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*) 
Ordering properties in correspondence analysis 

by 

B.F. Schriever 

ABSTRACT 

In this paper strong forms of bivariate dependence, which can be inter

preted as order relations, are considered. It is proved that, under quite 

general conditions, such order relations if present in frequency tables 

are preserved by correspondence analysis. Some models for frequency tables 

having these strong forms of dependence are given. The results are obtained 

by using some theory of total positivity. 

KEY WORDS & PHRASES: Correspondence analysis, frequency table, bivariate 

dependence, order relations, total positivity, 

scaling, horseshoes 

*) This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

There exist many ways to describe the association which is present in 

a contingency table. HIRSCHFELD (1935) introduced a method which was later 

(independently) formulated by a number of authors. BENZECRI (1973) gives 

a description of this method under the now well-established name of 

correspondence analysis. Theoretical treatments and applications of this 

technique can also be found in the recent publications of GIFI (1981), 

HILL (1974) and LEBART et al. (1977). 

Correspondence analysis can be regarded as a method of scaling by 

assigning one-dimensional correspondence analysis scores to the categories 

of the variables describing the rows and columns of the contingency table. 

In situations where these variables are nominal variables, the most impor

tant aspect of assigning scores to categories is perhaps the ordering of 

the categories which is implied by these scores. In this paper we introduce 

a form of dependence between two variables I and J indicating row and 

column number of the contingency table. We call this dependence order 

dependence because it induces an ordering over the categories of the vari

ables. We then prove that an order dependence between I and J 1s reflected 

in the order of the one-dimensional correspondence analysis scores. This 

supports the use of correspondence analysis as a one-dimensional scaling 

technique. 

Usually correspondence analysis is used as a multidimensional scaling 

technique and the results are presented in a plot. In this graphical 

representation of correspondence analysis each row and each column of 

the contingency table is represented as a point. When both row points and 

column points lie on a convex or concave curve, we speak of a horseshoe 1n 

the graphical representation. We prove that a horseshoe occurs when the two 

variables I and J have a still stronger form of dependence, called TP3-

dependence. In fact, we prove a generalization of these results. 

In this paper we only consider correspondence analysis as applied 

to frequency tables (i.e. tables of relative frequencies or probabilities). 

In Section 3 we give many examples of probability models for frequency 

tables in which the two variables I and J are TP3-dependent. The abundance 

of examples demonstrates that TP3-dependence is quite connnon in practical 
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models. Although this doe,s n.ot imply the TP3 character for random samples 

from such populations, one may nevertheless hope that contingency tables 

are also often TP3 or close to it and hence that the order relations of 

correspondence analysis remain valid. This explains why the typical 

horseshoe is often found in practice (cf. earlier references). 

2. CORRESPONDENCE ANALYSIS, ORDER DEPENDENCE AND TOTALLY POSITIVE DEPENDENCE 

2.1. Correspondence analysis 

Let P be a frequency table of order nxm, i.e. Pis an nxm matrix with 

non-negative real elements p .. (i = l, ••• ,n; j = l, ••• ,m) such that 
1.J 

· Denote by 

and 

n m 
I I = I. 

i= 1 j = 1 
p .. 

1.J 

m 
r. := I p .. 

1. j=l 1.J 

n 
c. := I p .. 

J i= 1 1.J 

(i = l, ... ,n) 

(j = l, ... ,m), 

the row and column sums of P, respectively. Let these marginals of P form 

the diagonal elements of the diagonal matrices Rand C, respectively. We 

assume that Rand Care non-singular. 

The identity matrix will be denoted by I and the column vector having 

all its components equal to unity will be denoted bye; the order of this 

matrix and vector will be clear from the context. The transpose of a matrix 

or a vector will be denoted by the superscript T. 

Let I and J denote the two variables indicating row and column number 

of the frequency table P. Note that the variables giving rise to the 

frequency table may be ordinal or nominal. The dependence between I and J 

can be analysed with correspondence analysis. This technique is based on 

the following definition. 



DEFINITION 2. 1. A solution of correspondence analysis applied to the 

frequency table P consists of real v~ctors u(t) = (u}t) , ••. ,u(t))T, 
(t) (t) (t) T n 

called the row factors, and v = (v 1 , ••• ,vm ) , called the column 

factors, t = 1,2, ••• ,min(m,n), which satisfy 

(2. 1) where "t is maximal subject to 

u(t)TRu(t) = l, v(t) T Cv(t) = I ' 

u(t)TRu(s) = o, v(t)Tcv(s) = 0 (s = 1,2, •.• ,t-l). 

In order to derive properties of the solutions u(t) and v(t), we first 

prove that a solution of correspondence analysis can be found by solving 

eigenvalue problems. 

LEMMA 2.1. Vectors u(t) and v(t) in Definition 2.1 exist for 

3 

t = 1,2, ••• ,min(m,n) and are eigenvectors of the matrices R- 1PC-lPT and 

c-lPTR- 1P, respectively, corresponding to the eigenvalue A~. 
-1 -1 T -IT -1 Conversely, the eigenvectors, suitably normalized, of R PC P and C PR P 

corresponding to the eigenvalues A21 ~ A22 ~ .•• ~ A2. ( ) ~ 0 satisfy (2.1). 
(1) (I) min m,n 

Furthermore, u = e, v = e and Al= I. 

PROOF. It follows from (2.1) that 

(2.2) where At is maximal subject to 

u(t)TRu(t) = 1 u(t)TRu(s) = 0 , (s = 1,2, ••• ,t-1), 

( t) -1 -1 T 2 
i.e. u is an eigenvector of R PC P corresponding to the eigenvalue At. 

Analogously, it follows that v(t) is an eigenvector of C-lPTR-lP correspond-

ing to the eigenvalue A!. 

