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The regression model y = g(x) + E and least-squares estimation are 
studied in a general context. By making use of empirical process theory, it is 
shown that entropy conditions on the class '§ of possible regression functions 
imply L2-consistency of the least-squares estimator gn of g. This result is 
applied in parametric and nonparametric regression. 

1. Introduction and summary of results. Consider the regression model 

y = g(x) + e, 

where x is a Rd-valued random vector with distribution function H, e is 
independent of x and has expectation zero and finite variance and g is a member 
of a class ~ of regression functions on Rd. Boldface symbols will represent 
random quantities. For an estimator of the unknown g to be statistically 
meaningful, it should at least be consistent in some sense. In the least-squares 
context, the most natural requirement is L 2-consistency. In this paper we show 
that entropy conditions on a (rescaled and truncated version of) <§ imply strong 
L 2-consistency of the least-squares estimator. A result from empirical process 
theory is used to prove this. 

In this section we shall motivate our approach and present the main theorem. 
The proofs are postponed to Section 2. Section 3 deals with a few examples, such 
as (non)linear regression and isotonic regression. Some nonparametric regression 
estimators can also be considered as least-squares estimators, or modifications 
thereof (for instance penalized least squares). 

Let L 2(R d, H) be the Hilbert space of measurable H-square integrable func­
tions on Rd. Writing K for the distribution of e, let L2(1Rd x IR, H X K) be the 
Hilbert space of measurable H x K-square integrable functions on IR d x R with 
norm II · II· Denote by x and e the first and second coordinate projections into !Rd 
and IR, respectively, and write g = g(x), g0 = g0(x), y = g0 + e, where we 
assume that g0 , the true state of nature, is in L2(1Rd, H). We have, for g, 
H-square integrable, 

and 

llY - gll 2 = IE(y - g(x))2 =11£11 2 +Ilg- goll 2 , 

since x and e are independent. 
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Let (xv e1), (x 2, e2 ), ••• be independent copies of (x, e) with Yk = go(xk) + ek. 

Write P = H X K, let Pn denote the empirical distribution function based on 

(x1,e1), ••. , (xn, en) and let Hn be the marginal distribution function generated 

by x 1, ... ,xn. We write 11 · lln for the corresponding random L2(1Rd X IR,Pn)­
norm. Thus 

1 n 

11g11~ = - E g2(xk), 
n k=l 

1 n 2 

llY - gll~ = - L (yk - g(xk)) 2 =lie - (g - go) !In· 
n k=l 

The least-squares estimator gn is-not necessarily uniquely-defined by 

llY - gnlln = inflly - gJln-
ge<§ 

The estimator gn is strongly L2(1Rd, H)-consistent if 

(1.1) llgn - g0 ll ~ 0 almost surely. 

Strong L2(1Rd,Hn)-consistency is defined in a similar manner. We concentrate 

on convergence with respect to these metrics because the information on the 

regression function is determined by the distribution of the data. The additional 
knowledge that g is in a class of regression functions <§ can sometimes be used to 

prove that convergence in II · II-norm or II · lln·norm implies convergence in, for 
instance, sup-norm. 

Observe that g0 is the essentially unique minimizer of II y - gll, whereas gn 
minimizes the empirical counterpart llY - glln· By the strong law, llY - glln 
converges for each fixed g E L2(1Rd, H) to llY - gll almost surely, and if this 

convergence is uniform, consistency in both II · II- and II · II n-norm follows almost 
immediately. The almost sure convergence, uniformly over a class of functions <§, 

is one of the topics of study in empirical process theory [see, for instance, Vapnik 

and Cervonenkis (1971, 1981) and Pollard (1984, Chapter II)]. Since <§ is in 
general uncountable, some conditions are needed to guard against possible 
measurability difficulties. We leave these unspecified and assume throughout 

that <§is permissible in the sense of Pollard (1984). Then one can formulate the 
results as follows: For a permissible class <§ 

(1.2) suplllglln - JlgJll ~ 0 almost surely, 
ge<§ 

if an envel.ope condition and an entropy condition are fulfilled. The envelope 
condition is the assumption that 

(1.3) 

The function 

is called the envel.ope of ~. 

