y

Centrum voor Wiskunde en informatica
Centre for Mathematics and Computer Science

&

H.J. Ader, D.J. Kuik, E. Opperdoes, B.F. Schriever

The use of conversational packages in statistical computing

Department of Mathematical Statistics Report MS-R8506 September

AT phlethesk
sapdsnyoos Wisiuoge en ilatmatica
i Sugsleraant

s A

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim-
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

The use of Conversational Packages in Statistical Computing

H.J. Ader

Department of Psychology, Free University,
P.O. Box 7161, 1007 MC Amsterdam, The Netherlands.

D.J. Kuik

Department of Medical Stalistics, Free University,
P.O. Box 7161, 1007 MC Amsterdam, The Netherlands.

_ E. Opperdoes
Central Bureau of Statistics, P.O. Box 959, 2270 AZ Voorburg, The Netherlands.

B.F. Schriever

Department of Mathematics and Compuler Science,
Free University, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands.

It is not generally recognized that conversational computing demands a different way of using statistical
analysis. However, special problems arise while applying statistical techniques repeatedly on the same
dataset. The question is put whether unexperienced users should be protected against this kind of improper
use of a conversational statistical package (CSP). In section 3 we list some formal aspects of conversa-
tional communication. Thereafter user-objectives in the use of the package are considered and conse-
quences for the user-interface formulated. Finally some technical questions are treated.

1980 Mathematics Subject Classification: 62-04

Key Words & Phrases: conversational computing, statistical computing, evaluation of software, conversa-
tional statistical packages.

Note: This report will be submitted for publication elsewhere.

Report MS-R8506
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

SRR S SRR R
e TR e

-

e
i v

&

R

1. INTRODUCTION

In the past few years the interactive use of computers has increased
enormously. The usefulness of conversational *) computing has been recog-
nised earlier in the administrative field than in computational statistics
and, although techniques that are most useble in an conversational
environment 1like Exploratory Data Analysis (Tukey, 1977; Velleman &
Hoaglin, 1981) have been introduced and implemented, the conception that
conversational computing demands a different way to use statistical
analyses is not at all generally accepted. This new way to use statistics
raises questions on the proper use of techniques, and consequently on the
development of packages which are not only foolproof but also reflect a
sensible view on the way they should be used. Developers are usually not
concerned about meeting methodological requirements for their products.
About other - say ergonomical - requirements, no user to our knowledge has
ever been consulted by any package developer. The term "user friendliness”
has been thought of only recently and the quality of packages in this
respect is often rather poor. (Userfriendliness is discussed by van
Apeldoorn, 1983, and shortcomings in SPSS by Davis, 1983.)

Not too long ago the idea arose that one should evaluate the existing
(batch) packages (Francis 1977,1982; Hext, 1982; Wilke 1982). Also, in
Cognitive Psychological research, several aspects of Man Machine Interac-
tion have been looked at, especially those relevant to the user interface
as show the many articles in, for instance, the Journmal of Human Machine
Interaction and the Sigchi Bulletin of the ACM. But although literature
in both fields gets more extensive, this did not result in substantial
changes in any package. However, evaluation of statistical (batch) packages
has increased the understanding of the pros and cons of their use (see

Molenaar, 1984).

*) A subtle difference in meaning exists between the terms interactive
and conversational: the first applies in all situations where use is
made of interactive terminals to channel the contact between user and
cofiputer. This contact is called conversational if the interaction is
a dialogue, i.e. if it takes an alternating question-response pattern.

e

We do not give a critical survey of existing packages. For batch-
packages this has already been done by others (Francis, 1981; Lauro &
Serio, 1982; Cable & Rowe, 1984) since there are not too many Conversatio-
nal Statistical Packages around (see however Kuik (1984) about QUESTOR;
Reid (1980) gives a list of packages used in the Britain), we felt we
should think about the subject more generally.

We describe in general terms, some concepts that define the 'context'
in which a "sufficiently good" package might exist. Therefore this work
should be seen as an stocktaking of tools and as material for a discussion
on concepts.

Hopefully, not only discussion is started by this article but also
future design of Conversational Statistical Packages (CSP for short) is
influenced by it.

Moreover, since this paper roughly formulates what to expect of
Conversational Statistical Packages, it should be easier to formulate norms
to be used to evaluate such packages. We intend, as a follow-up of this

study, to make up such norms and to evaluate existing packages.

Most generally this article is meant as a working paper for all those
people that are interested in the field of Computational Statistics. More
specifically we adress ourselves to the people who meet CSPs in their
professional career. Here one can make a subdivision in three: on one hand
there are the developers of these CSPs. They may find some ideas which may
help them in designing friendlier systems. On the other hand there are the
users of such a package. They might be interested in the discussions the
(statistical) problems arising while using a CSP. But mainly we address
ourselves to a third group, the people who are responsible, possibly as an
advising specialist, for the purchasing and installation of a package. We
call them ‘'distributors®' hereafter. They have to make up for specific

requirements, related to the wishes of their user groups.

In the second chapter we formulate what kind of wusers might be
expected to use a CSP. Some special problems that are caused by the
interactive applying of statistical techniques on the same dataset are

dwelled upon. This leads to considerations on the responsabilities of user,

distributor and package-developer.

In chapter 3 the more formal aspects of conversational communication

is treated.

In chapter 4 aspects of the user-objectives in his or her use of the
package are considered, consequences for the user-interface are formulated.

In the fifth chapter some technical questions are treated.

Parts of this paper have been published before (Chapter 2: Kuik &
Schriever, 1984; chapter 4: Addr & Kuik, 1983; Adé&r, Kuik & v.d. Veer,
1984).

The work on this article has been performed by a subgroup of the
"ADSARA Subcommittee on Statistical Software”. This subcomittee has an
advisory task towards ADSARA, which stands for the board of users of
Stichting Academisch Rekencentrum Amsterdam (SARA), the central computing
centre of the University of Amsterdam, the Free University and the Centre

for Mathematics and Informatics, all three in Amsterdam.

2. STATISTICS AND THE CONVERSATIONAL PACKAGE

2.1. User groups

Nowadays the applied statistician is not the only kind of wuser of
statistical programs. In fact there are many different users of statistical
packages orginating from all disciplines.

These user groups may be classified with respect to the following
three characteristics:

1. application field (e.g. social sciences, economics, biometrics)
2. statistical ability
3. skill in package-handling
The first characteristic has consequences for the content of the CSP

with respect to techniques, data structures and user language.

For example, for use in the social sciences principal component
analysis should be incorporated, economists need time series analysis,
whereas for the use in biometrics bioassay techniques should be present.
Correspondingly, different data structures are indicated: typical are
grouping data in biometriecs, time series data in economics and categorical

data in ‘social sciences.

A lot has been written on human machine interfaces. All that is true

in general, is true for the special case of statistical packages. The

existing interfaces of statistical packages cannot be called examples of
user friendliness (see for instance Davis on SPSS, 1983). Especially novice
users suffer from this: ideally, for a package used in a course on
statistics, special provisions should be made for the user interface.

