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In the regression model yk=g(xk)+£k, the regression function g is regarded as the unknown parameter. It 

is shown that entropy conditions on the class § of possible regression functions imply rates of convergence 

-in L 2 -sense- of the least squares estimator. For finite-dimensional models, this reproves the l'lp(n-v.)-rate 

of convergence, for other models, a slower rate is obtained. In general, the rates cannot be improved. 

Some examples illustrate this. 
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1. Introduction 
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For any estimation problem, the speed of estimation depends on the "size" of parameter space. As 

BIRGE (1983) shows, the so-called metric structure of parameter space determines the minimax risk. In 

a regression model, the class § of possible regression functions g, can be considered as parameter 

space. We shall investigate the behaviour of the least squares estimator, so that an obvious choice for 

the metric on§ is an L 2-metric. We obtain the rate in L 2-norm in which the least squares estimator 

converges to the true underlying regression function g0 • In general, this rate depends on g0 • 

For the regression model 

Yk =g(xk)+£k, k = 1, ... ,n, gE§, 

we assume that £i. •.. ,£n are i.i.d. with expectation zero and finite variance. The xk> k = 1, ... ,n are 
vectors in Rd. They may be random, but should be independent of the £k, k = 1, ... ,n. The least 

squares estimator based on n observations, denoted by gn, is a -not necessarily unique- solution of 

Let Hn be the empirical distribution function generated by xi, ... ,Xn, and write 

llgll~ = f lg l 2dHn. 

Then 11.lln is a (pseudo-)metric on§, which we shall call the L 2(11ld,Hn)-metric, or the empirical metric. 

For g0 being the true underlying regression function, we study the behaviour of llgn - g0 lln as n 

tends to infinity. Throughout, we assume that 

goE§. 

The main results are given in Section 2. In the remainder of this section, we settle the rest of the nota­

tion. 
A co~cept which one can encounter in many fields, and which is very important in empirical 
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process theory, is the entropy of a set. For 8>0, let N2(8,Hn,~ be the smallest value of m such that 
there exist gI>···,gm, such that for each gEg there exists a gj, }E{l, ... ,m} such that 

llg-gjlln<8. 

The functions gl> . .. ,gm form a minimal 8-covering set of g endowed with L 2(1Rd,Hn)-norm. 
N 2(8,Hn,g) is called the 8-covering number of g and its logarithm is the 8-entropy of g, all with respect 
to the empirical norm 11.lln· In VAN DE GEER (1986), it is shown that you can obtain consistency of gn 
from conditions on the entropy of (a rescaled and truncated version of) g_ 

We now focus on neighbourhoods of g0 • Let Bn(p,g,g0 ) be a ball with radius p for 11. lln around g0 , 

intersected with g, i.e. 

Bn(p,g,go) = {gEg: llg-golln:s;;;;p}. 

Moreover, let Nn(8,p,g,g0 ) be shorthand notation for the 8-covering number of Bn(p,g,g0 ): 

Nn(8,p,g,go) = N2(8,HmBn(p,g,go)). 

Call g of finite metric dimension (at g0 , with respect to the L 2(1Rd,Hn)-metric), if for some 
A ;;;.o, r ;;;.o 

Nn(8,2i8,g,go) :;;;;;; A'lir 

for all j sufficiently large and 8 sufficiently small. For instance, if g={g0 : OEIRr} and if for some 
O<K1:s;;;;K2<00 

K1 llO-Ooll:s;;;;llgu-go
0 
lln:s;;;;K2llO-Ooll, 

with II. II the Euclidian norm of a vector in IRr, then g is of finite metric dimension. Inspired by BIRGE 
(1983), we assume for a general class of regression functions that for some M ;;;.o, v;;;.O 

10°Mn(8,2i 8,g,go) _t:r_"---- :;;;;;; M8-v. 
jlog2 

If v>O, the g is possibly infinite-dimensional, e.g. the class of monotone functions on IR. 