J sup\g\2 dH <co. 
ge<§ 

G = sup\gl 
ge<§ 
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The entropy condition is related to the usual compactness assumption. For 
8 > 0, let ~8 be a 13-covering set of~ equipped with L 2(Rd,Hn)-norm, i.e., ~8 is 
a class of functions such that for every g E ~ there exists a g8 E C§8 such that 

Ilg- g811n < 13. 

Without loss of generality, we shall always let ~8 be a subclass of ~.Adopting 
the notation of Pollard (1984), we define the covering number N2( 8, Hn, ~) as 
the number of elements of a minimal covering set. The logarithm of N2( 8, H n• C§) 
is called the 13-entropy of ~ with respect to the L 2(1Rd,Hn)-metric. Note that 
N2( 8, H n• ~) depends on the empirical measure H n and is thus a random 
variable. With the entropy condition we refer to the assumption that the 
8-entropy does not grow too fast with n: 

(1.4) 

Our discussion so far is summarized in the following proposition: 

PROPOSITION 1.1. Suppose that ~ is a permissible class with Co E ~. and 
that (1.3) and (1.4) are fulfilled. Then 

118'n - g0 11 -+ 0 almost surely, 

as well as 

118'n - Bolin -+ 0 almost surely. 

The uniform convergence (1.2) is certainly not necessary for consistency and it 
is clear that conditions (1.3) and (1.4) from empirical process theory will hardly 
ever be satisfied for a class of regression functions C§. For example, for C§ = 
{g(x, 0) = 01x = 01x 1 + · · · +Odxd: 8 E Rd} (1.3) and (1.4) do not hold. This is 
partly due to the fact that <§ is a cone (i.e., if g e ~ also a.g E ~ for all a > 0). 
Therefore, we consider a class of scaled functions 

.%' = { I = 1 +~IBll : g E <§} . 

Then II f II ::;; 1 for all f e.%', and .%'is often essentially smaller than C§, e.g., if C§ 

is a cone. In smooth enough models, (1.3) and (1.4) will hold for.%'. This is, for 
instance, the case in linear regression, provided x has a nonsingular second­
moment matrix. Still, the envelope condition on .%' seems to rule out many 
interesting models. Therefore, we propose to weaken (1.3) to uniform square 
integrability of .%' and to impose the entropy condition on a class of truncated 
functions. 

A class .%' is uniformly square integrable if 

(1.5) lim sup J f 2 dJl = 0. 
c-oo /e.F l/l>C 

The class of truncated functions from .%' is defined as follows. Let C be a 
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positive number and denote 

{
c, 

(f)c= f, 
-C, 

if f > c, 
if Ill s c, 
if f < -C. 

Take (,gt;')c = {(f )c: f E ,gt;}. Note that for each C > 0 the envelope condition 
on (§)c is certainly fulfilled. 

THEOREM 1.2. Suppose that<§ is a permissible class with g 0 E 'f1, that§ is 
uni/ ormly square integrable and {hat for each C > 0 

1 
(1.6) -log N2(o,Hn, (,gt;)c) ~1> 0, forall 8 > 0. 

n 

Then gn is strongly L2(1R d, H)-consistent. 

It is easy to see that the conditions of Theorem 1.2 are implied by those of 
Proposition 1.1, but that in general they do not imply L 2(1R d, Hn)-consistency. 
Consistency properties of regression estimators for more specific models have 
been studied by other authors. In nonlinear regression, 'f1 is a class of functions 
of the form {g(x, 8): 8 E 8} with e some metric space and g(x, 8) continuous in 
8 for H-alnwst all x. It is shown in Section 3 that condition (1.6) is fulfilled for 
this 'f1 if e is compact. Jennrich (1969) proves consistency under the assumption 
that e is compact and that the envelope condition on 'f1 holds: 

J supjg(x,O)j 2 dH(x) < oo. 
llE0 

Huber (1967) imposes an envelope condition on a rescaled version of 'f1. He allows 
for more general scale transformations, but there appears to be not much loss of 
generality if we restrict ourselves to the choice of §. If the envelope F of g; 
belongs to L 2(1Rd, H), then it can be shown that if (1.6) holds, gn is also strongly 
L2(1R d, Hn)-consistent. And, moreover, the truncation device becomes redundant. 