Conversely, note that the eigenvalues of R- 1PC-IPT and R-½PC-IPTR-½ 

Co1·nc1·de. S1°nce R-½PC-IPTR-½ 1·s syrmnetr1·c and "t" · d f" "t th pos1 1ve semi- e 101 e, ese 
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eigenvalues are real, non-negative and there exists a system of n orthonor
_1 

mal eigenvectors of this matrix. Pre~ultiplying these eigenvectors by R 2 

will give vectors u(t) (t = l, ••• ,n) which satisfy (2.2). Arrange the eigen-

1 Of R-lPC-lPT . d . d ' 21 , 2 , 2 S h va ues in ecreasing or er 11. 2: 11. 2 2: ••• 2: 11.n. uppose tat 

"t IO and define 

then 

and 

(s = l, ... ,t-1). 

Moreover, it follows that 

(t) . -1 T -I and hence v is an eigenvector of C PR P corresponding to eigenvalue 
2 

"t· If "t = 0 for some t $ min(m,n), then 

and hence 

and it follows that c-½PTu(t) = 0 and thus C-lPTu(t) = O. 

Similarly, C-IPTR- 1Pv(t) = 0 implies R- 1Pv(t) = 0. It is seen that the eigen-
-1 -1 T -1 T -1 . vectors of R PC P and C PR P satisfy (2.1). 

A well-known upperbound for an eigenvalueµ of a matrix A= (a .. ) is 
iJ 

I µ I $ max I I a .. I 
i j iJ 

-1 -I T (cf. WILKINSON (1965), p.58). Since the row sums of R PC P are all equal 

to unity, it follows that 11. 2 $ 1. The vectors u(l)=e, v(l)=e satisfy (2.1) 
1 

with "l = I. □ 



HILL (1974) shows that the first non-trivial row and column factor, 

u(2) and v(2), can be interpreted as. "optimal" scores of the categories of 

the variables I and J: they define derived variables with maximal correla

tion. The vectors u(t) and v(t) define scores with similar properties con

ditional on the orthogonality of the derived row and column factors for 

previous values oft. 

2.2. Total positivity 

In this section we sumnarize some theory of total positivity. For a 

matrix A= (a .. ) of order nxm we denote by 
iJ 
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the determinant from the specified elements of A. This determinant is called 

a minor of A of order p if Is i 1 < i 2 < ••• < ip s n and 

Is j 1 < j 2 < ••• < jp s m. 

DEFINITION 2.2. The matrix A is called totaZZy positive of order r (abbrevi

ated TP) if all minors of orders rare non-negative. If all minors of r 
orders rare positive, then A is said to be striatZy totaZZy positive of 

order r (STP ). r 

DEFINITION 2.3. A square matrix A is called osaiZZatory of order r (OS) r 
if A is TP and there exists a positive integer q such that Aq is STP. 

r r 

LEMMA 2.2. If the matrix A1 of order nxi is TPr (STPr) and the matrix A2 
of order txm is TP (STP) then the matrix A1A2 is TP. ( ) (STP. ( )). s s min r,s min r,s 

PROOF. The proof follows from the Binet-Cauchy formula (cf. GANTMACHER 

(1977), vol.I, p.9): 
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It is easily seen that for any diagonal matrix D with positive diagonal 

elements, DA is (S)TP iff A is (S)TP. r r 

LEMMA 2.3. Let the matrix A of order nxn be TP, then A is OS if r r 
(i) li-j I :,;; 

(ii) A(~ ~+I 
l. 1.+l 

I => a .. > O, 
l.J 

.•• ~+p-1) > 0 
• • • l. +p-1 

PROOF. See Appendix. 0 

(i = 1 , • • • , n-p+ 1 ; p = 1 , ••• , r) • 

REMARK. If the nxn matrix A is TP , the conditions (i) and (ii) in Lemma n 
2.3 are necessary also. Moreover, in this case (ii) can be replaced by 

(ii') A is non-singular 

(cf. GANTMACHER & KREIN ( 1950), p. I 39-140, or KARLIN ( 1968), p. 88-93) • 

An important property of oscillatory matrices is the number of changes 

of sign of the eigenvectors. In counting the number of changes of sign 

(of the coordinates) of a vector u= (u 1, ••• ,un)T, zero coordinates are 

permitted take on arbitrary signs. So the number of changes of sign of a 

vector will vary between two bounds S- and S+. In the next lemma the vec-
u u 

tors u(I) , ••• ,u(r) denote the eigenvectors of an nxn matrix A corresponding 

to the r "largest" eigenvalues !11. 1 I ;;:: 111. 2 1 ;;:: ••• 

LEMMA 2.4. The r largest eigenvalues of an OS matrix A are positive and r 
distinct 

and for arbitrary real numbers 
- + bounds S and S of the vector 
u u 

\R, 2 
ck,ck+I•••·,ct (I:s;k:o;R,:o;r, lt=k ct>O) the 
u = \'t c u(t) satisty 

lt=k t 

k-1:,;; S :,; S+:,;; t-1. 
u u 
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PROOF. See GANTMACHER & KREIN (1950), p.349. □ 

2.3. Ordering properties in correspondence analysis 

In this section we show that when order relations are present in the 

frequency table, this ordering is reflected in the ordering of the components 

of the row and column factors. First we investigate a simple order relation, 

which we call doubly ordering, then we generalize to more complex order 

relations called TP -ordering. r 

DEFINITION 2.4. The nxm frequency table Pis called row ordered (abbreviated 

RO) if 

l~i 1<i 2~n => l P .. /r. :?: l p .. /r. 
·<·* ilJ il "<"* i2J i2 J-J J-J 

( ·* 2 ) J = 1 , , • • • , m- 1 • 

If strict inequality holds everywhere, then Pis said to be strictly row 

ordered (SRO) • 

The frequency table Pis called (strictly) column ordered (abbreviated 

(S)CO) if PT is (S)RO. 

The frequency table Pis called doubly ordered (DO) if Pis both RO and CO. 

Pis called SDO if Pis both SRO and SCO. 

Let P~ denote the (empirical) distribution of I and J induced by the 

frequency table P. Notice that Pis RO iff the family of induced distribu

tions of JII= i is stochastically increasing, i.e. 

