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Scaling of order dependent categorical variables with correspondence 
*) 

analysis 

by 

B. F. -Sehr iever 

ABSTRACT 

In this paper we introduce forms of dependence between categorical 

variables, which induce successively stronger orderings over the categories 

of the variables. In our main theorem it is proved that if these forms of 

dependence are present in contingency tables, the orderings are reflected 

in the correspondence analysis solution. This explains two important order 

phenomena which frequently occur in practice. Furthermore a multivariate 

generalization of the main theorem is given. The results in this paper sup-

port the use of (multi-) correspondence analysis as a scaling technique for 

categorical variables. 

KEY WORDS & PHRASES: Correspondenae analysis; multi-correspondenae analysis; 

contingenay tahles; order dependenae; scaling 

This report will be submitted for publication elsewhere. 





1 . INTRODUCTION 

There exist many ways of describing the association which is present 

in a contingency table. HIRSCHFELD (1935) introduced a method which was 

later (independently) formulated by a number of authors. BENZECRI (1973) 

gives a description of this method under the now well-established name of 

correspondence analysis. The method can be described from several points of 

view. We formulate correspondence analysis as a method of scaling: it assigns 

q-dimensional scores to the categories of the variables describing the rows 

and columns of the contingency table. (Here q is some integer). The scaling 

is performed in such a way that the scores of two row categories are close 

together if their corresponding rows are more similar, and similarly for 

columns. Furthermore, it is customary to display the correspondence analysis 

scores in a q-dimensional graphical representation. In this graphical re­

presentation each row and column is represented as a point, which has its 

q-dimensional correspondence analysis score as coordinates. We refer to the 

publications of GIFI (1981), HILL (1974), KESTER & SCHRIEVER (1982) and 

LEBART et al. (1977) for theoretical treatments and applications of corre­

spondence analysis. 

Although correspondence analysis considers the two variables I and J, 

indicating row and column number of the contingency table, as nominal 

variables, the following phenomenon is frequently observed in practice. 

For variables, whose categories have an intuitive meaningfull order, this 

order is often reflected by the order of the one-dimensional correspondence 

analysis scores. In section 3.3 of this paper we prove that this phenomenon 

is implied by a strong form of dependence between I and J called order de­

pendence of order 1. This form of dependence induces an ordering over the 

categories of the variables I and J (see section 3.2). Since the most im­

portant aspect of assigning scores to categories is perhaps the ordering 

which is induced by these scores, this result supports the use of corre­

spondence analysis as a one-dimensional scaling technique. 

Another phenomenon which often occurs in practice is the so called 

horseshoe. We speak of a horseshoe in the two-dimensional graphical re­

presentation of correspondence analysis when row points and column points 

lie on convex or concave curves. We prove that a horseshoe occurs when the 



2 

two variables I and J have a still stronger form of dependence, called 

order dependence of order 2. In fact we prove a generalization of these 

results to higher orders in section 3.3. 

Correspondence analysis can be generalized to the case when more than 

two variables are involved. This generalization is called multi-correspon­

dence analysis (LEBART et al. (1977); it 1.s also called homogeneity analysis 

GIFI (1981), KESTER & SCHRIEVER (1982), or first order correspondence anal­

ysis, HILL (1974)). In this paper we introduce a multivariate generaliza­

tion of order dependence of order I, and show that the order of the cate­

gories in each variable which is induced by this multi-order dependence is 

reflected in the one-dimensional multi-correspondence analysis scores. How­

ever, a similarly generalized multi-order dependence of order 2 need n0.t 

imply horseshoes in a two-dimensional graphical representation of multi­

correspondence analysis (see section 4.2). 

In this paper we only consider correspondence analysis as applied to 

frequency tables (i.e. tables of relative frequencies or probabilities). 

In section 5 we give examples of probability models for frequency tables 

in which the variables are (multi-)order dependent of order 2. In this case 

the frequency table is said to be (M)Do 2 • The abundance of examples demon­

strates that (multi-)order dependence of order 2 is quite connnon in prac­

tical models. Although this does not imply the (M)D0 2 character of random 

samples from such populations, one may nevertheless expect that contingency 

tables are also often (M)D0 2 or close to it, and hence that the order rela­

tions of correspondence analysis remain valid. This explains why the earlier 

mentioned phenomena are often found with real data. 

2. TOTAL POSITIVITY 

In this paper we make use of matrix theory. Some results of the theory 

of totally positive matrices are sunnnarized in this section. 