In nonparametric regression, there is usually no parametrization such that the 
regression functions are continuous in the parameter for H-almost all x. In 
Theorem 1.2, this continuity assumption is not required. The relation with the 
assumption of compactness of parameter space is made clear in the following 
lemma. A class g; is called totally bounded if for all o > 0, the 8-entropy with 
respect to the L 2(1Rd, H)-norm is finite. The closure of a totally bounded § is 
compact. 

LEMMA 1.3. The conditions of Theorem 1.2 imply that § is totally bounded. 
Moreover, a totally bounded class g; is uniformly square integrable. 

So far we did not consider classes of regression functions depending on n, 'f1n 
say. Such a situation arises for instance in spline regression, nearest neighbor 
regression and some other nonparametric regression models. It can be deduced 
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from Pollard (1984, page 31) that if egn is a permissible sequence of classes with 
envelope G (not depending on n) in L2(Rd, H), then 

implies 

1 
-logN2(l>,Hn,egn) ~P 0 
n 

sup Jllglln - Jlg!JI ~P O. 
ge~n 

Note that the convergence is now in probability (almost sure results can only be 
obtained if the entropy remains small). It is now not difficult to adjust Theorem 
1.2 to this situation, assuming uniform square integrability of u~. ~ = 
{g/(1 + jjgjl): g E egn}, together with (1.6) for ($")c, C > 0. 

2. Technical tools and proofs. For our purposes a slight modification of 
results obtained by Vapnik and Cervonenkis (1971, 1981) and Pollard (1984, 
Chapter II) is useful. Vapnik and Cervonenkis' 1971 paper is on uniform 
convergence of empirical measures over classes of measurable subsets of Rd_ 
They use the entropy of eg with respect to the L 00(R d, Hn)-nonn 

sup jg(xk) j, 
lsksn 

which makes sense since the indicator functions are in L00(Rd, H). Pollard 
mostly considers entropies with respect to the L1(Rd, Hn)-norm 

For further references, see also Pollard (1982) and Dudley (1984). We are working 
mainly with the L 2(R d, H n)-metric, although the class of truncated functions 
introduced in Section 1 is, of course, a subset of L"". In the proof of the following 4· 
lemma, N1( l>, Hn, eg) is the covering number of eg with respect to the , ' 
L1(1R d, H n )-norm. . 

LEMMA 2.1. Suppose that eg is a permissible dass, that 

(2.1) GE L 2(1Rd, H), 

and that for all l> > 0 

(2.2) 

Then 

sup I Ilg!!,. - !Jgll J ~ 0 almost surely. 
ge~ 

PROOF. For a permissible class eg with envelope G E V(R d, H n), 

1 
-log N1( l>, Rn, eg) ~P 0, for all l> > 0, 
n 
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implies 

sup IJ gd(Hn - H) I~ 0 almost surely 
ge'i9 

[see Pollard (1984, Chapter II, Theorem 24)]. Thus, the lemma is proved if we 

show that (2.2) implies that for all 8 > 0 

.2-,_logN1(o,Hn,<§ 2 )--tP 0, 
n 

where <§ 2 = {lgl2: g E <§}.But, apart from some constants, a covering set of <§ 

equipped with L 2(1R d, H n)-norm corresponds for all n sufficiently large to a 

covering set of <§ 2 equipped with L1(1R d, H n)-norm. To see this, note that for 
g,gE <§, 

fl1g1 2 - lgfldHn =/Ilg! - lg! l(lgl + lgl) dHn 

S: 2 fig - g!GdHn S: 2!fg - fillnlfGff n· 

And in view of (2.1) i!Giin ~ llGll < oo almost surely. D 

Lemma (2.1) is the basic tool for the proof of Proposition 1.1 and Theorem 1.2. 

