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In this paper, an entropy approach is proposed to establish rates of convergence for estimators of a regres­
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1. INTRODUCTION 

Consider observations Yk ER, k = 1, · · · ,n, which are assumed to satisfy 

Yk = go(xk)+Ek> k = 1, · · · ,n, 
with xk ERd, k = 1, · · · ,n, £i. · · ·,En independent -errors, and g0 an unknown function. The problem 
is to estimate g0 given that g0 E§ where § is some class of regression functions on Rd. For example, in 
linear regression, § is the class of all linear functions {g(x)=OT x: 8ERd} and in nonparametric 
regression, §is e.g. the class of all functions that have a fixed number, m say, of derivatives. In this 
paper, we shall relate the speed of estimation to the entropy of §. A definition of entropy is given in 
Section 2. The estimation procedures we shall consider are the method of least squares, of minimum 

L 1-norm, and of penalized least squares. These procedures differ with respect to their loss functions, 
but we shall provide a general technique to obtain rates of convergence for the resulting estimators. 
In the case of penalized least squares, we confine ourselves to the class of smooth functions mentioned 
above. In the other two situations: least squares and minimum L 1-norm, the results will be applicable 
to more general classes of functions. Examples with a particular § are presented in Section 4. 

Let us now describe the main idea behind the technique we propose. Consider first the case of 
least squares estimation. The least squares loss function is 

1 n 
L,,(g) = -;; k~11Yk-g(xk)l

2 , (1) 

and the least squares estimator in is given by 

Ln{in) = min L,,(g). 
ge6 

A simple argument will lead us to empirical process theory. Regard 

Pn(g) = Vn[Ln(g)-IEL,,(g)] 

as empirical proces indexed by functions gE§. Endow§ with the (pseudo-) metric 11 · lln, defined by 

llgll~ = _!_ f lg(xk)l2• 
n k=1 

'" 
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In the hterature on empirical processes, a theory is developed for the order of magnitude of the incre­
ments of empirical pi:ocesses indexed by functions (see e.g. ALEXANDER (1984), DUDLEY (1984), 
POLLARD (1984)). Also in this context, we aim at expressing the order of magnitude of lvn(g)-vn(g0 )1 
in terms of llg-golln· Since Lnein)~Ln(go), which can be rewritten as 

A - f IA 2 Pn(go)-Pn{gn) ~ VnJgn-golJn, (2) 

results on the increments of Pn will imply a rate of convergence in 11 · lln-norm for in· Our line of rea­
soning is best illustrated with the following example. 

EXAMPLE. Let §={g: [O, IJ~R, /lg<m>12 ~I}, where m~l, and where g<m> denotes the m-th deriva­
tive of g. Suppose £1, · · · ,En are normally distributed with expectation zero and with common vari­
ance a2 say, n =I, 2, · ··.We shall show in Lemma 5.1 that 

lvn(g)-vn(g~)I = e (I), (3) 
I--m 'P 

llg-golln 2 

uniformly for all gE§ with llg-g0 11n bounded by some constant. Insert (3), with g replaced by in• 
into (2) to see that 

m 

llin-golln = ep [n - 2m+l ). 

This turns out to be the optimal rate for estimating g0 (see STONE (1982)). 

We argue that a general method for proving rates of convergence for the least squares estimator, is 
close inspection of the increments of Pn. The increments in turn, depend on the entropy of§: if the 
entropy is large, then the increments can be large too. Therefore, the entropy of § determines a rate of 
convergence. These observations are exploited in Theorem 3.1, where the evaluations of increments 
are hidden in the proof. 

The argument can be easily transferred to minimum L 1-norm estimation. Let the loss function be 

I n 
Ln, I (g) = -;; ~ [yk -g(xk)I. 

k=I 

The minimum L 1-norm estimator in, 1 is given by 

Ln, 1Cin, 1) = ~ Ln, 1(g). 
gE'1 

Define 

Pn, 1 (g) = Vn[Ln, 1(g)-IELn,1 (g)]. 

Under certain conditions, which we discuss in Section 3, we have that 
A _ f A 2 

Pn, i(go)-Pn, i(in, 1) ~ Vn'lj llgn, I -golln, (4) 

for some 'lj>O. So again, close inspection of the increments of Pn, 1 - which can be done using entropy 
considerations - leads to a rate of convergence for in, 1 • 

Let us now fit penalized least squares into this scheme. We consider only the case d =I and the 
smoothness penalty 

J2(g) = /lg(m)l2, m~l. (5) 

We assume that J(g0 ) is finite, but that a bound for J(g0 ) is unknown. The method of sieves for this 
situation is to take 
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with Mn~oo as n~oo, and to estimate g0 by least squares using this §n· However, we find that the 
rate of convergence for the resulting estimator will then be slower than the optimal rate (see Lemma 

4.1 (ii)). The penalized least squares estimator can overcome this drawback. Let Ln(g) be defined as in 

(1), and let gn,>.. be the minimizer of the loss function 

Ln(g)+i\~J2(g), 

where i\n~o is a smoothing parameter (see e.g. WAHBA (1984), SILVERMAN (1985)). To study the 

asymptotic behaviour of in,>..• we evaluate the increments of the empirical process Pn, not only in 

terms of llg-golln, but also in terms of J(g). In fact, we shall show that under certain conditions 

lvn(g)-vn(go)I = e (1) (6) 

1 _
_ l_ _I_ 'P ' 

llg-golln 2m (1+J(g))2m 

uniformly for all g with Ilg -1,, 0 lln bounded by some constant. From this, we shall establish that in,>.. 

converges with rate flp(n-ml( m+I)) provided i\n is chosen appropriately. In (6), we put (1 +J(g)) in 

the denominator instead of J(g), because we shall not be interested in what happens for small values 

of J (g ). See Section 6 for comments on this. 