We denote matrices by capital letters. The (i,j) element of a matrix 

A is denoted by a .. ; however the diagonal elements of a diagonal matrix 
l.J 

are singlely subscripted. Vectors are denoted by lower case letters and are 

considered as column vectors. The i-th component of a vector xis denoted 
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T 
by x .• The transpose of a matrix or vector is denoted by the superscript 

1 

The identity matrix is denoted by I and the vector having all its com-

ponents equal to unity is denoted bye; the size of this matrix and vector 

will be clear from the context. 

For a matrix A of size n x m we denote by 

a• .. 
1 1 J 1 

a• . 
1 1 J 2 

( ~1~2--•~k) 
a• . a• . 

1 2J 1 1 2J2 
A = 

JyJ2•••Jk 

a• . 
1 kJ 1 

a• . 
1 kJ2 

the determinant formed from the specified elements of A. This determinant 

is called a minor of A of order kif 

and 

~ J1 < j2 < •••• < . < Jk - m. 

DEFINITION 2.1. The matrix A is called totally positive of order r (abbre­

viated TP) if all minors of order~ rare positive. If all minors of order 
r 

~rare strictly positive, then A is said to be strictly totally positive 

of order r (STPr). 

LEMMA 2.1. If the matrix A1 of size n x l is TPr and the matrix A2 of size 

l x mis TP, then the matrix A1A2 is TP. ( )' In the case that A1 is s min r,s 
STP and A2 is TP and of fuU rank, A1A2 is actuaUy STP . ( ) • r r min r,s 

PROOF. The proof follows from the Binet-Cauchy formula (cf. GANTMACHER, 

(1977), vol I, p.9) 

C1 i2. • •:k) • 
I 

I Al 
1~h <h < ••• <h ~l 

1 '.) k 17 
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An important property of (strictly) totally positive matrices is the 

number of changes of sign of the eigenvectors. In counting the number of 

changes of sign (of the sequence of components) of a vector, zero components 

are permitted to take on arbitrary signs. So the number of changes of sign 
- + of a vector x will vary between two bounds S and S . 

( 1) (2)x (~) . 
In the next lemma the vectors x ,x , •.. ,x denote the eigenvec-

tors of an n x n matrix A corresponding to the r "largest" eigenvalues 

I A 11 ... ~ IA I, and X denotes then x r matrix r 

(1) (2) (r) 
X = (x , x , ... , x ) • 

LEMMA 2.2. The r largest eigenvalues of a STP matrix A are strictly posi­
r 

tive and distinct 

A 1 > A 2 > . • . > Ar > I Ar+ 1 I . 

Furthermore 

:,; i 1 < i 2 < • • • < ik $ n; k = 1 , ••• , r 

and for arbitrary real nU11Wers ck,ck+l•···,ct (J$k$l$r, I~=k c;>o) the 

bounds S- and S+ of the vector 
X X 

X = 

satisfy 

l 
I 

t=k 

C X(t) 
t 

k-1:,; S :,; S+:,; l-1. 
X X 

PROOF. This lermna is a weaker version of a result of GANTMACHER & KREIN 

(1950), p.349. □ 

Another related property is the variation diminishing property. This 



gives us a better intuitive grasp of total positivity. 

LEMMA 2 .3. Consider transfoPmations of the foPm 

X = Ay 

where A is a matrix of size n x m. 

(i) If A is TP , then . r 

(2.1) S $ r-1 ~ S $ S 
y X y 

for aU y E Rm , 

moreover 

5 

(2. 2) for ally such that S- = S- $ r-1, the first non-zero component 
X y 

of x and y have the same sign 

(ii) If A is STP , then 
r 

(2.3) S ~ s+ s $ r-1 _,, $ 
y X y for aU y #- O. 

(iii) Conversely, when m < n, (2.2) and (2.3) imply that A is STP • 
r 

If A is of full rank m < n, than (2.1) and (2.2) imply that A is TP . 
r 

PROOF. The lennna is a special case of a result in KARLIN (1968), p.233. D 

Furthermore we also need the following lennna. 

LEMMA 2.4. Any TP matrix of rank~ r can be approximated elemen~Jise as 
r 

closely as desired by means of a STP matrix of the same rank. 
r 

PROOF. See GANTMACHER & KREIN (1950), p.357. 0 
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3. ORDERING PROPERTIES IN CORRESPONDENCE ANALYSIS 

3.1. Correspondence analysis 

Let P be a frequency table of size n x m, i.e. P 1s an n x m matrix 

with positive real elements 

such that 

Denote by 

and 

p .. 2: 0 
1] 

n m 

I I 
i= 1 j = 1 

m 
r. = 

1 I 
j =I 

n 

p .. 
1] 

p .. 
1] 

C. = l p .. 
J i=l 1 J 

1 = l, ... ,n; J = l, ... ,m 

= l • 

i = 1 , ••• , n 

J = 1, .•. ,m 

the row and column sums of P. Let these marginals of P form the diagonal 

elements of the diagonal matrices Rand C, respectively. We assume that R 

and Care non-singular. 