PROOF OF PROPOSITION 1.1. Obviously, conditions (2.1) and (2.2) also hold 
for the class {Y - g: g E <§}, so from Lemma 2.1 we have 

sup llly-glln - fly-gill~ 0 almost surely. 
gE'i9 

Now, llY - glf 2 = fleff 2 +Ilg - gofl 2, and since g 0 E <§, llY - gnll; s; flell~· Hence, 
for arbitrary 71 > 0, and for all n sufficiently large 

llefl 2 + lfgn - gofl 2 s llY - gnfl~ + 7/ s ffeff~ + 11 s; lfell 2 + 271 almost surely. 

Or 

llgn - goll 2 s; 271 almost surely. 

Thus, flgn - g 0 ff --t 0 almost surely, and since fig - g 0fin --t fig - g 0 fj almost 
surely, uniformly in g E <§,this implies that also flgn - g 0 fln --t 0 almost surely. 

D 
PROOF OF THEOREM 1.2. We shall first construct a covering set of the class 

Yfc ={Le :l~llt - L +~fgll t: g E <§}. 

Let fj, J= 1,2, ... ,N2(8,Hn,(ff)c), be a covering set of (ffe)c, i.e., for each 
f = g/(l + !IBID E ff there exists an fj such that 

(2.3) 
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~or all j = 1, ... , N2( 8, Hn, (.%")c), define 

hj, k = (k8( € + g 0 ))c - fj, k = 0,1, ... ,[1/o]. 

593 

I'hen for all _n suffici~ntly large, {hj,k: j = 1, ... , N2(o,Hn,(ff)c), k = 
), 1, ... , [1/o]} is a covenng set of .?f'c. To see this, choose f = g/(1 + l\g\I), f1 as 
.n (2.3) and k = [1/( 8(1 + Ilg\\))]. Then 

\\( 1£ :,~;II L- (i +g!lgll L -hj,kt 

S \\( 1 +\gl\ - kO )(€+go) t + \\( 1 +gl\gll) c - fjlln 

< o\le + golln + 0 

::::; olle - goll + 2o 
almost surely, for n sufficiently large. Thus, we can apply Lemma 2.1 to .?f'c, 
which yields that 

almost surely, for all C > 0. 
Let 1J > O be arbitrary. Then from (2.4) we have that for all g E <.1, C > 0 and 

n sufficiently large 

almost surely. To get rid of the truncation in (2.5) we argue as follows. Obvi­
ously, 

For the left-hand side of (2.5) we have 

(2.6) 

\\( 1£: ,~;,,) c - ( 1 +g\\gll) J 
"'II'; :~1~/ll-\\(, +g11g11 l c - , +g11g11ll 

-\\( 1£: ,~;,, L -1£: ,~;11\I· 
Because of the assumed uniform square integrability, 

ll(g/(1 + \\g\\))c - g/(l +\lg\\) 11 
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can be made arbitrary small by taking C sufficiently large. Moreover, lie+ g 0 11 is 
finite, so {(e + g0)/(1 + llgll): g E @}is also uniformly square integrable. Hence, 
for C large enough 

Thus, (2.5) implies that for n sufficiently large 

r; :~1~tf ~II e; :~1~t[ + 211 almost surely. 

Since e and x are independent, this can be written as 

(2.7) llell 2 +Ilg - g0 11 2 ~ lle + g0 - gll~ + 211(1 + llgll)2 ahnost surely, 

for all g E @. 
For g n we have 

lie +go - A'nll~ ~ llell!, 

because g0 E @. Hence, (2.7) implies that for all n sufficiently large 

or 

llell 2 + llin - goll 2 ~ llell~ + 211(1 + llinll)2 

~ llell 2 + 311(1 + llin11)2 ahnost surely, 

II ~:~:.~f" a, almost surely. 