2. Main results 
It is well-known that, under regularity conditions, the speed of estimation of a finite-dimensional 
parameter is l9p(n-'h). In Theorem 2.1 below, we express sufficient conditions in terms of the entropy 
of g_ For the proof of this theorem, we use the following lemma. 
LEMMA 2.1: If for some p ;;;.1, IE I t:1 I 2p < oo, then there exists a C >0 such that for all constants 
bi> ... ,bn and all a >0 

(_.!_±bit 
l n n k=I 

IJl>(l-;k~tbkt:kl;;;.a):;;;;;; C nPa2p 

PRooF: Apply Chebyshev's inequality to the results of WHITILE (1960). D 
THEOREM 2.2: Let for all j;;;. j 0, n ;;;.no, 8:s;;;;8o 

Nn(8,2i8,g,go) :;;;;;; A'lir. 

Suppose that 1Elt:1 l2p<oo for some p>r. Then llgn-golln=l9p(n-'h), and there exists an A'>O, a 
L'>O a~d an n0 'EN such that for all L>L' and n >n0 ' 

l?(llgn-golln;;;.Ln-'h):;;;;;; A'L -(2p-r)_ 

n n 
PROOF: Define llY-gn II~= 1 / n ~ (Yk -gn(xk))2, llt:ll~ = 1 / n ~ t:i and the inner product 

k=I k=I 
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n 

(£,g-go)n = 1 / n ~ £k(g(xk)-go(xk)). Then 
k=l 

A 2 - 2 A A 112 l!Y-gnlln - 11£11n-2(£,gn-go)n+llgn-go n· 

Sinceg0 E~, 

l!Y-gnll~ .;;;;; 11£11~, 

or 

A A 12 2(£,gn-go)n ;;;;;.: llgn-go In· 

Thus, the theorem is proved if we show that for all n, L sufficiently large 

P ( · suo -• 2(£,g-go)n-llg-goll~;;;;.:o] .;;;;; A 12-L<2p-r>. 
llg-g0 11.;;;.rn , ge§ 

Clearly, 

P ( syp_. 2(£,g-go)n-llg-goll~;;;;.:o] .;;;;; 
llg-g0 ;;;.2 n , ge§ 

(2.1) 

""P ( sup 2(£g-go) -llg-goll2;;;;.:o) .;;;;; 
4'J ~i -• II - II ~,., -• "' ' n n j;;;.L .en < g g0 .;;;;,c n , ge .. 

~ P L SNP-. 2(£,g-go)n;;;;.:22jn-1]. 
j;;;.L eB.(i n ,§,g0 ) 

Write for j efl!:iJ 

Pj = P L S}ilP-. 2(£,g-go)n;;;;.:22jn- 1 lxi, ... ,xn]· 
eB.(i n ,§,g0 ) 

Let {g<0>} be a minimal n-'h-covering set of Bn(ii+ 1 n-'h,~,g0 ), i.e. for each gEBn(ii+ 1 n-lf',~,g0) 
there exists a g<0>(= g<0>(g))E {g<0>} such that llg-g<0>11n .;;;;;n-'h, and for j, n sufficiently large 

card( {g<0> }) .;;;;; A 2v + 1 >r. 

Then 

Pj.;;;;; P (&~ 1(£,g<0>-go)n I ;;;;.:22V-I>n- 1 lxi. ... ,xn] + 

P L S+YP-. 1(£,g-g<O>)n I ;;;;.:22(j-l)n-l lxi, ... ,xn] 
eB.(i n ,@,go) 

p(l) + p(2) 
J J ' 

where in PY>, g<0>=g<0>(g). Since llg<0>-golln.;;;;;'2i+2n-'h, 

(ii +2 -'h)2p 
p(I> o;:::: (A 2(i+I>r)c n 

1 -... nP(22(i-l>n- 1)2p' 

by Lemma 2.1. Tidy this up to 

P}1> .;;;;; Ac2r+Bp2-j(2p-r). (2.2) 

Next, we consider P)2>. Let for kEN, {g<k>} be a minimal 2-kn -in_ covering set of 
B (2!i+I -'h t0 ) Th n n ,l1,go . en 

00 

pointwise on {x1> ... ,xn}· Define 11=22V- 1>n- 1
• Take s=l-(r /p), E= ~krks and 

k=I 
00 

'Ilk =(k2-1cs / E)'ll. Then ~'Ilk =11, and 
k=I 
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1?)2> =IP' r ~VR. 1(£,g-g<0>)n I ;;;;.111x1' ... ,xn] ..;;;; l,g EB.(2' n ,13,g0 ) 

