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1. INTRODUCTION 

In the past few years the interactive use of computers has increased 

enormously. The usefulness of conversational *) computing has been recog~ 

nised earlier in the administrative field than in computational statistics 

and, although techniques that are most useble in an conversational 

environment like Exploratory Data Analysis (Tukey, 1977; Velleman & 

Hoaglin, 1981) have been introduced and implemented, the conception that 

conversational computing demands a different way to use statistical 

analyses is not at all generally accepted. This new way to use statistics 

raises questions on the proper use of techniques, and consequently on the 

development of packages which are not only foolproof but also reflect a 

sensible view on the way they should be used. Developers are usually not 

concerned about meeting methodological requirements for their products. 

About other - say ergonomical - requirements, no user to our knowledge has 

ever been consulted by any package developer. The term "user friendliness" 

has been thought of only recently and the quaU ty of packages in thi.s 

respect is often rather poor. (UserfriendUness is discussed by van 

Apeldoorn, 1983, and shortcomings in SPSS by Davis, 1983.) 

Not too long ago the idea arose that one should evaluate the existing 

(batch) packages (Francis 1977,1982; Hext, 1982; Wilke 1982). Also, in 

Cognitive Psychological research, several aspects of Man Machine Interac­

ti.on have been looked at, especially those relevant to the user interface 

as show the many articles in, for instance, the Journal of Human Machine 

Interaction and the Sigchi Bulletin of the ACM. But although literature 

in both fields gets more extensive, thi.s did not result in substantial 

changes in any package. However, evaluation of statistical (batch} packages 

has increased the understanding of the pros and cons of their use (see 

Molenaar, 1984). 

*) A subtle difference in meaning exists between the terms interactive 
and conversational: the first applies in all situations where use is 
made of interactive terminals to channel the contact between user and 
cofuputer. This contact is called conversational if the interaction is 
a dialogue, i.e. if it takes an alternating question-response pattern. 
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We do not give a critical survey of existing packages. For batch­

packages this has already been done by others {Francis, 1981; Lauro & 

Serio, 1982; Cable & Rowe, 1984) since there are not too many Conversatio­

nal Statistical Packages around (see however Kuik (1984) about QUESTOR; 

Reid (1980) gives a list of packages used in the Britain), we felt we 

should think about the subject more generally. 

We describe in general terms, some concepts that define the 'context' 

in which a "suffici.ently good" package might exist. Therefore this work 

should be seen as an stocktaking of tools and as material for a discussion 

on concepts. 

Hopefully, not only discussion is started by thi.s article but also 

future design of Conversati.onal Statistical Packages {CSP for short) is 

influenced by it. 

Moreover, since this paper roughly formulates what to expect of 

Conversational Statistical Packages, it should be easier to formulate norms 

to be used to evaluate such packages. We intend, as a follow-up of this 

study, to make up such norms and to evaluate existing packages. 

Most generally this article is meant as a working paper for all those 

people that are interested in the field of Computational Statistics. More 

specifically we adress ourselves to the people who meet CSPs in their 

professional career. Here one can make a subdivision in three: on one hand 

there are the developers of these CSPs. They may find some ideas whi.ch may 

help them in designing friendlier systems. On the other hand there are the 

users of such a package. They might be interested in the discussions the 

(statistical) problems arising while using a CSP. But mainly we address 

ourselves to a third group, the people who are responsible, possibly as an 

advising speci.alist, for the purchasi.ng and installation of a package. We 

call them 'distributors' hereafter. They have to make up for specific 

requirements, related to the wishes of their user groups. 

of users might be In the second chapter we formulate what kind 

expected to use a CSP. Some special problems that are caused by the 

the same dataset are interactive applying of statistical techniques on 

dwelled upon. This leads to considerations on the responsabilities of user, .. 
distributor and package-developer. 
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In chapter 3 the more formal aspects of conversational communication 

is treated. 

In chapter 4 aspects of the user-objectives in his or her use of th~ 

package are considered, consequences for the user-interface are formulated. 

In the fifth chapter some technical questions are treated. 

Parts of this paper have been published before (Chapter 2: Kuik & 

Schriever, 1984; chapter 4: Ader & Kuik, 1983; Ader, Kuik & v.d. Veer, 

1984). 

The work on this article has been performed by a subgroup of the 

"ADSARA Subcommittee on Statistical Software". This subcomittee has an 

advisory task towards ADSARA, which stands for the board of users of 

Stichting Academjsch Rekencentrum Amsterdam (SARA), the central computing 

centre of the Uni.versity of Amsterdam, the Free University and the Centre 

for Mathematjcs and Informati.cs, all three in Amsterdam. 

2. STATISTICS AND THE CONVERSATIONAL PACKAGE 

2.1. User groups 

Nowadays the applied statistician js not the only kind of user of 

statistical programs. In fact there are many different users of statistical 

packages orginating from all djsciplines. 

These user groups may be classified with respect to the following 

three characteristics: 

1. application fi.eld (e.g. socjal sciences, economics, biometrjcs) 

2. stati.stical ability 

3. skill in package-handljng 

The first characteristic has consequences for the content of the CSP 

with respect to techniques, data structures and user language. 

For example, for use in the social sciences principal component 

analysis should be incorporated, economists need time series analysis, 

whereas for the use in biometrics bioassay techniques should be present. 

Correspondingly, different data structures are indicated: typical are 

grouping data in biometrics, time series data in economics and categorical 

data in "social sciences. 

A lot has been written on human machine interfaces. All that is true 
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in general, is true for the special case of statistical packages. The 

existing interfaces of statistical packages cannot be called examples of 

user friendliness (see for instance Davis on SPSS, 1983). Especially novice. 

users suffer from this: ideally, for a package used in a course on 

statistics, special provisions should be made for the user i.nterface. 

The second and third characteristic ask for extra facilities for users 

with different needs for assistance. 