The second and third characteristic ask for extra facilities for users
with different needs for assistance.

This variety of intended customers makes it far from easy to comstruct
a "general purpose” Statistical Package. One can take different views on
the desirability of the construction of such a package. The user with a
high level of the above mentioned skills will be glad to have a package at
hand with which he can perform a scala of different tasks. However,
packages like that tend to get rather enormous and usually ask for
specific abilities of the third kind. Packages directed versus a special
group of users have some advantages: the application field is no 1longer a
problem, the statistical ability and skill in package-handling are well
defined.

Generally speaking, a package well constructed in these respects might
stimulate the application of appropriate statistical techniques considera-
bly.

2.2. (Dis)advantages of interactively applied statistics

Statistical batch packages are often incorrectly used, due to the fact
that they are so easily available to the user. It are not just a few who
are tempted to run some programs first and think later, instead of the
correct reverse procedure. In the case of conversational packages access is
eased yet and, consequently, the danger of incorrect use becomes even

greater.

Let us have a closer look at some important causes for incorrect use.

A general cause, to be met with all kinds of statistical analysis, may
be called "departure from underlying assumptions”. Depending on the
(statistical) robustness of the technique, neglecting this point can entail

completely absurd conclusions since in essence a wrong technique is

applied. Because a CSP enables the user to perform many different

techniques unhammered one after another, a more specific danger consists in

testing sequentially without adjusting the level of significance. This may
lead to what is known as “capitalization on chance"”: one continues
performing statistical tests until a "significant" result is found. Another
danger of doing many analyses on the same dataset is the dependence of the
conclusions: a significant result may affect the "significance” of other
results (in a purely deterministic way).

It is obvious that these dangers exist only in confirmative analyses,
since here we try to give a statistical proof of some phenomenon, applying
‘the very strict rules of statistical analysis, whereas on the other hand in
exploratory analysis we often neglect these strict rules and search for
phenomena of interest. *)

Thus far for the dangers. What might be said about their prevention?
First of all: does the user wants to be protected? Molenaar (1984) does not
favor this idea: "I do not think a package has the Biblical obligation to
be its wuser's keeper, and many users will resent warnings, let alone
refusals, in cases such as very unequal group variances or very small cell

expectations.”

The question whether protection should be given is one to be solved by
the designer. One could think of a package offering the possibility to
activate an warning mechanism against improper use, to be switched on (or
off) by the user.

If one decides that protection should be given, is it possible to
conceive an "ideal” CSP which would protect the user against all pitfalls

of confirmatory analysis? The answer seems to be negative for two reasons:

*) As Tukey puts it, Exploratory Data Analysis and Confirmatory Data
Analysis compare like the work of the detective and that of the judge:
"Exploratory data analysis is detective in character. Confimatory data
analysis is judicial or quasi-judicial in character.....

Unless the detective finds the clues, judge or jury has nothing
to consider. Unless exploratory data analysis uncovers indications,
usually quantitative ones, there is likely to be nothing for confirma-
tory data analysis to consider -." On the other hand: "Exploratory
data analysis can never be the whole story, but nothing else can serve
as the foundation stone -- the first step.” (Tukey, 1977)

Firstly, the construction of a warning mechanism is met with severe

technical problems; in many cases underlying assumptions are hard to
verify, while in others the assumptions are inherent to the experimental
design (e.g. randomness of a sample) and cannot be checked on the data. A
modest protection against dependent analyses is possible when the same
technique and the same variables are concerned. Otherwise complications may
occur e.g. when one uses two different techniques on the same dataset
(Notice that this also is the case when model assumptions are tested first,
after which the confirmatory technique is applied.) Paradoxically, it looks
as 1if a correct statistical procedure can lead to incorrect use of the
data!

Secondly, the package can read the data but it cannot read the user's
mind; it does not know whether the user intends to do an exploratory or a
confirmatory analysis. In some cases the user may wish to try several
techniques on the same variables in order to "explore" the information that
is contained in the data. Evidently, no statistical proof is yielded by
such an exploratory analysis. It may only produce some hypotheses which can
be tested later in a confirmatory analysis on a different (independent)
dataset. One way to put such a two stage approach into practice is to take
a relatively small, random sample from the dataset at hand and use it for
an exploratory analysis and after that to perform a statistical test of the
hypotheses on the remaining data. We therefore think a full protection
system is dImpossible and even consider the suggestion of such a powerfull
protection system harmful: the user may think that any statistical
analysis that passes (or escapes) the system is correct, which in many
instances simply is not true. The package should restrict itself to
warnings about what can go wrong In applying the technique at hand. In this
way the user is informed about the risks he takes and is better aware of

his own responsibility.

In our opinion, omne of the most important justifications for the
existence of conversational statistical software is the possibility to do
exploratory analyses; in a correct confirmatory statistical analysis the

techniQue, the relevant parameters and the data are chosen in advance and

therefore one or two (batch) runs are sufficient.

2.3. The distributor's responsibility

Although we argued above that there exists no complete protection
against incorrect use, it is still possible to offer protection to some
extent. The question arises to what degree the distributor should be held
responsible for the incorrect use of his software. One can take a stand
somewhere between the two extremes: either the user or the distributor is
completely responsible. The user is imperfect and 1liable to error.
Therefore he will be glad to have some protection against his own
fallibility, as long as he can work in the way he wishes. On the other
hand, it seems reasonable to demand from the distributor that the software
he supplies offers some protection against incorrect use.

The following methods could be thought of:

1. The user can choose, according to his statistical knowledge, between

two levels to use the package: advanced or non-advanced. After this

level has been established, the package may select some progranms
according to their degree of safety and prohibit the use of others
(I.e. an inexperienced user might be barred from using the more
esoteric rotation methods in factor analysis.)

2. The decision to offer protection or not depends on the aim of the
analysis (exploratory/confirmatory). A more detailed discussion of

this method is given in the following section.

But there is a third method that in our view is the most important:

3. Keeping a record of the history of the dataset in which every action
that operated on the dataset is recorded. In this way it is possible
to trace the genesis of a new variable which is a function of some
others, to signal the use of the same variable or subsets of the
dataset in two separate analyses, etc.

It is obvious that this feature offers many possibilities for
protection *). A disadvantage is that keeping a complete record of all
actions and frequently consult this database (which can become quite

large) may be very storage and time consuming.

&

*) Also, when doing a confirmatory analysis in a scientific context, one
is often obliged to record in his article the data, data transform—
ations and techniques used (reproducibility of scientific studies).

However,when the above methods are combined a 1less complicated

protection stystem may be sufficient.

2.4. Description of a moderate protection system

In this section we indicate a possible way to implement the ideas
exposed in the previous section.