2. THE ENTROPY OF §: DEFINITION AND EXAMPLES 
Let § be a class of functions of Rd, endowed with (pseudo-)norm 

[ 
1 n l 11

2 

llglln = -;:; k;
1 
lg(xk)l

2 

where { x 1, • • • ,Xn} is a set of points in Rd. 

DEFINITION. For 8>0, the 8-covering number Nn(8, §)is defined as the number of balls with radius 8 
for 11 • lln necessary to cover§. In other words, Nn(8, §)is the cardinality of the smallest set T say, such 
that for all g E § 

minllg -g; lln ..;;; 8. 
g,eT 

(7) 

Take Nn(8, §)=oo if no such finite set exists. A collection T of functions satisfying (7) is called a 8-
covering set. The 8-entropy of§ is ~(8, §)=logNn(8, §). 

Note that the entropy of § depends on the metric 11 • lln, and hence on the configuration of the 

points x 1, • • • ,xn. However, in many situations the order of magnitude of ~(8, §) as function of 8 
can be found without precise knowledge of this configuration. An important special case occurs when 
§is a so-called VC-graph class. "VC" stands for VAPNIK and CHERVONENKIS (1971), who introduced 

the concept for sets. If§ is a VC-graph class of degree r say, and if 

llsuolgl lln ..;;; 1 
getl 

then 

~(8, §) ..;;; A log(!), V 0<8..;;; ~ 

where the constant A >0 depends only on r (POLLARD (1984, page 27)). 
Two more examples are presented in Lemma 2.1 below. Throughout, we use the notation 

log+a = (loga)V 1, a>O. 

LEMMA 2.1. 
(i) Monotone functions. Let 
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§ = {g: IR ~ IR, g increasing. lgl~ I}. 

then 

~(8, §) ~A! log+ ( ! ), \f 8>0, 

for some constant A >0. 
(ii) Smooth functions. Let 

§M = {g: [O,l]~IR. llglln~K. J(g)~M}, M~l. 

where J (g) is defined as in ( 5 ). Define 

z = n 

I x 1 x'{'- 1 

m-1 
Xn 

and let <f>T.n be the smallest positive eigenvalue of ! ZIZn. If we assume </>1.n ~<f>>O, then 

I 

'.J<;,(6, §M) °"A [ ~ l ~, V 6>0, M;;. I, 

where A depends on m, cf> and K, but not on n, M and 8. 

PROOF. (i) Define Hn(B)= J_ ~ 18 (xk), B CIR. Assume without loss of generality that g~O for all 
n k=I 

gE§. Take 

N = [;, l +I, 

where la J denotes the largest integer less than or equal to a. Let - oo =a0 <a 1 
< · · · <aN - I <aN = oo be such that 

Hn(a; - I· a;] ~ 82
, i =I. · · · ,N. 

Define for each g E 9 

- l n 
g;(g) =-;; ~g(xk)l(a, ,.a,J(xk)!Hn(a;-1.a;] 

k=I 

and 

[
g;(g)l . K;(g) = -8- ' I = l, ... ,N. 

Then 

ll(g-8K;(g))l(a, 1 .a,]11~ 
~ Hn(a;-1.a;]{g 2(a;)-g 2(a;-i)}+Hn(a;-1.a;]82, i=l, · · · ,N. 

Hence 
N 

Ilg -8 ~ K;(g)l(a, ,.a,] II~ ~ {g(an)-g(ao)} +82 ~282 . 
i=I 

We have that O~K 1 (g)~ · · · ~Kn(g)~ l ! J, and K;(g)EN, i =I, · · · ,N. Therefore, the number 

"' 
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of functions of the form 
N 

~ Ki(g)l(a,_,, a,) 
i=I 

is at most 

[
(N + I)+ L 118 J - ll 

L118J · 

The logarithm of this expression is of the required order. 
(ii) The proof of Theorem xv of KOLMOGOROV and TIHOMIROV (1959, 1961, page 308) shows that 

the set 

!3c,M = {g: [O,l]~R, lgl~C, J(g)~M} 

can be covered by 

N = ex+ 1 log+ [ i] +A log+ [ ~] ! ] 
balls with radius 8 for the sup-norm. I.e., there exist functions gi, i = 1, · · · ,N, such that for gE!3c.M• 

min SUD lg(x)-gi(x)I ~ 8. 
g, XE({t, I) 

Thus, the result for §M is proved if we show that the functions in §M are uniformly bounded in a suit­

able way. 
Set S 1 ={gE§: J(g)=O}. It follows from the Sobolev Embedding Theorem (see e.g. ODEN and 

REDDY (1976, page 85)) that each gE§M can be written as g =h 1 +hi, with h 1 ES 1 and 

SUD lhi(x)I ~ C0M 
xe[Cl:I) 

for some C0 • Hence llh 1 lln~K +CoM~C 1 M for some C1. But then 

mC1M mC 1M 
SUD lh1(x)I ~ ~ ,i,. = C2M. 

xe[CI: I) <fit.n 't' 

so that 

REMARK:· It can be sh~wn that if the class of monotone functions define~ above is equifped with a~ 
appropnate L 1-norm, mstead of the Li-norm 11 · lln, then the entropy is o~ order 15- (see BIRGE 
(1980)). 

When considering regression problems, it will often suffice to consider the entropy of a ball around 

g 0 . We denote such a ball by 

Bn(go,K) = {gE§: llg-golln~K}, 

and write 

~(8, K, §) = ~(8, Bn(go, K)). 

If K is small, say K=L8, l<L<oo, then ~(8,L8,§) will be referred to as the local entropy. The 

finer concept of local entropy is especially of concern in the case where the functions in §are indexed 

by a finite-dimensional parameter, i.e. 