~IP' r (k~UJ?_,) 1(£,g<k>-g<k-I>)n I ;;;;.'Ilk lx1' ... ,xn], 
k=I l,g ,g 

with the supremum over all pairs g<k>, g<k-I) with llg(k) -g<k-I) lln ..;;;2-<k-2>n -'h. Hence, 

00 2-<k-2) -'h)2p 
111>(2) ,,;::: ""' N (2-k -'h 21 +I -'h t:l )2C n ,,;::: 
ir-1 """' ""-' n n , n ,"1,gO ?n -

k =I nP'lli[ 
00 2-(k-2) -'h)?n 

A2(i+k+I> 2C n--r . 
k~I( ) nP((kTks / E)22(j-l)n-1)2p 

00 
A 2C22r+sp E2pT2j(2p-r) ~ k-2p. 

k=I 

Returning to (2.1 ), we see that (2.2) and (2.3) imply 

IP' [ sup_• 2(£,g-go)n-llg-goll~;;;a.OlxI> ... ,xn] ..;;;; 
llg-goll.;;.o:z"'n , gE!j 

~ (1?)1> + 1?)2>) ..;;;; 
j;;..L 

00 ' 
~ (AC2r+Sp +A 2C22r+Sp E2p ~ k-2p)2-j(2p-r) ..;;;; A'TL(2p-r>, 

j;;..L k=I 

which completes the proof. 0 

If, for example, ~= (gu: 8Elllr}, and 

K1 ll8-801l..;;;llgu-g11
0 
IJn..;;;K2ll8-8oll 

(2.3) 

for all n sufficiently large, then, under the appropriate moment condition on £1, we have from 
Theorem 2.2, 

110n-8oll = Op(n-'h}. 

The merit of first showing the Op(n -'h)-rate, is that now, asymptotic normality can be obtained under 
fairly weak conditions. We shall not go into details here (see e.g. LECAM (1970)). 

For the infinite-dimensional case, stronger conditions on £1 are necessary. 
LEMMA 2.3: Suppose that for some {3>0 

IEexp/3 I £1 1
2 < oo. 

Then there exists an a such that for all constants b 1, ••• , bn and all a >0 

ana2 

.!. ± b~ 
nk=I 

PROOF: For all h >0 

I n [ n l IP'( 1-; k~If:kbk I ;;a.a) ..;;;; exp(-hna)IE exp(h I k~1£kbk I) ..;;;; 

exp(-hna)k~l IE [exp(h I f:kbk DJ. 

KUELBS (1978) shows that for some A depending only upon IEexp/3 I f:k j 2, 



Thus 

n 
Take h =2aa / (1 / n ~ ht), with a=(4A2

)-
1

, then 
k=I 

I n [ ana
2 

IP(- I ~ E:kbk I ;;a.a) ,.;;;;;; exp - n 

n k"'.' 1 l/n~bt 
.D 

k=l 
I 

We arrive at the rate f!p(n -< 2+v » for infinite-dimensional models. 
THEOREM 2.4: Let for all j;;a. jo, n ;a.no, 6:o;;;;;6o 

logNn(6,2i6,€i,go) ..::: Mi)-v o..:: <
2 jlog2 -.. u ' -.. P • 

5 

Suppose that IE.exp(p I £1 12)< oo for some /J>O. Then there exist M'>O, L'>O, n0' EN such that for all 
L;;a.L' and n ;a.no' 

__::!.._ 

PROOF: The proof is along the same lines as the proof of Theorem 2.2. Define 6n =n i+v. As before, 
we have 

with 
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1P>)2) ~ ~IP> L<•~Uf?_" l(t:,g(k)_g(k-I))n I ~11k lxI> · · · ,xn] ~ 
k=I ,g 

oo -k 1 +I 2 [ an11~ l ,,;;::: ~ (Nn(2 8n,2 8n,§,go)) exp - -(k-2) 2 """" 
k=I (2 8n) 

~exp [2M(log2)(k + j + 1)2hn 2:v - -:~~~ 2 l ~ k=I (2 ~) 

~exp [2M(log2)(k + J + 1)2hn 2:v -a(k + j + 1)2kl'T8 ET 224jn 2:v ]· 
k=I 

00 

Define E = ~ kTks, and take j sufficiently large such that 
k=I 

2Mlog2 ~ lh(aT8(2E)-224j) / j2. 