Let I and J denote the two variables indicating row and column number 

of the frequency table P. Note that the variables giving rise to the fre­

quency table may be ordinal or nominal. Correspondence analysis is a tech­

nique for analysing the dependence between the two variables I and J. There 

are several ways to look at this technique; 1n the next definition we for­

mulate it as a method of scaling. 

DEFINITION 3.1. A solution of correspondence analysis applied to the fre-
. ( t) ( t) ( t) T 

quency table P consists of real vectors u = (u 1 , ••• ,un ) , called the 

row factors, and v(t) = (v~t) , •.. ,v~t))T, called the column factors, for 

t = 1,2, ... , min(m,n), which satisfy 
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At 
(t) -1 p v(t) u = R 

At 
(t) -1 PT (t) 

V = C u 

where At is maximal subject to 

( t) T ( ) 
u Rut =l, 

( t) T ( ) 
u Ru s = O, s = 1 , 2 , ••• , t- 1 • 

Let Palso denote the (empirical) joint distribution of I and J induced 

by the frequency table P. The components of the i-th row of the matrix 

R-lp can be interpreted as the conditional probabilities P{J = j I I= i}. 

It follows from the equation 

, (t) _ R-1 p (t) 
/\tU - V 

that if two rows i and i' have (approximately) equal conditional 

tions, the corresponding correspondence analysis scores u~t) and 
1 

distribu­
(t) 

ui' , 
t = 1,2, ••• ,min(m,n), are also (approximately) equal. Of course a similar 

property holds for columns j and j' which have (approximately) equal con-

ditional distributions. 

The solution of correspondence analysis can be found by solving eigen­

value problems. It can be proved (cf. HILL (1974), KESTER & SCHRIEVER (1982), 

LEBART et al. (1977), p.54 and SCHRIEVER (1982)) that Vectors u(t) and v(t) 

in Definition 3.1. exist fort= 1,2, ••• ,min(m,n) and are eigenvectors of 
-1 -1 T -1 T -1 

the matrices R PC P and C P R P, respectively., corresponding to the 

eigenvalue A!. Conversely., the eigenvectors., suitably normalized., of 
-1 -1 T -1 T -1 

R PC P and C PR P corresponding to the eigenvalues 
, 2 > , 2 > > , 2 nd ~ ~ to f th nd /\l - /\ 2 - ••• - /\ • ( ) are row a co~wnn Jae rs o e correspo ence m:i:-n m, n 
analysis solution. 

Furthermore it can be proved that Al= 1 and that the first row and column 

factor can always be taken to be trivial, i.e. u(l) = e and v(l) = e. In 

the sequal we assume, in particular in the case 1 = A =A, that u(l) = e 
1 2 

and v(l) = e. 

HILL (1974) showed that correspondence analysis is algebraically 

equivalent to Fisher's contingency table analysis (cf. FISHER (1940)) • This 
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gives us the following interpretation of the row and column factors. The 
(2) (2) . 

first non-trivial row and column factor, u and v , can be interpreted 

as "optimal" scores of the categories of the variables I and J: they define 

derived variables with maximal correlation. The vectors u(t) and v(t) define 

scores with similar properties subject to orthogonality to previous sets of 

scores. 

In practice not all min(m,n) factors are computed, but only the first 

q non-trivial, where q is an integer< min(m,n). Moreover, they are usually 

presented in one or more plots. These plots show aspects of the q-dimen­

sional graphical representation of correspondence analysis where each row 

and each column of Pis represented as a point; row i has coordinates 
(2) (3) (q+l) . . 

(A 2u; ,A3ui , ••. ,A +lu. ) and column J has coordinates 
(2) (3) q {q+l) . . 

(A 2vj ,A3vj , ••• ,Aq+lvj ). Thus two row points (column points) lie 

close to one another if the corresponding conditional distributions are ap­

proximately equal. It can be proved (cf. GIFI (1981), p.134, KESTER & 

SCHRIEVER (1982) and LEBART et al. (1977), p.49) that when q ~ rank (P)-1 

the converse holds also; in the case that q < rank (P)-1 it holds approxi­

mately. 

Further results and properties of correspondence analysis can be found 

in the references given in this subsection. 

