+a46467) lw, 

is equivalent to f 3 on W 1, cf. Lemma 4.4. Hence, a46 =0, and by symmetry, also, a56 =a46 =0. Remains 

f = 125+ 134+236+a16167+a24247+a35357. 

Since rk f =1, at least one of a 16,a24,a35 is nonzero. If exactly one of them is nonzero, we are done. Sup­
pose therefore, that at least two of them, say a 16 and a24 (without loss of generality) are nonzero. Sup­
pose that F has even characteristic. Then g 6 E G determined by g 6° .!_ = 1 + aiJL~, g·i= i + a1µ~, 
g6·1_=1_+µi, and g·i =i for i =2,3,5,6, where µEF*, is such that µ2+µ+(a 1a2)-r=0, satisfies 

(g6f)lw, = (134+a1167+a2247+a2JL234)lw,• 

The latter form is equivalent to f 3 on W 1 by Lemma 4.4. This contradiction shows that F has odd 
characteristic. But then f lw, is equivalent to f 3 on W1 by Lemma 4.5, leading to the final contradiction. 
This ends the proof of Lemma 4.8. 

4.9. Lemma. Suppose rk f = 1 and E has no 6-dimensional subspace U such that f I u has rank 6. Then f 
is equivalent to f 8· 

Proof. In view of the assumption, there must be a 5-dimensional subspace W of E such that f I w is 
equivalent to f 2 on <e i, ... ,e 5 >. Take such a subspace and let e i, .. ,e1 be a basis of E such that 
W= W 6n W 1 and f lw=(l23+ 145) lw• Now, f(e 6,e;,ej)=f(e1,e;,ej)=0 for i,j = 1, ... ,5, for otherwise 
E has a 6-dimensional subspace V on which flv has rank 6. If f(e 2,e6,e1),t=0, then f lw, clearly has 
rank 6, a contradiction. Hence, f (e 2,e6,e1)=0, and similarly, f (e3,e6,e1)= f (e4,e6,e1)= f (e 5,e6,e1)=0. 
Since rk f =1, we must have f (ei,e6,e1),t=0, and f is equivalent to f 8· 

Now, Lemmas 4.7, 4.8, and 4.9 classify all forms f EAltJ(E) with rk f =1. Thus, together with Lemmas 
4.2, 4.3, and 4.6, this completes the proof of Theorem 2.1. 
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5. The Qassitication over Perfect Fields of Cobomological Dimension at most 1. 

Let E be a vector space of dimension n < oo over a perfect field F, and let F be the algebraic closure of 
F. Galois cohomology provides a _!ool ~ keep tr!ck of the inequivalent forms for E which become 
equivalent when extended to forms f on E =E ®FF. We shall first recall some basic notions from Serre 
[8]. 

- -5.1. Definitions. For L a Galois field over F (within F), denote by r L the Galois group of F over L, 
and set f=f F· The latter is a profinite group, i.e., it is compact and discontin1!_ous when topologized in 
such a way that the groups J L for !:: an extension field of F ( contained in F) form the collection of 
open subgroups of r. Set G =GL(E) and suppose A is a subgroup of G topologized by the discrete 
topology. Then r has a natural action from the right on A given by 

a 0 =(a/J)1,;;;,;J,;;;,n for a =(aij)I,;;;,iJ<,n EA and aEf. 

A cocycle of r with values in A is a continuous map 

r -A, denoted by a-a 0 (aEf), 

such that 

aaT=a;aT for any a,TEf 

Two such cocyles a and a' are called cohomologous if there is b EA with 

a; =b0 a0 b- 1 for every aEf. 