P~{J ~ j* I I= i} is non-increasing in i for each j*, 

implying an ordering of the rows of P. This form of dependence between I 

and J is called positive regression dependence of Jon I and was considered 

by LEHMANN (1966). Analogously, Pis CO implies an ordering of the columns 

of P. We shall say that I and J are order dependent when Pis DO. 

We introduce some more notation. Let S be the upper triangular matrix n 
of order nxn: 
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I . . 1\ 

I . . : 1 s ::0 

n 

) 
-1 , with inverse S = 
n 

-1 

-1 

-I 

-
Denote by QR := S-IR- 1PS 

n m' 
QC:= s-IC-IPTS and Q := s-IR- 1PC-IPTS-. 

m n n n 
The matrices QR' QC and Qare obtained by deleting the last row and column 

of the matrices QR' QC and Q, respectively. We have the equality Q=QRQC, 

since the elements (QR). = 0 (i = I, .•• ,n-1). With this notation we have im 

Pis (S)RO <=> QR is (S)TP 1 

and 

Pis (S)CO <=> QC is (S)TP1 • 

. LEMMA 2.5. The vector x(t) = (x~t) , .•• ,x!~~)T is an eigenvector of Q 

d . h . 7 2 'f.'f th . (t) f -1 -1 T correspon ~ng tote e~genVa&ue At~ e e~genvector u o R PC P 
d . 2 . f. (t)_ (t) _ (t) (. _ _ ) . _ 2 correspon ~ng to At sat~s ~es ui ui+l - xi 1. - l, ••• ,n I , t- ,3, ••• ,n. 

(t) . . f -1 -I T d' PROOF. u 1.s an eigenvector o R PC P correspon 1.ng to 

x(t) := s:lu(t) is an eigenvector of Q corresponding to A!, 

A! if£ 
Since R-lPC-lPT 

has row sums equal to unity, Q. = 0 (i = l, ••• ,n-1); hence the vector 
in 2 

(O,O, ••• ,O,I)T is eigenvector of Q corresponding to Al= I. It follows that 

x(t) = (x(t) , •.• ,x(t~,x(t))T is an eigenvector of Q corresponding to A! if£ 
(t) -tt) _n- n 2 

x = (x 1 , ••• ,xJ:~)T is an eigenvector of Q corresponding to At. From 

x(t) = s-lu(t) it follows that x~t) = x~t) = u(t) u(t) (i = I, ... ,n-1). 
n 2 1. 1. i - i+l 

Note that \ 2 is the largest eigenvalue of Q. D 

THEOREM 2.6. If Pis DO, SCO and no rows of Pare proportional, then 

(i) =Al> A2 > A3, unless Pis a 2x2 diagonal matrix in which case 

= A 1 = "-z' 
(ii) the components of the first non-trivial row and column factor 

u(2) and v( 2), are both strictly increasing or strictly decreasing. 

In the conditions of this theorem the roles of the rows and columns 

can of course be interchanged. In the proof we use the theorem of Frobenius: 



9 

An i.rreducible TP 1 matrix always has a positive distinct eigenvalue which 

is not smaller than the moduli of other eigenvalues. To this maximal eigen

value there corresponds an eigenvector with positive coordinates. A proof 

of the theorem of Frobenius can be found in GANTMACHER (1977), vol. II, 

p.52-64. An nxn matrix A= (a .. ) is called reducible if the index set 
1J 

{1,2, ••• ,n} can be split into two complementary sets {i 1,i2 , ... ,in1} 

{ ., ., ., } + htht 11,12, •.• ,1n2 , n 1 n2 = n, sue a 

and 

(k = I , ••• , n I ; i = I , ••• , n 2 ) • 

Otherwise, A is called irreducible. 

PROOF OF THEOREM 2.6. QC is STP 1, QR is TP 1 and has no zero row, hence 

Q = QRQC is STP 1• Applying the theorem of Frobenius to the matrix Q yields 
2 2 (2) . (2) that A2 > A3 and x. > 0 (1 = I, ••• ,n-1) or x. < 0 (i = I, ••• ,n-1). 

1 (2) . 1 
Hence A2 > A3 and u is strictly increasing. Define 

where 

(t) (t) (t) T 
y = (yl , ••• ,ym-1) ' 

(t) 
y. 

1 

(t) (t) 
= vi - vi+l (i = I, ... ,m-1). 

Then by (2.1) we have AtY(t) = Qcx(t). Since QC is STP 1, x( 2) < 0 implies 

y(2) < 0 and hence v(2) is strictly increasing also, 

In order to prove that Al> A2 we can apply the theorem of Frobenius 
-1 -1 T 

to the matrix M := R PC P, so it is sufficient to prove that Mis irre-

ducible. First suppose that m > 2. Pis SCO implies that plj > 0 

(j = I, ... ,m-1) and p . > 0 (j = 2, ••• ,m). Since Pis also RO it follows 
nJ 

that pil > 0 or pi2 > 0 (i = I, ... ,n). Thus the elements Mil> 0 and 

Mli > 0 (i = I, ... ,n) and hence Mis irreducible. In the case that m = 2 

and n > 2 we have that pil > 0 and pi2 > 0 (i = 2, ••• ,n-1) because Pis RO 

and no rows of Pare proportional. Hence only the elements M1n and Mnl can 

be zero and therefore Mis irreducible. In the case m = n = 2 it is seen 

that M is reducible if-£ P is diagonal. D 

REMARK. By applying the weaker version of Frobenius' theorem (cf. GANTMACHER 

(1977), vol. II, p.66-68) we can also prove that 
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Pis DO~ u( 2) and v(Z) exist with non-decreasing components. 

Note that under permutations of rows and columns of P the components 

of u(t) and v(t) undergo the same permutation. Hence it follows from 

Theorem 2.6 and the above remark that when P satisfies the conditions of 

Theorem 2.6, there exists only one ordering of rows and columns of P such 

that Pis DO. This result shows that correspondence analysis tries to 

discover an ordering of the rows and columns of a frequency table; it 

supports the use of the factors u(Z) and v(2) as scores for the categories 

of the variables I and J, respectively. 