3.2. Order dependence 

In this subsection we introduce forms of dependence between the variables 

I and J which can be interpreted as order relations; they induce successively 

stronger orderings over the categories of these two variables. These forms 

of dependence are called order dependence of order r, r = 1,2,3, •••• 

In the case that the family of induced distributions of J I I= i is 

stochastically (strictly) increasing, i.e. 

P{J ~ j 0 I I= i} is (strictly) decreasing in i for each Jo 

the variable J induces a (strict) ordering over the categories of the 



variable I. LEHMANN (1966) speaks of positive regression dependence of J 

on I. In this case then x m frequency table P satisfies 

(3. 1) s i < i' :S n ==> l P .. Ir. 2: 
• < . l.J l. 
J-J 0 

I 
"<. 
J-Jo 

P. , . Ir. , 
l. J l. 

1 , .•. ,m-1 , 

9 

with strict inequality in case of strict regression dependence. In order to 

write (3.1) in matrix notation we introduce the upper triangular matrix S 
n 

of size n x n 

s = 
n 

• • 1 

Furthermore define 

-1 
, with inverse S = 

n 

-I 

1 • 

. -I 

and let the (n-J)x(m-1) matrix QR be obtained by deleting the last row and 

column of QR. Thus the (i,j) element of QR equals 

P{J s J I I= i} - P{J s j I = i + I } i = 1 , •. , , n-1 ; J = 1 , ••• , m-1 • 

It follows that 

(3. I) <:=l> QR is (S) TP I • 

A fundamental property of a stochastically increasing family is that 

it preserves monotonicity of functions. To be more specific, a vector 

$ = ($ 1, ... ,$ )Tis said to be monotone of order r, denoted by M, if the 
m T r 

vector of differences o = (o , ... ,o 1) , where 
I m-

0. = 
J 

J = I , ••• , m-1 , 
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has a number of changes of sign which satisfies 

s~ = r-1. 

The vector~ is said to be strictly monotone of order r, denoted by SM, if 
r 

s~ = s; = r-1. 

Note that monotonicity is a kind of oscillatory property. Now, if we define 

for any vector~ the vector¢= (~ 1, •.. ,~n)T of expectations by 

m 

¢. = 
i I 

j=l 
~- P .. /r. 

J iJ i 
i = 1 , ••• , n, 

then a stochastically (strictly) increasing family, of distributions of 

J I I= i is charactarized by (see theorem 3.1 below) 

i.e. the family preserves (strictly) order 1 monotonicity of functions. 

The ordering of distributions in a stochastically increasing family be­

comes stronger when this family also preserves order 2 monotonicity of func­

tions. To illustrate this we consider the problem of testing hypotheses 

about the parameter (row number) of the one-parameter family of distribu­

tions based on one observation of the variable (column number). If the 

family is stochastically increasing, then any one-sided test has a monotone 

(of order 1) power function. In the case that this family also preserves 

order 2 monotonicity of functions, any two-sided test has a power function 

which is monotone of order~ 2, e.g. first decreases than increases. This 

corresponds to a stronger ordering of the distributions, but still a natural 

one. In the case that the family of conditional distributions of J I= i 

preserves order 2 monotonicity of functions, we have 

~ is M => ¢ is M, wheres~ r; 
r s 

r = 1,2. 
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Generally, the ordering of the distributions of J J I= i becomes suc­

cessively stronger if the family preserves order r monotonicity of functions, 

r = 1,2, .•.. The next theorem shows that this can be formulated by means 

of the matrix QR. 

THEOREM 3. I • If the matrix QR is TP r, then 

~ is M, where l ~ s ~ t; 
s 

t = 1,2, ... ,r. 

T 
PROOF. Let£= (£ 1, •.• ,En-l) be the vector of differences 

i = I, ... ,n-1, 

and let o 
T 

= (o 1, ••• ,om-l) be the vector of differences 

j = 1 , ••• ,m-1 • 

Then we have that 

The result now follows from lennna 2.3 (i). LJ 

Note that under slight non-degeneracy conditions the converse holds 

also. In the case that QR is STPr we have 

t = 1,2, ... ,r. 

We have described forms of regression dependence of Jon I such that 

the variable J induces successively stronger orderings over the categories 

of the variable I. Similarly, the variable I induces successively stronger 

orderings over the categories of the variable J if the (m-I)x(n-1) matrix 

r = 1,2, ... , 
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where the matrix QC is obtained by deleting the last row and column of 

If both conditions are satisfied we say that the variables I and J are 

(strictly) order dependent of order r. The frequency table P then satisfies 

the following definition. 