§ = {go: 8E0}, 0cRr. 
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As an example, consider the class of linear functions 

§ = {g(x)=OT x: OERd}. 

Let o/L and o/~.n be the smallest positive eigenvalue and the largest eigenvalue of ! X~ Xn respec­

tively, where Xn is the design matrix 

xf 
x = n 

Then, it is easy to see that 

'.K;,( 8, LB, !l) .; A 0log+ [ ~:: l +A log+ L, 'v'8> 0, (8) 

where the constants A 0 and A only depend on d. Thus, for linear functions the local 8-entropy does 
not depend on 8. 

3. RATES OF CONVERGENCE FOR LEAST SQUARES AND MINIMUM Li-NORM ESTIMATORS 
For the regression model of the introduction, we investigate the rate at which an estimator tends to g0 
in 11 · lln-norm. The main result for the least squares estimator is presented after introducing an 
exponential probability inequality which we shall need in the proof. At first reading, one may find it 
helpful to move from Theorem 3.1 to the examples in Lemma 4.1, and afterwards pass on to the case 
of minimum L 1-norm estimation. 

Let "n be defined as in the introduction, i.e. 

Pn(g) = Vn(Ln(g)-lf.Ln(g)), 

where Ln(g) is the least squares loss function. We shall require in Theorem 3.1 that for each g, g 

P(lvn(g)-11n(i)l~a) ~exp [- aa~ l · 'v'a<O, 
llg-gll~ 

where a>O is a constant. For comments on this, see Lemma 3.2 and the remarks following it. 

THEOREM 3.1. Let 8n~o be a sequence with Vn8n~ I, and suppose that for some n0 

I 

J yX,,(uL8n, L8n, §)du 

lim sup 0 Vn = 0. 
L-+oo n ;;.n. n 8nL 

(9) 

(10) 

If moreover (9) holds, then in converges with rate \Sp(8n). In fact, there exist constants Lo and Mo such 
that for all L~Lo, n ~no 

P(llgn-golln>L8n) ~ exp[-MoL2 n8~]. (II) 

PROOF. Clearly, it suffices to show that for n~n0 , L~L0 

n [ lvn(g)-vn(go)I ~ I 
u- s~F -' - 2 ,,..... 

llg-f.u>L&, V n Ilg go lln 
(12) 

is small in the sense of ( 11 ). Replacing L by 2L, we see that ( 12) can be bounded by 
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(12) 

Now, let for each i = 1,2, · · ·, T; be a minimal i-; +18n-covering set of Bn(g0 , 2/8n), i.e. for each 
gEBn(go, 2!8n) there exists a g;(g)ET; such that 

llg-g;(g)lln .;:;;; i-i+18n. 

Define g0(g)=g0 • Then we have 
00 

g-go = ~ {g;(g)-g;-1(g)} 
i=I 

pointwise on { x 1, · · · ,Xn}. 
Let {TI;, i = 1, 2, · · · } be a sequence of nonnegative numbers satisfying 

00 

~ 11; .;:;;; 1. 
i=I 

Then 

We take 

with 

Use the exponential bound (9) to establish that for some constant a'>O 

?1 .;:;;; ~exp [2'.J4i(T; + 18n, 2!8n, §)-a'22<i + l>n8~11r] 
1=1 

.;:;;; .~exp [2aj22<;+1>n8~11r-a'22<i+l>n8~11r), 
1=1 

(13) 

in view of (13). Since by condition (10), ar~O as j-Hx;, provided n~n0 , we find that for j 
sufficiently large and n~n0 

?1 ~ ~exp (-ta'2
2<;+1>n8~11r) 

1=1 

~ ~exp [-ta'22li+J>n8~~1 
i=I E 

~ exp ( - M'221 n8~), 

for some M' >0. 
Hence, for L sufficiently large and n ~ n 0 

~ P1 .;:;;; ~ exp (-M'221n8~] ~exp (-M022Ln8~], 
, l=L+I l=L+I 
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for some M0 >0. D 

Condition (10) essentially says that 8n should be such that the local 8n-entropy does not exceed n8~. 
However, one has to verify that the integral in (10) is finite. This entropy-integrability condition is 
well-known in the literature on empirical processes (see e.g. DUDLEY (1984), GINE and ZINN (1984)). 

We now report on the technical issue of the exponential probability inequality (9). Lemma 3.2 
below asserts that it is fulfilled if the moment generating functions of the squared errors exist and are 
uniformly bounded. This is for instance the case if t:1, • • • ,t:n are normally distributed with common 
variance a2, n ;;;;;. I. 

LEMMA 3.2. Suppose t:1, · • • ,t:n have expectation zero, and that 

sup max IE[exp(,8!t:kl2)] = f <oo, 
n (.;;;k.;;;n 

for some /J>O. Then for each g, g 

IP'(!vn(g)-vn{,g)j;;;;.a) :s;;;; exp - _ , [ aa2 I 
llg-gll~ 

\fa>O, 

where a>O depends only on ,8 and f. 

PROOF. For all h>O 

IP'(!vn(g)- Pn(g)I ;;;.a ):s;;;;exp( -ha)IE exp(h(vn(g)- Pn(g))) 
n 

= exp(-ha) II 1E exp[2hn - 112 jt:kllg(xk)-g(xk)j]. 
k =l 

KUELBS (1978) shows that under (14), for some A depending only on ,8 and f 

1E exp[2hn - 112 jt:kllg(xk)-g(xk)I] :s;;;; exp[h 2n - 1 lg(xk)-g(xk )IA2]. 