Let us consider any dataset and analyses that can be applied to
(subsets of) this dataset. The central idea runs as follows: elements of
the dataset always have one of the following two labels: USED or NOT USED.
On the other hand, analyses are devided in two predefined classes:
CONF(irmatory) or EXPL(oratory). 1f an anlysis of the first class (CONF) is
applied to a subset that contains USED elements an errormessage is given,
if all elements are NOT USED, they recieve the label USED afterwards; an
EXPL(oratory) analysis can be applied to subsets with mixed (i.e. contai-
ning USED and NOT USED) elements , NOT USED elements recieving the label
USED afterwards. One can describe this proces more formally (see appendix
A).

In this way, the history keeping in function of the protection system
is unnecessary: extra actions needed are the checking of the elements of a
subset if an confirmatory analysis is due and the changing of labels after
application of an analysis. It does not seem useful to us to indicate which
variables have been involved, since that still does not guarantee the
independence of test outcomes. Moreover, it is often too complicated.

Further, the output of the package is thought to reflect the nature

(exploratory/confirmatory) of the results.

1f the package has a way to ascertain the statistical ability of the
user (see method 1 in 2.3.) the following extra features may be considered:
the 'advanced' user has the possibility to override element labels (i.e. to
use any subset for a confirmatory analysis, if he so wishes), while for the

"nonadvanced' user the package tries to check the applicability of a

certain confirmatory analysis on the asked-~for data subset.

3. COMMUNICATION

Data analysis - and in particular data exploration - leans heavily on
the interpretation of numbers, tables and pictures. Any CSP should be so
designed that it helps, not hinders this process. It should be "comforta-
ble"; i.e. a user should neither feel bored nor tired after a long session.
One relief from boredom can be found in fast response times. This, of
course, is not only a question of package design. In section 5.1 we make
some remarks about the relation between response time and package develop-
ment.

Directly related to the user comfort is the way communication takes
place between the CSP and the user. And this definitely is a question of
package design. Several aspects of this communication are discussed in this

chapter.

3.1. Flow of information

To perform the tasks as intended by the user, the CSP needs some
specific information. (e.g. the analysis to perform; where to find the
data; how to present the results; etc.) Therefore a flow of information
exists from the user to the package. But then the question arises: who
decides which kind of information is needed at a given moment? Since there
are two different participants in the communication, it can be package-~ or
user—controlled. Consequently, two different classes in forms of communica-
tion can be distinguished, each with its own logic and problems.

If the package is in control, the communication becomes query-like:
the package poses questions and the user has to answer them (see also Kuik
& Hasman, 1983; Kuik, 1984). When the user is in control, the communication
becomes keyword-oriented: the package has to recognize certain key-phrases
in the information the user has to offer. Aspects of this dichotomy and the
forms it takes are discussed in section 3.2.

There also exists a flow of information from the package to the user.
Mostly this concerns error messages, help facilities, comments, etc. This
will be discussed in section 3.4.

For both directions of flow one may speak about the intensity of the

communication. This is an important aspect of comfort, since intense

10

(comprimized) communication takes a lot of concentration, and may become
tiring after a period, while long-winded communication can become extremely

boring. These and related concepts are discussed in section 3.3.

3.2. Forms of communication

In this section we describe the more common forms of communication. In
a CSP usually more than one is used; mixed forms occur also. These ‘'basic'
forms can be divided into two classes according to the dichotomy mentioned

above: package or user controlled.

3.2.1. Packagg controlled forms

The basic forms of the package controlled forms are :

[al] yes/no questions.
The package produces a question to which the user must answer either
yes or no.

[a2] menu scheme (multiple choice questions).
This 1is an extension of {[al]; the package produces a question with
several possible answers from which the user must select.

[a3] information directed questions.
The package asks for specific information such as a filename, the
type of statistical technique to be used or the number of variables
on a file.

[a4] form defined questions.
This form is only possible on a video display or a graphic terminal.
The package displays a complete question form on the screen. The
user has to fill in answers to all the questions at predescribed
places and return the completed form to the package. For some
questions the package has already suplied default values, which can
be (but need not be) overwritten by the user. k

[a5] position defined questions.
This form is also only possible on a video display or a graphic

terminal. With cursor, hairlines, joystick, lightpen, mouse or some

other means the user responds to a given question by returning one

#

or more positions to the package. This allows a very flexible way of

11

data transmission and parameter setting. As an example consider a
situation, in which one has a scatterplot of observations in
twodimensional space. In such a plot outliers are easily detected;
therefore the easiest way of deleting them is by pointing at them
with the joystick (or light pen). Another example is the selection

of the wanted option in a menu sceme with a joy stick.

3.2.2. User controlled forms

[bl]

[b2]

[b3]

The basic user controlled forms are:

keywords and procedure type instructions.

The user gives the name of a procedure followed by the parameters,
or gives a keyword followed by one or more values.

Instructions in a pseudo natural language.

This 1is in fact a more elegant presentation of [bl].The information
about the next instruction is given by certain key expressions,
which may be embedded in a language-like sentence.

Instructions in a natural language.

The user gives his instructions to the package in a natural language
sentence. The package evaluates and interpretes this and reports his
interpretation to the user, together with additional questions if

some information is not clear or incomplete.

3.2.3. Example

the

Suppose we want to perform a Student t—test on the variable AGE, where

two groups to be compared are indicated by MALE and FEMALE. The data

might be found on some external file DATA.

For the first group we combine the forms [al] and [a3] (questions ‘are in

lowercase, answers in uppercase).

(2]

Which analysis do you want to perform ?
T-TEST

between which groups ?

MALE ,FEMALE

on which variable ?

&

AGE

12

on which file can I find your data ?
DATA

For the second class examples for all forms are given:

[bl] T-TEST,VAR=AGE,GROUP1=MALE,GROUP2=FEMALE,FILE=DATA.

[b2] RUN the T-TEST ON the variable AGE BETWEEN the two groups MALE and
FEMALE OF file DATA.
Here the texts written in uppercase are the key expressions, the
embedding, which is optional, is written in lowercase.

[bP3] I WOULD LIKE TO KNOW IF THERE IS A DIFFERENCE IN MEAN AGE BETWEEN
MALES AND FEMALES. COULD YOU PERFORM A T-TEST FOR ME ? THE DATA MAY
BE FOUND ON THE FILE DATA.

In many situations the package-controlled forms can hardly work
efficient on their own. A combination of [a2], [a4] and [a5] is then most
comfortable.

Since the package has the jnitiative, a situation can easily arise in
which the user doesn't know what to do or what the package wants from him.

To alleviate this problem, extensive help facilities are needed.

To evaluate the forms in user controlled situations, the following
considerations are to be made: In [bl] the user needs to know the exact
order and format of the keyword instruction line. In the "natural language"”
case [b3] a large overload of typework is to be done. Therefore at the
moment the form of pseudo natural language [b2] is preferable. When in the
(near?) future acoustical input techniques become available, the natural
language might be the preferred alternative.