This variety of intended customers makes it far from easy to construct 

a "general purpose" Statistical Package. One can take di.fferent vi.ews on 

the desirability of the construction of such a package. The user with a 

high level of the above mentioned skills will be glad to have a package at 

hand with whi.ch he can perform a scala of different tasks. However, 

packages Hke that tend to get rather enormous and usually ask for 

sped fie abilities of 

group of users have some 

the third kind. Packages directed versus a special 

advantages: the application field is no longer a 

problem, the statistical ability and skill in package-handling are well 

defined. 

Generally speaking, a package well constructed in these respects might 

stimulate the application of appropri.ate statistical techniques consi.dera­

bly. 

2.2. (Dis)advantages of interactively applied statistics 

Statistical batch packages are often incorrectly used, due to the fact 

that they are so easily available to the user. It are not just a few who 

are tempted to run some programs first and think later, instead of the 

correct reverse procedure. In the case of conversational packages access is 

eased yet and, consequently, the danger of incorrect use becomes even 

greater. 

Let us have a closer look at some important causes for i.ncorrect use. 

A general cause, to be met with all kinds of statistical analysis, may 

be called "departure from underlying assumptions". Depending on the 

(statistical) robustness of the techni.que, neglecting this point can entail 

completely absurd conclusions since in essence a wrong technique is 
" 

applied. Because a CSP enables the user to perform many different 
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techniques unhammered one after another, a more specific danger consists in 

testjng sequentially wjthout adjusting the level of signjficance. This may 

lead to what is known as "capjtalization on chance": one continues 

performing statistical tests untU a "significant" result js found. Another 

danger of doing many analyses on the same dataset is the dependence of the 

conclusions: a significant result may affect the "significance" of other 

results (in a purely deterministic way). 

It is obvjous that these dangers exist only in confirmati.ve analyses, 

since here we try to give a statistical proof of some phenomenon, applying 

the very strict rules of statistjcal analysis, whereas on the other hand jn 

exploratory analysis we often neglect these strict rules and search for 

phenomena of interest. *) 

Thus far for the dangers. What might be said about their prevention? 

First of all: does the user wants to be protected? Molenaar (1984) does not 

favor this idea: "I do not tMnk a package has the Biblical obligation to 

be its user's keeper, and many users will resent warnings, let alone 

refusals, in cases such as very unequal group variances or very small cell 

expectations." 

The questjon whether protection should be given is one to be solved by 

the designer. One could think of a package offering the possibility to 

activate an warning mechanism against improper use, to be swjtched on (or 

off) by the user. 

If one deddes that protection should be given, is it possible to 

conceive an "ideal" CSP which would protect the user against all pitfalls 

of confirmatory analysjs? The answer seems to be negative for two reasons: 

*) As Tukey puts it, Exploratory Data Analysis and Confirmatory Data 
Analysjs compare like the work of the detective and that of the judge: 
"Exploratory data analysis is detective in character. Confimatory data 
analysfs is judidal or quasi-judidal in character ••••• 

Unless the detective Hnds the clues, judge or jury has nothing 
to consider. Unless exploratory data analysis uncovers indications, 
usually quantjtative ones, there is likely to be nothing for confirma­
tory data analysjs to consider-." On the other hand: "Exploratory 
data analysis can never be the whole story, but nothing else can serve 
as t;he foundatfon stone -- the first step." (Tukey, 1977) 
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Firstly, the construction of a warning mechanism is met with severe 

technical problems; in many cases underlying assumptions are hard to 

verify, while in others the assumptions are inherent to the experimental. 

design (e.g. randomness of a sample) and cannot be checked on the data. A 

modest protection against dependent analyses is possible when the same 

technique and the same variables are concerned. Otherwise complications may 

occur e.g. when one uses two different techniques on the same dataset 

(Notice that this also is the case when model assumptions are tested first, 

after which the confirmatory technique is applied.) Paradoxically, i.t looks 

as if a correct statistical procedure can lead to incorrect use of the 

data! 

Secondly, the package can read the data but i. t cannot read the user's 

mind; it does not know whether the user i.ntends to do an exploratory or a 

confirmatory analysis. In some cases the user may wish to try several 

techniques on the same variables in order to "explore" the information that 

is contained in the data. Evidently, no statistical proof is yi.elded by 

such an exploratory analysis. It may only produce some hypotheses which can 

be tested later in a confirmatory analysis on a different (independent) 

dataset. One way to put such a two stage approach into practice is to take 

a relatively small, random sample from the dataset at hand and use it for 

an exploratory analysis and after that to perform a statistical test of the 

hypotheses on the remaining data. We therefore think a full protection 

system is impossible and even consider the suggestion of such a powerful! 

protection system harmful: the user may think that any statistical 

analysis that passes (or escapes) the system is correct, which in many 

instances simply is not true. The package should restrict itself to 

warnings about what can go wrong in applying the technique at hand. In this 

way the user is informed about the ri.sks he takes and is better aware of 

his own responsibility. 

In our opinion, one of the most important justificati.ons for the 

existence of conversational statistical software is the possibility to do 

exploratory analyses; in a correct confirmatory statistical analysis the 

technique, the relevant parameters and the data are chosen in advance and 

therefore one or two (batch) runs are sufficient. 
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2.3. The distributor's responsibility 

Although we argued above that there exists no complete protection 

against incorrect use, it is still possible to offer protection to some 

extent. The question arises to what degree the distributor should be held 

responsi.ble for the incorrect use of his software. One can take a stand 

somewhere between the two extremes: either the user or the distributor is 

completely responsible. The user is imperfect and liable to error. 

Therefore he will be glad to have some protection against his own 

fallibility, as long as he can work in the way he wishes. On the other 

hand, it seems reasonable to demand from the distributor that the software 

he supplies offers some protection against incorrect use. 

The following methods could be thought of: 

1. The user can choose, according to his statistical knowledge, between 

two levels to use the package: advanced or non-advanced. After this 

level has been established, the package may select some programs 

according to their degree of safety and prohibit the use of others 

(I.e. an inexperienced user might be barred from using the more 

esoteric rotation methods in factor analysis.) 

