
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Sdence

H.J. Ader, D.J. Kuik, E. Opperdoes, B.F. Schriever

The use of conversational packages in statistical computing

Department of Mathematical Statistics Report MS-R8506 September

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

The use of Conversational Packages in Statistical Computing

H.J. Ader
Department of Psychology, Free University,

P.O. Box 7161, 1007 MC Amsterdam, The Netherlands.

D.J. Kuik
Department of Medical Statistics, Free University,

P.O. Box 7161, 1007 MC Amsterdam, The Netherlands.

E. Opperdoes
Central Bureau of Statistics, P.O. Box 959, 2270 AZ Voorburg, The Netherlands.

B.F. Schriever
Department of Mathematics and Computer Science,

Free University, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands.

It is not generally recognized that conversational computing demands a different way of using statistical

analysis. However, special problems arise while applying statistical techniques repeatedly on the same
dataset. The question is put whether unexperienced users should be protected against this kind of improper

use of a conversational statistical package (CSP). In section 3 we list some formal aspects of conversa­

tional communication. Thereafter user-objectives in the use of the package are considered and conse­

quences for the user-interface formulated. Finally some technical questions are treated.

1980 Mathematics Subject Classification: 62-04
Key Words & Phrases: conversational computing, statistical computing, evaluation of software, conversa­

tional statistical packages.
Note: This report will be submitted for publication elsewhere.

Report MS-R8506
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

1. INTRODUCTION

In the past few years the interactive use of computers has increased

enormously. The usefulness of conversational *) computing has been recog~

nised earlier in the administrative field than in computational statistics

and, although techniques that are most useble in an conversational

environment like Exploratory Data Analysis (Tukey, 1977; Velleman &

Hoaglin, 1981) have been introduced and implemented, the conception that

conversational computing demands a different way to use statistical

analyses is not at all generally accepted. This new way to use statistics

raises questions on the proper use of techniques, and consequently on the

development of packages which are not only foolproof but also reflect a

sensible view on the way they should be used. Developers are usually not

concerned about meeting methodological requirements for their products.

About other - say ergonomical - requirements, no user to our knowledge has

ever been consulted by any package developer. The term "user friendliness"

has been thought of only recently and the quaU ty of packages in thi.s

respect is often rather poor. (UserfriendUness is discussed by van

Apeldoorn, 1983, and shortcomings in SPSS by Davis, 1983.)

Not too long ago the idea arose that one should evaluate the existing

(batch) packages (Francis 1977,1982; Hext, 1982; Wilke 1982). Also, in

Cognitive Psychological research, several aspects of Man Machine Interac­

ti.on have been looked at, especially those relevant to the user interface

as show the many articles in, for instance, the Journal of Human Machine

Interaction and the Sigchi Bulletin of the ACM. But although literature

in both fields gets more extensive, thi.s did not result in substantial

changes in any package. However, evaluation of statistical (batch} packages

has increased the understanding of the pros and cons of their use (see

Molenaar, 1984).

*) A subtle difference in meaning exists between the terms interactive
and conversational: the first applies in all situations where use is
made of interactive terminals to channel the contact between user and
cofuputer. This contact is called conversational if the interaction is
a dialogue, i.e. if it takes an alternating question-response pattern.

2

We do not give a critical survey of existing packages. For batch­

packages this has already been done by others {Francis, 1981; Lauro &

Serio, 1982; Cable & Rowe, 1984) since there are not too many Conversatio­

nal Statistical Packages around (see however Kuik (1984) about QUESTOR;

Reid (1980) gives a list of packages used in the Britain), we felt we

should think about the subject more generally.

We describe in general terms, some concepts that define the 'context'

in which a "suffici.ently good" package might exist. Therefore this work

should be seen as an stocktaking of tools and as material for a discussion

on concepts.

Hopefully, not only discussion is started by thi.s article but also

future design of Conversati.onal Statistical Packages {CSP for short) is

influenced by it.

Moreover, since this paper roughly formulates what to expect of

Conversational Statistical Packages, it should be easier to formulate norms

to be used to evaluate such packages. We intend, as a follow-up of this

study, to make up such norms and to evaluate existing packages.

Most generally this article is meant as a working paper for all those

people that are interested in the field of Computational Statistics. More

specifically we adress ourselves to the people who meet CSPs in their

professional career. Here one can make a subdivision in three: on one hand

there are the developers of these CSPs. They may find some ideas whi.ch may

help them in designing friendlier systems. On the other hand there are the

users of such a package. They might be interested in the discussions the

(statistical) problems arising while using a CSP. But mainly we address

ourselves to a third group, the people who are responsible, possibly as an

advising speci.alist, for the purchasi.ng and installation of a package. We

call them 'distributors' hereafter. They have to make up for specific

requirements, related to the wishes of their user groups.

of users might be In the second chapter we formulate what kind

expected to use a CSP. Some special problems that are caused by the

the same dataset are interactive applying of statistical techniques on

dwelled upon. This leads to considerations on the responsabilities of user, ..
distributor and package-developer.

3

In chapter 3 the more formal aspects of conversational communication

is treated.

In chapter 4 aspects of the user-objectives in his or her use of th~

package are considered, consequences for the user-interface are formulated.

In the fifth chapter some technical questions are treated.

Parts of this paper have been published before (Chapter 2: Kuik &

Schriever, 1984; chapter 4: Ader & Kuik, 1983; Ader, Kuik & v.d. Veer,

1984).

The work on this article has been performed by a subgroup of the

"ADSARA Subcommittee on Statistical Software". This subcomittee has an

advisory task towards ADSARA, which stands for the board of users of

Stichting Academjsch Rekencentrum Amsterdam (SARA), the central computing

centre of the Uni.versity of Amsterdam, the Free University and the Centre

for Mathematjcs and Informati.cs, all three in Amsterdam.

2. STATISTICS AND THE CONVERSATIONAL PACKAGE

2.1. User groups

Nowadays the applied statistician js not the only kind of user of

statistical programs. In fact there are many different users of statistical

packages orginating from all djsciplines.

These user groups may be classified with respect to the following

three characteristics:

1. application fi.eld (e.g. socjal sciences, economics, biometrjcs)

2. stati.stical ability

3. skill in package-handljng

The first characteristic has consequences for the content of the CSP

with respect to techniques, data structures and user language.

For example, for use in the social sciences principal component

analysis should be incorporated, economists need time series analysis,

whereas for the use in biometrics bioassay techniques should be present.

Correspondingly, different data structures are indicated: typical are

grouping data in biometrics, time series data in economics and categorical

data in "social sciences.

A lot has been written on human machine interfaces. All that is true

4

in general, is true for the special case of statistical packages. The

existing interfaces of statistical packages cannot be called examples of

user friendliness (see for instance Davis on SPSS, 1983). Especially novice.

users suffer from this: ideally, for a package used in a course on

statistics, special provisions should be made for the user i.nterface.

The second and third characteristic ask for extra facilities for users

with different needs for assistance.

This variety of intended customers makes it far from easy to construct

a "general purpose" Statistical Package. One can take di.fferent vi.ews on

the desirability of the construction of such a package. The user with a

high level of the above mentioned skills will be glad to have a package at

hand with whi.ch he can perform a scala of different tasks. However,

packages Hke that tend to get rather enormous and usually ask for

sped fie abilities of

group of users have some

the third kind. Packages directed versus a special

advantages: the application field is no longer a

problem, the statistical ability and skill in package-handling are well

defined.