Then 
00 _P_ 

1P>)2) ~ ~exp [-a(k + j + 1)2kl'T 11 E- 2(24j / j 2 )n 2+v J. 
k=I 

Adding up the IP>j yields 

~ IP>j ~ 
J-;;.L 

• 00 • 
~ { exp[-a2-922jn 2+v ]+ ~ exp[-a(k + j + 1)2h2- 11 E-2(24j / j2)n 2+•]} ~ 

j-;;.L k=I 

p 

exp[ - M'22Ln 2+• ]. D 

There is also a more general way to formulate the theorem, at the cost of transparency. For instance, 
if§ is a VC-graph class with envelope G=suplg I (see POLLARD (1984)), then 

gE\J 

N1(8!1Glln,Hn,§)~A8-r. (2.4) 

Using the recipe of the proof of Theorem 2.4 with 8n =n -'h(logn)v., this results in 

llgn -golln = ~)p(n -v.(logn)v.), 

provided that llGlln remains bounded. If § is of finite metric dimension, then (2.4) also holds, but 
(2.4) need not imply that § is of finite metric dimension. In many infinite-dimensional situations, 
1ogN2(l3,Hn,§) and logNn(l3,L!l3,§,go) are of the same order of magnitude (see the Applications). 

If v>O, then under the appropriate distributional assumptions on xk> k = 1,2, ... , the result of 
Theorem 2.4 implies that llgn -g0 lln =<9(n -I /(Z+•)) almost surely. On the other hand, the entropy con­
dition is sometimes difficult to check in the case of random xI> . .. ,xn. Moreover, the probability 
inequalities of Lemmas 2.1 and 2.3 can be extended to non-i.i.d. £1> ••• ,t:n, and since they hold for 
every n, the generalization to triangular arrays (i.e. fk =t:n,k> k = I, ... ,n, n = 1,2, ... ) requires little 
effort. It should be noted however that, even in the i.i.d.-case, there may be measurability problems. 

The-condition v<2 comes up quite naturally. It is closely related with one of the sufficient condi­
tions for§ to be a so-called Donsker class (see POLLARD (1982), DUDLEY (1984)). If x 1,x2 , ••• are i.i.d. 
and § is a Donsker class, then llgn - g 0 lln = o-p(n - 1I 4

). 
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3. Applications 

3.1. Isotonic regression 
LEMMA 3.1.1: Let §={g:R~R, g increasing, lg I .;;;;C}. Then for al/ 8.;;;;80 , n;;a.n0, 

logN2(8,Hn,(j).;;;;; M8- 1• 

PRooF: Without loss of generality, we assume that O.;;;;g.;;;;I for all ge§. Let 8>0 be arbitrary and 
T(6) 

ge§. Write T(8)=[1/8]+ 1, and consider the partition { <aCi- 1>,a<i)>.} of the real line, induced by 

g in the following way: 

<a<i-1),a(i)>={x: (i -1)8<g(x).;;;;i8}, i = 1, ... ,T(8). 

Take 
T(6) 

g(x) = ~ 1<0<1-1>,al'» (x )i8. 
i=I 

Then g approximates g in sup-norm: 

sup!g(x)-g(x)I < 8. 
x 

1=1 

(3.1) 

T(6) _ 

Consider all possible partitions { <aCi - I) ,a<i) >. } of the real line, and let § be the class of func-
. 1=1 -

tions of the form (3.1). We shall show that for arbitrary probability measure Q, logN2(8,Q,(j).;;;;M8- 1
• 

Let {xi. ... ,xn} be an independent sample from Q. Define F(t)=t2
, O.;;;;t .;;;;I, and given 

{xi. ... ,xn}, let tl> ••. ,tn be fil! independent sample from F. Furthermore, let gi. ... ,gm be a 
maximal collection of functions in § such that 

j(gj, -gjfdQ ;;a. 82 

for all pairs j 1 -=/=h. Certainly 

N2(8,Q,(j).;;;;; m. 