This defines an equivalence relation on the set of all cocycles of r with values in A . The set of 
equivalence classes is called the first cohomology of r in A and denoted by H 1(f ,A). If A is abelian, 
H 1(f ,A) can be given a group structure and higher cohomology groups H; (f ,A) can be defined. Of 
course, there is always a distinguished element 1 EH1(f ,A), namely the class corresponding to the trivial 
cocyle a-I (aEf). We recall that a perfect field F is said to have cohomological dimension at most I if 
the cohomological dimension of the Galois group r is at most 1. (This means that for each prime p and 
each discrete simple f-module A with pA =0, we have H 2(f ,A )=0.) The reader is referred to Serre [8] 
for further details on these definitions. Here, we just mention that finite fields have cohomological 
dimension at most 1. 
Suppose f_EAlt)(§). We are interested in the ~t T(F,f) of equivalence classes of forms f'EAltJ(E) 
such that f' and f are equivalent forms in Alt3(E). 

5.2. _}beorem. Let F be a perfect field, and suppose f EAltJ(E). Retain the above notation, and put 
A = G7. Then the following holds: 

(i) Ther~is a bijective map 8:T(F,f)-H1(f,A), given by 8(f')a=g0g- 1 (f'ET(F,f), aEf), where 
g EG is such that g-J'= f. 

(ii) If F has cohomological dimension at most I,_pnd if A O denotes the connected component of unity in 
A, viewed as a linear algebraic group over F, then A O is a normal subgroup of A preserved by r, 
and the natural map H 1(f ,A )-H1(f ,A / A 0) is bijective. 

Proof. (i) See Serre [8] Chapter III, Proposition I. 
(ii) See Serre [8] Chapter III, Theorem 1, Conjecture 1, Supplement 2, and Corollary 3. 

We are now ready for the 

5.3:... Proof of Theor!m 2.2. Suppose f EAlt 3(E), f "FO, and set A =G7. 
If f of the form /; for some i (1 ~i ~9) with i =F3,5,9, then A is connected, cf. Table I, so f is 
equivalent to f; by the above theorem. 

•· 
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Suppose J = J3 (in other words, Gf E T(F ,f 3)). Then A /AO
~ Z2 by Table 1 and f acts trivially on 

A / A 0• It is easy to see that H 1(f ,A / A 0
) coincides with the set of continuous group morphisms 

f • A / A 0• But any such morphism is related to a subgroup fl of r of index 2, whence to a quadratic 
extension K of r (determined by_fl=fx)- By Theorem 5.2 and Subsection 3.10, thereis a unique qua­
dratic extension K of F (within F) such that f is equivalent to/ 10.A for ea£h A_EF such that P'>..(X) is 
irreducible in F[X] and reducible in K[X]. The same argument holds for f = f 5, with f ll.A instead of 

/10,A' 
Finally, suppose f = f 9• If F has characteristic 3, then A is connected, as µ3 = { 1 }, so f is equivalent to 
f 9 by Theorem 5.2. Suppose from now on that the characteristic of Fis distinct from 3. 
If A/ A0 ={1}, there is nothing to prove. So, suppose A/ A0:;c=.[1}. Then, by Table I, we get 
A/ A0 ~z/=~µ3 and there is aEf acting on A/ A0 as it does on µ,3 c;;;;,F. Write µ,3={1,w,w}. 
Suppose, first of all, that µ,3 c;;;;,F. Then the action of r on P-3 is trivial, so a cocycle is a continuous group 
morphism r • µ,3 whose kernel is a normal subgroup of r of index I or 3. Of course, index I only occurs 
in the case of the trivial cocycle. Thus, any nontrivial cocycle has a kernel fl of index 3 in r correspond­
ing to a Galois extension of F of degree 3 with group r / fl. Applying this to the cocycle 8(/) of 
Theorem 5.2, this means that for f there is a unique cubic Galois extension K of F such that f is K -
equivalent to/ 9• Let yEf be such that f=flUflyUfly2. There are two cocycles in H 1(f ,A) whose ker­
nel is fl; they are determined by y• u> and y• w2