DEFINITION 3.2. The frequency table Pis called (strictly) doubly ordered 

of order r (abbreviated (S)DOr) if the matrices QR and QC are both (S)TPr 

and have rank~ r. 

The next theorem gives sufficient conditions for a frequency table P 

to be (S)DO . 
r 

THEOREM 3.2. Pis (S)TP land rank (P) ~ r+l =:>Pis (S)DO . r+ r 

PROOF. First consider the case that Pis STP 1• Since S is TP and has _1 r+ m m 
rank m, it follows from lennna 2.1 that R PS is STP 1• m r+ 
Hence in particular 

i+k-1 i+I 

> 0 

for 1 ::; j 1 < j 2 < < jk::; m-1; i = 1, ... ,n-k-1 and k = l, .•. ,r. 

Application of the result of KARLIN (1968), p.60 - for fixed indices 

j 1, ... ,jk - yields 

i2 ... ~k) > 0 ::; il < i2 < ... < ik ::; n-1; k 

J2 Jk 

= I , ••• , r 



It follows that QR is STPr. The restriction that all minors are strictly 

positive can be dropped by appealing to lennna 2.4 and continuity. 

The same arguments hold w.r.t. the matrix Qc• D 

3.3. CORRESPONDENCE ANALYSIS AND ORDER DEPENDENCE 

In this subsection we show that the ordering over the categories of 

t.he variables I and J, which is induced by order dependence, is reflected 

in the ordering of the components of the correspondence analysis row and 

column factors. 

THEOREM 3.2. Let then x m frequency table P be SDO, then correspondence 
r 

analysis applied to P yields 

(i) ei,.,aenvalues 1 = Al ~ A2. > A3 > ... > A > A r+l r+2 
and 

13 

(ii) row and column factors u(t) and v(t) which are SMt-l and start oscil­

lating in the same direction, t = 2,3, ••• ,r+l. 

Moreover, for arbitrary real numbers ck,ck+t'···,ct (2$k~$r+l, 
tl 2 
lt=k ct> 0) the vectors 

u = and v = 
l 
I 

t=k 
C V (t) ,.,.,,.e M 

~ , 
t s 

k-1 $ s $ l-1. 

(iii) In the case that r ~ 2, the row points (column points) in the two­

dimensional graphical representation of correspondence analysis lie on 

a strictly convex or a strictly concave curve. 

PROOF. Let 

-
and let Q be obtained by deleting the last row and column of Q. We have 

that 
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-
since the (i,m) elements of QR vanish for i = I, ... ,n-1. 

We first prove that fort= 2,3, .•• ,min(m,n) the vector 
( t) ( ( t) ( t)) T . . f Q d · x = x 1 , ... ,xn-l is an eigenvector o correspon ing 

1 ' 2 . ff h . ( t) f - I - I PT . f . va ue At i t e eigenvector u o R PC satis ies 

( t) 
x. = 

( t) 
u. 

i i 

( t) 
ui+l i = 1, ... ,n-1. 

to the eigen-

( t) · f - I - I T d . to A 2 i· ff Note that u t R PC P is an eigenvec or o correspon ing t 

- 2 -I -1 T 
is an eigenvector of Q corresponding to At. Since R PC P has row sums 

equal to unity, the elements q. i = 1, •.. ,n-1 vanish. Hence the vector in 
(O, ... ,O,J)T is an eigenvector of Q corresponding to A7 =I. It follows 

that X-(t) = (x-(1 t)' ... ,x-(t)l ,x-(t))T . t f Q d" t n- n is an eigenvec or o correspon ing o 

A; iff x(t) = (i~t) , ... ,i~:i)T is an eigenvector of Q corresponding to A;, 

t = 2,3, ... ,min(m,n). From 

it follows that 

( t) 
x. 

i 

-(t) = x. 
i 

( t) = u. 
i 

( t) 
ui+I i = 

Note that A; is the largest eigenvalue of Q, 

l, ... ,n-1. 

Since QR and QC are STPr it follows from lennna 2.1 that Q is STPr also. 

Application of lennna 2.2 yields 

and that for arbitrary real numbers ck,ck+t•···,ct (2~k~l~r+I), the vector 

l 
X = I 

t=k 

C X(t) 
t 



satisfies 

Furthermore, in the case that r ~ 2 we have 

( i') X > 0 

3 

:s; i < i' :s; n-1 ; 

i.e. 

:s; i < i' :s; n-1 

and hence the row points in the two-dimensional graphical representation 

lie on a strictly convex or strictly concave curve. 