Theorem 2.6 can be generalized to stronger forms of dependence than 

order dependence. In the case that I and J are order dependent, the families 

of (empirical) conditional distributions of IIJ=j and JII=i are both stochas

tically increasing. A somewhat stronger form of dependence is obtained when 

these conditional distributions have monotone likelihood ratio, i.e. 

jl < j2 => Pll.{I=ilJ=j1}/P'1.{I=ilJ=j2} is non-increasing in i 

and 

i l < i2 => Pll.{J=j I I=i l} /Pll.{J=j I I=i2} is non-increasing in j • 

Note that these two statements are equivalent and can be written as 

which in turn is equivalent to 

An even stronger form of dependence is obtained when P is TP3 or TPr (r ~ 3). 

When Pis TPr we shall say that I and J are totally positive dependent 

of order r (TPr-dependent). LEHMANN (1966) speaks of positive likelihood 

dependence in the case of TP2-de_pendence. Before we generalize Theorem 

2.6 to TPr-dependence, we prove that TP2-dependence is stronger than order 

dependence. 



THEOREM 2. 7. Pis (S)TP2 => P is (S)DO. 

PROOF. By assumption 

j 1 
1<" . < 

Pid1 Pilj 2 
I<. . < 

lj=I p .. Pilj2 _1. 1<1. 2_n - 1 1<12-n 1.1 J 
=> ~ 0, i.e. => 

j I 
~ 0 

I<. . < p. . p· . I<" . < 
lj=l P· . P · . -J 1 <J rm 12J 1 12J 2 

-J 1 <J 2-ID l.2J 12J 2 

and it follows that 

j I Ij 2 j 1 j2 
P· ./ri I<. . < 

lj= 1 P· . P· . lj=l p· •/r• lj=l - 1 1<12-n 1.1 J 
~=j tl 1.1 J 11J 1 1 11 J 1 

=> 
j 1 

= r. r. 
j 1 J2 1.1 1.2 J2 

Pi2jlri2 
. <. . < 

lj= 1 lj=j +I lj=l p .. /r . lj=l 1-J 1 <J 2-ID P· . p. . 
l.zJ 1 l.2J 12J 12 

Choosing j 2 = m yields 

(j l = 1, ••• ,m- I) • 

Similarly, it follows that Pis CO. In the case that Pis STP2 strict in

equalities hold. D 

REMARK. Generally, it can be proved that 

Note that the eonverse of Theorem 2.7 does not hold. 

THEOREM 2.8. Let the frequency tabZe P be 

(i) TP (r ~ 2), 
r 

1 1 

~ 0. 

(ii) such that every r consecutive rows and every r consecutive coZwrms of 

Pare ZinearZy independent, 

(iii) not of the bZockfoT'111 P = (P01 Poz )., where P 1 and P 2 are not empty. 

Then correspondence anaZysis appZied to P yieZds 

(a) eigenvaZues 1 =Al> A2 > ••. >Ar> Ar+l' and 

(b) row factors u(t) such that for arbitrary reaZ numbers ck,ck+l•···,ct 
\t 2 (l~k~t~r, lt=k ct> O), the number of changes of sign of the vector 

u = \t c u(t) satisfies k-1 ~ S- ~ S+ ~ t-1 and coZwrm ~actors v(t) lt=k t u u JI 

with simiZar properties. 
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. . -1 -1 T PROOF. Consider the matri~ M = R PC P. By Lemma 2.2 Mis TP. From the r 
TP2 character of Mand the fact that.Pis not of blockform and has no zero 

rows it follows that Mis STP 1• Furthermore, condition (ii) and non-
-1 

singularity of C 2 imply 

and hence 

.. l~ i+l 
l'\1 i+} 

i+p-1) 

i+p-1 

i+p-1) 
> 0 

i+p-1 
(i= I, ••• ,n-p+l; p= 1, ••• ,r) 

> 0 ( i = I , .•• , n-p+ I ; p = I , ••• , r) • 

Now, by Lemma 2.3 Mis OS. Application of Lemma 2.4 to matrix M verifies r 
the desired results for the row factors. 

The same arguments hold for the matrix C-IPTR- 1P. O 

REMARK. For a STP frequency table P the conditions (i), (ii) and (iii) of r 
Theorem 2,8 are satisfied. 

From the result (b) we can derive many properties of the row and 

column factors. We formulate the most important properties of the row fac

tors in the following corollaries. In formulating these corollaries it is 

assumed that the conditions (i), (ii) and (iii) of Theorem 2.8 are satis

fied for some r ~ 2. Furthermore, without loss of generality, it is 

also assumed that the first non-zero component of each row factor is 

negative. 

COROLLARY 2.9. The row factor u(t) has exactly t-1 changes of sign 

(t = I, •.. ,r). 

COROLLARY 2.10. The components of the first non-trivial row factor u( 2) 

are strictly increasing. 

PROOF. Suppose u( 2) is not strictly increasing, then since u(l) = e there 

exists a constant c for which the vector u = u(2) + cu(l) satisfies 

s+ ~ 2. o 
u 

Although the conditions of Theorem 2.8 with r = 2 do not quite imply 

the conditions of Theorem 2.6, we have the same result. 
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In the next corollary the first and last component are not considered 

as a maximum or minimum. 

COROLLARY 2. 11. When r :e:: 3, the components of u (3) have exactly one maximum., 

no minimum, and equal values of consecutive coordinates can only occur at 

the maximum. 

PROOF. It follows from Corollary 2.9 that the components of u(3) must have 

a maxi~um. Suppose u( 3) has a maximum and a minimum, then since u(I) is 

constant and u(2) is increasing, there exist constants c 1 and c 2 such that 

the vector u = u (3) + c2u <2) + c 1 u ( I) satisfies S+ :e:: 3. Now suppose that 

u(3) has consecutive coordinates with equal value~ (not at the maximum). 