2. The decision to offer protecti.on or not depends on the aim of the 

analysis (exploratory/confirmatory). A more detailed discussion of 

this method is given in the following section. 

But there is a third method that in our view is the most important: 

3. Keeping a record of the history of the dataset in which every action 

that operated on the dataset is recorded. In this way it is possible 

to trace the genesis of a new variable which is a function of some 

others, to signal the use of the same variable or subsets of the 

dataset in two separate analyses, etc. 

It is obvious that this feature offers many possibilities for 

protection *). A disadvantage is that keeping a complete record of all 

actions and frequently consult this database (which can become quite 

large) may be very storage and time consuming. 

*) Also, when doing a confirmatory analysis in a scientific context, one 
is often obliged to record in his article the data, data transform­
ations and techniques used (reproducibility of scientific studies). 



8 

However,when the above methods are combined a less complicated 

protection stystem may be sufficient. 

2.4. Description of a moderate protection system 

In this section we indicate a possible way to implement the ideas 

exposed in the previous section. 

Let us consider any dataset and analyses that can be applied to 

(subsets of) this dataset. The central idea runs as follows: elements of 

the dataset always have one of the following two labels: USED or NOT USED. 

On the other hand, analyses are devided in two predefined classes: 

CONF(irmatory) or EXPL(oratory). If an anlysis of the first class (CONF) is 

appli.ed to a subset that contains USED elements an errormessage is given, 

H all elements are NOT USED, they recieve the label USED afterwards; an 

EXPL(oratory) analysis can be appli.ed to subsets wi.th mixed (i.e. contai­

ning USED and NOT USED) elements , NOT USED elements recieving the label 

USED afterwards. One can describe this proces more formally (see appendix 

A). 

In this way, the history keeping in function of the protection system 

is unnecessary: extra actions needed are the checking of the elements of a 

subset if an confirmatory analysis is due and the changing of labels after 

appli.cation of an analysis. It does not seem useful to us to indicate which 

variables have been involved, since that still does not guarantee the 

independence of test outcomes. Moreover, it is often too complicated. 

Further, the output of the package is thought to reflect the nature 

(exploratory/confirmatory) of the results. 

If the package has a way to ascertain the statistical ability of the 

user (see method l in 2.3.) the following extra features may be considered: 

the 'advanced' user has the possibility to override element labels (i.e. to 

use any subset for a confirmatory analysis, if he so wishes), while for the 

'nonadvanced' user the package tries to check the applicability of a 

certain confirmatory analysis on the asked-for data subset. 
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3. COMMUNICATION 

Data analysis - and in particular data exploration - leans heavily on 

the interpretation of numbers, tables and pictures. Any CSP should be so 

designed that it helps, not hinders this process. It should be "comforta­

ble"; i.e. a user should neither feel bored nor tired after a long session. 

One relief from boredom can be found in fast response times. This, of 

course, is not only a question of package design. In section 5.1 we make 

some remarks about the relation between response ti.me and package develop­

ment. 

Directly related to the user comfort is the way communi.cation takes 

place between the CSP and the user. And this definitely is a question of 

package design. Several aspects of this communi.cation are discussed in this 

chapter. 

3.1. Flow of information 

To perform the tasks as intended by the user, the CSP needs some 

specific information. (e.g. the analysis to perform; where to find the 

data; how to present the results; etc.) Therefore a flow of information 

exists from the user to the package. But then the question arises: who 

decides which kind of information is needed at a given moment? Since there 

are two different participants in the communication, it can be package- or 

user-controlled. Consequently, two different classes in forms of communica­

tion can be disti.nguished, each with its own logic and problems. 

If the package is in control, the communication becomes query-like: 

the package poses questions and the user has to answer them (see also Kuik 

& Hasman, 1983; Kuik, 1984). When the user is in control, the communication 

becomes keyword-oriented: the package has to recognize certain key-phrases 

in the information the user has to offer. Aspects of this dichotomy and the 

forms it takes are discussed in section 3.2. 

There also exists a flow of information from the package to the user. 

Mostly this concerns error messages, help facilities, comments, etc. This 

will be discussed in section 3.4. 

For • both directions of flow one may speak about the intensity of the 

communication. This is an important aspect of comfort, since intense 
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(comprimized) communication takes a lot of concentration, and may become 

tiring after a period, while long-winded communication can become extremely 

boring. These and related concepts are discussed in section 3.3. 

3.2. Forms of communi.cation 

In this section we describe the more common forms of communication. In 

a CSP usually more than one is used; mixed forms occur also. These 'basic' 

forms can be divided into two classes according to the di.chotomy mentioned 

above: package or user controlled. 

3.2.1. Package controlled forms 

The basic forms of the package controlled forms are 

[al] yes/no questions. 

The package produces a questi.on to which the user must answer either 

yes or no. 

[a2] menu scheme (multi.ple choice questions). 

This is an extension of [al]; the package produces a question with 

several possible answers from whi.ch the user must select. 

[a3] information directed questions. 

The package asks for specific information such as a filename, the 

type of statistical technique to be used or the number of variables 

on a file. 

[a4] form defined questions. 

Thi.s form is only possible on a video display or a graphic terminal. 

The package displays a complete question form on the screen. The 

user has to fill i.n answers to all the questions at predescribed 

places and return the completed form to the package. For some 

questions the package has already suplied default values, which can 

be (but need not be) overwritten by the user. 

[aS] position defined questions. 

This form is also only possible on a video display or a graphic 

terminal. With cursor, hairlines, joystick, lightpen, mouse or some 

other means the user responds to a given question by returni.ng one 
~ 

or more positions to the package. This allows a very flexible way of 
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data transmission and parameter setting. As an example consider a 

situation, in whi.ch one has a scatterplot of observati.ons in 

twodi.mensi.onal space. In such a plot outliers are easily detected; 

therefore the easi.est way of deleti.ng them i.s by pointing at them 

with the joystick (or light pen). Another example is the selection 

of the wanted option in a menu sceme with a joy stick. 