Since the same arguments hold for the matrix QCQR with eigenvectors 
( t) ( ( t) . ( t)) T 

y = y 1 , ••• , y m- l where 

( t) 
y. 

J 

(t) = v. 
J 

(t) 
V • } J+ 

J = 1 , ••• ,m-1 , 
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similar results hold for the column factors v(t}; t = 2,3, •.• ,r+l. It fol­

lows from (2.2) that u(t) and v(t) start oscillating in the same direction. 
(2) d ( 2) Note that in the case that 1 =Al= A2 > A3 , the vectors u an v 

are uniquely determined, since we agreed that u< 1) = e,v(l) = e always. D 

THEOREM 3.3. Let then x m frequency table P be DO, then there exist row 

and column factors, u(t) and v(t), of corresponde~e analysis applied to 

P such that u(t) and v(t) are Mt-I and start oscillating in the same direc­

tion; t = 2,3, ••• ,r+l. Moreover for arbitrary real nwribers 
\'l 2 ck,ck+l, ••• ,c,e (2:s;k:s;,t:s;r+l, l.t=k ct > O) the vectors 

l 
C U(t) 

l 
C V(t) u = I and V = I are M 

t=k t t=k t s 

where 

k-1 :s; s :s; l-1. 
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Furthermore, in the ease that r ~ 2, there e:rrists a two-dimensionaZ graphi­

caZ representation of correspondence anaZysis such that the row points 

(column points) Zie on a convex or concave curve. 

PROOF. The proof follows from theorem 3.2, lennna 2.4 and continuity con­

siderations. D 

REMARK. GANTMACHER & KREIN prove lennna 2.2 in the case that the matrix A is 

tP and has some power which is STP • The conditions of theorem 3.2 imply 
r · r 

that QRQC and QCQR are both STPr. Since we only need that some powers of 

these matrices a~e STP, these conditions are somewhat too strong. However, 
r 

it seems hard to find simple sufficient conditions for theorem 3.2 which 

are essentially weaker. 

As was mentioned in the introduction, the two most important conse­

quences of the theorems 3.2 and 3.3 are 

(i) If the two variables I and J are (strictly) order dependent of order 

~ 1, the ordering over the categories of I and J implied by the de­

pendence is reflected in the order of the components of the first non­

trivial row and column factor, u( 2) and v(Z). Furthermore, when the 

rows and columns of the ~requency table Pare permuted, the components 

of the factors u(t) and v(t) undergo the same permutation. Therefore, 

it follows from the theorems 3.2 and 3.3 that if Pis SDO, there 
r 

exists only one permutation of rows and one permutation of columns 

such that Pis DO • This permutation is determined by 

components of u( 2) and v( 2). This supports the use of 

of the first non-trivial row and column factors, u(Z) 

the order of the 

the components 

and v( 2), as 

scores for the categories of the variables I and J respectively. 

(ii) If the two variables are (strictly) order dependent of order~ 2, a 

horseshoe occurs in the two-dimensional graphical representation of 

correspondence analysis. 
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4. ORDERING PROPERTIES IN MULTI-CORRESPONDENCE ANALYSIS 

4.1. Multi-correspondence analysis 

Correspondence analysis can be generalized to the case that more than 

two variables are involved. In order to see how this can be done, we give 

the following equivalent formulation of correspondence analysis. 

· ( t) T ( t) T T ( t) ( t) ( t) ( t) T 
LEMMA 4.1. The vectors (u ,v ) =(u1 , ••• ,un ,v1 , ..• ,vm ) , where 

u(t) and v(t) are soZutions of correspondence anaZysis appZied to P cor­

responding to At, are eigenvecotrs of the ma.trix 

corresponding to an eigenvaZue 1 + At; t = 1,2, ••• ,min(m,n). 

PROOF. Trivial. 0 

(t)T (t)T T . 
Note that (u ,-v ) is an eigenvector of B corresponding to an 

eigenvalue 1-At; t = 1,2, ••• ,min(m,n). Furthermore if min(m,n) = m, the 
( ( t) T T) T . . . vectors u ,0 are eigenvectors of B corresponding to an eigenvalue 

1 ; t = m+ 1 , ••• , n • 

Now consider the case that we have a k-dimensional frequency table P 

of size m1 x m2 x ••• x nic· Let the variables J 1,J2, ••• ,Jk denote the vari­

ables indicating the category numbers on the dimensions 1,2, ••• ,k of Pre­

spectively. Furthermore, let Pjl denote the mj x ml marginal bivariate fre­

quency table of the variables Jj and Jl; j,l = 1, ••• ,k. Note that 

j ,l = 1, .•• , k. 