A major problem iIn user controlled situations lies in the fact that
the user now has to know everything: all available keywords, their
parameters and the order in which they have to be called. So also in this
situation there evolves a need for help facilities.

The package controlled situation is easiest on the 1less experienced
users of a €SP, whereas for experienced users the user controlled
situation is often preferable. Gilfoil (1981) reports an experiment in

which a menu-driven dialogue is found appropriate for novice users. After

approximately 16-20 hours of task experience transition to a command driven

13

dialogue is preferred.

3.3. Variations in dialogue

Several variations in the dialogue are possible. The main types are

the variation in input and output intensity ,such as:

Verbosity

This is the global amount of text the package produces around each
instruction. This should be sufficient for good understanding but not
too much more than necessary: it can be extremely tiring when sitting
behind a video display, letters and numbers flash by constantly. The
opportunity for the user to adjust the verbosity to his own needs

provides a good comfort.

Density

This can be described as the amount of questions (from the package) or
procedure and keywords instructions (from the user) required to
describe an action. The density is closely related to the form of
communication; for instance YES/NO questioning always has a higher
density than the menu scheme. In some cases it is also related to the
experience and (statistical) knowledge of the wuser; in a keyword-
oriented package he may for example have defined a procedure in which
several actions are combined. Thus, by typing his self-defined
keyword, he can trigger a whole sequence of actions. This way he

lowers the density.

Display inertia
This is the amount of information remaining on the screen after the
user has given a command or answer. When there are many changes at

these moments, the package has a low display inertia.

Thus, it is convenient for the user to be able to select levels for
these three types of intensity. Lower levels make the analysis more
compact, and hence the screen does not change much every time when input is
required or output produced. This may be pleasant for the user; however

there is" a greater risk of forgetting to replace default values of

important parameters and hence of making mistakes.

14

Other wvariations in the dialogue are for instance variation of the

layout of the screen, variation in size of letters and figures, etc.

3.4. Aids and support

The package should be a guide for the user during the dialogue. In
some cases it can even anticipate and therefore warn the user for errors to
be made. Of course, a user who does not want to be helped, should be

enabled to turn off this guidance.
Ingredients necessary for good support of the dialogue are:

Error handling

Messages should be clear and succint. They also should be polite and
unintimidating; bells and other noises should be used sparingly.
Errors should not lead to abrupt and unintelligible abortion of the
session. Therefore errorhandling by the operating system should be
prevented. The wuser should be given the opportunity to correct
mistakes, for example by editing an incorrect command line, or by
returning to the last-but-one question at will. The package should ask
for confirmation of any command, that asks for drastic changes (such
as deleting variables or files). It should allow for Murphy's law: any
mistake that can be made, will be. The package should be forgiving: if
some answer makes sense with a minor change, the package should do so
(or ask for confirmation of the corrected line). It must be easy for

the user to correct mistakes !

Comments
When (statistical) comments are called for (e.g. singularity of a
matrix, too many missing values, non—Gaussian data), the package may
do so with alacrity. Also other comments should be given as clear as
possible, and as often as needed.

The way the comments are given will depend on the choosen 1level of
intensity. The level on which they are generated may be influenced by
the preselected level of the user (see the discussion in chapter 2).

So an ‘advanced' wuser can get other comments than a "nonadvanced’

user.

15

Help facilities

These should be as extensive as possible. Several kinds of facilities
are indicated: clarifying the question, giving information about the
possible answers, giving insight in the requested statistical method,
switching verbosity or density, a mailing service, etc. They should be
available at any time and in selectable (useful) portions.

For different users there should be given different amounts of
information, related to the verbosity the user has selected; for
nonadvanced users there should be tutorial information at all crucial
points. There also should be facilities to provide help in correcting

errors.

Technical aids

Video displays often have possibilities for technical manoeuvres:
blinking, half intensity, inversing, even colour can be used. All thes
aids should be used discriminatingly: it can be extremely tiring,
trying to extract information from a display like a patchwork quilt.
Especially in blocks of text, a surfeit of colour changes will not add
to the informative content ! On the other hand, the judicious use of
colour can turn an otherwise wuntransparant plot into a sensible

picture.

Retracing

It should be possible for the user to make some steps back in his
(explorative) statistical analysis. For instance consider the case
that the desired dataset is obtained after some difficult manipulati-
ons. Suppose that we then applied the wrong statistical technique. In
such cases it must be possible to return to the dataset without doing
the manipulations all over again. Facilities to make steps backwards
in the analysis do need a good recording of the history of the
interactive session.

It is also convenient when the user can Jinterrupt his interactive
session and proceed an other time (e.g. the next day). For this aspect

see also section 5.5

16

3.5. Intelligent interfaces

Communication between human beings is facilitated by their common
knowledge. The absence of this in man-machine communication is one of the
main sources of the apparent lack of intelligence of the machine. If a CSP
could be designed as an "expert system” using a “knowledge base” containing
appropriate statistical notions, many of the desiderata mentioned before
may be answered easily (see Chambers, 1982).

Recently, experimental packages have been developed that honor this
idea (Gale & Pregibon, 1984; Pregibon & Gale, 1984). These "expert systems"
react more intelligently on user input, even making suggestions about the
line of action to be taken. Thus far this has been done only for regression
analysié~ and the implementation puts heavy demands on storage, apart from
requiring special terminals.

As a first step, one could think of an interface embedded in an more
or less intelligent environment as has been implemented for the interactive
programming language B (see Nienhuis, 1983) and is being investigaged for
the Ada *) programming language (DoD, 1980; see also Kernighan & Mashey
(1979) on the Unix Programming Environment). For the design of keyword-
oriented CSP's many of these idea's might be useful. As an example, the
suggestion mechanism might be very attractive, since the interface

inevitaly makes use of a fair amount of keywords.
4. THE INTERFACE IN VIEW OF USER OBJECTIVES.

In this chapter our aim is to describe in a general way what
characteristics a language between user and package should have in view of
the objectives the user has in mind. At the moment, much work is done
concerning the cognitive aspects of the wuser interface. Moran (1981)
describes a method and a formalism to describe an interface (see also Saja,
1985). Here we try to discribe that part of the system which he calls the

"Conceptual Component” (Task and Semantic Level).

%) Ada is a registered trademark of the United States Governement (Ada
Joint Program Office).

17

The Task Level is described in the following way: "The user comes to the
system whith a set of tasks he wants to accomplish. The purpose of the Task
Level is to analyse the user's needs and to structure his task domain in a
way that is amenable to an interactive system. The output of this level is
a structure of specific tasks that the user will set for himself with the
aid of the system.” Additionally, the Semantic Level is thus described: "A
system is built around a set of objects and manipulations of those objects.
To the system these are data structures and macro's; to the user they are
conceptual entities and conceptual operations on these entities. The
Semantic Level lays out these entities and operations. They are intended to
be useful for accomplishing the user's tasks, since they represent the
system's functional capability. Thus, the semantic Level also specifies
methods for accomplishing the tasks in terms of these conceptual entities

and operations.”