Generally speaking, a package well constructed in these respects might

stimulate the application of appropri.ate statistical techniques consi.dera­

bly.

2.2. (Dis)advantages of interactively applied statistics

Statistical batch packages are often incorrectly used, due to the fact

that they are so easily available to the user. It are not just a few who

are tempted to run some programs first and think later, instead of the

correct reverse procedure. In the case of conversational packages access is

eased yet and, consequently, the danger of incorrect use becomes even

greater.

Let us have a closer look at some important causes for i.ncorrect use.

A general cause, to be met with all kinds of statistical analysis, may

be called "departure from underlying assumptions". Depending on the

(statistical) robustness of the techni.que, neglecting this point can entail

completely absurd conclusions since in essence a wrong technique is
"

applied. Because a CSP enables the user to perform many different

5

techniques unhammered one after another, a more specific danger consists in

testjng sequentially wjthout adjusting the level of signjficance. This may

lead to what is known as "capjtalization on chance": one continues

performing statistical tests untU a "significant" result js found. Another

danger of doing many analyses on the same dataset is the dependence of the

conclusions: a significant result may affect the "significance" of other

results (in a purely deterministic way).

It is obvjous that these dangers exist only in confirmati.ve analyses,

since here we try to give a statistical proof of some phenomenon, applying

the very strict rules of statistjcal analysis, whereas on the other hand jn

exploratory analysis we often neglect these strict rules and search for

phenomena of interest. *)

Thus far for the dangers. What might be said about their prevention?

First of all: does the user wants to be protected? Molenaar (1984) does not

favor this idea: "I do not tMnk a package has the Biblical obligation to

be its user's keeper, and many users will resent warnings, let alone

refusals, in cases such as very unequal group variances or very small cell

expectations."

The questjon whether protection should be given is one to be solved by

the designer. One could think of a package offering the possibility to

activate an warning mechanism against improper use, to be swjtched on (or

off) by the user.

If one deddes that protection should be given, is it possible to

conceive an "ideal" CSP which would protect the user against all pitfalls

of confirmatory analysjs? The answer seems to be negative for two reasons:

*) As Tukey puts it, Exploratory Data Analysis and Confirmatory Data
Analysjs compare like the work of the detective and that of the judge:
"Exploratory data analysis is detective in character. Confimatory data
analysfs is judidal or quasi-judidal in character •••••

Unless the detective Hnds the clues, judge or jury has nothing
to consider. Unless exploratory data analysis uncovers indications,
usually quantjtative ones, there is likely to be nothing for confirma­
tory data analysjs to consider-." On the other hand: "Exploratory
data analysis can never be the whole story, but nothing else can serve
as t;he foundatfon stone -- the first step." (Tukey, 1977)

6

Firstly, the construction of a warning mechanism is met with severe

technical problems; in many cases underlying assumptions are hard to

verify, while in others the assumptions are inherent to the experimental.

design (e.g. randomness of a sample) and cannot be checked on the data. A

modest protection against dependent analyses is possible when the same

technique and the same variables are concerned. Otherwise complications may

occur e.g. when one uses two different techniques on the same dataset

(Notice that this also is the case when model assumptions are tested first,

after which the confirmatory technique is applied.) Paradoxically, i.t looks

as if a correct statistical procedure can lead to incorrect use of the

data!

Secondly, the package can read the data but i. t cannot read the user's

mind; it does not know whether the user i.ntends to do an exploratory or a

confirmatory analysis. In some cases the user may wish to try several

techniques on the same variables in order to "explore" the information that

is contained in the data. Evidently, no statistical proof is yi.elded by

such an exploratory analysis. It may only produce some hypotheses which can

be tested later in a confirmatory analysis on a different (independent)

dataset. One way to put such a two stage approach into practice is to take

a relatively small, random sample from the dataset at hand and use it for

an exploratory analysis and after that to perform a statistical test of the

hypotheses on the remaining data. We therefore think a full protection

system is impossible and even consider the suggestion of such a powerful!

protection system harmful: the user may think that any statistical

analysis that passes (or escapes) the system is correct, which in many

instances simply is not true. The package should restrict itself to

warnings about what can go wrong in applying the technique at hand. In this

way the user is informed about the ri.sks he takes and is better aware of

his own responsibility.

In our opinion, one of the most important justificati.ons for the

existence of conversational statistical software is the possibility to do

exploratory analyses; in a correct confirmatory statistical analysis the

technique, the relevant parameters and the data are chosen in advance and

therefore one or two (batch) runs are sufficient.

7

2.3. The distributor's responsibility

Although we argued above that there exists no complete protection

against incorrect use, it is still possible to offer protection to some

extent. The question arises to what degree the distributor should be held

responsi.ble for the incorrect use of his software. One can take a stand

somewhere between the two extremes: either the user or the distributor is

completely responsible. The user is imperfect and liable to error.

Therefore he will be glad to have some protection against his own

fallibility, as long as he can work in the way he wishes. On the other

hand, it seems reasonable to demand from the distributor that the software

he supplies offers some protection against incorrect use.

The following methods could be thought of:

1. The user can choose, according to his statistical knowledge, between

two levels to use the package: advanced or non-advanced. After this

level has been established, the package may select some programs

according to their degree of safety and prohibit the use of others

(I.e. an inexperienced user might be barred from using the more

esoteric rotation methods in factor analysis.)

2. The decision to offer protecti.on or not depends on the aim of the

analysis (exploratory/confirmatory). A more detailed discussion of

this method is given in the following section.

But there is a third method that in our view is the most important:

3. Keeping a record of the history of the dataset in which every action

that operated on the dataset is recorded. In this way it is possible

to trace the genesis of a new variable which is a function of some

others, to signal the use of the same variable or subsets of the

dataset in two separate analyses, etc.

It is obvious that this feature offers many possibilities for

protection *). A disadvantage is that keeping a complete record of all

actions and frequently consult this database (which can become quite

large) may be very storage and time consuming.

*) Also, when doing a confirmatory analysis in a scientific context, one
is often obliged to record in his article the data, data transform­
ations and techniques used (reproducibility of scientific studies).

8

However,when the above methods are combined a less complicated

protection stystem may be sufficient.

2.4. Description of a moderate protection system

In this section we indicate a possible way to implement the ideas

exposed in the previous section.

Let us consider any dataset and analyses that can be applied to

(subsets of) this dataset. The central idea runs as follows: elements of

the dataset always have one of the following two labels: USED or NOT USED.

On the other hand, analyses are devided in two predefined classes:

CONF(irmatory) or EXPL(oratory). If an anlysis of the first class (CONF) is

appli.ed to a subset that contains USED elements an errormessage is given,

H all elements are NOT USED, they recieve the label USED afterwards; an

EXPL(oratory) analysis can be appli.ed to subsets wi.th mixed (i.e. contai­

ning USED and NOT USED) elements , NOT USED elements recieving the label

USED afterwards. One can describe this proces more formally (see appendix

A).

In this way, the history keeping in function of the protection system

is unnecessary: extra actions needed are the checking of the elements of a

subset if an confirmatory analysis is due and the changing of labels after

appli.cation of an analysis. It does not seem useful to us to indicate which

variables have been involved, since that still does not guarantee the

independence of test outcomes. Moreover, it is often too complicated.

Further, the output of the package is thought to reflect the nature

(exploratory/confirmatory) of the results.