Denote by C. the diagonal matrix P .. ; j = 1, ••• ,k, and denote by C the 
. 1 J . f . h JJ tk . h d' 1 1 diagona matrix o size m x m, were m = lj=l mj, wit iagona e ements 

the diagonal elements of c1,c2, ••. ,Ck. Assume that C is non-singular. 
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DEFINITION 4.1. A solution of multi-correspondence analysis applied to the 

k-dimensional frequency table P consists of real vectors 

v(l,t) = (v~l,t), .•• ,v~:•t))T, .... ,v(k,t) = (vt•t), ... ,v~~,t)T, called the 

variable factors, fort= 1,2, ..• ,m, such that the vectors 
(t) _ ( (1,t)T (k,t)T)T . f v - v , ..• ,v satis y 

-1 

0 Cl p12 . Cl 
-1 T 

c2 P 12c2 • p2k 

( 4. 1) 
A ( t) 
tv = V 

(t) 

0 T T 
plkp2k Ck 

where "tis maximal subject to 

V (t)Tcv(t) = k· v(t)Tcv(s) = 0 s = I 2 I 
' ' ' •.. ' t- . 

Let them x m matrix B denote the product of the two matrices written 

on the right-hand side of (4.1). Note that the eigenvalue problem (4.1) is 

equivalent to correspondence analysis applied to the symmetric matrix CB, 

only the row and column factors differ by a factor I/lk from the variable 

factors v(t) and the eigenvalues differ by a factor 1/k, t = 1,2, ... ,m. 

Therefore, all the eigenvalues "t of multi-correspondence analysis are 

positive and the first variable factor can be taken trivially as 

with 

Furthermore it follows that 

T -1 -1 ( t) 
= e C.(C. P.1,···,c. P.k)v 

J J J J J 

for J = 1, ... ,k; t = 2,3, ... ,m. 



Thus the non-trivial factors of each variable are also centered. 

The interpretation of multi-correspondence analysis variable factors 

differs somewhat from the interpretation of the row and column factors in 

correspondence analysis. The first non-trivial variable factors v(j, 2), 
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j = 1, ••• , k, can be interpreted as "optimal" scores for the categories of 

the variables J 1, ••• ,Jk: they define derived variables such that the first 

principal component of their correlation matrix has maximal variance. 

(cf. RILL (1974)) 

Similarly to correspondence analysis, the variable factors v(j,t), 

J = 1, .•. ,k; t = 2,3, .•• ,q+l of multi-correspondence analysis are displayed 

in a q-dimensional graphical representation. 

For further results and properties of multi-correspondence analysis we 

refer to GIFI (1981), KESTER & SCHRIEVER (1982) and LEBART et al. (1977). 

4.2. Multi-correspondence analysis and multi-order dependence 

In subsection 3.3 it was proved that the first set of r non-trivial 

row and column factors of correspondence analysis reflects the ordering of 

categories implied by (strictly) order dependence of order r. In the 

present subsection we show that a similar property holds for multi-corre­

spondence analysis w.r.t. a (strictly) multi-order dependence of order 1. 

Moreover, it need not hold w.r.t. multi-order dependence of higher order. 

DEFINITION 4.2. The k-dimensional frequency table Pis called (strictly) 

multivariate doubly ordered of order r (abbreviated (S)MDO) if all the r . 
marginal bivariate frequency tables Pjl' j I l; j,l = 1, ... ,k, are (S)DO • 

r 

In this case the variables J 1,J2, ••. ,Jk are said to be (strictly) rrrul­

ti-order dependent of order r. 

THEOREM 4.2. Let the k-dimensional frequency table P be SMDO 1, then multi­

correspondence analysis applied to P yields 

(i) eigenvalues k = Al ~ A2 > A3 
and 

(ii) first non-trivial variable factors v(j, 2), j = 1, ••• ,k, which are all 
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strictZy increasing or aZZ strictZy decreasing in their corrrponents. 

(i.e. they are aZZ SM1 and start osciZZating in the same direction) 

PROOF. Let S denote them x m matrix 

s 
0 ml 0 

s 
s 

m2 
= with inverse S-l = 

0 s 
~ 

-Furthermore, let Q denote them x m matrix 

and let the matrix Q of size (m-k)x(m-k) be-obtained by deleting the rows 

and columns corresponding to the k indices m1,m1+m2, ... ,m1+m2+ ••• ,. 

Similarly to the first part of the proof of theorem 3.2 it follows that 

(ii) holds iff the eigenvector of Q corresponding to the largest eigenvalue 

A2 is strictly negative or strictly positive. 