We will elaborate this idea and, using general terms, give a
description of the objectives of a user that wutilizes a conversational
statistical package. We will also describe the implied requirements for
the application language and the interface.

We first formulate what kind of basic concepts should be extant, and
what actions the user should be able to perform.

Though the contents of this chapter are mainly concerned with the form
of communication we called user controlled in chapter 3, most of the
concepts and ideas have consequences for the querylike situation, too.

In almost any formal language strained relations exist between on one
hand meaning and content of the actions one wants to express and, on the
other hand the administrative information required by the language itself.
These strains are more perceptible if the language is more designed with
an eye on the special facilities and constraints of computing machinery.
(As an example, think of somebody who wishes to calculate n!. The only
thing he is interested in, really, is the final result. Most programming
languages in this case would require specification of conceptually irrele-
vant details, such as that the computation concerns integers. However
elegant the construction of the programming language, details remain

details “from the user's point of view.)

As stated by Koster (1979), choosing the basic concepts of a computer

18

language is an art: the student of this art should be aware of the
constructs that are used while stating a problem initially, in the naive
stage where computational considerations are immaterial. The importance of
keeping a 1language as close as possible to these concepts becomes even
greater if the user of the language is less experienced in the handling of
the machine. This’ is the case with our user: we may assume that he knows
more about his application field than about statistics, and more about
statistics than about computation.

A description of the objectives of a userlanguage (or —interface) in
general terms doesn't seem to be regular practice. (Compare the development
of the high~level 1language Ada (DoD 1978; Ichbiah et al. 1979): in that
case design considerations have been explicitly expressed.) In this chapter
we formulate design considerations without designing a userlanguage. In
fact we only formulate some idea‘'s that could be embodied in the design of
a more or less ideal package. To formulate what we want without actually
sketching a new language asks for the definition or description of some
basic notions. This 1is done in the next section. Modes, Actions and
Datastructures are the most important concepts, but some attention is paid

also to the notions of "internal” vs "external" information, macro's and
Flow-of-control. These notions are used in section 4.3 to describe user

objectives.

4.1. Basic concepts

4.1.1. Modes

An attribute can be ascribed to an instruction sequence suggesting its
intention. We call these attributes modes and we will recognize specifi-

cation~, input—, throughput- and output- mode.

A few examples may demonstrate the use of these terms:

In specification-mode parameters are specified, data structures are
defined or macro's declared.

Data are read in input-mode.

In throughput-mode, statistical computations are performed inter-

mingled with data manipulation.

In output-mode the user can Inspect his output and select parts of it.

19

One should not think of modes as consecutive phases in the interactive
session. During the session modes alternate constantly. For instance,
principal component analysis would include input of an external correl-
ationmatrix (input-mode), producing principal factors (tproughput—mode)
inspection of the output (output-mode), computation of a rotation matrix
(throughput-mode) and producing a plot of the variables on the main axes
(output-mode).

Modes differ in degree of activity: we call specification-mode passive
compared to the other three, that are labeled active. Here "passive” means
that instructions given by the user only contain information and do not

call for action. In the other categories direct action is taken.

4.,1.2. Data structures

A data structure is considered to be any kind of informationm,
(eventually) accessible to the CSP and of interest to the user. One could
think of the raw data file, some matrix internal to the system, a subset of
the variables, etc. But also the contents of a screen on the terminal could

be considered a data structure.

4.1.3. Actions

The concept of data structure has meaningless without the concept of
operators or procedures applicable to datastructures. We will use the term
action in this connection. An action is activated by one user-instruction.
If the user asks for a T-test, the action 1is the complete computing
sequence, not the separate components, such as the computing of the mean of

one of the two groups.

4.1.4. Flow of Control (FoC)

All actions take place in a certain order, which is defined by the
information the CSP receives from the user. Sometimes a situation arises in
which an action only may take place as long as a certain condition is

fulfilled. We then say that the flow of control is controlled by this

condition.

20

4.1.5. Macro's

In the specification-mode macro's may be declared. In 4.2 and 4.4.1 we
go into the concept of "macro” in greater detail. For the moment we can
think of a macro as a new, user~defined set of instructions, composed of a
set of data structures and the actions to be taken upon them. A macro can

be called by name at all appropriate instances.

4.1.6. Internal and External Information

From the user's viewpoint there are two kinds of data: the data
"known" (in structure and location) to the CSP and data mot yet introduced
into it. The last kind of information is called "external”. Upon recieving
data, the CSP is likely to organize it into an easy-to-handle structure.
Information reorganized by the CSP is called "internal”. Even when the CSP
stores it on some external medium to facilitate retrieval we speak of
an internal file. The reader may compare this to system files or work

files, as known in many statistical packages.

4.2. Macro's and Flow of Control

There is a difference between flow of control in the active modes and in
specification-mode. In the active modes user instructions cause the system
to act; flow of control alternates between user and package. Macro
definition takes place in specification mode: the body 1is retained for
further use, and no action is taken.

The possibility to specify a macro is one way in which the user could
influence the density: in specification mode several actions can be
combined into a macro. Like "normal” routines in a programming language a
macro should contain, apart from its body:

- name, and
- parameters.

This user defined namé is used to call the macro. Input-parameters

provide the macro with information, information 1is delivered in the

output-parameters. Later on during the session the specified macro name

functions as keyword in the same way the standard keywords do. When called

21

with actual parameters a set of instructions is executed that without the

macro defition should have been called one by one.

4.3. User objectives

What objectives does the user have in mind while interacting with a
CSP? One can differentiate between actions which the user aims at, such as
perforﬁing some kind of analysis (we call this kind of actions substantial)
and actions, that are necessary for the éystem to function.

This last kind of actions can be further divided in data manipulaton and

administrative actions.

In most cases the user concentrates on substantial actions, whereas other
actions, to him, are a not particularly interesting necessity.
One could say that the following categories (in order of interest):
- executing analyses
-~ data manipulation
- administrative actions
comprise the actions the user wants the system to perform.
Consequently, the CSP design should automatize, as much as possible, all

actions needed in the second and third categories.

4.3.1. Executing analyses

Preceeding execution of an analysis the data structures needed should
be specified. We can think of two kinds of data structures in this context:
the data on which the analysis is performed and the parameter vector
determining the process. This vector may be filled in by a routine that
questions the user or it may be given as a (row of) parameters to the
analysis to be activated. One should be able to pass this vector by name to
the analysis routine.

In packages like STAP (1980) or BMDP (Dixon, 1981), external matrices
can be entered when required. In this case we assume that some action is
taken to transform the external file into an internal one before it is
used. Therefore we can state that analysis act upon internal data files.

After the analysis is performed, data structures may remain, resulting

from the diffent modes that have been passed through. Intermediate results

22

like matrices containing weights or a variance-covariance matrix can be
made available for further use, their structure and name being recorded
internally at the moment of their creation. All remaining datastructures
should be accessible by name. This is more obvious for intermediate results
as it is for input- and output-structures. The mentioned systemfiles
provide an example of the first. *) Since the user wants to be able to
handle output as flexibly as other datastructures, also output structures

should be accessible by name.