Take h =(2aa)!llg-gll~. with a=(4A2)- 1• Then 

(14) 

- a 2 a A llg-glln -aa2 [ l [ 2 2 - 2] [ l 
IP'(!vn(g)-vn(g)!;;;;.a) :s;;;; exp - 2A2 11g-gll~ exp 4A4 llg-gll~ =exp llg-gll~ . D 

In the particular situation that the functions in § can be indexed in a suitable way by a finite­
dimensional parameter 0E0CW, one can establish the rate l'lp(n- 112 ) for in by imposing the assump­
tion that the p-th moment of the errors exists. Here, p should be larger than the dimension r. In that 
situation, the assumption of existence of moment generating functions or the exponential probability 
inequality (9) is not needed. See e.g. VAN DE GEER ( 1988) for details. 

We now turn to the situation of minimum L 1-norm estimation. Rewrite Ln. i<in. i):s;;;;Ln. i(go) as 
A • f 2 A 

Pn.1(go)-vn. l(gn, i);;;;. V n Pn(gn. l -go), 

where 

l n l n 
p~(g-go) = - ~ IElt:k-(g(xk)-go(xk})I-- ~ IElt:k I. 

nk=l nk=t 

Throughout when considering minimum L 1-norm estimation, we shall require that t: 1, • • • ,t:n have 
median zero, so that p~(g-g0 ) is nonnegative. First, we relate p~(g-g0 ) to llg-g0 11~. 

LEMMA 3.3. Suppose there exists a C0 >0 and a K>O such that for all O<a:s;;;;C0 



inf min l?(Oo::;;t:ko::;;a);;;;.ica 
n lo;;;ko;;;n 

as well as 

inf min l?(-a~t:ko::;;O);;;;.ica. 
n Jo;;;ko;;;n 

Suppose furthermore that for some sequence Cn;;. I and some D < oo 

max lg(xk)-go(xk)I .,;;:: D 
1.;;;ko;;;n I +cnllg-golln ....,. . 

Define 

6J = {(g-go)/(l +cnllg-golln):gE§}. 

There exists an 11>0 such that for all f E 6J 

p~(f);;;;.1111}11~. 

PROOF. By straightforward manipulation 
I n l n 

p~(f) = - ~ lE lt:k-f(xk)l -- ~ IE h I 
nk=I nk=I 

I I 
~ - ~ f(xk)l?(O~t:ko:;;;2f(xk)) 

n j(x,);;;>0 

I l + - ~ {-f(xk)}l?(If(xk}o:;;;t:k~O). 
n j(x,)<0 _ 

Now, assume without loss of generality that C 0 ,,,;;; ; , D ~ l. Then 

I Co 
-zlf(xk)I ~D lf(xk)I 

and 

~ lf(xk)lo::;;Co, forallfE~ k=l, · · · ,n. 

This yields for f(xk);;;;.O,fE~ 

l Co Co 
l?(O~t:k ~2f(xk))~l?(Oo::;;t:k o:;;;D f(xk))~icD f(xk ). 

c 
Similar arguments apply to the case f(xk)<O. Thus p~(f)~ic ; 11}11~. 0 

In what follows, we shall also work with the class 

6J = {(g-go)/(l +cnllg-golln):gE~} 

9 

(15a) 

(15b) 

defined in Lemma 3.3. We shall show that the rate of convergence for llgn -g0 lln follows from the rate 

for llgn-golln/ (I +cnllgn-golln). 

THEOREM 3.4. Let the conditions of Lemma 3.3 be fulfilled. Let 8n~o be some sequence with Vn 8n ~ l, 
and assume that for some no 

I 

J y'X,,(uL8n,L8n.6J)du 

,, lim sup 0 = 0. 
L->oo n ;;;>no Vn 8n L 

(16) 
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Then there exist constants L0 and Mo such that for all L;;;;;. Lo, n;;;;;. no 

IJl> [ llgn ~golln >L8nl ~exp[-MoL2n8~]. 
I +cnllgn-golln 

Moreover, if cn8n~o. then llgn -go lln =0/8n)· 

PROOF. Define 
I n I n 

ln[g-go]=- }: lik 1-- }: lik -(g(xk)-go(xk))I. 
, nk=I nk=I 

(17) 

Then clearly Pn.1(go)-Pn.1(g)= Vn{/n[g-go] +p~(g-go)}= Pn.o(g-go), say. We have for each 
O~ao;;;;l, 

ln[a(g-go)];;;;;.a/n[g-go]. 

Hence. if we define 
A 

A gn, 1-go 

fn. i = I +cnllgn, l -golln' 

we find 

Thus, 

Pn. olfn. I)= Vn { lnl/;,, d + P~lfn. i)};;;;. Vn P~lfn. i). 
But then, in view of Lemma 3.3, 

Pn.olfn. 1 );;;;. Vn11llfn.1 II~. 
Hence, for the first part of the theorem it suffices to show that for all L;;;;oL0 , n;;;;;.n 0 

IJl>[ sug 
1);(j)~ ~1l]o;;;;exp[-M0L 2 n8~]. 

llji{~~ll. n llflln 

Now, 
- -

I lik-f(xk)l-lik-f(xk)l lo;;;;lf(xd-f(xdl. 

So application of Hoeffding's inequality (HOEFFDING ( 1963)) yields that for some a>O 

IJl>(IPn o<J)-Pn o(f)- I ;;;;oa)~exp [- aa: ]· 'v'a>O. 
. . llJ-jll~ 

Therefore, ( 17) follows from using exactly the same arguments as in the proof of Theorem 3.1, replac-
ing Pn Aby Pn.O· A 

If llfn. 1 lln =0p(8n) and cn8n~O. then certainly with arbitrary large probability Cn llfn.1lln.;;;;;112 for all 
n sufficiently large. And if Cn llfn. 1lln~l12, then also Cn llgn. 1 - go lln ~ 112. So then 

llgn, I -golln = llfn. illn(l +cnllgn. I -golln) = €p(8n)· D 

Note that in most instances, §will be a cone (i.e. if gE§ then also agE§ for all a>O). Then the 
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local entropies of § and §'are of the same order, so that the rates of convergence for gn and gn, 1 coin­

cide. Moreover, to arrive at the result for gn, 1 , relatively weak conditions on the errors are needed. In 

this sense, minimum L 1 -norm estimation is more robust. 