Since 11 was arbitrary we can take 311 < 1. But then 

((llgo - i'nll)/(1 + llin11})2 < 3'1} 

for all n sufficiently large implies that for some constant K < oo 

llgnll ~ K, 

for all n sufficiently large. 
This yields 

llgo - inll 2 ~ 311(1 + K )2 almost surely, 

which completes the proof. D 

PROOF OF LEMMA 1.3. It follows from Gine and Zinn (1984, Remark 8.9) that 
(modulo measurability) condition (1.6) implies that there exists a finite function 
Tc( 6) such that 

(2.8) 1P(N2(6,Hn,($)c) > Tc(6))-+ 0. 

Since in view of Lemma 2.1 

supill(f)cll-11( f )cllnl-+ 0 ahnostsurely, 
/e.F 
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for n ~ no a 8-covering set for II· lln is almost surely a 28-covering set for 11 ·II 
(~d vise versa ~or n 2: _n:0 ). This implies that (ff)c is totally bounded. The 
umform square mtegrab1hty now gives that ff is also totally bounded. This 
proves the first assertion. 

Suppose now that ff is totally bounded. Let 8 be arbitrary and let / 1, ••• , fm, 
m = 1, ... , N2( 8, H, ff), be a <>-covering set of ff. Then for C sufficiently large 

j=~~~. m \I( !Jc - iJ\I S 8. 

Furthermore, for f E ff, II f - fjll s 8, 

II ( f ) c - f II s II ( f ) c - ( fj) c II + II ( fj) c - fj II + 11 fj - f II 

s 211 f - /)I+ II( !Jc - fjll s 38. 

It follows that 

lim sup Ii( f)c - fll = 0. 
C-> oo /E!F 

This is equivalent with uniform square integrability. o 

3. Some applications. In this section we shall concentrate on conditions for 
the entropy condition (1.6) on (ff)c to hold. The technique to prove the lemmas 
is construction of a covering set and some combinatorics to count the number of 
elements. The uniform square integrability of ff imposes requirements on the 
(unknown) H. Often, it has to be shown by separate means that g,j(l + llgnlD is 
eventually in a totally bounded subset of ff [see, e.g., Huber (1967)]. To avoid 
digressions, we shall not elaborate on the uniform square integrability condition 
for specific situations, but only highlight that (1.6) is a common feature of 
regression models. 

An important special class of functions, that appears in several applications, is 
the collection of indicator functions of so-called VC classes of sets [Vapnik and 
Cervonenkis (1971)]. Let .91 be a class of measurable subsets of Rd. Identify sets 
A with their indicators lA. The sup-distance between sets is either zero or one. 
Therefore, for 8 < 1 the covering number does not depend on 8 and we write 
L~:""(x 1 , ••• , xn) = N00( 8, Hn, .91), 8 < 1. One calls .91 a VC class if for any collec­

tion Sn of n points, 

ild(Sn) S Anr, 

for some r 2: O, A > O. For instance, let .91 be the class of half-spaces 
{x: O'x = ()1x 1 + .. · +Odxd;::: 1} in !Rd, then it is easy to see (take all hyper­

planes through d points from Sn) that 

ild(Sn) s And. 

The graph of a function f is defined as the set 

{ ( x, t) : 0 s t 5. f ( x) or f ( x) s t s 0} 

[Pollard (1984, "polynomial classes")]. A class of functions ff is called a 
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VC-graph class if the graphs of functions in $l form a VC class. Application of a 
result of Pollard (1984, Chapter II, Lemma 25) yields that for g;; a VC-graph 
class, and Q a probability measure on Rd, there exist constants A and r, not 
depending on Q, such that for all C > 0 

N2(c5,Q,($l)c) :S ACrs-r, 0 < 8 < 1. 

Examples of VC-graph classes will be given below. 