If the package has a way to ascertain the statistical ability of the

user (see method l in 2.3.) the following extra features may be considered:

the 'advanced' user has the possibility to override element labels (i.e. to

use any subset for a confirmatory analysis, if he so wishes), while for the

'nonadvanced' user the package tries to check the applicability of a

certain confirmatory analysis on the asked-for data subset.

9

3. COMMUNICATION

Data analysis - and in particular data exploration - leans heavily on

the interpretation of numbers, tables and pictures. Any CSP should be so

designed that it helps, not hinders this process. It should be "comforta­

ble"; i.e. a user should neither feel bored nor tired after a long session.

One relief from boredom can be found in fast response times. This, of

course, is not only a question of package design. In section 5.1 we make

some remarks about the relation between response ti.me and package develop­

ment.

Directly related to the user comfort is the way communi.cation takes

place between the CSP and the user. And this definitely is a question of

package design. Several aspects of this communi.cation are discussed in this

chapter.

3.1. Flow of information

To perform the tasks as intended by the user, the CSP needs some

specific information. (e.g. the analysis to perform; where to find the

data; how to present the results; etc.) Therefore a flow of information

exists from the user to the package. But then the question arises: who

decides which kind of information is needed at a given moment? Since there

are two different participants in the communication, it can be package- or

user-controlled. Consequently, two different classes in forms of communica­

tion can be disti.nguished, each with its own logic and problems.

If the package is in control, the communication becomes query-like:

the package poses questions and the user has to answer them (see also Kuik

& Hasman, 1983; Kuik, 1984). When the user is in control, the communication

becomes keyword-oriented: the package has to recognize certain key-phrases

in the information the user has to offer. Aspects of this dichotomy and the

forms it takes are discussed in section 3.2.

There also exists a flow of information from the package to the user.

Mostly this concerns error messages, help facilities, comments, etc. This

will be discussed in section 3.4.

For • both directions of flow one may speak about the intensity of the

communication. This is an important aspect of comfort, since intense

10

(comprimized) communication takes a lot of concentration, and may become

tiring after a period, while long-winded communication can become extremely

boring. These and related concepts are discussed in section 3.3.

3.2. Forms of communi.cation

In this section we describe the more common forms of communication. In

a CSP usually more than one is used; mixed forms occur also. These 'basic'

forms can be divided into two classes according to the di.chotomy mentioned

above: package or user controlled.

3.2.1. Package controlled forms

The basic forms of the package controlled forms are

[al] yes/no questions.

The package produces a questi.on to which the user must answer either

yes or no.

[a2] menu scheme (multi.ple choice questions).

This is an extension of [al]; the package produces a question with

several possible answers from whi.ch the user must select.

[a3] information directed questions.

The package asks for specific information such as a filename, the

type of statistical technique to be used or the number of variables

on a file.

[a4] form defined questions.

Thi.s form is only possible on a video display or a graphic terminal.

The package displays a complete question form on the screen. The

user has to fill i.n answers to all the questions at predescribed

places and return the completed form to the package. For some

questions the package has already suplied default values, which can

be (but need not be) overwritten by the user.

[aS] position defined questions.

This form is also only possible on a video display or a graphic

terminal. With cursor, hairlines, joystick, lightpen, mouse or some

other means the user responds to a given question by returni.ng one
~

or more positions to the package. This allows a very flexible way of

11

data transmission and parameter setting. As an example consider a

situation, in whi.ch one has a scatterplot of observati.ons in

twodi.mensi.onal space. In such a plot outliers are easily detected;

therefore the easi.est way of deleti.ng them i.s by pointing at them

with the joystick (or light pen). Another example is the selection

of the wanted option in a menu sceme with a joy stick.

3.2.2. User controlled forms

The basi.c user controlled forms are:

[bl] keywords and procedure type instructions.

The user gives the name of a procedure followed by the parameters,

or gives a keyword followed by one or more values.

[b2] Instructions i.n a pseudo natural language.

This is in fact a more elegant presentation of [bl].The information

about the next i.nstruction is gi.ven by certain key expressions,

which may be embedded in a language-li.ke sentence.

[b3] Instructions i.n a natural language.

The user gives hi.s i.nstructfons to the package in a natural language

sentence. The package evaluates and i.nterpretes this and reports his

interpretation to the user, together with additional questi.ons if

some information is not clear or incomplete.

3.2.3. Example

Suppose we want to perform a Student t-test on the variable AGE, where

the two groups to be compared are indicated by MALE and FEMALE. The data

might be found on some external file DATA.

For the first group we combine the forms [al] and [a3] (questions are in

lowercase, answers in uppercase).

[a] Which analysis do you want to perform ?

T-TEST

between which groups ?

MALE,FEMALE

on which variable ?

AGE

12

on which file can I find your data ?

DATA

For the second class examples for all forms are given:

[bl] T-TEST,VAR=AGE,GROUPl=MALE,GROUP2=FEMALE,FILE=DATA.

[b2] RUN the T-TEST ON the variable AGE BETWEEN the two groups MALE and

FEMALE OF file DATA.

Here the texts written in uppercase are the key expressions, the

embedding, which is optional, is written in lowercase.

[b3] I WOULD LIKE TO KNOW IF THERE IS A DIFFERENCE IN MEAN AGE BETWEEN

MALES AND FEMALES. COULD YOU PERFORM A T-TEST FOR ME ? THE DATA MAY

BE FOUND ON THE FILE DATA.

In many situations the package-controlled forms can hardly work

efficient on their own. A combination of [a2], [a4] and [aS] is then most

comfortable.

Since the package has the initiative, a situation can easily arise in

which the user doesn't know what to do or what the package wants from him.

To alleviate this problem, extensive help faci 11 ties are needed.

To evaluate the forms in user controlled situations, the following

considerations are to be made: In [bl] the user needs to know the exact

order and format of the keyword instruction line. In the "natural language"

case [b3] a large overload of typework is to be done. Therefore at the

moment the form of pseudo natural language [b2] is preferable. When in the

(near?) future acoustical input techniques become available, the natural

language might be the preferred alternative.

A major problem in user controlled situations lies in the fact that

the user now has to know everything: all available keywords, their

parameters and the order in which they have to be called. So also in this

situation there evolves a need for help facilities.

The package controlled situation is easiest on the less experienced

users of a CSP, whereas for experienced users the user controlled

situation is often preferable. Gilfoil (1981) reports an experiment in

which a menu-dri.ven dialogue is found appropriate for novice users. After
""

approximately 16-20 hours of task experience transition to a command driven

13

dialogue is preferred.

3.3. Variations in dialogue

Several variations in the dialogue are possible. The main types are

the variation in input and output intensity ,such as:

Verbosity

This is the global amount of text the package produces around each

instruction. This should be sufficient for good understanding but not

too much more than necessary: it can be extremely tiring when sitting

behind a video display, letters and numbers flash by constantly. The

opportunity for the user to adjust the verbosity to his own needs

provides a good comfort.

Density

This can be described as the amount of questions (from the package) or

procedure and keywords instructions (from the user) required to

describe an action. The density is closely related to the form of

communication; for instance YES/NO questioning always has a higher

density than the menu scheme. In some cases it is also related to the

experience and (statistical) knowledge of the user; in a keyword­

oriented package he may for example have defined a procedure in which

several actions are combined. Thus, by typing his self-defined

keyword, he can trigger a whole sequence of actions. This way he

lowers the density.