3.2.2. User controlled forms 

The basi.c user controlled forms are: 

[bl] keywords and procedure type instructions. 

The user gives the name of a procedure followed by the parameters, 

or gives a keyword followed by one or more values. 

[b2] Instructions i.n a pseudo natural language. 

This is in fact a more elegant presentation of [bl].The information 

about the next i.nstruction is gi.ven by certain key expressions, 

which may be embedded in a language-li.ke sentence. 

[b3] Instructions i.n a natural language. 

The user gives hi.s i.nstructfons to the package in a natural language 

sentence. The package evaluates and i.nterpretes this and reports his 

interpretation to the user, together with additional questi.ons if 

some information is not clear or incomplete. 

3.2.3. Example 

Suppose we want to perform a Student t-test on the variable AGE, where 

the two groups to be compared are indicated by MALE and FEMALE. The data 

might be found on some external file DATA. 

For the first group we combine the forms [al] and [a3] (questions are in 

lowercase, answers in uppercase). 

[a ] Which analysis do you want to perform ? 

T-TEST 

between which groups ? 

MALE,FEMALE 

on which variable ? 

AGE 
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on which file can I find your data ? 

DATA 

For the second class examples for all forms are given: 

[bl] T-TEST,VAR=AGE,GROUPl=MALE,GROUP2=FEMALE,FILE=DATA. 

[b2] RUN the T-TEST ON the variable AGE BETWEEN the two groups MALE and 

FEMALE OF file DATA. 

Here the texts written in uppercase are the key expressions, the 

embedding, which is optional, is written in lowercase. 

[b3] I WOULD LIKE TO KNOW IF THERE IS A DIFFERENCE IN MEAN AGE BETWEEN 

MALES AND FEMALES. COULD YOU PERFORM A T-TEST FOR ME ? THE DATA MAY 

BE FOUND ON THE FILE DATA. 

In many situations the package-controlled forms can hardly work 

efficient on their own. A combination of [a2], [a4] and [aS] is then most 

comfortable. 

Since the package has the initiative, a situation can easily arise in 

which the user doesn't know what to do or what the package wants from him. 

To alleviate this problem, extensive help faci 11 ties are needed. 

To evaluate the forms in user controlled situations, the following 

considerations are to be made: In [bl] the user needs to know the exact 

order and format of the keyword instruction line. In the "natural language" 

case [b3] a large overload of typework is to be done. Therefore at the 

moment the form of pseudo natural language [b2] is preferable. When in the 

(near?) future acoustical input techniques become available, the natural 

language might be the preferred alternative. 

A major problem in user controlled situations lies in the fact that 

the user now has to know everything: all available keywords, their 

parameters and the order in which they have to be called. So also in this 

situation there evolves a need for help facilities. 

The package controlled situation is easiest on the less experienced 

users of a CSP, whereas for experienced users the user controlled 

situation is often preferable. Gilfoil (1981) reports an experiment in 

which a menu-dri.ven dialogue is found appropriate for novice users. After 
"" 

approximately 16-20 hours of task experience transition to a command driven 
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dialogue is preferred. 

3.3. Variations in dialogue 

Several variations in the dialogue are possible. The main types are 

the variation in input and output intensity ,such as: 

Verbosity 

This is the global amount of text the package produces around each 

instruction. This should be sufficient for good understanding but not 

too much more than necessary: it can be extremely tiring when sitting 

behind a video display, letters and numbers flash by constantly. The 

opportunity for the user to adjust the verbosity to his own needs 

provides a good comfort. 

Density 

This can be described as the amount of questions (from the package) or 

procedure and keywords instructions (from the user) required to 

describe an action. The density is closely related to the form of 

communication; for instance YES/NO questioning always has a higher 

density than the menu scheme. In some cases it is also related to the 

experience and (statistical) knowledge of the user; in a keyword­

oriented package he may for example have defined a procedure in which 

several actions are combined. Thus, by typing his self-defined 

keyword, he can trigger a whole sequence of actions. This way he 

lowers the density. 

Display inertia 

This is the amount of information remaining on the screen after the 

user has given a command or answer. When there are many changes at 

these moments, the package has a low display inertia. 

Thus, it is convenient for the user to be able to select levels for 

these three types of intensity. Lower levels make the analysis more 

compact, and hence the screen does not change much every time when input is 

required or output produced. This may be pleasant for the user; however 

there is a greater risk of forgetting to replace default values of 

important parameters and hence of making mistakes. 
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Other vadations in the dialogue are for instance variation of the 

layout of the screen, variation in size of letters and figures, etc. 

3.4. Aids and support 

The package should be a guide for the user during the dialogue. In 

some cases it can even anticipate and therefore warn the user for errors to 

be made. Of course, a user who does not want to be helped, should be 

enabled to turn off this guidance. 

Ingredients necessary for good support of the di.alogue are: 

Error handling 

Messages should be clear and succint. They also should be polite and 

unintimidating; bells and other noises should be used spari.ngly. 

Errors should not lead to abrupt and unintelligi.ble abortion of the 

session. Therefore errorhandling by the operating system should be 

prevented. The user should be given the opportuni.ty to correct 

mistakes, for example by editing an incorrect command line, or by 

returning to the last-but-one question at will. The package should ask 

for confirmation of any command, that asks for drastic changes (such 

as deleting variables or files). It should allow for Murphy's law: any 

mistake that can be made, will be. The package should be forgiving: if 

some answer makes sense with a minor change, the package should do so 

(or ask for confirmation of the corrected li.ne). It must be easy for 

the user to correct mistakes ! 

Comments 

When (statistical) comments are called for (e.g. singularity of a 

matrix, too many missing values, non-Gaussian data), the package may 

do so with alacrity. Also other comments should be given as clear as 

possible, and as often as needed. 