4.3.2. Data manipulation

In specification-mode, data structures needed for the actions per-
formed during the active modes are defined. The design of the user~inter-
face should minimalize this need. For input, one could think of format
specification or specification of the expected hierarchical structure of a
file. Also a subfile structure can be imposed on an already existing file.
Apart from the specification of new structures a mnotation should be
available which answers the following requirements:

- One should be able to compose data structures from existing ones.

- One should be able to access substructures, i.e., indexing should be

possible.

(For an example of such a system, see Addr & van der Veer, 1982.)
Throughput-mode also may require declarations: it should be possible to
declare missing wvalues or name new variables. During throughput-mode
computation or recoding is performed sometimes altering or extending the
internal file(s). We can formulate a variety of desires here: the existing
user languages are rather backward here compared to higher programming
languages. Some idea's may be found in 4.4.

The same requirements mentioned above apply: composition or indexing
of newly formed structures should be possible.

Finally, we consider the meaning of data manipulation in output-mode. What
are the user‘'s objectives when manipulating output? We consider three kinds

of actions the user is likely to perform:

*) In most existing packages handling more than one system file is
impossible.

23

- inspection
- isolation of some parts to send to an output-device
~ isolation of information, stripped of irrelevant fringe like headings
and edges of tables, to be used in subsequent analyses.
Essentially, output should allow manipulation like any other data structu-
re. The user should be able to skip through it easily. It should be
addressable to be send to the printer or to be used as input to a

subsequent analysis. A notational system should be present to enable this.

4.3.3. Administrative actions

In input-mode to fetch external files should be possible, as in
output-mode to store files externally. In throughput-mode information
about names or composition can be gained about the internal data structu-
res. The user can ajust all kinds of parameters in this mode (e.g.,
intensity levels).

Additionally, it would be convenient to him to be able to indicate whether
a task should be performed interactively or imn batch.

4.4, Desirable features of the user—~language

In throughput-mode all sorts of computations and recoding should be
possible. We could formulate a whole scala of whishes on this point since
facilities in the existing user languages seem rather primitive compared to
the more sofisticated constructs existing in programming languages.

We mention only a few possibilities. Undoubtedly, the list can be extended.
The user should be able
1. to handle a 1list of variable-names as a datastructure. Think of a
repeat-instruction of the following form:
for dummyname in list do
{statement with dummyname as a parameter>
od.

Also, indexing of such a list should be made possible (i.e. one should

be able to speak of the 5th element of list).

&

2. to perform computations not only on variables but also om:i%eases't, or:

columns and vowssisheuldcbesaccessible iforcomputation s onsinot only

uguthehel tnternakiffle but jalsa the peranspesed.conesshould jbe manipulatable,
or: indexingsshould be:as:flexibletas.pogstblessiday v 2oybs bna

~ ek e define - -rows vof numbers, iby mange«nIncthis may keeoding and rindexing

ad hicamcbg made reasiens Forolmstande: oy sides ed bioods gseu sdT .sy¥

5 o3 EOWIT b3 (Befs3,24l) 53 4o wednizg sd3 of bass ad oI eldsessibbs

catds oodind eormatpsyy sd bivcda medeve isnotision A .siesyvisns ineupsedis

b.b4.1. Suggestions concerning Macro's zuoltios evidgiteinimbh E£.¥.8

ni sdlsens rzwith sdno programuing iexperdencermill o-have pdi-ffieulties in
understanddng othe-difference Between snthex-definition of -a maerewandthe
calling «0f1kt. [Tormake this more itvdansparant, it maymncbe vcconceptdonally
helpful todhave taikeyword v:PASSIVE" that :fonces ithe spackage -intoe speqificr
ation-mode. From thereon instructions can be entered that Arg nol executed
buiti 1 ccombined Lint o sa siacrodefd niitd one. Fhe clast step il be the speciificdn
tion of the name and thei:parameters of the macra. Another keyword JAGELVE 'S
indicates that from then on keywords (eventually selfdefined macro names)
should be executed immediately. Mhen entering «he ‘package,. ACTIVE: -ds.con., 8,0

o4 Hlegance.of.desdgn-and;;transparancy ctathe uger would beisenved Af the
expressions: aused ndinsithew mackd «-wouldiwbe, the:same as thoseiin tire user,
languagewdnfortunately: there.are - &Wox Nl id 2 reasons ;. ;Lo i -prevent; ; ithisa

forrexample, a.gnestion to be iasked whenener the maero ds activated : might:
be stored with an option. In this way, queries can bg defined by -the msers
Qncers a ymagro . oie);-aetdvated, options-dndicated by :-the » usar:«set .the
conditionals and determine the flow 0fficOntrolaii 1o notzvusieni-losgst

a higher level programming: danguage Jdke, FORERAN sp,:r‘::;}g&%b:tzps :be used as
macro's. This also entails that it should be possible to introdtgqg} the the
text.of the procedure from external; file, d»e. not.dnteractively» M aiA

{$ati 2o dasmels #4137 adyr %o sdssgs i alds sd

i 33 g : 855
We conclude this section with a few suggestions that may augment the

usefulnéss of macro's.

Once a macro is defined one should be able to use it inside other

25

macro's. As a consequence also recursive use should be considered. Of
course this easier to state than to implement: termination of execution
should be guaranteed. The issue asks for a careful analysis and eventually,
the formulation of well defined restrictions.

Apart from the "usual” parameters like reals or integers that control
the execution, also other data structures may function as parameters: a
row of strings that answer the questions of a query sequence, or output
produced previously. As in the case of recursion mentioned above, it may be
necessary to restrict the use of macro's as parameters: the possibility of
unwanted side—effects as well as the conceptional complexity to the user,

necessitate careful consideration of this option.

5. OTHER ASPECTS

5.1. Response time, portability and machine dependency

There are three viewpoints, concerning these objectives, as described
in the introduction: that of a user of a package, that of it's developer
and finally that of the distributor.

From the user's viewpoint fast response times are of foremost
importance. This will be dependent on the "matching” between package
software and machine hardware, i.e. from the implementation of the package
on the machine. Fastest response times will be realized when the package is
written in assembler or in machine code.

This has an obvious drawback: the package will become nearly nontrans-
portable, i.e. bound to the development site. Though a user will find no
problem with this, the developer will also have other aims. He will want to
lease (or sell) his product to other institutions. Thus for him portability
is of the greatest interest. To obtain this goal the package should be
machine independent to a large extent. Therefore the package should be
written in a well-known higher programming language (i.e. like FORTRAN or
PASCAL). :

Unavoidably, though, some things are strongly dependent on the used
machine(s), especially on the word length, but also routines for 10-hand-

ling, bit-manipulation, making graphic applications for the video display

or the plotter, etc. The distributor would like to have those operations

26

concentrated in as few routines as possible, to facilitate easy conversion

of the package for his specific machine.