Display inertia

This is the amount of information remaining on the screen after the

user has given a command or answer. When there are many changes at

these moments, the package has a low display inertia.

Thus, it is convenient for the user to be able to select levels for

these three types of intensity. Lower levels make the analysis more

compact, and hence the screen does not change much every time when input is

required or output produced. This may be pleasant for the user; however

there is a greater risk of forgetting to replace default values of

important parameters and hence of making mistakes.

14

Other vadations in the dialogue are for instance variation of the

layout of the screen, variation in size of letters and figures, etc.

3.4. Aids and support

The package should be a guide for the user during the dialogue. In

some cases it can even anticipate and therefore warn the user for errors to

be made. Of course, a user who does not want to be helped, should be

enabled to turn off this guidance.

Ingredients necessary for good support of the di.alogue are:

Error handling

Messages should be clear and succint. They also should be polite and

unintimidating; bells and other noises should be used spari.ngly.

Errors should not lead to abrupt and unintelligi.ble abortion of the

session. Therefore errorhandling by the operating system should be

prevented. The user should be given the opportuni.ty to correct

mistakes, for example by editing an incorrect command line, or by

returning to the last-but-one question at will. The package should ask

for confirmation of any command, that asks for drastic changes (such

as deleting variables or files). It should allow for Murphy's law: any

mistake that can be made, will be. The package should be forgiving: if

some answer makes sense with a minor change, the package should do so

(or ask for confirmation of the corrected li.ne). It must be easy for

the user to correct mistakes !

Comments

When (statistical) comments are called for (e.g. singularity of a

matrix, too many missing values, non-Gaussian data), the package may

do so with alacrity. Also other comments should be given as clear as

possible, and as often as needed.

The way the comments are given will depend on the choosen level of

intensity. The level on which they are generated may be influenced by

the preselected level of the user (see the discussion in chapter 2).

So an 'advanced' user can get other comments than a 'nonadvanced'
"

user.

15

Help facilities

These should be as extensive as possi.ble. Several kinds of facilities

are indicated: clarifying the question, giving information about the

possible answers, giving insight in the requested statistical method,

swi.tching verbosity or density, a mailing service, etc. They should be

available at any time and in selectable (useful) porti.ons.

For different users there should be given different amounts of

information, related to the verbosity the user has selected; for

nonadvanced users there should be tutorial i.nformation at all crucial

points. There also should be facilities to provide help in correcting

errors.

Technical aids

Video displays often have possibilities for technical manoeuvres:

blinking, half intensity, inversing, even colour can be used. All thes

aids should be us_ed discriminatingly: it can be extremely tiring,

trying to extract i.nformation from a display like a patchwork quilt.

Especially in blocks of text, a surfeit of colour changes will not add

to the :informative content ! On the other hand, the judicious use of

colour can turn an otherwise untransparant plot into a sensible

picture.

Retracing

It should be possible for the user to make some steps back in h:is

(explorative) statistical analysis. For instance consider the case

that the desired dataset is obtained after some difficult manipulati­

ons. Suppose that we then applied the wrong statistical technique. In

such cases it must be possible to return to the dataset without doing

the manipulati.ons all over again. Facilities to make steps backwards

in the analysis do need a good recording of the hi.story of the

interactive session.

It is also convenient when the user can interrupt his interactive

session and proceed an other time (e.g. the next day). For this aspect

see also section s.s.

16

3.5. Intelligent interfaces

Communication between human beings is facilitated by their common

knowledge. The absence of this in man-machine communication is one of the

main sources of the apparent lack of intelligence of the machine. If a CSP

could be designed as an "expert system" using a "knowledge base" containing

appropriate statistical notions, many of the desiderata mentioned before

may be answered easily (see Chambers, 1982).

Recently, experimental packages have been developed that honor this

idea (Gale & Pregibon, 1984; Pregibon & Gale, 1984). These "expert systems"

react more intelligently on user input, even making suggestions about the

line of action to be taken. Thus far this has been done only for regression

analysis and the implementation puts heavy demands on storage, apart from

requiring special terminals.

As a first step, one could think of an interface embedded in an more

or less intelligent environment as has been implemented for the interactive

programming language B (see Nienhuis, 1983) and is being investigaged for

the Ada *) programming language (DoD, 1980; see also Kernighan & Mashey

(1979) on the Unix Programming Environment). For the design of keyword­

oriented CSP's many of these idea's might be useful. As an example, the

suggestion mechanism might be very attractive, since the i.nterface

inevitaly makes use of a fair amount of keywords.

4. THE INTERFACE IN VIEW OF USER OBJECTIVES.

In this chapter our aim is to describe in a general way what

characteristics a language between user and package should have in view of

the objectives the user has in mind. At the moment, much work is done

concerning the cognitive aspects of the user interface. Moran (1981)

describes a method and a formalism to describe an interface (see also Saja,

1985). Here we try to di.scribe that part of the system which he calls the

"Conceptual Component" (Task and Semantic Level).

*) Ada is a registered trademark of the United States Governement (Ada
Joint Program Office).

17

The Task Level is described in the following way: "The user comes to the

system whith a set of tasks he wants to accomplish. The purpose of the Task

Level is to analyse the user's needs and to structure his task domain in a

way that is amenable to an interactive system. The output of this level is

a structure of specific tasks that the user will set for himself wlth the

aid of the system." Additionally, the Semantic Level is thus described: "A

system is built around a set of objects and manipulations of those objects.

To the system these are data structures and macro's; to the user they are

conceptual entities and conceptual operations on these entities. The

Semantic Level lays out these entities and operations. They are intended to

be useful for accomplishing the user's tasks, since they represent the

system's functional capability. Thus, the semantic Level also specifies

methods for accomplishi.ng the tasks i.n terms of these conceptual enti.ti.es

and operati.ons."

We wi.11 elaborate thi.s idea and, usi.ng general terms, gi.ve a

descripti.on of the objectives of a user that uti.Uzes a conversati.onal

statisti.cal package. We will also describe the implied requi.rements for

the applicati.on language and the i.nterface.

We first formulate what ki.nd of basic concepts should be extant, and

what acti.ons the user should be able to perform.

Though the contents of thi.s chapter are mai.nly concerned with the form

of communicati.on we called user controlled i.n chapter 3, most of the

concepts and i.deas have consequences for the querylike situation, too.

In almost any formal language strai.ned relations exi.st between on one

hand meaning and content of the actions one wants to express and, on the

other hand the administrative i.nformation requi.red by the language itself.

These strains are more percepti.ble i.f the language is more desi.gned with

an eye on the speci.al faci.li.ti.es and constraints of computing machinery.

(As an example, thi.nk of somebody who wishes to calculate n!.. The only

thing he is interested i.n, really, is the final result. Most programming

languages in thi.s case would require specificati.on of conceptually irrele­

vant details, such as that the computation concerns i.ntegers. However

elegant the construction of the programming language, details remain

details •rrom the user's point of view.)

As stated by Koster (1979), choosi.ng the basic concepts of a computer

18

language is an art: the student of this art should be aware of the

constructs that are used while stating a problem initially, in the naive

stage where computational considerations are immaterial. The importance of

keepi.ng a language as close as possible to these concepts becomes even

greater if the user of the language i.s less expedenced in the handling of

the machine. This is the case with our user: we may assume that he knows

more about his application field than about statistics, and more about

statistics than about computation.