Since the marginal frequency tables Pjl' j # l; j,l = 1, ••• ,k are SD0 1 

it follows that the elements of Qare positive; the elements of Qare even 

strictly positive except on diagonal blocks. It follows that Q2 is STP 1 • 

Application of lennna 2.2 with r=l (i.e. the theorem of Perron-Frobenius) 

to q2 yields the result (ii) and A2 > A3 • D 

THEOREM 4.3. Let the k-dimensiona.Z frequency tabZe P be MD0 1, then there 

exist variabZe factors v(j, 2), j = 1, ••• ,k, of muZti-correspondence ana.Zysis 

appZied to P which are aZZ increasing or aZZ decreasing in their corrrponents 

(i.e. they are aZZ M1 and start osciZZating in the same direction). 

PROOF. The proof follows from application of lemma 2.4, theorem 4.2 and 

continuity considerations. D 

These theorems show that the order of the components of the variable 
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factors v(j, 2) reflect the correct ordering of categories, in the case that 

the variables J 1, ••• ,Jk are - possibly after one permutation of the cate­

gories of each variable - (strictly) multi-order dependent of order~ I. 

This supports the use of multi-correspondence analysis as a one-dimensional 

scaling technique. 

We now briefly explain why these results can not be extended to multi-

d d d f d 2 . h ' bl f (j ' 3) • I k or er epen ence o or er , i.e. t e varia e actors v , J = , ••• , , 

of multi-correspondence analysis applied to a k-dimensional frequency table 

P need not be SM2 when Pis SMD0 2 . For instance, suppose that v(j, 3) is 

SM2 for j = 2,3, ••• ,k. It follows from the eigenvalue problem (4.1) that 

(), -l)v(l ,3) = 
3 

Although the vectors 

C-lp (j,3) 
I ljv 

k 
t C-lp (j ,3) 
l I IJ.v • 

j=2 

j=2,3, ••• ,k 

are SM2, their sum v(l, 3) need not be SM2 • Examples of this can be given. 

But if the vectors 

C-lp (j ,3) 
I ljv j = 2,3, ..• ,k 

• • ' ( • • ) t.. 1 h (1, 3 ) . all attain their maximum minimum at t11:e same p ace, t en v is 

actually SM2• 

5. (MULTI-) ORDER DEPENDENCE IN PRACTICE 

In this section we give two important examples of probability models 

for (S)DO frequency tables. These examples can easily be extended to the 

multivariate ·case. The proofs of the results mentioned in this section are 

not given but can be found in SCHRIEVER (1982). In these examples it is 
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easier to verify that the frequency tables are (S)TP 1 for some r, which r+ 
implies, by theorem 3.2, that they are (S)DO • 

r 

A class of probability models for frequency tables is obtained by 

making a discretisation of bivariate density functions. Let f be a bivariate 

density function w.r.t. a product measure cr 1 x cr 2 on :JR.2 • The frequency 

table Pis said to be a discretisation off if there exist two partitions 
n m {E.}. 1 and {F.}. 1 of :JR such that 

· 1 1= J J= 

E. F. 
1 J i = 1, .•. ,n; j = 1, •.. ,m. 

It turns out that discretisations of bivariate densities are actually 

STP. ( )' or have some power which is STP. ( )' when the density f is min m,n min m,n 
(S)TP and the elements of the partitions {E.} and {F.} are ordered correct-

1 J 
ly. 

Examples are 

the bivariate normal, the trinominal, the negative trinominal and 

various types of the bivariate F, the bivariate ganuna, the bivariate 

beta, the bivariate logistic, the bivariate Pareto, the bivariate 

Poisson and the bivariate hypergeometric distribution. 

Another more specific example for a frequency table Pis the log-linear 

model 

where 

log p .. =µ+a. + S. + y.o. 
1J 1 J 1 J 

I a. =Is.= 
1 1 j J 

I y. 
. 1 
1 

= i o. = o. 
J J 

1 = 1, ... ,n; J = 1, •.. ,m 

The frequency table Pis STP. ( ) if the rows and columns are indexed 
min m,n 

such that y. and o. are both strictly increasing or both strictly decreasing 
1 J 

in their indices. GOODMAN (1981) compares maximum likelihood estimates of 

y. and o. in this model with the first non-trivial row and column factor 
1 J 
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of correspondence analysis. Furthermore he discusses the ordering of rows 

and columns which is present in this model by means of the TP2 and D0 1 
property; however he does not prove that this ordering is reflected in the 

first non-trivial row and column factor of correspondence analysis. 
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