The way the comments are given will depend on the choosen level of 

intensity. The level on which they are generated may be influenced by 

the preselected level of the user (see the discussion in chapter 2). 

So an 'advanced' user can get other comments than a 'nonadvanced' 
" 

user. 
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Help facilities 

These should be as extensive as possi.ble. Several kinds of facilities 

are indicated: clarifying the question, giving information about the 

possible answers, giving insight in the requested statistical method, 

swi.tching verbosity or density, a mailing service, etc. They should be 

available at any time and in selectable (useful) porti.ons. 

For different users there should be given different amounts of 

information, related to the verbosity the user has selected; for 

nonadvanced users there should be tutorial i.nformation at all crucial 

points. There also should be facilities to provide help in correcting 

errors. 

Technical aids 

Video displays often have possibilities for technical manoeuvres: 

blinking, half intensity, inversing, even colour can be used. All thes 

aids should be us_ed discriminatingly: it can be extremely tiring, 

trying to extract i.nformation from a display like a patchwork quilt. 

Especially in blocks of text, a surfeit of colour changes will not add 

to the :informative content ! On the other hand, the judicious use of 

colour can turn an otherwise untransparant plot into a sensible 

picture. 

Retracing 

It should be possible for the user to make some steps back in h:is 

(explorative) statistical analysis. For instance consider the case 

that the desired dataset is obtained after some difficult manipulati­

ons. Suppose that we then applied the wrong statistical technique. In 

such cases it must be possible to return to the dataset without doing 

the manipulati.ons all over again. Facilities to make steps backwards 

in the analysis do need a good recording of the hi.story of the 

interactive session. 

It is also convenient when the user can interrupt his interactive 

session and proceed an other time (e.g. the next day). For this aspect 

see also section s.s. 
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3.5. Intelligent interfaces 

Communication between human beings is facilitated by their common 

knowledge. The absence of this in man-machine communication is one of the 

main sources of the apparent lack of intelligence of the machine. If a CSP 

could be designed as an "expert system" using a "knowledge base" containing 

appropriate statistical notions, many of the desiderata mentioned before 

may be answered easily (see Chambers, 1982). 

Recently, experimental packages have been developed that honor this 

idea (Gale & Pregibon, 1984; Pregibon & Gale, 1984). These "expert systems" 

react more intelligently on user input, even making suggestions about the 

line of action to be taken. Thus far this has been done only for regression 

analysis and the implementation puts heavy demands on storage, apart from 

requiring special terminals. 

As a first step, one could think of an interface embedded in an more 

or less intelligent environment as has been implemented for the interactive 

programming language B (see Nienhuis, 1983) and is being investigaged for 

the Ada *) programming language (DoD, 1980; see also Kernighan & Mashey 

(1979) on the Unix Programming Environment). For the design of keyword­

oriented CSP's many of these idea's might be useful. As an example, the 

suggestion mechanism might be very attractive, since the i.nterface 

inevitaly makes use of a fair amount of keywords. 

4. THE INTERFACE IN VIEW OF USER OBJECTIVES. 

In this chapter our aim is to describe in a general way what 

characteristics a language between user and package should have in view of 

the objectives the user has in mind. At the moment, much work is done 

concerning the cognitive aspects of the user interface. Moran (1981) 

describes a method and a formalism to describe an interface (see also Saja, 

1985). Here we try to di.scribe that part of the system which he calls the 

"Conceptual Component" (Task and Semantic Level). 

*) Ada is a registered trademark of the United States Governement (Ada 
Joint Program Office). 
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The Task Level is described in the following way: "The user comes to the 

system whith a set of tasks he wants to accomplish. The purpose of the Task 

Level is to analyse the user's needs and to structure his task domain in a 

way that is amenable to an interactive system. The output of this level is 

a structure of specific tasks that the user will set for himself wlth the 

aid of the system." Additionally, the Semantic Level is thus described: "A 

system is built around a set of objects and manipulations of those objects. 

To the system these are data structures and macro's; to the user they are 

conceptual entities and conceptual operations on these entities. The 

Semantic Level lays out these entities and operations. They are intended to 

be useful for accomplishing the user's tasks, since they represent the 

system's functional capability. Thus, the semantic Level also specifies 

methods for accomplishi.ng the tasks i.n terms of these conceptual enti.ti.es 

and operati.ons." 

We wi.11 elaborate thi.s idea and, usi.ng general terms, gi.ve a 

descripti.on of the objectives of a user that uti.Uzes a conversati.onal 

statisti.cal package. We will also describe the implied requi.rements for 

the applicati.on language and the i.nterface. 

We first formulate what ki.nd of basic concepts should be extant, and 

what acti.ons the user should be able to perform. 

Though the contents of thi.s chapter are mai.nly concerned with the form 

of communicati.on we called user controlled i.n chapter 3, most of the 

concepts and i.deas have consequences for the querylike situation, too. 

In almost any formal language strai.ned relations exi.st between on one 

hand meaning and content of the actions one wants to express and, on the 

other hand the administrative i.nformation requi.red by the language itself. 

These strains are more percepti.ble i.f the language is more desi.gned with 

an eye on the speci.al faci.li.ti.es and constraints of computing machinery. 

(As an example, thi.nk of somebody who wishes to calculate n!.. The only 

thing he is interested i.n, really, is the final result. Most programming 

languages in thi.s case would require specificati.on of conceptually irrele­

vant details, such as that the computation concerns i.ntegers. However 

elegant the construction of the programming language, details remain 

details •rrom the user's point of view.) 

As stated by Koster (1979), choosi.ng the basic concepts of a computer 
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language is an art: the student of this art should be aware of the 

constructs that are used while stating a problem initially, in the naive 

stage where computational considerations are immaterial. The importance of 

keepi.ng a language as close as possible to these concepts becomes even 

greater if the user of the language i.s less expedenced in the handling of 

the machine. This is the case with our user: we may assume that he knows 

more about his application field than about statistics, and more about 

statistics than about computation. 