A description of the objectives of a userlanguage (or -interface) in

general terms doesn't seem to be regular practice. (Compare the development

of the high-level language Ada (DoD 1978; Ichbi.ah et al. 1979): in that

case design considerations have been explicitly expressed.) In this chapter

we formulate design considerations without designing a userlanguage. In

fact we only formulate some idea's that could be embodied in the design of

a more or less ideal package. To formulate what we want without actually

sketching a new language asks for the definition or description of some

basic notions. This is done in the next section. Modes, Actions and

Datastructures are the most important concepts, but some attention is paid

also to the notions of "internal" vs "external" information, macro's and

Flow-of-control. These notions are used in secti.on 4.3 to describe user

objectives.

4.1. Basic concepts

4.1.1. Modes

An attribute can be ascribed to an instruction sequence suggesting its

intention. We call these attributes modes and we will recognize specifi­

cation-, input-, throughput- and output- mode.

A few examples may demonstrate the use of these terms:

In specification-mode parameters are specified, data structures are

defined or macro's declared.

Data are read in input-mode.

In throughput-mode, statistical computations are performed inter­

mingled,_with data manipulation.

In output-mode the user can inspect his output and select parts of it.

19

One should not think of modes as consecutive phases in the interactive

session. During the session modes alternate constantly. For instance,

principal component analysis would include input of an external correl­

ati.onmatrix (i_nput-mode), producing principal factors (throughput-mode)
·,

i.nspection of the output (output-mode), computation of a rotation matrix

(throughput-mode) and producing a plot of the variables on the main axes

(output-mode).

Modes differ in degree of activity: we call specification-mode passive

compared to the other three, that are labeled active. Here "passive" means

that instructi.ons given by the user only contain information and do not

call for action. In the other categories direct action is taken.

4.1.2. Data structures

A data structure is considered to be any kind of information,

(eventually) accessible to the CSP and of interest to the user. One could

think of the raw data file, some matrix internal to the system, a subset of

the variables, etc. But also the contents of a screen on the tertninal could

be considered a data structure.

4.1.3. Actions

The concept of data structure has meaningless without the concept of

operators or procedures applicable to datastructures. We will use the term

action in this connection. An action is activated by one user-instruction.

If the user asks for a T-test, the action is the complete computing

sequence, not the separate components, such as the computing of the mean of

one of the two groups.

4.1.4. Flow of Control (FoC)

All actions take place in a certain order, which is defined by the

information the CSP receives from the user. Sometimes a situation arises in

which an action only may take place as long as a certain condition is

fulfilled. We then say that the flow of control is controlled by this

condition.

20

4.1.5. Macro's

In the speci flea tion-mode macro's may be declared. In 4. 2 and 4. 4. 1 we

go into the concept of "macro" in greater detail. For the moment we can

think of a macro as a new, user-defined set of instructjons, composed of a

set of data structures and the actions to be taken upon them. A macro can

be called by name at all appropriate jnstances.

4.1.6. Internal and External Informatjon

From the user's vjewpojnt there are two kinds of data: the data

"known" {ln structure and location) to the CSP and data not yet introduced

into H. The last kind of information is called "external". Upon recieving

data, the CSP js likely to organfae jt into an easy-to-handle structure.

Information reorganized by the CSP is called "internal". Even when the CSP

stores it on some external medium to facilitate retrieval we speak of

an internal file. The reader may compare this to system files or work

files, as known ln many statistical packages.

4.2. Macro's and Flow of Control

There is a dHference between flow of control in the active modes and in

specification-mode. In the active modes user instructions cause the system

to act; flow of control alternates between user and package. Macro

deUnition takes place in specificatfon mode: the body is retained for

further use, and no action js taken.

The possjbility to specify a macro is one way in which the user could

influence the density: jn specjfication mode several actions can be

combined jnto a macro. Ljke "normal" routines ju a programming language a

macro should contajn, apart from its body:

- name, and

- parameters.

This user defined name js used to call the macro.

provide the macro with jnformation, information is

Input-parameters

deU.vered in the

output;parameters. Later on during the session the specified macro name

functions as keyword in the same way the standard keywords do. When called

21

with actual parameters a set of instructions is executed that without the

macro defition should have been called one by one.

4.3. User objectives

What objectives does the user have in mind while interacting with a

CSP? One can differentiate between actions which the user aims at, such as

performing some kind of analysis (we call this kind of actions substantial)

and actions, that are necessary for the system to function.

This last kind of actions can be further divided in data manipulaton and

administrative actions.

In most cases the user concentrates on substantial actions, whereas other

actions, to him, are a not particularly interesting necessity.

One could say that the following categories (in order of interest):

- executing analyses

- data manipulation

- administrative actions

comprise the actions the user wants the system to perform.

Consequently, the CSP design should automatize, as much as possible, all

actions needed in the second and third categories.

4.3.1. Executing analyses

Preceeding execution of an analysis the data structures needed should

be specified. We can think of two kinds of data structures in this context:

the data on which the analysis is performed and the parameter vector

determining the process. This vector may be filled in by a routine that

questions the user or it may be given as a (row of) parameters to the

analysis to be activated. One should be able to pass this vector by name to

the analysis routine.

In packages like STAP (1980) or BMDP (Dixon, 1981), external matrices

can be entered when required. In this case we assume that some action is

taken to transform the external file into an internal one before it is

used. Therefore we can state that analysis act upon internal data files.

After t~e analysis is performed, data structures may remain, resulting

from the diffent modes that have been passed through. Intermediate results

22

like matrices containing weights or a variance-covariance matrix can be

made available for further use, their structure and name being recorded

internally at the moment of their creation. All remaining datastructures

should be accessible by name. This is more obvious for intermediate results

as it is for input- and output-structures. The mentioned systemfiles

provide an example of the first. *) Since the user wants to be able to

handle output as flexi.bly as other datastructures, also output structures

should be accessible by name.

4.3.2. Data manipulation

In specification-mode, data structures needed for the actions per­

formed during the active modes are defined. The design of the user-inter­

face should minimalize thi.s need. For input, one could think of format

specification or specification of the expected hierarchical structure of a

file. Also a subfile structure can be imposed on an already existing file.

Apart from the specification of new structures a notation should be

available which answers the following requirements:

One should be able to compose data structures from existing ones.

One should be able to access substructures, i.e., indexing should be

possible.

(For an example of such a system, see Ad~r & van der Veer, 1982.)

Throughput-mode also may require declarations: it should be possible to

declare missing values or name new variables. During throughput-mode

computation or recoding is performed sometimes altering or extending the

internal file(s). We can formulate a variety of desires here: the existing

user languages are rather backward here compared to higher programming

languages. Some idea's may be found in 4.4.

The same requirements mentioned above apply: composition or indexing

of newly formed structures should be possible.

Finally, we consider the meaning of data mani.pulation in output-mode. What

are the user's objectives when manipulating output? We consider three kinds

of actions the user is likely to perform:

*) In most existing packages handling more than one system file is
impossible.

23

inspection

isolation of some parts to send to an output-device

isolation of information, stripped of irrelevant fringe like headings

and edges of tables, to be used in subsequent analyses.

Essentially, output should allow manipulation like any other data structu­

re. The user should be able to skip through it easily. It should be

addressable to be send to the printer or to be used as input to a

subsequent analysis. A notational system should be present to enable this.