The graph of a function gj is defined as the set 

Aj = {(x,t): 0.;;;;1.;;;;gj(x)} 

(see POLLARD (1984)). The probability that (xk>tk)eAj,AAj, is equal to 

P [gj,(xk)<tk.;;;;gj,(xt) or gj2 (xk)<tk.;;;;gj,(xk)] = 

J P (gj,(xk)<tk.;;;;gj,(xt) or gj,(xt)<tk.;;;;gj,(xk)lxk]dQ(xk) = 

I IF(gj, )-F(gj, )ldQ = 

I I g}~ - g}~ I dQ ;;a. I (gj, - gj,)2 dQ ;;a. 82 

for all j 1=;6)2. Thus, the probability that the graphs of some gj, and gj, pick out the same subset of 
{(xi.t1), ... ,(xnotn)} satisfies 

P [there exist (Ji.}2) such that tk>;1!!~gj1 (xk) or tk .;;;;;~gj1 (xk) for all k = l, .. ,n) .;;;;; 

[rr]o-82t .;;;;; v2m2(1-82t. 

Taken in such a way that lhm2(1-82t<I, but 
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l/2m 2(I-82t- 1;;;.I. (3.2) 

Then, the probability that all graphs of g 1, ••• ,gm pick out different subsets of {(x1>t1), ••• ,(xn,tn)} 
is positive: 

(3.3) 

T(IJ) . . T(IJ) 

Let gj = L <a)'- 1>,a)'>>i8. If there is a point (xk>tdEAj, LlAj,, this implies that { <a1~-",llJi" > .}
1 i=l 1 -

T(IJ) 

and { <a1~-n ,a1~> > 
1
l1 form different partitions of { x 1' ... , Xn }, so (3.3) yields that there are at least 

m different partitions of {x1> ... ,xn}· On the other hand, The number of partitions of the form 
T(IJ) 

{ <a(i - l) ,a<i) >. } of n distinct point is equal to 
1=1 

[n + ~&~)-1 J. 
Hence, 

m.;;; [n+~~)-1). 
But from (3.2), 

n .;;; 2logm - log2 + 1 .;;; ~ 
log(l -82) 82 ' 

so that 

m .;;; 2l~r +[ ! ] . (3.4) 

1+1+1 

Application of Stirling's formula gives that 

log[M 12+Pl = M /8log((!)'+P_M)+o(!log!), 

IJ 
1 1 1 1 

where o(8log8)/(8log8)~0 as 8~0. Thus, (3.4) is fulfilled for logm=M8- 1 (and not for 

logm =M8-p, v<l). 
To conclude, for 8 sufficiently small 

logN2(8,Q,§).;;; logm = M8-p 

and so 

logN2(28,Q,§).;;; M8-p. 

Since Q was an arbitrary probability measure, this completes the proof. D 

Thus, under the moment condition on £1> the rate of convergence in isotonic regression is l9p(n - I I 3). 

This rate also appears in density estimation (see GROENEBOOM (1984)). 



3.2. Smooth functions 
LEMMA 3.2.1: Let 

§ = {g:Rd""'R, g has m derivatives, lg<m>(x)-g<m>(x)l ..;;;;Lllx-xlla, lg I ..;;;;C}, 

then for all n and for 8 sufficiently small 
__ d_ 

logN2(8,Hm~..;;;; M8 m+a. 
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PROOF: KOLMOGOROV AND TIHOMIROV (1959) show that this§ is totally bounded with respect to the 
sup-norm: 

__ d_ 

logN 
00

(8,§)..;;;;MS m+a. 

Hence, the lemma follows. D 

The rate n-<m+a)/(2(m+a)+d) coincides with the optimal rate obtained for a related problem (STONE 
(1982)). 

3.3. Two-phase regression 
In this subsection, we investigate a piecewise linear model with unknown breakpoint (see e.g. FEDER 
(1975)). The regression functions are of the form 

{
a.<1> + Ji-1> x if x ..;;;; y 

g(x) = go(x) = a<2>+1P>x if x>y ' 

with O=(a(l>,p.1>,a<2>,1P>,y) in whole or in part unknown. For simplicity, we take 

k 
xk = Xnk = - k=-[(n -1)/2], ... ,[n /2]. , n' 

LEMMA 3.3.1: Let 

§ = {go(x)=(a(I> + f1- 1>x)~-oo;yJ(x)+(a<2> + /1-2>x)~y,oo)(x), 8ER5 
}. 