3.1. Nonlinear regression. If the functions in <§ form a (subset of a) :finite­
dimensional vector space, then both<§ and $l are VC-graph classes [see Pollard 
(1984, Chapter II, Lemma 28) and Dudley (1984)]. This is a consequence of the 
fact that the collection of half-spaces is a VC class. Here is one more example 
where the regression functions form a VC-graph class. 

EXAMPLE. A model considered in Bard (1974) is 

y = exp( -81x1e-62x2) + e, 

The graphs are of the form 

(}i ~ 0, :x:i ~ 0, i = 1, 2. 

{(x1, x2 , t): 0 :St ::S exp(-81x1e- 62x2), 8; ~ 0, X; ~ 0, i = 1,2} 

= { (x11 x 2 , t): loglog~ ~ log81 + logx1 - 82x 2 , B; ~ 0, x; ~ 0, i = 1,2}. 

Thus [use Theorem 9.2.2 of Dudley (1984)], <§ is a VC-graph class and since <§ is 
uniformly bounded, this implies that g;; satisfies (1.6). 

EXAMPLE. The p-compartment model 
p 

y = L a;e/..ix + £, a;~ 0, Xi ~ 0, i = 1,. . ., p, x ;;::: 0. 
i=l 

If p = 1, the class of regression functions <§ forms a VC-graph class, so then we 
have for some A and r 

0<8<1. 

This yields for the case p ~ 1 (apply the triangle inequality) 

N2(c5,Hn,(<'9)c) :S [Acr(; )-rr. 
and since <§ is a cone, the same holds for the ($l)c· 

In general, let<§= {g(., 8): 0 EE>}, with (0, II ·II) some metric space. If g;; is 
not a VC-graph class, one can handle the entropy condition by assuming 
compactness of the parameter space. 

LEMMA 3.1.. Suppose that g(x, 8) is continuous in (} for H-almost all x, and 
that (0, II· ID is compact. Then for all C > 0, 8 > 0, 

1 
-log N2( 8, Hn, ( <'9)c) -+p 0, 
n 

l 
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as well as 

PROOF. The proof shows that for all o > 0 there exists a finite o-bracketing 
set, i.e., a set of functions {g(Ll, g(Rl} such that for each g E '§ there exists 
pair [g?\ g}R)] with g)Ll ~f (g)c1 s; gjRl and llg(L) - g(Rlll < o [see Dehard~ (1971)]. J J 

Define for all x E IR d, 0 E e, 
w(x,O,p) = _ sup \(g(x,O))c-(g(x,B))c\· 

(0: 110-0ll:5:P} 

Then 

limw(x,O,p) = 0, 
p-+O 

for every 0 and H-almost all x. Since (g(x, O))c::;; C for all x, dominated 
convergence implies that also 

lim II w(-, 0, p) 11 2 = 0. 
p-+O 

Hence, for arbitrary o > 0 there exists a finite covering set of 0 by balls with 
radius P; and centers O;, such that 

liw( ·, 0;, p;) 11
2 < ts 2 • 

For all n sufficiently large, also 

llw(·,O;,PJll: < 02 • 

But then {(g( ·, O;))c} is a finite covering set of ('§)c with L2(1Rd,Hn)-nonn 
i\(g( ·, O))c - (g( ·, OJ)clln::;; llw( ·, O;, PJl\n < o, 

for all 110 - 8;11 < P;· 
In the same way, one can construct a finite covering set of%, since the class 

{ a.g: a E [O, 1], g E '§} also satisfies the assumptions of Lemma 3.1. D 

If the regression functions are not continuous in 0, one can often split them up 
into continuous parts. An example is multiphase regression [see, e.g., Quandt 
(1958)]. 

In the next three applications <§ is always a cone. Thus, to check the entropy 
condition for the ( %)c it certainly suffices to verify the entropy condition for 
the ('§)c· In the proofs, the order symbol 0( ·)holds for n - oo. 