4.3.3. Administrative actions

In i.nput-mode to fetch external files should be possible, as in

output-mode to store files externally. In throughput-mode information

about names or composition can be gained about the internal data structu­

res. The user can ajust all kinds of parameters in this mode (e.g.,

i.ntensity levels).

Additionally, it would be convenient to him to be able to indi.cate whether

a task should be performed interactively or in batch.

4.4. Desi.rable features of the user-language

In throughput-mode all sorts of computations and recoding should be

possible. We could formulate a whole scala of whishes on this point since

f aci l:f.ties in the existing user languages seem rather primitive compared to

the more sofisticated constructs existing in programming languages.

We mention only a few possibi.lities. Undoubtedly, the list can be extended.

The user should be able

1. to handle a list of variable-names as a datastructure. Think of a

repeat-instruction of the following form:

for dummyname in list do

<statement with dummyname as a parameter)

od.

Also, indexing of such a list should be made possible (i.e. one should

be able to speak of the Sth element of list).

2. to perform computations not only on variables but also Ci>J·~ t.':1~~~l¥s'i, o-r:

columns and ~sr~:if;sb~drober:;ae.~e$.~:hQl~jfQ!:O~-~mP.l\tt:<l:ti1:Q;n.sxc<>.~;:;.1~tl only

<~gn t t~Rf !i~t:~.r%l. i~:tl:l~ ~t; l'"~Q: ~Q.e .b~ft<!JI!:~f!JW3~41 ~:Q~ITT!!~-d. i\e m.rt:!iR~~t{a ble,

or: indexin80~Q.U:l.'4 be.:~s£.l!~i\l;\ef1®$.:uP~~sj:ibl~twJc;s:! :l:..:, ;:.sgbs b1rn

·-U!t~rn~~ e dft~:hl!~ '.! :Jffll!l:S ·~~ 1Y.H1tl:xe¥1~t~:Y>JM;lll~!,1nl1il!of;i:JJ~~ .!K~.Y.ir.1£e§q~:!t~ Cll'\9.1:!JN1~~.~.&

£>d .b1~~abEil110q~~J~J!;i.e:§-t ~r .. ~~t~rt«~= o'.l

.s o :1 ~~mivirr . ~'B (~~;,3 , ii.1fl)i:, :i ;: o :r D :Jn

4.4.1. Suggestions concerning Macro's

'I98v srfT s :r

rd: .:rnU~,~~$1 te.w.d::)t}l edil<;hls..P..if.Qgrcmw.:fril!g J:~nceb~ll ojhav~b{..dif,.~{~lti~s in

~~ng s~.,·.::iddif~l:'~~ ,,,betwEl~lt.•:1n~f:;)xsiefi.iUJltiion·&if ea cma~-Ru~1qtl~

e'4.ibhi..Qg t-9fo.Jl0.U_;;. JT~r~ t€h!f;:s :'fl.lQ~ I.:~.XtlnJW~1).,-e;1.;, nktl' J .l~mdie :<CCOtte .. ~~J~:iol)a,;l-!fy:.

qew£~1 ~cltav~ t~::.>kem,or<b'!'~~:W.~" ~lila t af:9Jl'.l®lf. .1l:he :J~~g~ :ii.ll~i.Swmift~

ation-mode. From thereon instructions can be entered that ,~JM~. 't~~M:la~

b.\lJtf.:t :SC~bmftd: i:f~tt ~:,<a ~Qidi ~Ji tU~~li ~ • :ff.M f.iJ..-M1t:) ::S ~ .i:Ki.iJ;,1,, b.:E: tq~ l!f),le.~.iifti .. '4Arfti.

ti.on of the name and th~f:;p~~~t~r-.s 1-~~1rtl:Q.~r~.Jf.A· £J\1,)~t;:l1Elit;~~~~<m:d.J,-Jfi'~GW.~NiE'h

indicates that from then on keywords (eventually selfdefi.ned macro names)

should be executed immediately.·-~~·§~~~~ .:!!!_~~~~~!.::.~'E-~~~~~~:::~.~. :':_: .. :':

®t.:P'J;'~fH~~.Piq~: ~·~ nc:iQ,i:3.rkh~iw ~-c~s::.WP'!'li!:hffJ>~ tt.~1~M~ ~~:L~J:!psQ;l,Ji_n .. t€lre.i l\Ul.~i~\
1.ang11·<>,~;rrlJ.n4=..,..t1·!;\1~U~·t--"'J.. v,. ·:rithe»'"la-<""''"'·"" -,,.-tow;n • .,., '"""'liA ,, '"'eaa.o.-·u:11- ,. ·~t-o. d -.nr..aven.r ... , !I-Ii.,; ~ ~~"' ~~c:vo;:.p:.,., ... ,..~.%;i"'t. ,.~:. J.l.~'/ ~ .• ~ ~ -:~.':ff.Jr~'··~'~ N3t:;~1- ;-s:rM.~~~r.. ... ~ 1,,,K;J:'~.M.. .;J-~,.v .":-5.~~.L~~.~

f,q,;;~~mslt?:.ii ~:,;!.lµ~.t;.~PQ::.rt.:P ,h,~J:~~!W~It~~Ji'J &hi.~ ~p vft:~ ;J:l~~V}l~.s\Jr~.kg~Ji,.;

be stored wi.th an option. In this way, queries can Q~Ale~*JlEJ9.LP-N;,~~J<:l!J3~J•I

Qp.c~o a 111.~ro "~1j:~~~t:Ji.;~.AA.d, .s op.~if.®Ai'.'.c;l~~~J~4 1by :l :0tm:e H. ~EOl'1Hr~~JJ .tjhe

conditionals and determine the:;@i!.:P~ ;:f~ifh~J~J!'li.~ixu fo n.::.;::; :).:rLli~n l"·j .•.;9q:<.n

Secondly, one can hardly escape the al~~~ ~E- P>!iQ.~4M~JI~ .?~~tten in

a higher level progra~ng; ~-Jt~~~g~ ~i~~iEP~ iP.rfl.J.>A.SQAiJ.f;_-;YQI "'·;;be used as

macro's. Thi.s also entails that it should be possible to introd~q!'bthe the

t:f~JbrQf Jfh~ m:-.0:.c;,e~ ;:~ ~~:il::;J~-U~ J.iea~~ iJl.Q~iJ..Jl~ft;t'a,f~WYi:- , ')a .'~!1

.(J~t! ~c jasmels ~l~ 9rlJ 3o ~s~aa oJ ~lds sJ
We conclude this secti.bn with a few suggestions that may augment the

usefulness of macro's.

Once a macro is defi.ned one should be able to use it inside other

25

macro's. As a consequence also recursive use should be considered. Of

course tMs easier to state than to implement: termination of execution

should be guaranteed. The issue asks for a careful analysis and eventually,

the formulation of well defined restrictions.

Apart from the "usual" parameters li.ke reals or integers that control

the execution, also other data structures may function as parameters: a

row of strings that answer the questions of a query sequence, or output

produced previously. As in the case of recursion mentioned above, i.t may be

necessary to restrict the use of macro's as parameters: the possibility of

unwanted side-effects as well as the conceptional complexity to the user,

necessitate careful consideration of this option.

5. OTHER ASPECTS

5.1. Response time, portability and machine dependency

There are three viewpoints, concerning these objectives, as described

in the introduction: that of a user of a package, that of it's developer

and finally that of the distributor.

