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1. INTRODUCTION AND MAIN THEOREM 

Consider the regression 

Yk = O'{;xk + ek, k = 1, · · · ,n, · · ·, 

where { ek} is a sequence of i.i.d. random variables with median zero and density h, { xk} is an i.i.d. 

sequence of random vectors in Rd, independent of {ek}, and with IE(x 1xf) =~,O<~<oo, and where 

00 ERd is unknown. The minimum L 1-norm estimator On is defined by 

n "T n 
~ [yk-Onxkl = min ~ [yk-OTxkl· 

k=I 8 k=l 

In VAN DE GEER (1988), conditions for the (9p(n- 112)-rate of convergence for On are presented. In fact, 

in that paper the regressors and disturbances are not required to be i.i.d. sequences. The i.i.d. 

assumption is also not crucial here, but we maintain it to simplify the exposition. ,.. 

Now, given the recent theory on empirical processes, asymptotic normality of On can be proved 

relatively easily, once the (9p(n - 112)-rate is already established. For this purpose, we introduce the 

process 
n n 

ln(T) = ~ [yk-(Oo+n- 112T)Txkl- ~ [yk-O'{;xkl, TERd. 

k=l k=l 

We shall show in Lemma 3 that under a regularity condition on h 

ln(T) = 2~Wn + TT~Th(O) + op(l), (I) 

uniformly for all ITI ,,;;;;;;,K. Here, Wn is a random vector that does not depend on T, and that converges 

in law to a normal distribution with mean zero and covariance matrix ~/ 4: 

e 
Wn~N(0,~14). 

From (1), one sees that the minimum of {/n(T):ITl,,;;;;;;,K} is attained at 

Tn = ~-I Wnlh(O) + op(l), 
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which con~erges in distribution to a N(O,L- 1 /[4h(0)2]) law. The consequence will be asymptotic nor­
mality for On. 

THEOREM I. Suppose that for some 1J >0, M < oo 

11~h(€)~M for all -11~€~1J. 

Assume that 

Then 
i: 

Vn(On -Oo)~N{O,L- 1 /[4h(0)2]). 

(2) 

{3) 

This theorem follows from (I), since conditions (2) and (3) ensure that IOn -00 1 =0p(n - 112 ) (see VAN 
DE GEER (1988)). Equation (l) in turn is proved using empirical process theory - see Lemma 3. 

REMARK. In POLLARD (1985) an alternative but closely related method for proving asymptotic nor­
mality in general cases, is presented. One of his examples is estimation of the median. 

2. RESULTS FROM EMPIRICAL PROCESS THEORY 
Let G be the distribution of x 1 and H the distribution of e 1• Define P = G X H. Let ~ be a class of 
functions on Rd+ 1 with 

Jljll2 = flfl2 dP<oo, jE6J. 

Denote the envelope of ~by 

F = suolf1. 
/E~ 

DEFINITION. The graph of a function /:Rd+ 1 ~R is defined as the set 

A = {(z,t): t~j(z)~O or O~j(z)~t}. 

(4) 

A class te of sets A cRd +1 is called a Va~nik-Chervonenkis class if for some r and some N 0 , and for 
all N ~ N 0 , any set S of N points in Rd+ is such that there are at most N r distinct sets of the form 
S nA with A Ete. 

A class ~of functions is called a VC-graph class if the graphs of the functions in ~form a Vapnik­
Chervonenkis class. 

We refer to DUDLEY (1984, Ch. 9) and POLLARD (1984, Ch. 2) thorough treatment of Vapnik­
Chervonenkis and VC-graph classes. All we need here is their result that each class of sets that are 
expressible as finite unions of finite intersections of halfspaces, is a Vapnik-Chervonenkis class. E.g. 

~ = {j(z) = yTzl(a'z;;..BJ(z): y,aERd+I, ,BER} 

is a VC-graph class, since its graphs are of the form 

({t~yT z ~O} n { O'.TZ ~,B})U({O~yT z ~I} n { O'.TZ~,B})U({ O'.T z <,B} n {t =O}) 

i.e. the union of 3 sets each of which is the intersection of 3 half spaces. 
Now, let Pn be the empirical measure based on (x 1,e 1 ), • • • ,(xn,en ). Define 

"nif) = Vn f fd(Pn - P), f E'i 

We shall consider "n as stochastic process on ~t, and therefore we need to impose measurability condi­
tions. To avoid digressions, we leave these unspecified and assume thoughout the paper that ~ is 
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permissible in the sense of POLLARD ( 1984). 

THEOREM 2. Suppose that 6J" is a VC-graph class with envelope F satisfying llFll<oo. Then the asymp­
totic equicontinuity criterion holds: for all 8>f) there is an n8 such that 

Prob( sup IPn(f)-vn(/)I >8)<8 (5) 
f,f,_E~l 

11/-jll<li 

for all n~ns. 

PROOF. This is a special case of a more general result for Donsker classes. See e.g. POLLARD (1982, 
1984) D 

We shall use Theorem 2 in e.g. the following form: if 6J" is a VC-graph class with envelope F satisfy­

ing llFll<oo, and if {§;,} is a sequence of subclasses with llfll =o(l) uniformly in /E6J"n, then 

Pn(f) =op( l) uniformly in f E§;,. Here, we notify the abuse of notation that the subscript "P" in the 
stochastic order symbol refers to the probability measure for the whole sequence (x i,e 1 ),(x2,e2), • • • • 

3. PROOF OF EQUALITY (1) 

LEMMA 3. Suppose that for some 11>0, M<oo, h(t:):;:;;;_M for all t:E[-11.111 then 

ln(T) = 2TTWn + TT~Th(O) + op(l), 

uniformly for all jTl .,;;;;;.K, where Wn does not depend on T and 
~ 

Wn~N(0,~14). 