A description of the objectives of a userlanguage (or -interface) in 

general terms doesn't seem to be regular practice. (Compare the development 

of the high-level language Ada (DoD 1978; Ichbi.ah et al. 1979): in that 

case design considerations have been explicitly expressed.) In this chapter 

we formulate design considerations without designing a userlanguage. In 

fact we only formulate some idea's that could be embodied in the design of 

a more or less ideal package. To formulate what we want without actually 

sketching a new language asks for the definition or description of some 

basic notions. This is done in the next section. Modes, Actions and 

Datastructures are the most important concepts, but some attention is paid 

also to the notions of "internal" vs "external" information, macro's and 

Flow-of-control. These notions are used in secti.on 4.3 to describe user 

objectives. 

4.1. Basic concepts 

4.1.1. Modes 

An attribute can be ascribed to an instruction sequence suggesting its 

intention. We call these attributes modes and we will recognize specifi­

cation-, input-, throughput- and output- mode. 

A few examples may demonstrate the use of these terms: 

In specification-mode parameters are specified, data structures are 

defined or macro's declared. 

Data are read in input-mode. 

In throughput-mode, statistical computations are performed inter­

mingled,_with data manipulation. 

In output-mode the user can inspect his output and select parts of it. 
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One should not think of modes as consecutive phases in the interactive 

session. During the session modes alternate constantly. For instance, 

principal component analysis would include input of an external correl­

ati.onmatrix (i_nput-mode), producing principal factors (throughput-mode) 
·, 

i.nspection of the output (output-mode), computation of a rotation matrix 

(throughput-mode) and producing a plot of the variables on the main axes 

(output-mode). 

Modes differ in degree of activity: we call specification-mode passive 

compared to the other three, that are labeled active. Here "passive" means 

that instructi.ons given by the user only contain information and do not 

call for action. In the other categories direct action is taken. 

4.1.2. Data structures 

A data structure is considered to be any kind of information, 

(eventually) accessible to the CSP and of interest to the user. One could 

think of the raw data file, some matrix internal to the system, a subset of 

the variables, etc. But also the contents of a screen on the tertninal could 

be considered a data structure. 

4.1.3. Actions 

The concept of data structure has meaningless without the concept of 

operators or procedures applicable to datastructures. We will use the term 

action in this connection. An action is activated by one user-instruction. 

If the user asks for a T-test, the action is the complete computing 

sequence, not the separate components, such as the computing of the mean of 

one of the two groups. 

4.1.4. Flow of Control (FoC) 

All actions take place in a certain order, which is defined by the 

information the CSP receives from the user. Sometimes a situation arises in 

which an action only may take place as long as a certain condition is 

fulfilled. We then say that the flow of control is controlled by this 

condition. 
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4.1.5. Macro's 

In the speci flea tion-mode macro's may be declared. In 4. 2 and 4. 4. 1 we 

go into the concept of "macro" in greater detail. For the moment we can 

think of a macro as a new, user-defined set of instructjons, composed of a 

set of data structures and the actions to be taken upon them. A macro can 

be called by name at all appropriate jnstances. 

4.1.6. Internal and External Informatjon 

From the user's vjewpojnt there are two kinds of data: the data 

"known" {ln structure and location) to the CSP and data not yet introduced 

into H. The last kind of information is called "external". Upon recieving 

data, the CSP js likely to organfae jt into an easy-to-handle structure. 

Information reorganized by the CSP is called "internal". Even when the CSP 

stores it on some external medium to facilitate retrieval we speak of 

an internal file. The reader may compare this to system files or work 

files, as known ln many statistical packages. 

4.2. Macro's and Flow of Control 

There is a dHference between flow of control in the active modes and in 

specification-mode. In the active modes user instructions cause the system 

to act; flow of control alternates between user and package. Macro 

deUnition takes place in specificatfon mode: the body is retained for 

further use, and no action js taken. 

The possjbility to specify a macro is one way in which the user could 

influence the density: jn specjfication mode several actions can be 

combined jnto a macro. Ljke "normal" routines ju a programming language a 

macro should contajn, apart from its body: 

- name, and 

- parameters. 

This user defined name js used to call the macro. 

provide the macro with jnformation, information is 

Input-parameters 

deU.vered in the 

output;parameters. Later on during the session the specified macro name 

functions as keyword in the same way the standard keywords do. When called 
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with actual parameters a set of instructions is executed that without the 

macro defition should have been called one by one. 

4.3. User objectives 

What objectives does the user have in mind while interacting with a 

CSP? One can differentiate between actions which the user aims at, such as 

performing some kind of analysis (we call this kind of actions substantial) 

and actions, that are necessary for the system to function. 

This last kind of actions can be further divided in data manipulaton and 

administrative actions. 

In most cases the user concentrates on substantial actions, whereas other 

actions, to him, are a not particularly interesting necessity. 

One could say that the following categories (in order of interest): 

- executing analyses 

- data manipulation 

- administrative actions 

comprise the actions the user wants the system to perform. 

Consequently, the CSP design should automatize, as much as possible, all 

actions needed in the second and third categories. 

4.3.1. Executing analyses 

Preceeding execution of an analysis the data structures needed should 

be specified. We can think of two kinds of data structures in this context: 

the data on which the analysis is performed and the parameter vector 

determining the process. This vector may be filled in by a routine that 

questions the user or it may be given as a (row of) parameters to the 

analysis to be activated. One should be able to pass this vector by name to 

the analysis routine. 

In packages like STAP (1980) or BMDP (Dixon, 1981), external matrices 

can be entered when required. In this case we assume that some action is 

taken to transform the external file into an internal one before it is 

used. Therefore we can state that analysis act upon internal data files. 

After t~e analysis is performed, data structures may remain, resulting 

from the diffent modes that have been passed through. Intermediate results 
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like matrices containing weights or a variance-covariance matrix can be 

made available for further use, their structure and name being recorded 

internally at the moment of their creation. All remaining datastructures 

should be accessible by name. This is more obvious for intermediate results 

as it is for input- and output-structures. The mentioned systemfiles 

provide an example of the first. *) Since the user wants to be able to 

handle output as flexi.bly as other datastructures, also output structures 

should be accessible by name. 