From the user's

importance. This will

viewpoint fast

be dependent on

response times

the "matching"

are of foremost

between package

software and machine hardware, i.e. from the implementation of the package

on the machine. Fastest response times will be realized when the package is

written in assembler or in machine code.

This has an obvious drawback: the package will become nearly nontrans­

portable, i.e. bound to the development site. Though a user will find no

problem with this, the developer will also have other ai.ms. He will want to

lease (or sell) his product to other institutions. Thus for him portability

is of the greatest interest. To obtai.n this goal the package should be

machi.ne independent to a large extent. Therefore the package should be

written in a well-known higher programming language (i.e. like FORTRAN or

PASCAL).

Unavoidably, though, some things are strongly dependent on the used

machi.ne(s), especially on the word length, but also routi.nes for IQ-hand­

ling, b~t-manipulation, making graphic applications for the video display

or the plotter, etc. The distributor would like to have those operations

26

concentrated in as few routines as possible, to facilitate easy conversion

of the package for his specific machine.

5.2. Reliability and maintenance

The package should be reliable in two ways. Firstly, there should be

numerical reliability. For any computation a stable and accurate algorithm

should be used, while the results should be given in a correct format: a

result that is numerically accurate to its second digit only, should not be

given in three digits, though a result, accurate in eight digits, may be

given in four.

Secondly, the package should be proof against injudicious use, as has

been noted in 3.3. Therefore it should have been extensively tested, both

at the original development site and in the later working situation.

Several test sets with and without pathological data should be available

for this purpose. It should be easy to correct errors that are detected

after the release of the package. Therefore the package should be easy to

maintain and to patch. This implicates a modular structure, a richly

documented source code and good documentation, the latter two available to

the distributors.' The users and the distributors should be able to defer to

the developer for maintenance and quality-control. For patching it would be

an advantage, if the distri.butor can fit in his own subprograms. This is

one more argument in favour of writing the program in a well-known language

and for extensive documentation.

5.3. Interfaces

In this article we recognize two different types of interface: the

user interface, as described in chapter 4, and the package interfaces. The

latter consist of software, i.e. special routines for purpose of making a

link between the package and some external feature. They can be divided

into three main ~roups:

1. The user-package interface, consisting of all routines that handle the

communication between user and package, i.e. question asking routines,

t~xt evaluation, error messages, help facilities, etc. This is quite

different from the user interface in eh. 4 !

27

2. The package-package interfaces, consisting of the li.nking routi.nes to

other packages. Of special importance are the routines that handle

conversion of the respective package-internal-files (system files).

Also there might be routines to call the other package(s) directly, if

the operating system allows for such an action (as in RSX-llD). Two

examples are P-STAT (to do explorative data analysis) and ISPAHAN

(Gelsema, 1981).

3. package-library interfaces. These can be subdivided into two: one to

the system U.brary, and some to external software.

a) As noted in paragraph 5.1 all operations that are dependent on

the used machine should be concentrated i.n but a few routines,

together forming the interface (though one might find it easier

to seperate different tasks in different -sub- interfaces, i.e.

one for plotting, one for bit-manipulation, and so on).

b) For numerical routi.nes it might be an advantage to obtain these

from an external library, for instance Nag or IMSL. This way one

may expect to have the most up-to-date algorithms available.

Besides, one does not need a new release of the statistical

package, when a new numerical routine has been developed. On the

other hand the distributor -and indirectly the user- now is

dependent on two developers, for availability, for compati­

bility, as well as for maintenance. To buy a package for

statistical computing would mean to be obliged to buy a certain

(numerical) library too.

Therefore in our view the developer should include in his

statistical package an interface to all external software. Any

routine from an external library. should be embedded in one

package routine, so as to facilitate adaptation to new releases

of the library. In this way it is also possible to replace such

a routine by one, written by the distributor. Moreover, it

should be possible to obtain the package as being completely

self-supporting, i.e. it should have it's own routines for all

operations, included in an external library. Otherwise it would

be vulnerable in its dependence on the availability and

maintenance - of such a library.

28

5.4. Processing modes and batch jobs

There are three modes in which a package may process the given

commands: as an interpreter, a translator or a compiler. In the first case

it evaluates and executes one given line/command at a ti.me. In the second

case it translates one or more commands i.nto a set of instructions in

another higher language. In the third case it collects all commands first

and then compiles and executes them.

Most CSPs process the commands in the interpreter mode: it is easier

to implement and more flexible to use. The compiler mode makes macro

building very easy, but requires more insight from programmer and user. In

the translator mode it is easy to create "batch jobs".

Though no mention has been made of it as yet, it should be worthwile

to have the option for batch processing. Especially when large (core

memory, CPU ti.me) or special (coloured ink plots, floppy disk output)

requirements of system utilities will be made, it might be advisable not to

do the analyses in an interactive way. It will be better to place a

complete "job" in the i.nput stream for batch processing. When the user is

gi.ven this opti.ons, he also should be given the possibility to work on

interacti.vely, while his job is executing.

5.5. Protection against system crashes

The operational system that never crashes still has to be invented. In

thi.s section we wi.11 discuss some ideas about how to make the disadvantage­

ous consequences of a crash as small as possible. We will suppose that

during an interactive session a workfile exi.sts which contai.ns the actual

information. Examples of such information are computed data, history,

i.ntermediate results and statements (when the package is in translation or

compiler mode (cf. section s.4)). During the session this file is

continuously altered. To protect the user against losing the workfile it

has to reside on external memory (disc, tape). The main disadvantage of

this system is the relatively low speed of the data transports between

internal and external memories, even if these transports are buffered.

Therefore the costs of extra computing time must be weighed against wages
•

that must be paid for the extra work caused by a crash, taking in account,

29

of course, the probability of a system crash. It seems advisable to offer

protection to inexperienced users with non-protection as an option. For

experienced users the other way around is preferable, since protection will

put a large claim on system resources!

30

APPENDIX A. FORMALIZED DISCRIPTION OF A PROTECTION SYSTEM

Consider a system S = {C, P, A, L), in which C is a set of objects,
called cases, P is the powerset of C, A a set of operations, called
analyses. There exist two special subsets of A, AC and AE, A = AC U AE,

AC n AE = ~ • Elements of AC are called confirmatory analyses, elements of
AE are called exploratory analyses.

L ={"USED", "NOT USED"} is a set of two attri.butes. At any time, all

elements of C are assi.gned one of those two attributes, so C = CU U CN,
CU n CN = 0 and CU contains elements with the attributes "USED", CN with
elements wi.th the attribute "NOT USED". The user can apply elements of A to
P, possibly causing a change of attribute to some elements of c.

During a session the following steps are performed concerning S:

Initialyse. All elements of Care attri.buted the label "NOT USED", so
C = CN, CU = [b.

Choose. a E A, p E P are chosen by the user. Then, a is appli.ed to P•

Confirmative Check. If a E AC and p E P, then:
a. If p n CU = 9J then all elements recieve the label "USED"

after}l7ards. CU becomes CU u p, CN becomes C - P•
b. If p n CU f= 9J then an errormessage is given and no action i.s

taken.

Exploratory Check.
becomes C - P•

If a E AE and p E P then CU becomes CU U p, CN

Repeat or Finish. The user may di.rect control to the second step i.f he
wishes so or end here.