3.2. Monotone functions (isotonic regression). 

LEMMA 3.2. Let<#= {g: IR - IR, g is increasing}. Then for all o > 0, C > 0, 
1 
-log Nlo,Hn,(t'#)c) -P 0. 
n 
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PRooF. For g E <§, define k = [C/o] and A(iJ = {x: io s (g(x))c < 
(i + l)o}, for i = -(k + 1), -k, ... , k. Take g<iJ = io and approximate (g)c by 
L:ig<illA">· The {A<il} form a partition of IR with T = 2(k + 1) elements. As g 
varies, the A<il are in a class .;;1< 1l of intervals, for which 

AJ11(il( ) - 0( 2) u x 1 , .•• ,xn - n . 

Thus, we have O(n 2T) functions of the type I:ig<illAc;i. Also, 

supJ(g(x)) 0 - L:g<il(x)lAuil < o. 
X I 

Thus, 

D 

The result can be extended to functions of bounded variation and unimodal 
functions. If d > 1, further conditions are in general necessary to make sure that 
the entropy condition is fulfilled, e.g., assumptions on H or the condition that <§ 

is a class of distribution functions of bounded Stieltjes-Lebesgue measures. 

3.3. Smooth functions. Let <§n, n ;;::-:: 1, be a sequence of classes such that the 
elements of U<§n have all partial derivatives of order s :s; m, m ;;::-:: 0. 

LEMMA 3.3.1. For x E IR d, let JlxJJ denote the Euclidean norm of x. Suppose 
there exists an a s 1 and Ln = o(nCm+a)/d) such that 

ig<ml(x) - g<ml(x)I S LnJJx - .iJJa, 

for all x, i, g E c:§n· Then for all o > 0, C > 0, 

1 
-logN2(o,Hn,(<.1n)c) ~P 0. 
n 

PROOF. Without loss of generality we can assume that H has compact 
support K. If this is not the case, take a K with H(K) > 1 - o2 /C2• Then for 
any g 

ll(glx )c - (g)clln s C(l - Hn(K)) 112 ~ C(l - H(K)) 112 < o almost surely. 

Let { B<il} be a covering of K by balls with centers x<i) and radius 
m!(o/Ln)1/<m+al. The number of balls needed is O(LnJo)d/(m+aJ. Construct from 
the {B<il} a partition {A(i)} of K, e.g., take A<il = {x E B<il, x tE BUl, j < i}. 

Let g E <§n be arbitrary, and expand g(x) for x E A(i) in a Taylor series 
around x<il, 

g(x) = g<il(x) + R<il(x), x E A<il, 

where g<il(x) is the mth order Taylor expansion. The Lipschitz condition tells us 
that 
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Thus, we have that 

s~pl(g(x))c - ( ~(gCi>(x))clA<o(x)) I< 8. 

As g varies in ~n• the g<i) fonn a class of polynomials of fixed degree, ~ say. 
This dass is a finite-dimensional vector space, so there exist constants A and r 
such that for arbitrary measure Q 

N2( 8, Q, ( ~)c) :!>: ACr8-r. 

For each i with Hn(A<i>) * 0 we make the choice for Q, 

- <i> - Hn Q - Qn - Hn(A<i>) on A<i>. 

This shows that there is ~ coveri~g set {g)i>} of (~)c with at most ACr8-r 
elements, such that for arbitrary g< 1> E :I there is a g):> with 

ll(gCi>)clA<il - g);>iA<i>ll: = l<iJ(g<i>)c - g);>i2 dHn 

= Hn(A(il) fl(gCil)c - g);>1 2 dQn < Hn(A(i>) 82 , 

Hn(A<i>) * 0. 

But then 

II~ (g(il)clA(i) - ~g);>iA(i) r = L Hn(A(il) f i(g<il)c - g):> 12 dQn 
1 1 n i: Hn(A<•>j,,.O 

and 

ll(g)c- ~g);>1A<illl < 28. 
I n 

Hence, the functions o:::ig);>1A<'>} form a 28-covering set of (~n)c· The number of 
different functions in this covering set is 

0( (ACrs-r)O(L,,/B)dl<m+a>), 

i.e., 

D 

If the functions in ~n are uniformly bounded and H has compact support, 
then ~n is totally bounded with respect to the sup-norm [see Kolmogorov and 
Tikhomirov (1959)]. In our situation, ~n need not be uniformly bounded. The 
functions in (~n)c no longer have m derivatives, except in the case m = 0. 