4.3.2. Data manipulation 

In specification-mode, data structures needed for the actions per­

formed during the active modes are defined. The design of the user-inter­

face should minimalize thi.s need. For input, one could think of format 

specification or specification of the expected hierarchical structure of a 

file. Also a subfile structure can be imposed on an already existing file. 

Apart from the specification of new structures a notation should be 

available which answers the following requirements: 

One should be able to compose data structures from existing ones. 

One should be able to access substructures, i.e., indexing should be 

possible. 

(For an example of such a system, see Ad~r & van der Veer, 1982.) 

Throughput-mode also may require declarations: it should be possible to 

declare missing values or name new variables. During throughput-mode 

computation or recoding is performed sometimes altering or extending the 

internal file(s). We can formulate a variety of desires here: the existing 

user languages are rather backward here compared to higher programming 

languages. Some idea's may be found in 4.4. 

The same requirements mentioned above apply: composition or indexing 

of newly formed structures should be possible. 

Finally, we consider the meaning of data mani.pulation in output-mode. What 

are the user's objectives when manipulating output? We consider three kinds 

of actions the user is likely to perform: 

*) In most existing packages handling more than one system file is 
impossible. 
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inspection 

isolation of some parts to send to an output-device 

isolation of information, stripped of irrelevant fringe like headings 

and edges of tables, to be used in subsequent analyses. 

Essentially, output should allow manipulation like any other data structu­

re. The user should be able to skip through it easily. It should be 

addressable to be send to the printer or to be used as input to a 

subsequent analysis. A notational system should be present to enable this. 

4.3.3. Administrative actions 

In i.nput-mode to fetch external files should be possible, as in 

output-mode to store files externally. In throughput-mode information 

about names or composition can be gained about the internal data structu­

res. The user can ajust all kinds of parameters in this mode (e.g., 

i.ntensity levels). 

Additionally, it would be convenient to him to be able to indi.cate whether 

a task should be performed interactively or in batch. 

4.4. Desi.rable features of the user-language 

In throughput-mode all sorts of computations and recoding should be 

possible. We could formulate a whole scala of whishes on this point since 

f aci l:f.ties in the existing user languages seem rather primitive compared to 

the more sofisticated constructs existing in programming languages. 

We mention only a few possibi.lities. Undoubtedly, the list can be extended. 

The user should be able 

1. to handle a list of variable-names as a datastructure. Think of a 

repeat-instruction of the following form: 

for dummyname in list do 

<statement with dummyname as a parameter) 

od. 

Also, indexing of such a list should be made possible (i.e. one should 

be able to speak of the Sth element of list). 
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We conclude this secti.bn with a few suggestions that may augment the 

usefulness of macro's. 

Once a macro is defi.ned one should be able to use it inside other 



25 

macro's. As a consequence also recursive use should be considered. Of 

course tMs easier to state than to implement: termination of execution 

should be guaranteed. The issue asks for a careful analysis and eventually, 

the formulation of well defined restrictions. 

Apart from the "usual" parameters li.ke reals or integers that control 

the execution, also other data structures may function as parameters: a 

row of strings that answer the questions of a query sequence, or output 

produced previously. As in the case of recursion mentioned above, i.t may be 

necessary to restrict the use of macro's as parameters: the possibility of 

unwanted side-effects as well as the conceptional complexity to the user, 

necessitate careful consideration of this option. 

5. OTHER ASPECTS 

5.1. Response time, portability and machine dependency 

There are three viewpoints, concerning these objectives, as described 

in the introduction: that of a user of a package, that of it's developer 

and finally that of the distributor. 

From the user's 

importance. This will 

viewpoint fast 

be dependent on 

response times 

the "matching" 

are of foremost 

between package 

software and machine hardware, i.e. from the implementation of the package 

on the machine. Fastest response times will be realized when the package is 

written in assembler or in machine code. 

This has an obvious drawback: the package will become nearly nontrans­

portable, i.e. bound to the development site. Though a user will find no 

problem with this, the developer will also have other ai.ms. He will want to 

lease (or sell) his product to other institutions. Thus for him portability 

is of the greatest interest. To obtai.n this goal the package should be 

machi.ne independent to a large extent. Therefore the package should be 

written in a well-known higher programming language (i.e. like FORTRAN or 

PASCAL). 

Unavoidably, though, some things are strongly dependent on the used 

machi.ne(s), especially on the word length, but also routi.nes for IQ-hand­

ling, b~t-manipulation, making graphic applications for the video display 

or the plotter, etc. The distributor would like to have those operations 
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concentrated in as few routines as possible, to facilitate easy conversion 

of the package for his specific machine. 

5.2. Reliability and maintenance 

The package should be reliable in two ways. Firstly, there should be 

numerical reliability. For any computation a stable and accurate algorithm 

should be used, while the results should be given in a correct format: a 

result that is numerically accurate to its second digit only, should not be 

given in three digits, though a result, accurate in eight digits, may be 

given in four. 

Secondly, the package should be proof against injudicious use, as has 

been noted in 3.3. Therefore it should have been extensively tested, both 

at the original development site and in the later working situation. 

Several test sets with and without pathological data should be available 

for this purpose. It should be easy to correct errors that are detected 

after the release of the package. Therefore the package should be easy to 

maintain and to patch. This implicates a modular structure, a richly 

documented source code and good documentation, the latter two available to 

the distributors.' The users and the distributors should be able to defer to 

the developer for maintenance and quality-control. For patching it would be 

an advantage, if the distri.butor can fit in his own subprograms. This is 

one more argument in favour of writing the program in a well-known language 

and for extensive documentation. 