PROOF. We have 

-2 

Consider the first term of this expression. Define for ~ERd, t:t:R 

/T.a(~.t:) = TT~ 11(.-;;;a'~l (~.t:), TERd, aEllld. 

Let 6J"={JT.a: ITl.,;;;;;.K, aERd}. Clearly, §"is a VC-graph class, and its envelope Fsatisfies 

llFll2 .,;;;;;_ max TT~T< 00. 
jTj.-;;;K 

(6) 

Moreover, 11/T.n '"T -/T.oll=o(l), uniformly in ITl:;:;;;_K. Therefore, by the asymptotic equicontinuity 
criterion (5), 

PnlfT.n 1' 2T) = Pn({T,O) + op(l), 

uniformly in ITl.,;;;;;.K. Thus, we can write the first term of (6) as 

_ ~ ~' 
1 

TT Xk = PnifT.O) + Vn f fT.n "T dP + op(l). 
V n e1 ~n T X 1 

(7) 
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Define 

1 n 1 
W1,n = _I ~ Xk[l{e,o.;;Oj{ek)-2]. 

vn k=I 

Then vn<f •. o) = TTW1.n since e1 has median zero, and (7) becomes 

_ ~ ~2 r TT Xk = TTWl,n + Vn J J,,,n- 112
,, dP + 01>{1). 

V n e,o.;;n T X, 

Similarly, for the second expression in (6) we find 

1 T T -' -
- ' ~2 T T Xk = T W2,n + vn J f,,,n 112,, dP + 01>{1), 
vn e,>n TX, 

uniformly in !TI ~K, where 

1 n 1 
W2.n = _ / ~ xk[l{e,>Oj{ek)-2], 

vn k=I 

and where J,,,n- 112 ,, is defined as 

J,,.n-112,,(g,f.) = Trg1{£>n-112,,'t}{g,f.) 

Let H(f3)= flc-oo.fJldH, /JER. For gERd, 

H(n-112TT$)-H(O) = h(O) + o(l) 
n-112TTg 

(8) 

(9) 

uniformly in ITl~K. By assumption, h(f.)~M for all f.E[-71,71]. Dominated convergence now yields 
that 

Vn f<J,,,n-'",,-f,,.o)dP = TTLTh(O) + 01>(1) 

and similarly 

Vn f lf,,.n-''2,,-f,,,o)dP = _TTLTh(O) + o(l), 

uniformly in ITl~K. Furthermore, since e 1 has median zero 

f f,,.o dP = J J,,,o dP. 

(10) 

{11) 

(12) 

Combining (8), (9), (10), (11) and (12), we see that the difference of the first two terms of (6) can be 
written as 

1 ~T I ~T T T 
-- £.J T Xk - -- .£.J 7' Xk = T ( W 1.n - W 2.n) + 2T LTh(O) + 01'(1) .. r -112 T .. 'n 111 r vn ~.;,;n T~ vn ~>n T~ 

(13) 

Consider now the third term in (6). Let 

f,,.a,fJ(g,f.) = /3t:l{,,'~>01m 110<£.;;a'~J(tf.), 

and define Cf! = {f,,,a,fJ: TEIRd,/3ER, jajo;;;;K//3}. Also§" is a VC-graph class. Its envelope F* satisfies 

llF* 11 2 ~ max /32aTLa<oo. 
lalo.;;Kf/3 

But clearly, ll/,,,n-1'2,,,n 112 ll=o(l) uniformly in jTj~K. so that vn<f-r.n '''-r.n"2 )=01>(l) by the asymptotic 
equicontinuity criterion. Thus 

2 ~ ek = 2v if 112 112 ) + 2 Vn J f ,,, ,,, dP ,,'~O n T,n -r.n T,n -r.n (14) 



= 2Vn Jfr.n 112 T,n 112 dP + op(l), 

uniformly in l'TI ~K. Similar arguments apply to the last term in (6): 

1"'Ao ek = 2Vn J 71".n-"'T,n"' dP + op(l), 

n-llZTTXk<e,.~O 

where 

7T,n- 112T,n 1' 2 (~,£) = n llZ£1 (T,.E<O) (~) l{n- 112 TrE<€..;Q)(t£). 

Again, by dominated convergence 

2- '; f [f _,,, ,,, -f- -112 '''] dP = 'TT"Z-'Th(O) + o(l), v n 'T~n '1',n T,n 1',n 

uniformly in l'TI ~K. 
Hence, from (14), (15) and (16) 

2 _,.x~>O ek - 2 ~ ek = 'TT"Z-'Th(O) + op(l ). 
, • Trx,<0 

Insert ( 13) and ( 17) into ( 6) to obtain that 

ln('T) = 'TT(W1.n -Wz.n} + 'TT"Z-'Th(O) + op(l) 

uniformly in l'TI ~K. The proof is completed by writing 

l 
Wn = 2(W1,n- W2.n}, 

i: 

and noting that the central limit theorem ensures that Wn~N(O,Z.14). D 
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(15) 

(16) 

{17) 

Obviously, given that !On -80 1 =lSp(n-1/2 ), Lemma 3 implies the asymptotic distribution as 

presented in Theorem l. Moreover, it follows that 

n AT n 
-2h(O)[~ [yk-8nxkl- ~ [yk-8lxkll 

k =I k =I 

has asymptotically a chi-square distribution with d degrees of freedom. 
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