The result of Lemma 3.3.1 can be applied in penalized least squares. Let d = 1 
and let the penalized least-squares estimator An be obtained by minimizing 

llY- gll! + A2nJ(g), 
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where J(g) is the penalty 

J(g) = j (g<m+ll(x))2 dx, m~O 

[see, e.g., Wahba (1984)]. We use Lemma 3.3.1 with d = 1 and a = 1 to establish 
the following: 

LEMMA 3.3.2. Suppose J(g0) < oo and nm+ixn--+ oo. Then there exists a 
sequence '#n such that gn E '#n almost surely for all n sufficiently l.arge, and 
such that for all 8 > 0, C > 0, 

1 
-log N2(8,Hn,('#n)c) -+p 0. 
n 

PRooF. The penalized least-squares estimator in has 2m continuous deriva­
tives [see Wahba (1984)]. We have 

I g~ml(x) - g~m>(x) I :::;;; Jl/2(gn)llx - .XII 

[see Ibragimov and Has'minskii (1981, page 81)]. Also 

llY - gnll! + A~J(gn) :::;;; llell! + A2nJ(go), 

which implies that for all n sufficiently large, 

Jl/2(gn) :::;;; 2 l~ell + J 112(g0) almost surely. 
n 

Take 

~n = {g: SUJ?ig<m>(x) -g<m>(x)I:::;;; Lnllx - xii}, 
x,x 

with Ln = 211ell/Xn + J 112(g0 ) = o(nm+l) and apply Lemma 3.3.1 with a= 1 
and d = 1. D 

3.4. Nearest neighhor regression. We consider the nearest neighbor regres­
sion estimator of the form 

Pn 

I+ - " gCi>1 &n - i.. n A~» 
i-1 

where the g~> are polynomials of fixed degree and A<~>, i = 1, ... , Pn• fonns a 
random partition of Rd. For instance, one may take the A<!l as the set containing 
the N = [n/pn] nearest neighbors of some xk. In general, let 

(3.1) 

{ 
Pn 

<§. = "g<il1 (i) 0 g<i) E ~ A(i) E JI( 
n i...J An· ' n ' 

i-1 

Pn } A<i> n AU>= 0 i.,,.,. LJ A<il = nd 
n n ' ' n n. • 

i-1 
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In a sense, this is an extension of a p-phase regression model to Pn·phase 
regression. 

LEMMA 3.4. Suppose that in (3.1) C§ is a VC-graph class and .;;I is a VC 
class, and that Pn = o( n /log n ). Then for all o > 0, C > O 

1 
-log Nz( 8, Hn, ( C§n) c) ~P 0. 
n 

PROOF. Since <:§ is a VC-graph class, we have 

N2 ( ;n, Hn, ( C§)c) s Acr( ;J-r, 
for some constants A and r. 

Let {g1} be a (8/pn)-covering class of (C§)c, such that for arbitrary g<il E c:; 
there is a g1i E {g1} such that 

ll (g<il) - g ·II < !_ · 
C ;, n Pn 

Then 

II i~l (g<il)clA(<l - i~l gi;lA<<l t s gl \l(g<i>)c - gJln < 8. 

For a fixed partition A 0 >, ..• , A<Pn>, there are at most (ACr(o/pn)-r)p" different 

functions of the type Ef; 1g1,1A«l· Since sf is a VC class, 

~_..,(x 1 , .•• ,xn) = O(n8 ), 

for some s ~ 0. Thus the number of L00(1Rd,Hn)-different partitions is O(n8P•). 

The total number of L 00(1Rd,Hn)-different functions Ef; 1g1,1A<'l is thus 
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