Then since u( 2) is strictly increasing, the vectors u = u( 3) + cu( 2) would 

have a maximum and a minimum, for all constants c with a proper choice of 

sign, which is again impossible. D 

In the usual graphical representation of correspondence analysis each 

row and column of Pis represented as a point; row i has coordinates 

0,2uf) ,A 3u?)) and columnj has coordinates 0,2vy) ,:>.. 3vf)). When both these row 

points and column points lie on a convex or concave curve, we speak of a 

horseshoe in the graphical representation. 

COROLLARY 2. 12. When r :e:: 2, the points in the plot of the first against the 

second non-trivial row factor lie on a strictly concave curve. 

PROOF. Suppose that this curve is not strictly concave, then 

is not strictly decreasing in i. 

Hence there exist an index 1 and a constant c such that 

(3) (3) 
ui+I - ui 

(2) (2) 
ui+I - ui 

The vector u := u( 3) + 

+ C:,; 0, 

(3) (3) 
ui - ui-1 

(2) (2) 
ui -ui-1 

cu( 2) now satisfies 

+ C ;;,: 0, 

(3) (3) 
ui-1 - ui-2 

(2) (2) 
ui-1 - ui-2 

+ C :,; 0. 
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= u(3) - u~ 3) + cu~ 2) - cu~2) s 0 
i+l i i+l i 

(3) 
= u. 

i 
u( 3) + cu~ 2) - cu~2) ~ 0 

- i-1 i i-1 

· (3) (3) + cu~ 2) - cu~ 2) S 0 
ui-1-ui-2 = ui-1 - ui-2 i-1 i-2 • 

Hence, the vector u does not have the property of Corollary 2.11. By the 

same arguments as in Corollary 2.11 this leads to a contradiction. 0 

These results show that the TP3-ordering is reflected in the first two 

non-trivial correspondence analysis scores. In general, similar results can 

be derived for TP -ordering. 
r 

3. SOME PROBABILITY MODELS FOR TP-DEPENDENT FREQUENCY TABLES 

· 3.1. Discretisations of TP functions 

A class of probability models for frequency tables is obtained by 

making a discretisation of bivariate density functions. In this section 

we extend the TP and the weaker ordering properties DO, RO and CO to 

density functions. Furthermore, we prove that these properties are preserv

ed by discretisation. 

Let f(x,y) be defined on XxY, where X and Y are subsets of m.. Note 

that when X and Y are both finite sets of discrete values, f can be con

sidered as a matrix. We assume that f is a bivariate density function w.r.t. 

a product measure cr 1xcr 2 on XxY and that 

I f(x,t)dcr 2 (t) > 0 for all x E X 

y 
and 

I f ( t , y) dcr I ( t) > 0 for all y E Y. 

X 

T Define the transpose off as f (x,y) := f(y,x). 

DEFINITION 3.1. The function f defined on XxY is called (strictly) row 

ordered (abbreviated (S)RO) if 



y 

Fx(y) := I. f(x,t)dcr2 (t) / 

inf(Y) 

J f(x,t)dcr2(t) 
y 

is strictly decreasing in x EX, for ally E Y, y < sup(Y). 

15 

The function f defined on XxY is called (st'Pict'ly) co'lumn ordered (abbrevi

ated (S)CO) if fT is (S)RO. 

The function f is called (st'Pict'ly) doub'ly ordered, (S)OO, if f is (S)RO 

and (S)CO. 

A subset E c Xis said to be re'lative'ly convex if 

In the next lemma it is shown that grouping of a relative convex subset in 

the set X does not affect the RO property of densities. 

LEMMA 3.1. Let f be RO on XxY and 'let Ebe a re'lative'ly convex subset 

of X. Define for arbitrary~ EE the set X := (X-E) u {~}. Then the 

function 

f(x,y) {
f(x,y) 

= fE f(t,y)da 1(t) 

if X € X-E, y € Y 

if X = ~, y € Y 

defined on XxY is RO. If in addition f is SRO and a 1(E) > O, f is even 

SRO. 

PROOF. Let x E X-E and y E Y. Then 

y 

F~(y)-Fx(y) = (f I f(s,t)da 1(s)da2 (t))-l( f f f(s,t)da 1(s)da2 (t))-Fx(y)= 

YE ~f~) E 
y 

(f I f(s,t)da 1 (s)da2(t) )-If { I f(s,t)dcr2(t)-Fx(y) I f(s,t)dcr2(t) }da1 (s) = 

YE E inf(Y) Y 

(I I f(s,t)da 1 (s)da2(t) )- 1 I {Fs(y)-Fx(y)} J f(s,t)da2(t)da 1 (s) = f::O ~f x> ~ 
y E E y S O if x < ~ 

If f is SRO and a 1(E) > 0, the inequalities are strict. 0 
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It can easily be verified that grouping in the set Y does not affect 

the RO property either. 
· n m Let {E.}. 1 and {F.}. 1 be finite ordered partitions of X and Y, 

l. 1.= J J= 
respectively, i.e. 

il<i2.,. xl<x2 for all x 1 e:E., x2 e: E. 
1.1 1.2 

and 

jl<j2.,. Y1<Y2 for all yle:F.' y2e:F .. 
J 1 J2 

Note that the subsets E. (i ~ l, .•• ,n) and F. (j = 1, ••• ,m) are relatively 
l. J 

convex. We shall say that a frequency table Pis a discretisation of the 

bivariate density f if there exist ordered finite partitions {E.}~ 1 and 
l. 1.= 

{F.}~ 1 such that 
J J= 

E. F. 
l. J ( i = 1 , ••• , n; j = 1 , ••• , m) • 

THEOREM 3.2. If f is (S)RO, (S)CO or (S)DO, the discretisation Poff is 

(S)RO, (S)CO OP (S)DO, respectively. 

PROOF. The proof follows by repeated application of Lemma 3.1 and similar 

results. D 

We now turn to TP functions. 