4. EXAMPLES 

We investigate three types of regression problems: linear regression and two nonparametric situations 

with isotonic and smooth functions (splines) respectively. The least squares estimator and the 

minimum L 1-norm estimator are treated separately, because in the latter case we need to find the 

appropriate sequence en introduced in Lemma 3.3. The exploration of the exponential bounds (11) 

and (17) are left to the reader. 
In the case of least squares estimation, we assume that the conditions of Lemma 3.2 on the errors 

are met. 

LEMMA 4.1. Suppose the conditions of Lemma 3.2 are fulfilled. 
(i) Monotone functions. Let§= {g :R~R.g increasing, lg I,;;;;; 1 }. then 

llgn-golln = l9p(n- 113 (logn)112
). 

(ii) Smooth functions. Let 

§ = {g:[O,l]~R.J(g),;;;;;Mn}, Mn~l. 

where 

Define 

[l 
m-1 

. ~I ... X1 

z = .. 
n . • ' 

1 x · · · xm-I n n 

and denote by <l>T.n the smallest positive eigenvalue of ! zrzn. Suppose that </>1.n~<t>>O for all n 

sufficiently large. Then 
m I 

llgn -golln = (9p(n - 2m +I Mn2m ). 

(iii) Linear functions. Let § = {g(x) = oT x :0 E Rd} and let Xn be the design matrix Xn = (x 1' ... ,Xn l. 
Denote the smallest positive eigenvalue of ! XI Xn by o/T.n and the largest eigenvalue by "1in· We have 

llgn -go lln = flp(n - 112[log+ ~2.n ]112 ). 
't'l.n 

PROOF. All three cases follow by verification of (10). Roughly speaking, one has to choose the rate 8n 

in such a way that the local Sn-entropy does not exceed n8~. Furthermore, the entropy should be 

integrable. 

(i) From Lemma 2.1 (i) 

'JCn(uL8n,L8n,§),;;;;;'JCn(uL8n,§) 

,;;;;;A {(L8nu)- 1 log+ ( uiBn )} 

:,;;;;; Const. (L - 11og + ( i ))n8~u- 1 log+(~) 
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for 8n=n- 113(logn)112 , and n sufficiently large. Hence 
I 

J V'J4i(uL8n,L8n,IJ)du [log+_!_ l 11
2 

1 
0 .;;;;; Const. 

3 
L Ju- 112 log 112(_.!_)du 

VnL8n L 0 u 

~o as L~oo. 

(ii) In this case, we use the fact that we may restrict ourselves to a ball around g0 • No matter what Q 

is, we always have 

llgn-goll~~. ~ IPn(gn)-Pn(go)l .;;;;2(1_}: 1£k 12
)

112 11gn-golln· 
vn nk=I 

The conditions of Lemma 3.2 ensure that 

l n 
- }: 1£k 1

2 = (9p(l). 
n k=I 

Therefore, it suffices to consider a ball Bn(g0,K), K>O. But for L8n .;;;;K 

M _..!_ 

'J4i(uL8n,L8n,Q).;;;;'Jfn(uL8n,K,Q).;;;;A ( uL~n ) m · 

m ---
This follows from Lemma 2.1 (ii). Thus, if 8n = n 2

m + 1 M n2m 

'Jfn(uL8n,L8n,Q)~ Const. n8~, 

and 
I I I 

J V'J4i(uL8n,L8n/J)du Ju -T,; du 
..::.o _____ ,---- ~ Const. 0 

1 
~o. 

vn8nL 1+-L 2m 

(iii) From (8) 

and hence, for 8n = n - 112 [log+ ( ~2.n )] + and for n sufficiently large 
't'l.n 

I I l 
J V'i:(uL8n,L8n,Q)du j(log-)112du 
0 0 u -=----_-1 ---- ~ Const. -=------ ~o. D 

vn~L L 

The more or less classical cases are the case Mn= (9( l) and the case o/2.n N1.n = (9( l) in Lemma 4.1 (ii) 
& (iii). For the minimum L 1-norm estimator, we shall only report on situations of this type, in order 
to keep the exposition simple. 

LEMMA 4.2. Suppose (15a) and (15b) hold for £i.··· ,£n,n = 1,2, · · ·. 
(i) Monotone functions. For Q defined in Lemma 4.1 (i), 

llgn, I -golln = 0p(n- 113 (logn)112 ). 
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(ii) Smooth functions. Define § and <l>i.n as in Lemma 4.1 (ii), and suppose that </>1,n ~</>>0 for all n 

and Mn =19(1). Then 
m 

llin, J -golln = l9p(n - 2m+I ). 

(iii) Linear functions. Let §,1/li,n and t/i2,n be defined as in Lemma 4.1 (iii) and let dn ~ 1 be a sequence 

satisfying 

where (x1b · · · ,xdk) denote the co-ordinates of Xk,k=l, · · · ,n. Suppose tli2.nN1.n=e(l) and 

. n - 112 dn tVJ,n ~o, then 
A I - -1/2 llgn, J -go In - l9p(n ). 

PROOF. Take 'J={(g-go)/ (1 +cnllg-golln): gE§}, with Cn to be specified. 

(i) Obviously, if we take Cn = 1 for all n 

sug lfl ~1. 
fe.t 

The entropies of <J and § are of the same order, so the rate for in. 1 follows from entropy calculations 

as in Lemma 4.1 (i). 
(ii) Again, take Cn = 1 for all n. Then for jEGJ, J(j),;;;;.Mn =(9(1). This, and the fact that llf11n~l and 

<J>i,n ~<t>>O, implies that the functions in <J are uniformly bounded (see the proof of Lemma 2.1 (ii)). 