Suppose that Oo =(ab1>,pf}>,ab2>.fJb2>.yo) satisfies Yo =O and ab1>-ab2>=;i:O, and that 1E I £1I2p <oo for some 
p>5. Then 

llgn -go lln = l9p(n -v..), 

I a:~> -ag> I = ep(n-'"), Ip~> -pg> I = l9p(n -v..), ; = 1,2 

and 

l.Yn-YO I = l9p(n- 1
). 

PRooF: Consistency of the parameters can be verified using the results of VAN DE GEER (1986). The 
entropy condition now only needs to hold in a neighbourhood of g0 • Define 

§11 = {go: 118-0oll..;;;;71}, 

then we have by straightforward computation for 71 sufficiently small 

Nn(8,'2J8,§11 ,go) ..;;;; A25j 

for some A, an.d fo.r all n sufficiently large. Thus llgn -g0 11n = l9p(n -v..) and this immediately implies 
- A (1) (1) • A 

the rates for an ,/3n , l = 1,2 and Yn· D 

Note that the functions in the class § of Lemma 3.3.1 are discontinuous in the parameter and that 
g0 is discontinuous too. For g0 continuous, we have the following lemma. 
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LEMMA 3.3.2: Suppose that ab1> =ab2> =/Jb2) =ro =O, that {Jb1>=1=0 and that 1E I £1 I 2P <oo for some p >5. 
Ij§ is defined as in Lemma 3.3.1, then 

llgn -go lln = $p(n -'h), 

I a:~> -ag> I = ep(n -'h), 1 P~> -pg> I = ep(n -'h), i = 1,2 

and 

l.Yn-YO I = $p(n- 113 ). 

F:urthermore, if 
§ = {go(x)=(a<1> + fJ(l>x)~-oo;yJ(x)+(a<2> + p<2>x)~y,oo)(x), a<1

> + p<l)y=a<2> + p<2>y}, 

i.e. if the regression functions are restricted to be continuous, then 

llgn-golln = $p(n-'h), 

I a:~> -ag> I = ep(n -'h), 1 P~> -pg> I = ep(n -'h), ; = 1,2 

which implies that also 

I Yn -yo I = l9p(n -Yz). 

PROOF: This is again straightforward computation of the entropy in a neighbourhood of g0 . D 

It can also be shown that under the conditions of Lemma 3.3.1 or 3.3.2, the a~> and p~> , i = 1,2 are 
• A(l) /JA(!) A(2) A(2) • • 

asymptotically normal and that (an , n ) and (an ,/Jn ) are asymptotically mdependent. The asymp-
totic distribution of Yn depends on g0 and on the continuity restriction. 

In both previous lemmas, it is assumed that the underlying true regression function g0 actually 
obeys two different regimes. If there is in fact only one phase instead of two, then the 0p(n -'h)-rate 
need not hold. 
LEMMA 3.3.3: Suppose g0=0. Let 

§ = {go=a~-oo.yJ• O=(a,y)EIR2}. 

Then 

Nn(8,'Y 8,<li,go) ;;;;;., A '22jlogn. 

PROOF: Define for I= 1, .. ,n 

·~ I 2 2· 2 · with a1=2' -8. Then llg1-golln =-a1 =2 :Ii) , so that g1EBn(2'8,§,g0 ). Moreover, if 
I n 

~: < (I-r<2j+I>)2, 

then 

Ilg -g II = 22j+ 182(1- ... {f:,)2 > 82• I, I, n v T;, 
Hence, the number of functions in a 8-covering set is at least 

logn /log(I-r<2j+I>)-2 ;;;;;., A'22jlogn.D 

It is easy to see that under the conditions of Lemma 3.3.3, also Nn(8,'Y8,§,g0 );;;;;., A22jlogn. One can 

g, 
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explore the idea of the proof of Theorem 2.4 with 8n=n-Yi(loglogn)Yi to derive that under the 
moment condition on £1 , llgn-golln = 0p(n-Yl(loglogn)Yl). In fact, since 

I A 12 - 1 1 ~ 2 lgn-go In - SUi' -( _ r. ..::,, £k) , 
l<;/-.;;nn Vlk=I 

we have that if IE I £ I 3 < oo , 

limp [llgn -go lln..;;;; a+ 2loglogn + 1hlogloglogn - lf.zlog'll' l 
n->oo n Yl(2loglogn )Yi 

exp(-2e-0
), -oo<a<oo 

{see the results of DARLING AND ERDos (1956) on partial sums). 
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