DEFINITIOl 3.2. The function f defined on XxY is called totally positive of 

order r (TP) if for p = 1,2, ••• ,r r 

x 1 <x2 < •.. <xp' xi e: X (~= 1, ••• ,p)}.,. 

y 1 < y 2 < ' 0 • < y p' y j e: y (J = I ' ••• 'p) 

f(x 1,y1) f(x 1,y2) 

f(x2 ,y 1) f(x2,y2) 

. 
f(xp,yl) f(xp,y2) 

••••• f (x1 ,yp) 

f(x2 ,yp) 

. 
f(x ,Y) p p 

~ o . 



If strict inequality hold,s everywhere, f is said to be STP r· 

Just as in the case of matrices it can be proved that f is (S)TP2 
implies that f is (S)DO. 

LEMMA 3.3. Let f be TPr on XxY and let Ebe a relatively convex subset of 

X. The function f defined in Lemma 3.l is TPs, where 

s = min(r, # points in X). If in addition f is STPr and cr 1(E) > O, f is 

even STP s· 

PROOF. Consider for x 1 < x 2.< ••• < x. l < E; < x. l < ••• < x , x. e: X,• 
. 1- 1+ p 1 

y 1 < y2 < ••• < yp, yi e: Y, the expansion of the determinant w.r.t. the i-th 

row 

. . 
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(
X) • • • X, ] E;x, +] • • • X ) ~ 1- 1 p 

f Y1 •••••••••••••••• yp = 
f f ( t, y l) dcr 1 ( t) 
E • 

f f ( t, y ) dcr 1 ( t) = 
E • p 

f(xp,yl) f(xp,yp) 

p p 

l 8k f f(t,yk)dcr 1(t) = f ! 8k f(t,yk)dcr 1(t) = 
k=l E E k-1 

f(xl'yl) f (x1 ,y ) 
• p 

I f(t,y)) f(t,y) dcr 1 (t) ~ o, 
.P 

E 
f (x ;y ) • 

p 1 
f (x ;y ) p p 

because the determinants on the right-hand side are non-negative for all 
~ t e: E. Here 8k are signed minors. Hence f is TPs. In the case that f is 

STPr and cr 1(E) > 0 it follows that f is STPs. 0 

THEOREM 3.4. If f is (S)TP , any discretisation of f into an nxm frequency r 
table Pis (S)TP . ( )" min r,m,n 

PROOF. The proof foll0w..by repeated application of Lemma 3.4. D 

It follows from this theorem that any discretisation of a STPk density 

will satisfy the conditions of Theorem 2.8 for appropriate r ~ k. However, 
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some bivariate densities are TPk but not STPk. The next theorem shows that 

for these densities the conditions of Theorem 2.8 may also be satisfied in 

special cases. 

THEOREM 3.5. Let the t'I'iangular density 

{=> 00 f(x,y) 
if X ~ y, 

if X < y, 

defined on XxY, where X = Y and cr = cr 1 = cr 2, be TPr. Then the nxm frequency 

table P which is a discretisation off satisfies 

(i) Pis TP . · m1.n(m,n,r)' 
(ii) every min(m,n,r) consecutive rows and every min(m,n,r) consecutive 

colwrms of Pare linearly independent; 

(iii) Pis not of blockform. 

PROOF. The result (i) follows from Theorem 3.4. In order to prove (ii) con
!/, 

sider the finite ordered partition {Gk}k=I' which is the intersection of 

{E.}~ 1 and {F.}~ 1 deleting elements E. n F. with a-measure zero. Discreti-
1. 1.= J J= l. J 

sation off with the partition {Gk}!=l on both X and Y yields a right-

lower-triangular frequency table p* which is TP . ( n)• The elements min r,,,., 
p:t-i+I > 0 (i= I, •.. ,t) and hence p* is non-singular. The frequency table 

* P can be obtained from P by grouping consecutive rows and columns. It 

follows that (ii) must hold. It is trivial that Pis not of blockform. D 

3.2. Properties and examples of TP functions 

With the properties and examples given in this section, the TP char

acter of many bivariate densities can be verified. 

Definition 3.2 has two obvious consequences for an (S)TP function 
r 

f(x,y) defined on XxY: 

(i) h(x)g(y)f(x,y) is (S)TPr on XxY, fa~ all functions h(x) and g(y) which 

are non-negative (positive) on X and Y, respectively; 
-1 -I 

(ii) f(<l>(s),ij,(t)) is (S)TP on <f> (X)xij, (Y), for all functions <f> and ij, r 
which are both (strictly) increasing or both (strictly) decreasing on 

-1 -I 
<f> (X) and ij, (Y), respectively. 



Furthermore, we state the following lemmas. 

LEMMA 3.6. If f is (S)TP on XxY., g is (S)TP on YxZ and er is a er-finite r s 
measure on Y, then the convolution 

h(x,z) = J f(x,y)g(y,z)der(y) 
y 

is (S)TP . ( .)" · min r,s 

PROOF. See KARLIN (1968), p.17. 0 

LEMMA 3.7. If f is defined on XxY, where Y is an open interval and the 

derivative 

r-1 a 
r-1 f(x,y) 

cly 

exists and is continuous for all x EX, then 

(i) f is TPr and x 1 < x2 < ••• <~'xi EX (i = l, ••• ,k) => 

f (x 1 ,y) 

. 
elk-I 

•• 0 • k-lf(~,y) 
cly 

k = l, ••• ,r; 

f *(xl Xz ... xk) > 0 (ii) for all x 1 y y • • • y < ••• <~•xi EX; y E Y and for 

k = l, ••• ,r => f(x,y) is STP on XxY. r 

PROOF. The assertions (i) and (ii) are particular cases of the results in 

KARLIN (1968), p.50 and p.52, respectively. D 

EXAMPLE 1. The function f(x,y) = exy, --o:, < x,y < 00 is STP. 
00 

EXAMPLE 2. The function f(x,y) -a = (x+y) , 0 < X, y < oo, a> 0 is STP. 
00 

To verify this we consider for p = 1,2, .•• the determinant 

19 

~o 
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f*(:l 
X2 :) y 

for 0 < x 1 < 

(xl+y) 
Ci. 

= 

Ci. (x +y) p 

-a. 
a.+ 1 . 