So the rate for in. 1 follows from entropy calculations. 

(iii) Taking Cn =dnN1.m we find 

118-0olldn -
J~~n }~~ lf(xk)I,;;;;. s~p 1+118-0olldn ,;;;;_}. 

Here 118-80 11 is the Euclidean norm of 8-80 Ellld. Thus, if we assume cn8n-'p0, Cn = dnft/iJ,n, 

8n = n - J/2, we arrive at the rate (9p(n - 112 ) for in. I· 0 

We end this section with some remarks on each of the three cases. First, the rate (9p(n- 113(/ogn)112 ) 

for monotone functions does not coincide with the (9p(n- 113 )-rate of convergence in L 1-norm, that can 

occur when estimating a monotone density (BIRGE (1980), GROENEBOOM (1985)). However, it should 

be emphasized that this is only due to our bound for the entropy. Secondly, Lemma 4.2 (ii) can of 

course be extended to the case Mn~oo, i.e. the method of sieves. Then, the rate will again be slower. 

Finally, if we assume in Lemmas 4.1 (iii) and 4.2 (iii), that t/iT.n is the smallest eigenvalue of ! xr Xn, 

then the speed of estimation of the estimator of 80 is ISp(8nN1.n) if the estimator of g0 converges with 

rate (9p(8n). 

5. PENALIZED LEAST SQUARES 

In this section, we confine ourselves to the situation where the regression functions g have compact 

domain in R and where 

J2(g) = J lg(m) 12<00, m~ I. 

We assume throughout that J(g0 ) is finite, but that no further information on g0 is available (e.g. g0 

might not be very smooth in the sense of WAHBA (1977) ). The penalized least squares estimator in . .,._ 

minimizes the loss function 

Ln(g) + A.~J 2(g), 
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where An~O is a smoothing parameter. 
The asymptotic properties of in.1' will be studied using results on the increments of the process vn 

indexed by functions g E §, where 

§ = {g:[O,l]~R, llg-golln~K, J(g)<oo}, (18) 

with K some constant. Using a simple argument, we show in Theorem 5.2 that indeed, with arbitrary 
large probability llgn,1' -g0 lln ~K for some Kand all n sufficiently large. 

The proof of Lemma 5.1 below is along the lines of the proof of the Chaining Lemma in POLLARD 
(1984, page 144). We borrow the steps Pollard uses without stating them all explicitly. 

LEMMA 5.1. Let§ be defined in (18). Denote by <f>T.n the smallest positive eigenvalue of! ZIZm where 

[1 
m-1 

.... ~I 

z = . . 
n . . ' 

l m-1 
Xn 

and suppose </>1.n ~<f>>O. Suppose moreover that the conditions of Lemma 3.2 on the errors 
£i, · · · ,£n, n = 1,2, · · · are met. Then 

I Pn(g)-vn(go)I 
SUP = \9p(l). 
gEt3 1--1 _I 

Ilg-go lln 2m (l +J (g)) 2m 

PROOF. Define §M={gE§:J(g)~M},M~l. In the Chaining Lemma (POLLARD (1984, page 144)), 
one can find the arguments that show that one can assume without loss of generality: 
(a) §M, as class of functions on {xi. · · · ,xn}, is countable, 

00 

(b) there exist ri K-covering sets Ti, i = 1,2, · · · , with T1 c T2 c · ··,and §M = _u Ti, 
i=I 

(c) the cardinality of the sets Ti is of the same order as the i-i K-covering number Nn(2-i K, §M ). 

Moreover, as in the Chaining Lemma, we link a gE§M to g0 with a chain of functions .. I.e. define t 

by 

ru +I) K <Ilg-go lln ~i- 1 K. 

Choose s>t in such a way that both g and g0 are in T5 , say g=g5 (g),g0 =g5 (g0 ). With a chain 
g5(g), · · · ,g1(g), link g to a g,(g)ET1 in such a way that each gi(g)ET; is the closest point to 
gi + 1(g)ETi +I• and 

llgi(g)-g;+ 1 (g)11n~2.r;K, i=t,t +I,··· ,s -1. 

Similarly, link g0 to a g1(g0 )ET1• The reader unfamiliar with this chaining device is referred to 
Pollard's book. 

Now, let L>O and let ill be the set 

ill = {~up max lvn(g;)-vn(gi+1)l1 >L}. 
1-1.L. vT. 2'M -

g,.,cT,., llg;-g;+1lln{/() 2
m 

The cardinality of T; is no greater than 
I 

card (Ti)~ exp (A(2i M) 2m ), 

where A is a constant (depending on m,K and cp). This follows from Lemma 2.1 (ii), combined with 



assumption (c) above. Therefore, using the exponential bound (9) for Pn 

I?( teL)~ ~ exp[2A (2; M) 2~ -a( 
2;1) ! L 2 ]. 

i=1 

So if we take L sufficiently large 
1 

P(teL)~ exp (-a1M m L 2), 

for some a 1 >0. 
Consider the set tfi. Since for gE§M 

s 
g-go = ~ {(g;(g)-g;-1(g))-(g;(go)-g;-1(go))} + g,(g)-g,(go). 

i=t+1 

we have on~ 
s 
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lvn(g)-vn(go)I~ ~ {lvn(g;(g))-vn(g;-1(g))I + lvn(g;(go))-vn(g;-1(go))I} (19) 
i=t+1 

+ lvn(g1(g))-vn(g1(go))I 
s 2;M _1 

~ ~· {llg;(g)-g;-1(g)lln + llg;(go)-g;-1(go)11n}(/() 2
m L 

i=t+I 

21M ~ 
+ llg1(g)-g1(go)lln(J() L 

~ ~ 4.2-; K( 2;1) 2~ L + 2.r 1 K( 2;1) ~ L 
i=t+I 

1 __ 1 _1 
~ Cllg-golln 2m M 2

m L, 

where in the last step of ( 19), we used 

llg-g0 ll, _1 l 1 __ 1 

J x 2mdx=(l-
2
m)llg-golln 2m. 