5.2. Reliability and maintenance

The package should be reliable in two ways. Firstly, there should be
numerical reliability. For any computation a stable and accurate algorithm
should be wused, while the results should be given in a correct format: a
result that is numerically accurate to its second digit only, should not be
given in three digits, though a result, accurate in eight digits, may be
given in four.

Secondly, the package should be proof against injudicious use, as has
been noted in 3.3. Therefore it should have been extensively tested, both
at the original development site and in the later working situation.
Several test sets with and without pathological data should be available
for this purpose. It should be easy to correct errors that are detected
after the release of the package. Therefore the package should be easy to
maintain and to patch. This implicates a modular structure, a richly
documented source code and good documentation, the latter two available to
the distributors. The users and the distributors should be able to defer to
the developer for maintenance and quality-control. For patching it would be
an advantage, if the distributor can fit in his own subprograms. This is
one more argument in favour of writing the program in a well-known language

and for extensive documentation.

5.3. Interfaces

In this article we recognize two different types of interface: the
user interface, as described in chapter 4, and the package interfaces. The
latter consist of software, i.e. special routines for purpose of making a
link between the package and some external feature. They can be divided
into three main groups:

1. The user—package interface, consisting of all routines that handle the
communication between user and package, i.e. question asking routines,

text evaluation, error messages, help facilities, etc. This is quite

different from the user interface in ch. 4 !

2.

27

The package-package interfaces, consisting of the linking routines to
other packages. Of special importance are the routines that handle
conversion of the respective package—internal-files (system files).
Also there might be routines to call the other package(s) directly, if
the operating system allows for such an action (as in RSX-11D). Two
examples are P-STAT (to do explorative data analysis) and ISPAHAN
(Gelsema, 1981).

package-library interfaces. These can be subdivided into two: one to
the system library, and some to external software.

a) As noted in paragraph 5.1 all operations that are dependent on
the used machine should be concentrated in but a few routines,
together forming the interface (though one might find it easier
to seperate different tasks in different —sub- interfaces, i.e.
one for plotting, one for bit-manipulation, and so on).

b) For numerical routines it might be an advantage to obtain these
from an external library, for instance Nag or IMSL. This way one
may expect to have the most up-to-date algorithms available.
Besides, one does not need a new release of the statistical
package, when a new numerical routine has been developed. On the
other hand the distributor =-and indirectly the user- now is
dependent on two developers, for availability, for compati-
bility, as well as for maintenance. To buy a package for
statistical computing would mean to be obliged to buy a certain
(numerical) library too.

Therefore in our view the developer should include in his
statistical package an interface to all external software. Any
routine from an external 1library. should be embedded in one
package routine, so as to facilitate adaptation to new releases
of the library. In this way it is also possible to replace such
a routine by one, written by the distributor. Moreover, it
should be possible to obtain the package as being completely
self~-supporting, i.e. it should have it's own routines for all
operations, included in an externmal library. Otherwise it would

be vulnerable in its dependence on the availability - and

maintenance -~ of such a library.

28

5.4. Processing modes and batch jobs

There are three modes in which a package may process the given
commands: as an interpreter, a translator or a compiler. In the first case
it evaluates and executes one given line/command at a time. In the second
case it translates one or more commands into a set of instructions in
another higher language. In the third case it collects all commands first
and then compiles and executes them.

Most CSPs process the commands in the interpreter mode: it is easier
to 1implement and more flexible to wuse. The compiler mode makes macro
building very easy, but requires more insight from programmer and user. 1In
the translator mode it is easy to create "batch jobs”.

Though no mention has been made of it as yet, it should be worthwile
to have the option for batch processing. Especially when 1large (core
meﬁory, CPU time) or special (coloured ink plots, floppy disk output)
requirements of system utilities will be made, it might be advisable not to
do the analyses in an interactive way. It will be better to place a
complete "job"™ in the input stream for batch processing. When the user is
given this options, he also should be given the possibility to work on
interactively, while his job is executing.

5.5. Protection against system crashes

The operational system that never crashes still has to be invented. In
this section we will discuss some ideas about how to make the disadvantage-
ous consequences of a crash as small as possible. We will suppose that
during an interactive session a workfile exists which contains the actual
information. Examples of such informatiomn are computed data, history,
intermediate results and statements (when the package is in translation or
compiler mode (cf. section 5.4)). During the session this file is
continuously altered. To protect the user against losing the workfile it
has to reside on external memory (disc, tape). The main disadvantage of
this system is the relatively 1low speed of the data transports between
internal and external memories, even 1f these transports are buffered.

Therefo;e the costs of extra computing time must be weighed against wages

that must be paid for the extra work caused by a crash, taking in account,

29

of course, the probability of a system crash. It seems advisable to offer
protection to inexperienced users with non-protection as an option. For

experienced users the other way around is preferable, since protection will

put a large claim on system resources!

30

APPENDIX A. FORMALIZED DISCRIPTION OF A PROTECTION SYSTEM

Consider a system S = (C, P, A, L), in which C is a set of objects,
called cases, P is the powerset of C, A a set of operations, called
analyses. There exist two special subsets of A, AC and AE, A = AC U AE,

ACN AE = § . Elements of AC are called confirmatory analyses, elements of

AE are called exploratory analyses.
L = {"USED", "NOT USED"} is a set of two attributes. At any time, all

elements of C are assigned one of those two attributes, so C = CU U CN,
CUN CN =@ and CU contains elements with the attributes "USED", CN with
elements with the attribute "NOT USED". The user can apply elements of A to
P, possibly causing a change of attribute to some elements of C.

During a session the following steps are performed concerning S:

Initialyse. All elements of C are attributed the label "NOT USED", so
C=2¢CN, CU = 0.

Choose. a ¢ A, p ¢ P are chosen by the user. Then, a is applied to p.

Confirmative Check. If a € AC and p € P, then:
a. If pNCU=¢g then all elements recieve the 1label "USED"
afterwards. CU becomes CU U p, CN becomes C =~ p.
b. If p N CU # @ then an errormessage is given and no action is
taken.

Exploratory Check. If aec€ AE and p ¢ P then CU becomes CU U p, CN
becomes C - p.

Repeat or Finish. The user may direct control to the second step if he
wishes so or end here.

Remarks:

1. The user has influence on the second step ("Choose") and the last step
("Repeat or Finish") only. However, there may be some function at his
disposal that enables him to put elements of CU into CN at will,
before the step "Choose” 1is taken. Since the CSP is not guarded
against such action, no warnings are given in a case like that: these

changes are for the responsability of the user.

2. a AC can consist of a sequence of confirmatory analyses of which the

&

inérease of the level of significance can be controlled.

31

REFERENCES

AD2R, H.J. & D.J. KUIK (1983). Talking Statistics without wusing bad
language (user desires in Conversational Statistical Packages), In:
Symposium bundel, Symposium Statistical Software, Utrecht, p-171-183.