, respectively. Hence, there are exactly two classes of 
forms in T(F ,f 9) which are K-equivalent to f 9 but not equivalent to / 9• Writing K =F(a), where 
a.3=µ,EF (see S. Lang [6] Chapter 8, Theorem 10), we can represent them by f 12,µ., f 12,µ2 respectively, in 
view of Subsection 3.12. 
Suppose, next, that µ,3 is not contained in F. Let X be the kernel of the action of f on µ,3• Then X has 
index 2 in r. Given a cocycle a• a 0 (aEf), call the group fl0 ={aEfla 0 = 1} the kernel of the cocycle. 
Clearly, fl0 has index 3 in r, unless it is the kernel of the trivial cocycle. Suppose that !:,.0 has index 3 in 
f. Then fl0 nx is a subgroup of X of index 3, which is normal in X since it is the kernel of the group 
morphism y • ay from X to P-J. Thus, there is a EX such that Xis partitioned by (fl0 nX)d for i =0,1,2, 
whence f=A0 UA0 aUA0 a2. Now, A0 nX has index 2 in A0 , and we have TEA0 such that w"=w=w2 

and t:,.0 =(fl0 nX)U(A0 nX)T. Moreover, the cocycles y• ayu>yw- 1 and '}'• ayw'Yw- 1 are cohomologous 
to a and have kernels 1).0 nX{l,Ta2} and A0 nX{l,Ta}, respectively. Since these kernels are open sub­
groups of r, it follows that ( Ta)2 E Aa n X. Furthermore, Aa n X = {), { '}' E f IC y = 1 }, where C runs over 
all cocycles cohomologous to a, is a normal subgroup of r, so r / fl0 n X ~ S 3, the symmetric group on 3 
letters. Writing K for the extension of F corresponding to flw<J), we obtain that K(w) is Galois over F 
with group <a lxcw),T lxcw>>~S3, that/ is K(w)-equivalent to /9 and that the K(w)-equivalence class 
containing/ 9 consists of exactly three equivalence classes of forms on E. (For, there are exactly three 
classes of cocycles b with t:,.b nX=Ao<J>nx, cf. Theorem 5.2.) By 3.12, the forms / 9, A./9, A.2/ 9, where 
AEF(w) is such that X 3-A. is irreducible over F(w) but reducible over K(w), are mutually F(w)­
inequivalent, and K(w)-equivale~~ to f 9. Let a.EK satisfy a.3=A.. Then a"a- 1 is fixed by a (for a0 =aw; 
for some i E{l,2}, and a"°=a.0 ·=a"w2), whence a"a- 1EF(w). By Hilbert 90, cf. Lang [6], there is 
/3EF(w) such that /3"/3- 1 =a"a- 1• Consequently, f 9,µ,J 9,µ,2/ 9, where p,=A./3-3, are mutually inequivalent 
forms on E which are K(w)-equivalent to f 9. Since f is K(w)-equivalent to f 9, it follows that it is, up to 
equivalence, one of/ 9, µ,if 9 = f 12,µ.' (i = 1,2). This establishes Theorem 2.2. 

5.4. Concluding remark It is not hard to generalize a part of Theorem 2.2 to the case of an arbitrary per­
fect field F by use of Serre [8]. For, by Proposition 6, Propo~tion 3 an<!_ Lemma J of Chapter III [loc. 
cit.], we have H 1(f,U)=0 whenever U is one of the groups (F)::', Sp2m(F), GLm(F}_(m EN), and using 
the exact sequences of Propositions 6 and 8 of Chapter I [loc. cit.], we get H 1(f,Slm(F))=0, so that 

H 1(f,G; )=0 if i = 1,2,4,6,8 and 

H 1(f,G;)~H1(f,Z2) if i =3,5. 

~s implies that for i = 1,2,3,4,5,6,8, any trilinear form which is .F-equivalent to/; must be equivalent to 
either/; or one of /p (where j = 10,11, if i =3,5, respectively). ,. 
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