0 

and where C only depends on m. This yields for L large 

Finally, 

lvn(g)-vn(go)I 
1 

p ~~F -----'=--1-~-=-!->2 2m CL 
1-- 2m 

llg-golln 2m (l +J(g)) 

~ ~I? [ suo lvn(g)-vn(go)I >22~1 CL 

j=1 '}! I g;~ .::.'}! 1--1 2~1 
< l~ llg-golln 2m (l +2i- 1) 

' + I? [ s~v I Pn(g)-p;~_f I >2 2~ CL] 

1&1..;;1 llg-golln 2m 
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00 

,,;;;; ~ exp(-a12!1mL2) + exp(-a1L2) 
j=I 

,,;;;; exp(-a2L2) 

for some a2 >0 and for all L sufficiently large. D 

The consequence is that a rate for in.A can be found using relatively straightforward arguments. 

THEOREM 5.2. Under the conditions of Lemma 5.1, 

llgn,A -golln = l9p(An) 
m 

provided n 2m + 1 An~ l. 

PROOF. First, we show that without loss of generality we may restrict ourselves to the class § defined 
in (18). The conditions of Lemma 3.2 yield that 

I n 
- }: lt:k 12 = l9p(l). 
n k=I 

n 

Now, suppose that ( 11 n) ~ I Ek 1
2 ,,;;;; C2. Then 

k=I 

A 2 1/2 A 2 2 2 A llgn,A -golln.;;;;n- lvn(gn,A)-vn(go)I +>-n{J (go)-J (gn,A)} (20) 

implies 
A 2 A 2 2 llgn,A -golln:o;;;;2Cllgn,A -go11n+Anl (g-o). 

So clearly, then llgn,A -g0 11n :o;;;;4C for all n sufficiently large, because >-n~o. 
Next, we rewrite (20) as 

Vn A 

2~+I lvn<in.A)-vn(go)I YnA~{J2(go)-J2 {in.A)} 
n llgn,A -golln m ,,;;;; 

1 
__ 1 + 

1 
__ 1 

\lgn,A -golln 2
m llgn,A -golln 2

m 

Let 

Let 111L = { lvn<in.A~-vn(go)I 
1 

>L}, 
1-- -

llgn,A - go lln 2
m (l + J <in.A)) 2m 

and 

eM = {J{in,A)>M~J(go)}. 
On eM. we have bn .;;;;o, so on cj)i n 12,M 

2m +I I 

Ynllgn,A -goll~ :o;;;;L(l +J(in.A))2,;. 
m 

But, because n 2m+I An~I. this would imply for M large that en+bn<O. Since llgn.A -golln cannot be 
negative, we thus have that for M large cj)i n tM = 0. 



or 

Suppose now that bn ;;.en. Then 
2m+I 

Vnllgn,>. -goll~ ~2bn 

A 2 2 2 2A 2 2 
llgn.>. -golln~2An(l (go)-J (gn,>.))~2Anl (go). 

Suppose on the other hand that bn ~en. Then on 11i ne,w 
2m+I I 

Vnllgn,>. -goll~ ~2en,;;;;2L(l + M)z;;;-

or 
m 2m I 

llgn.X -golln,;;;;n - 2m+I (2L) 2m +I (l + M) 2m +I. 
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(21) 

(22) 

For M large, 1'in~M=1'i, and by Lemma 5.1, P(1'i) is small for L large. Combination of (21) and 

(22) completes the proof. D 

6. CONCLUDING REMARKS 

In our view, the approach we have presented in this paper yields some insight in the common features 

of certain estimation problems. The link with empirical process theory is quite obvious, and the recent 

developments in this field make it possible to relate rates of convergence to entropy. However, a 

drawback is that if § is too large, then the increments I Pn(g)- Pn(go) I or I Pn, I (g)-vn. 1 (g0)1 need not. 

be small for small values of llg-golln, i.e. Pn or Pn. I is no longer stochastically equicontinuous (see 

DUDLEY (1984), GINE and ZINN (1984)). Then, optimal rates slower than cip(n- 114 ) can emerge, and 

such slow optimal rates cannot be handled by our technique. 

Now, we have not established optimality of the rates that follow from entropy calculations. It is 

shown by BIRGE (1983) that if the local 8-entropy is of order s-v,v;::.O, then the minimax risk for esti-
-1 

mation is of order n 2+v. Although these results are obtained for the situation where parameter space 

is endowed with L 1- or Hellinger-metric, they suggest that the rates we find for the least squares esti­

mator are indeed optimal. Of course, the question of optimality is closely related with the question 

whether the results on the increments of the empirical process are optimal. 

In our study of minimum L 1- ,norm estimation it seems more natural to aim at rates in L 1-norm, 

but the use of Hoeffding's inequality (see the proof of Theorem 3.4) led us to the ll·lln-metric. 

Throughout this paper, the class § is allowed to depend on the number of observations. Also g0 

may depend on n. Such a situation occurs for instance when one investigates asymptotic efficiency of 

certain tests on g 0 . 