(xl+y) 

-a. 
(x +y)a.+l 

. 
p 

(x +y) 
p 

. . . 

. . . 

p-1 (-1) a.(a.+l) ••• (a.+p-2) 
( + )a.+p-1 XI y 

1 • 
(-l)p- a.(a.+l) ••• (a.+p-2) 

( )a.+p-1 X +y p 

(xl+y) 
p-2 

(xl+y) 
p-1 

> 0 
• 2 • I 

(x +y)p- (x +y)p-
p p 

< ~' y > 0. The last determinant is the Vandermonde 

= 

determinant. For the case a.= I, the result can be found in KARLIN (1968), 

p.149. 

EXAMPLE 3. The function f(x,y) = r(x+y+I), 0 ~ x, y < 00 is STP00 , By 

definition r(x+y+l) = f~ ex log (t) ey log (t) e -tdt. The result follows from 

Example 1 and LeJilllla 3.6. 

EXAMPLE 4. The function 

if X > y 
f(x,y) , where -oo<x,y<00 , s:2:0, IDE :N, 

if x~ y 

is TP. This result can be found in KARLIN & STUDDEN (1966), p.17. 
00 

EXAMPLE 5. The function 
1 

if X :2: y 
= {~x-y) ! 

f(x,y) x,y = 0,±1,±2, •.• 
if x<y 

is TP. In KARLIN (1968), p.137, it is proved that (x) is TP; the result 
00 y 00 

of Example 5 follows irmnediately. 

EXAMPLE 6. The function 

{ <x~oy) f(x,y) = 
if x :2: y and x-y ~ n 

if x < y or x-y > n 
, x,y = 0,±1,±2, ••• 

is TP • This result can be found in KARLIN (1968), p.44. 
00 
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EXAMPLE 7. Let {~(x)}, n = 0,1,2, ••• be an orthogonal polynomial system 

(where Q is of exact degree n) w.r.t. a measureµ on [a, 00), a> - 00 • Assume 
n 

~(0) > 0. The function f(x,n) = Qn(-x), a$ x < 00 and n = 0,1,2, ••• is 

STP. This result is proved in KARLIN & McGREGOR (1959), p.1115. 
00 

EXAMPLE 8. An important class of (S)TP functions are those which have the 

form f(x,y) = h(x-y), - 00 < x,y < 00 • The functions h(x) for which h(x-y) is 

(S)TPr_are called (strictly) P6lya frequency functions of order r (abbrevi

ated (S)PF ). r 

3.3. Bivariate densities and total positivity 

Let w1, w2 and w3 be independent random variables with distributions 

from a common family which is closed under convolutions. A bivariate 

distribution is obtained by considering the joint distribution of w1+w3 and 

w2+w3• This method of generating bivariate distributions is called trivari

ate reduction. It follows from Lemma 3.6 that bivariate distributions 

generated by trivariate reduction are (S)TP, when the corresponding uni-r 
variate family consists of (S)PF distributions. It is seen from the 

r 
Examples I, 6, 5 and 4, respectively, that the univariate· normal, binomial, 

Poisson and gamma distributions, which are closed under convolutions, are 

PF. Hence the bivariate normal (with correlation parameter p > 0), the 
00 

bivariate binomial, the bivariate Poisson (cf. HOLGATE (1964)) and the 

bivariate garrona (cf. CHERIAN (1941)) generated by trivariate reduction, 

are TP. In fact, an alternative proof shows that these bivariate densities 
00 

are even STP. We give a sketch of this proof. EAGLESON (1964) proves that 
00 

for these four bivariate densities a canonical expansion exists 

f(x,y) = { I prQr(x)Qr(y)}~1(x)~z(y), 
r=O 

where I;=O p; < 00 and {Qr}' r = 0,1,2, ••• is an orthogonal polynomial 

system w.r.t. a measure a. It can now be proved, by using Example 7, that 

the bivariate binomial, the bivariate Poisson and the bivariate gamma are 

STP. Example 7 cannot be applied to the bivariate normal distribution, 
00 

but it can be verified in many other ways that this distribution is STP 
00 
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when p > O. (In the case that p < 0, the reversed density f(-x,y) is STP .) 
co 

It can be proved that other known bivariate densities are (S)TP. To 
. 00 

identify various types of bivariate densitites, we give references in which 

the distributions are derived. It follows from the properties and examples 

in Section 3.2 that the negative trinomiaZ, the bivariate F (GHOSH (1955)), 

the bivariate Pareto (MARDIA (1962)) and the bivariate Zogistic distribu

tion (GUMBEL (1961)) are STP. It can also easily be verified that the 
00 

bivariate gamma (McKAY (1934)), the bivariate beta (JOHNSON (1960)), the 

bivariate hypergeometric and the trinomiaZ distribution are TP and satis-
00 

fy the conditions of Theorem 3.5. It should be noted that the latter three 

distributions show a negative dependence, so that the TP character is 
00 

only satisfied for the reversed densities (reversed in one variable). Of 

course not all bivariate densities are TP (for some r ~ 2); for instance r 
the bivariate Cauchy distribution with density f(x,y) = (2~)-l(l+x2+y2)-312, 

-co< x,y < co, is not TP 2• 

3.4. Some other specific models 

In a Zatent structure modeZ it is assumed that there exists one 

latent variable,L, say. The distributions of the variables I and J of the 

frequency table conditional on the value of the latent variable are in

dependent. Denoting the conditional densities of I and J given L = 2 by 

hI(i I L=i) and gJ(j I L=t), respectively, and the density of L w.r.t. a 

measure a on JR by f(l), the latent structure model for the frequency table 

P can be written as 

Pij = I hI(ijL=t) gJ(jjL=t)f(i)dcr(i) 

JR 

( i = l , ... , n; J = l , ... , m) • 

If the unconditional densities h(i,2) and g(j,2) are both DO or both TP, 
r 

the frequency table Pis also DO or TP. r 
Another model for a frequency table Pis the Zog-Zinear modeZ 

log p .. = µ+a.+b.+c.d. 
1.J 1. J 1. J 

(i = l, ... ,n; J = l, ... ,m), 

where l· a.= l· b. = l1.· c. = l· d. = O. Note that Pis STP . ( ) when 1. 1. J J 1. J J min m, n 
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c. (i = 1, ••• , n) and d. (j = 1, ••• ,m) are both strictly increasing or 
1 J 

strictly decreasing in their indices. GOODMAN (1981) compares maximum 

likelihood estimates of c. (i = 1, ••• ,n) and d. (j = 1, ••• ,m) in this model 
1 J 

with the first non-trivial row and column factor of correspondence analysis. 