ADER, H.J. & G.C. VAN DER VEER (1982). Prelude-composing in Algol 68:
Applications in Dataminipulation and User Languages, In: COMPSTAT

1982, part II (supplement): Short Communications Summaries of Posters,
Edited by H. Caussinus, P. Ettinger & J.R. Mathieu, Physica-Verlag,
Vienna.

AD&R, H.J., D.J. KUIK & G.C. VAN DER VEER (1984). User—aims while wusing
Conversational Statistical Packages, In: COMPSTAT 1984, Summaries of

Short Communications and Posters, General Computing Center, Czecho-
slovak Academy of Science.

CABLE, D. & B. ROWE (1984). Software for statistical and survey analysis.
Comp. Stat. & Data Amalysis Vol. 2, 1, p. 81-92.

CHAMBERS, J.M. (1982). Analytical Computing: Its Nature and Needs. In:

Proceedings in Computational Statistics, Part 1. Physica Verlag,
Vienna, p.22-29.

DAVIS, R (1983). User error or Computer error ? Observations on a
Statistical Package. Int J. Man-Machine Studies 19, p+359-376.

DoD, DEPARTMENT OF DEFENCE (1978). Department of Defense STEELMAN require-

ments for high~order computer languages.

DoD, DEPARTMENT OF DEFENCE (1980). Department of Defense Requirements for
ADA Programming Support Environment "STONEMAN".

DIXON, W.J., M. B. BROWN, L. ENGELMAN, J.W. FRANE, M.A. HILL, R.I. JENNRICH
& J.D. TOPOREK (1981). BMDP Statistical Software Manual, University of

California Press, University of California.
FRANCIS, I. (1977). A Comparitive Review of Statistical Software. Interna-

tional Association for Statistical Computing, New Delhi.

FRANCIS, I. (1982). A survey of statistical Software. Comp. Stat. & Data
Analysis Vol I, 1, p.17-27.

GALE, A. & D. PREGIBON (1984). Constructing an Expert System for Data
Analysis by Working Examples, In: COMPSTAT 1984, Proceedings in
Computational Statistics, Physica~Verlag, Viemna, p.227-235.

32

GELSEMA. E.S. (1981). 1ISPAHAN, Users Manual (4th edition). Department of
Medical Informatics, Free University, Amsterdam.
GILFOIL, D.M. (1981). Warming up to Computers: a study of the cognitive and

affective interaction over time. In: Proceedings of Human factors in

Computer systems, Gaithersburg, Maryland, p.245-250.
HEXT, G.R. (1982). A Comparison of Types of Database Systems Used in

Statistical Work. In: Proceedings in Computational Statistics, Physica
Verlag, Vienna, 1, p.272-277.

ICHBIAH, J.D., J.G.P. BARNES, J.C. HELIARD, B. KRIEG-BRUCKNER & B.A.
WICHMANN (1979). Rationale for the Design of the ADA Programming
Language, ACM, SIGPLAN Notices Vol. 14, 6.

KERNIGHAN B.W. & J.R. MASHEY (1981). The Unix Programming Environment. In:

Tutorial: Software Development Environments, T. Wasserman (Ed.), IEEE

Computer Society.
KOSTER, C.H.A. (1979). User Languages and Application Languages. Informati-

ca / Computer Graphics, Faculty of Science, Nijmegen University, The
Netherlands.

KUIK, D.J. & B.F.SCHRIEVER (1984). Statistics and Conversational Packages,
In: COMPSTAT 1984, Summaries of Short Communications and Posters,

General Computing Center, Czechoslovak Academy of Science.

KUIK, D.J. & A. HASMAN (1983). QUESTOR, a Conversatiomal Statistical
Package. In: MEDINFO '83. Proceedings of the Fourth World Conference
on Medical Informatics, p.939-942.

KUIK, D.J. (1984). QUESTOR, a Conversational Preprocessor to BMDP. In:
COMPSTAT 1984, Proceedings in Computational Statistics, Physica-Ver-
lag, Vienna, p.329-334.

LAURO,N & G. SERIO (1982). Criteria for evaluating and comparing Statisti-

cal Software: a Multidimensional Data Analysis Approach, Statistical
Software Newsletter, Vol 8, nr 3, p.102-119.

MOLENAAR, I.W. (1984). Behavioral Studies of the Software User, Comp. Stat.
& Data Analysis Vol. 2, 1, p.1-12.

MORAN, T.P. (1981). The Command Language Grammar: a representation for the

user interface of interactive computeer systems. Int. J. Man-Machine
Studies 15, p.3~50.

&

33

NIENHUIS, A. (1983). On the Design of an Editor for the B Programming

Language, report IW 248/83, Mathematisch Centrum, Amsterdam.

PEMBERTON, S. (1984). The B Programming Language and Environment, In: CWI
Newsletter 1, p.2-l4.

PREGIBON, D. & A. GALE, 1984. REX: an Expert System for Regression
Analysis. In: COMPSTAT 1984, Proceedings in Computational Statistics,
Physica~Verlag, Vienna, p.242-248.

REID, A., J.S. LENNON & J.S. KNOWLES (1980). Report on a Survey of

Interactive Statistical Packages in British Universities and Polytech-

nics, Inter University Software Committee, Aberdeen University Compu~
ting Center.
RSX~-11D Documentation Directory. DEC-11-0XUGA-D-D. Digital Software Docu-

mentation.
SAJA, A.D. (1985). The Cognitive Model: An Approach to Designing the
Human-Computer Interface. ACM, SIGCHI Bulletin Vol. 6, 3, p.36-40.
SHAW, M., P. HILFINGER & W.A. WULF (1978). TARTAN-Language Design for the

Ironman requirements: Reference Manual, ACM, SIGPLAN Notices, Vol.
13, 9, p.36-58.
STAP (1980). Statistical Appendix. User manual, Stichting Academisch Reken-

centrum Amsterdam, Amsterdam.
TUKEY, J.W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading,

Mass.»
VAN APELDOORN, J.H.F (Ed.) (1983). Man and Information Technology; towards
friendlier systems, STT Publications 38, Delft University Press.
VELLEMAN, P.F. & D.C. HOAGLIN (1981). Applications, Basics and Computing of

Exploratory Data Analysis, Duxbury Press, Boston, Mass.
WILKE, H. (1982). Evaluation of Statistical Software Based on Empirical

User Research. In: Proceedings in Computational Statistics, Part I.
Physica-Verlag, Vienna, p.442-446.

YESTINGSMEIER, J. (1984). Human Factors Considerations in development of
Interactive Software, ACM, SIGCHI bulletin Vol. 16, 1, p.24-27.

5

s
N
oy

5
i

&

o

0
%

S
S

a5
o

i

N
o

i
o

4

i

5

i

R
)

i

s

oo
m;:w%ﬁ o

t

S

g

e

g

S

e