5.3. Interfaces 

In this article we recognize two different types of interface: the 

user interface, as described in chapter 4, and the package interfaces. The 

latter consist of software, i.e. special routines for purpose of making a 

link between the package and some external feature. They can be divided 

into three main ~roups: 

1. The user-package interface, consisting of all routines that handle the 

communication between user and package, i.e. question asking routines, 

t~xt evaluation, error messages, help facilities, etc. This is quite 

different from the user interface in eh. 4 ! 
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2. The package-package interfaces, consisting of the li.nking routi.nes to 

other packages. Of special importance are the routines that handle 

conversion of the respective package-internal-files (system files). 

Also there might be routines to call the other package(s) directly, if 

the operating system allows for such an action (as in RSX-llD). Two 

examples are P-STAT (to do explorative data analysis) and ISPAHAN 

(Gelsema, 1981). 

3. package-library interfaces. These can be subdivided into two: one to 

the system U.brary, and some to external software. 

a) As noted in paragraph 5.1 all operations that are dependent on 

the used machine should be concentrated i.n but a few routines, 

together forming the interface (though one might find it easier 

to seperate different tasks in different -sub- interfaces, i.e. 

one for plotting, one for bit-manipulation, and so on). 

b) For numerical routi.nes it might be an advantage to obtain these 

from an external library, for instance Nag or IMSL. This way one 

may expect to have the most up-to-date algorithms available. 

Besides, one does not need a new release of the statistical 

package, when a new numerical routine has been developed. On the 

other hand the distributor -and indirectly the user- now is 

dependent on two developers, for availability, for compati­

bility, as well as for maintenance. To buy a package for 

statistical computing would mean to be obliged to buy a certain 

(numerical) library too. 

Therefore in our view the developer should include in his 

statistical package an interface to all external software. Any 

routine from an external library. should be embedded in one 

package routine, so as to facilitate adaptation to new releases 

of the library. In this way it is also possible to replace such 

a routine by one, written by the distributor. Moreover, it 

should be possible to obtain the package as being completely 

self-supporting, i.e. it should have it's own routines for all 

operations, included in an external library. Otherwise it would 

be vulnerable in its dependence on the availability and 

maintenance - of such a library. 
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5.4. Processing modes and batch jobs 

There are three modes in which a package may process the given 

commands: as an interpreter, a translator or a compiler. In the first case 

it evaluates and executes one given line/command at a ti.me. In the second 

case it translates one or more commands i.nto a set of instructions in 

another higher language. In the third case it collects all commands first 

and then compiles and executes them. 

Most CSPs process the commands in the interpreter mode: it is easier 

to implement and more flexible to use. The compiler mode makes macro 

building very easy, but requires more insight from programmer and user. In 

the translator mode it is easy to create "batch jobs". 

Though no mention has been made of it as yet, it should be worthwile 

to have the option for batch processing. Especially when large (core 

memory, CPU ti.me) or special (coloured ink plots, floppy disk output) 

requirements of system utilities will be made, it might be advisable not to 

do the analyses in an interactive way. It will be better to place a 

complete "job" in the i.nput stream for batch processing. When the user is 

gi.ven this opti.ons, he also should be given the possibility to work on 

interacti.vely, while his job is executing. 

5.5. Protection against system crashes 

The operational system that never crashes still has to be invented. In 

thi.s section we wi.11 discuss some ideas about how to make the disadvantage­

ous consequences of a crash as small as possible. We will suppose that 

during an interactive session a workfile exi.sts which contai.ns the actual 

information. Examples of such information are computed data, history, 

i.ntermediate results and statements (when the package is in translation or 

compiler mode (cf. section s.4)). During the session this file is 

continuously altered. To protect the user against losing the workfile it 

has to reside on external memory (disc, tape). The main disadvantage of 

this system is the relatively low speed of the data transports between 

internal and external memories, even if these transports are buffered. 

Therefore the costs of extra computing time must be weighed against wages 
• 

that must be paid for the extra work caused by a crash, taking in account, 
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of course, the probability of a system crash. It seems advisable to offer 

protection to inexperienced users with non-protection as an option. For 

experienced users the other way around is preferable, since protection will 

put a large claim on system resources! 
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APPENDIX A. FORMALIZED DISCRIPTION OF A PROTECTION SYSTEM 

Consider a system S = {C, P, A, L), in which C is a set of objects, 
called cases, P is the powerset of C, A a set of operations, called 
analyses. There exist two special subsets of A, AC and AE, A = AC U AE, 

AC n AE = ~ • Elements of AC are called confirmatory analyses, elements of 
AE are called exploratory analyses. 

L ={"USED", "NOT USED"} is a set of two attri.butes. At any time, all 

elements of C are assi.gned one of those two attributes, so C = CU U CN, 
CU n CN = 0 and CU contains elements with the attributes "USED", CN with 
elements wi.th the attribute "NOT USED". The user can apply elements of A to 
P, possibly causing a change of attribute to some elements of c. 

During a session the following steps are performed concerning S: 

Initialyse. All elements of Care attri.buted the label "NOT USED", so 
C = CN, CU = [b. 

Choose. a E A, p E P are chosen by the user. Then, a is appli.ed to P• 

Confirmative Check. If a E AC and p E P, then: 
a. If p n CU = 9J then all elements recieve the label "USED" 

after}l7ards. CU becomes CU u p, CN becomes C - P• 
b. If p n CU f= 9J then an errormessage is given and no action i.s 

taken. 

Exploratory Check. 
becomes C - P• 

If a E AE and p E P then CU becomes CU U p, CN 

Repeat or Finish. The user may di.rect control to the second step i.f he 
wishes so or end here. 

Remarks: 

1. The user has influence on the second step ("Choose") and the last step 

("Repeat or Finish") only. However, there may be some function at his 
disposal that enables him to put elements of CU into CN at will, 

before the step "Choose" is taken. Si.nee the CSP is not guarded 
agai.nst such action, no warnings are given in a case like that: these 

changes are for the responsability of the user. 

2. a AC can consist of a sequence of confirmatory analyses of which the 

i.ncrease of the level of significance can be controlled. 
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