It should be stressed however, that the entropy, and thence the rates, depend on g0 . For example, 

in two-phase regression, where the functions are linear but allowed to have a jump somewhere, the 

rate is 01(n - 112 (log logn )112 ) if g0 does not have a jump, which is slower than the Elp(n - 112 )-rate that 

holds of g0 has a nontrivial jump not converging to zero (see VAN DE GEER (1988)). Also, we believe 

that for isotonic regression the result can be much improved of g0 _0. As for penalized least squares: 

if g0 is very smooth in the sense of WAHBA (l 977), then by choosing An appropriately, one finds 
2m ---

llgn,>. -g0 lln = ep(n 4
m + 1 

). This is true only under additional regularity conditions on 

{x 1, • • • ,xn}· It can be shown by inspection of the order of magnitude of the increments 

lvn(g)-vn(go)l in terms of J(g-go) for small values of J(g-go). It will follow that l{in.x-g0 )= 
m ---

ep(n 4m + 1 ). However, choosing An appropriately in this context actually means that the correct 

order for An depends on the unknown g0 . Therefore, results of this kind are of little practical value 

unless there is a method to choose An data dependent, in such a way that it is automatically of the 
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right order. To our knowledge, no theory on this has been developed. Note that it is not difficult to 
adjust Theorem 5.2 to the situation of random smoothing parameters, provided they are of the right 
order. It would be of interest to investigate whether the method of cross-validition yields a suitable 
choice in this sense. 

Related results for penalized estimators can be found in e.g. RICE and ROSENBLAIT (1981) and 
SILVERMAN ( 1982). Most authors study the behaviour of penalized estimators using the properties of 
reproducing kernel Hilbert spaces. In such an approach, it is essential that the roughness penalty is a 
quadratic form. The entropy-approach on the other hand, only requires that finiteness of the rough­
ness penalty ensures a manageable entropy. 

Once a rate is given, it is often more easy to derive asymptotic distributions. This observation is 
especially useful when proving asymptotic normality of minimum L 1 -norm estimators. The non­
diff erentiability of the loss function is not a obstacle anymore if one uses the entropy-approach. See 

I 

also POLLARD (1985). In nonparametric regression with e.g. llgn -g0 11n =0p(n 2+v ), it might be pos-
1 

sible to show that for some constant C, (n 2+v llgn -g0 lln -C), appropriately normalized, converges in 
distribution. 

Finally, we remark that the technique proposed can also be applied to other estimation problems, 
as long as there is a loss function to be minimized. Maximum likelihood could be an example. How­
ever, in many cases of nonparametric maximum likelihood, no dominating measure exists, and then 
the maximum likelihood estimator is not defined as the minimizer of a loss function, but rather as a 
solution to likelihood equations. 

7. REFERENCES 
l. K.S. ALEXANDER (1984). Probability inequalities for empirical processes and a law of the iterated 

logarithm. Ann. Prob. 12, 1041-1067. 
2. BIRGE (1980). These. Universite Paris VII 
3. BIRGE (1983). Approximation dans les espaces metriques et theorie de !'estimation. Z. 

Wahrscheinlichkeitstheorie verw. Gebiete 65, 181-237. 
4. R.M. DUDLEY (1984). A course on empirical processes. Springer Lecture Notes in Math. (Lec­

tures given at Ecole d'Ete de Probabilites de St. Flour, 1982), 1-122. 
5. E. GINE and J. ZINN (1984). On the central limit theorem for empirical processes. Ann. Prob. 

12, 929-989. 
6. P. GROENEBOOM (1985). Estimating a monotone density. Proceedings of the Berkeley Conference 

in honor of Jerzy Neyman and Jack Kiefer, Volume II (L. LeCam, R.A. Olshen, eds.) 539-555. 
7. W. HoEFFDING (1963). Probability inequalities for sums of bounded random variables. J. Amer. 

Statist. Assoc. 58, 13-30. 
8. A.N. KOLMOGOROV and V.M. TIHOMIROV ( 1959). £-entropy and £-capacity of sets in function 

spaces. Uspehi Mat. Nauk. 14, 3-86; English transl., Amer. Math. Soc. Trans!. 2, (1961), 17, 
277-364. 

9. J. KUELBS (1978). Some exponential moments of sums of independent random variables. Trans. 
Amer. Math. Soc. 240, 145-162. 

10. J.T. ODEN and J.N. REDDY (1976). An Introduction to the Mathematical Theory of Finite Ele­
ments. Wiley, New York. 

11. D. POLLARD (1984). Convergence of Stochastic Processes. Springer Series in Statistics, Springer­
Verlag, New York. 

12. D. POLLARD (1985). New ways to prove central limit theorems. Economic Theory I, 295-314. 
13. J. RicE and M. RosENBLAIT (1981). Integrated mean square error of a smoothing spline. J. 

Approx. Theory 33, 353-369. 
14. B.W. SILVERMAN (1982). On the estimation of a probability density function by the maximum 

penalized likelihood method. Ann. Statist JO, 795-810. 
15. B.W. SILVERMAN (1985). Some aspects of the spline smoothing approach to non-parametric 



19 

regression curve fitting (with discussion). J.R Statist. Assoc. B, 47, 1-52. 
16. CJ. STONE (1982). Optimal rates of convergence for nonparametric regression. Ann. Statist. 10, 

1040-1053. 
17. S. VAN DE GEER (1988). Regression Analysis and Empirical Processes. CWI-tract 45, Centre for 

Mathematics and Computer Science, Amsterdam. 
18. V.N. VAPNIK and Y.A. CHERVONENKIS (1971). On the uniform convergence of relative frequen­

cies of events to their probabilities. Theory of Prob. and Appl. 16, 264-280. 
19. G. WAHBA (1977). Practical approximate solutions to linear operator equations when the data 

are noisy. Siam J. Numer. Anal. 14, 651-667. 
20. G. WAHBA ( 1984). Partial spline models for the semi-parametric estimation of functions of 

several variables. Statistical Analysis of Time Series. Tokyo: Institute of Statistical Mathematics, 
319-329. 