He also discusses the ordering of the rows and columns which is present in 

this model. Essentially, he makes use of TP2 and DO as we do; however, his 

treatment is rather sketchy. 
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APPENDIX. Proof of Lemma 2.3. 

The results in this Appendix are slight extensions of the results in 

GANTMACHER & KREIN (1950), p.137-141 and KARLIN (1968), p.88-93. 

LEMMA A-1. Let the matrix A of order nxm be TPr. If the row vectors corre

sponding to certain indices l = i 1 < i 2 < ••• < ip- l < ip = n are ZinearZy 

dependent, where p ~ r, but the row vectors corresponding to the indices 

= i 1 ·< i 2 < ••• < ip-l and the row vectors corresponding to i 2 < i 3 < ••• < 

< ip- l < ip = n are UnearZy independent, then A has rank p-1 • 

PROOF. Since the row vectors corresponding to 1 = i 1, i 2 , ••. ,ip = n are 

linearly dependent, it follows that there exist numbers c 1,c2, ••. ,cp-l such· 

that aipk = Li:! c 2ai2k (k = l, .•• ,n). Because the rows corresponding to 

i 2,i3 , .•• ,ip are linearly independent, c 1 I 0. Now, for p < n there exists 

an index j such that ih < j < ih+l (in the case that p = n, the lemma is 

trivial) and we have 

(A-1) 

and 

(A-2) 

••. ih j ih+l •.• ip) = 

•.•••••••...••.••• k 

p-1 
(-1) C 

p 

i 
k~ )= (-l)p cl 

p-1 

l 

ip-1) 
* ' k p-1 

* * where k 1 < k2 < ••• < kp are arbitrarely chosen indices and k 1 < ••• < kp-I are 

such that 

(A-3) 

The minors in the formulas (A-1), (A-2) and (A-3) are all non-negative. It 

follows from (A-3) and (A-2) that (-I)Pc 1 > O. Hence, by (A-1) 

1i I • • . ih j ih+ l ••. 

k I ••••••••••••••••• 

Hence the row corresponding to j is a linear combination of the rows corre

sponding to i 1,i2, ••• ,ip-l' Since j is an arbitrary index different from 
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i 1, ••• ,ip' it follows that all the row vectors of A can be written as 

linear combinations of the row vectors corresponding to i 1, ••• ,ip_1• Hence 

the rank of A is p-1. 0 

COROLLARY A-2. If the TP matrix A of order nxm has indices r 
1 = i 1 < i 2 < ••• < ip = n and 1 = j 1 < j 2 < ••• < j P = m, where p s r, such that 

A(~ 1 ~2 ~p) 0 and ~~1 i2 
~p-1}(~2 

i3 
~p) = 

J 1 J 2 JP J 1 j2 Jp-1 J 2 j3 ... JP 

then A has rank p-1. 

PROOF. Apply Lennna A-1 first to the nxp submatrix of A formed by the 

columns corresponding to the indices j 1, ••• ,jp; then apply it to AT. 0 

> o, 

1 < . . . . . . < 
- 1 1 'J 1 < 1 2' J 2 < •• ' < 1 p' JP - n (k = 1 , ••• , p) 

are said to be nearly coincident. Minors whose indices are nearly coincident 

are called quasi-principal minors. 

LEMMA A-3. AU quasi-principal minors of order p s r of an nxn TP matrix A r 
are positive when A satisfies 

(i) I i-j I ~ 1 =+ a .. > O; 
l.J 

(l.'1.') A(i i+1 ••• i.+p-1) > O (i = 1, ••• ,n-p+1; p = 1, ••• ,r). 
i i + 1 • • • 1. +p-1 

PROOF. The proof is by induction on p. For p = 1 the lennna is trivial. Now 

suppose that the lennna is true for all quasi-principal minors of order p-1, 

and that there exists a quasi-principal minor of order p which vanishes, 
. . . . . . ·* ·* ·* i.e. there exist nearly co1.nc1.dent 1.nd1.ces 1. 1 < 1.2 < ••• < 1.p and 

·* ·* ·* J 1 < J 2 < ••• < JP such that 

·* 
• • . l.p) = 

·* • • • J p 

o. 

By the induction hypothesis we have that 
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It follows from Corollary A-2 that the submatrix of A formed by the rows 

·* ·* ·* d h 1 ·* ·* ·* 1 1,1 1+1, ••• ,1p an t e co umns J 1,J 1+I, ••• ,Jp has rank p-1. Hence 

A(~l ~2 
J 1 J 2 

~p) 
·* ~ 11 11 < 

= 0 for 
·* ~ j 1 JP J 1 < 

i ~ ·* < 1 p p 

~ ·* < J JP p 

In particular, for iJI, = JJI, = k+J!,-1 (Jl = l, ... ,p) and suitable k2:min(i~,j;) 

we have 

A(k k+l •.• k+p-1) = O. 

k k+l ••• k+p-1 

This contradicts condition (ii) and hence the lemma is true for all quasi

principal minors of order p. D 

LEMMA 2.3. The TP matrix A of order nxn is OS when A satisfies the con-r r 
ditions (i) and (ii) of Lemma A-3. 

n-1 . PROOF. It is sufficient to prove that A 1s STPr. The proof is exactly 

that of Theorem 9.3 in KARLIN (1968), p.92-93, replacing TP and STP by 

TPr and STPr' respectively (and the words "Theorem 9.2" by "Letmna A-3"). D 
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