Remarks:

1. The user has influence on the second step ("Choose") and the last step

("Repeat or Finish") only. However, there may be some function at his
disposal that enables him to put elements of CU into CN at will,

before the step "Choose" is taken. Si.nee the CSP is not guarded
agai.nst such action, no warnings are given in a case like that: these

changes are for the responsability of the user.

2. a AC can consist of a sequence of confirmatory analyses of which the

i.ncrease of the level of significance can be controlled.

31

REFERENCES

ADeR, H.J. & D.J. KUIK (1983). Talking Statistics without using bad

language (user desires in Conversational Statistical Packages), In:

Symposium bundel, Symposi.um Statistical Software, Utrecht, p.171-183.

ADeR, H.J. & G.C. VAN DER VEER (1982). Prelude-composi.ng in Algol 68:

Applications i.n Dataminipulation and User Languages, In: COMPSTAT

1982, part II (supplement): Short Communications Summaries of Posters,

Edited by H. Caussinus, P. Ettinger & J.R. Mathieu, Physi.ca-Verlag,

Vienna.

ADeR, H.J., D.J. KUIK & G.C. VAN DER VEER (1984). User-aims while using

Conversational Statistical Packages, In: COMPSTAT 1984, Summaries of

Short Communications and Posters, General Computing Center, Czecho­

slovak Academy of Science.

CABLE, D. & B. ROWE (1984). Software for statistical and survey analysis.

Comp. Stat. !_Data Analysis Vol. 2, 1, P· 81-92.

CHAMBERS, J.M. (1982). Analytical Computing: Its Nature and Needs. In:

Proceedings in Computational Statistics, Part I. Physica Verlag,

Vienna, p.22-29.

DAVIS, R (1983). User error or Computer error ? Observations on a

Statistical Package. Int ::"G._ Man-Machine Studies 19, p.359-376.

DoD, DEPARTMENT OF DEFENCE (1978). Department of Defense STEELMAN require­

ments for high-order computer languages.

DoD, DEPARTMENT OF DEFENCE (1980). Department of Defense Requirements for

ADA Programming Support Environment "STONEMAN".

DIXON, w.J., M. B. BROWN, L. ENGELMAN, J.w. FRANE, M.A. HILL, R.I. JENNRICH

& J.D. TOPOREK (1981). BMDP Statistical Software Manual, University of

Californi.a Press, University of California.

FRANCIS, I. (1977). A Comparitive Review of Statistical Software. Interna­

tional Association for Statistical Computing, New Delhi.

FRANCIS, I. (1982). A survey of statistical Software. Comp. Stat. & Data

Analysis Vol I, 1, p.17-27.

GALE, A. & D. PREGIBON (1984). Constructing an Expert System for Data

Analysis by Working Examples, In: COMPSTAT 1984, Proceedings in

Computational Statistics, Physica-Verlag, Vienna, p.227-235.

32

GELSEMA. E.S. (1981). ISPAHAN, Users Manual (4th edition). Department of

Medical Informatics, Free University, Amsterdam.

GILFOIL, D.M. (1981). Warm1ng up to Computers: a study of the cognitive and

affect1.ve interaction over t1me. In: Proceedings of Human factors in

Computer systems, Gaithersburg, Maryland, p.245-250.

HEXT, G.R. (1982). A Comparison of Types of Database Systems Used in

Statistical Work. In: Proceedings in Computational Statistics, Physica

Verlag, Vienna, I, p.272-277.

ICHBIAH, J.D., J.G.P. BARNES, J.C. HELIARD, B. KRIEG-BRuCKNER & B.A.

WICHMANN (1979). Rationale for the Design of the ADA Programming

Language, ACM, SIGPLAN Notices Vol. 14, 6.

KERNIGHAN B.w. & J.R. MASHEY (1981). The Un1x Programming Environment. In:

Tutorial: Software Development Environments, T. Wasserman (Ed.), IEEE

Computer Society.

KOSTER, C.H.A. (1979). User Languages and Application Languages. Informati­

ca I Computer Graphics, Faculty of Science, Nijmegen Univers1ty, The

Netherlands.

KUIK, D.J. & B.F.SCHRIEVER (1984). Stat1stics and Conversational Packages,

In: COMPSTAT 1984, Summaries of Short Communications and Posters,

General Comput1.ng Center, Czechoslovak Academy of Science.

KUIK, D.J. & A. HASMAN (1983). QUESTOR, a Conversational Statistical

Package. In: MEDINFO '83. Proceedings of the Fourth World Conference

on Medical Informatics, p.939-942.

KUIK, D.J. (1984). QUESTOR, a Conversational Preprocessor to BMDP. In:

COMPSTAT 1984, Proceedings in Computational Statistics, Physica-Ver­

lag, Vienna, p.329-334.

LAURO,N & G. SERIO (1982). Criter1a for evaluating and comparing Statisti­

cal Software: a Mult1dimensional Data Analysis Approach, Statistical

Software Newsletter, Vol 8, nr 3, p.102-119.

MOLENAAR, I.W. (1984). Behavioral Stud1es of the Software User, Comp. Stat.

~Data Analysis Vol. 2, 1, p.1-12.

MORAN, T.P. (1981). The Command Language Grammar: a representation for the

user interface of interactive computeer systems. Int. ~ Man-Machine

Stud1es 15, p.3-50.

33

NIENHUIS, A. {1983). On the Design of ~Editor for the B Programming

Language, report IW 248/83, Mathematisch Centrum, Amsterdam.

PEMBERTON, s. {1984). The B Programming Language and Environment, In: CWI

Newsletter 1, p.2-14.

PREGIBON, D. & A. GALE, 1984. REX: an Expert System for Regression

Analysis. In: COMPSTAT 1984, Proceedings in Computational Statistics,

Physica-Verlag, Vienna, p.242-248.

REID, A., J.s. LENNON & J.s. KNOWLES {1980). Report ~~Survey of

Interactive Statistical Packages in British Universities and Polytech­

nics, Inter University Software Committee, Aberdeen University Compu­

ting Center.

RSX-llD Documentation Directory. DEC-11-0XUGA-D-D. Digital Software Docu­

mentation.

SAJA, A.D. {1985). The Cognitive Model: An Approach to Designing the

Human-Computer Interface. ACM, SIGCHI Bulletin Vol. 6, 3, p.36-40.

SHAW, M., P. HILFINGER & W.A. WULF {1978). TARTAN-Language Design for the

Ironman requirements: Reference Manual, ACM, SIGPLAN Notices, Vol.

13, 9, p.36-58.

STAP {1980). Statistical Appendix. User manual, Stichting Academisch Reken­

centrum Amsterdam, Amsterdam.

TUKEY, J.w. {1977). Exploratory Data Analysis. Addison-Wesley, Reading,

Mass.

VAN APELDOORN, J.H.F {Ed.) {1983). Man and Information Technology; towards

friendlier systems, STT Publications 38, Delft University Press.

VELLEMAN, P.F. & D.C. HOAGLIN {1981). Applications, Basics and Computing of

Exploratory Data Analysis, Duxbury Press, Boston, Mass.

WILKE, H. {1982). Evaluation of Statistical Software Based on Empirical

User Research. In: Proceedings in Computational Statistics, Part I.

Physica-Verlag, Vienna, p.442-446.

YESTINGSMEIER, J. {1984). Human Factors Considerations in development of

Interactive Software, ACM, SIGCHI bulletin Vol. 16, 1, p.24-27.

