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1 INTRODUCTION 

1.1 In order to treat problems of drawing statistical inference in the setting of the 
general theory of stochastic processes (as presented e.g. in Jacod and Shiryaev (1987) 
or Liptser and Shiryayev (1989)), the experiment in question is supposed to be a 
filtered probability space with a family of probability measures, and an observed 
object is supposed to be a semimartingale with respect to all these measures. A 
solution then, sought in terms of the predictable characteristics of the observed 
semimartingale, is applicable to various statistical models in discrete or continuous 
time such as, for instance, the classical independent observations scheme, or those 
risen in regression, time series and survival analysis, where the models are only 
partially specified in terms, e.g., of the first or second order characteristics (regression 
analysis or spectral analysis in time series), or the intensity of a counting process (in 
survival analysis). We consider here the asymptotic setting of the problem with the 
observation time (sample size) increasing unboundedly, though adequate considera­
tions can be carried out for sequences of experiments. 

1.2 In the present paper we restrict our attention to the common situation in 
which the model under consideration admits a finite dimensional parametrization, 
reducing the model identification problem to the statistical estimation of a parameter. 
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Specifically, the following problem of estimation will be treated: deriving in the 
present general setting the Cramer-Rao type lower bound for a class of so-called 
regular estimators, and indicating particular estimators which attain this bound and 
therefore are optimal. Of course, those are nothing but the maximum likelihood 
estimators (rather a class of estimators asymptotically equivalent to MLE) whenever 
the model is fully specified as, for instance, in the classical case of independent 
observations from the fully parametrized density. In regression analysis, however, the 
best linear unbiased estimators are sought, in time series analysis the so-called 
Gaussian estimators, and in survival analysis the partial likelihood estimators. As 
applied to these special models, our unified approach leads naturally to the same 
optimal estimators. This is indeed not hard to see by specifying in each special case 
the general notions and results of the present paper, but we purposely avoid here 
these specifications in order to concentrate full attention to the unified setting. 

1.3 As the usual scheme for deriving the Cramer-Rao inequality assumes a full 
parametrization of an experiment (see e.g. Ibragimov and Has'minskii (1981), I.7 and 
Il.11) and therefore becomes unapplicable here, we need in the first place a proper 
formulation of the problem, which is then simply solved by applying the Schwartz 
inequality. To this end a number of adequate definitions is introduced restricting the 
class of considered estimators, which otherwise are viewed as arbitrary processes of 
the same dimension as the parameter itself, calculable from observations. 

Firstly, using the observations of the semimartingale, we form all kinds of local 
martingales as the stochastic integrals with respect to this semimartingale (in 
statistical context the corresponding predictable integrands are usually called the 
scoring functions), and then use them for estimation; cf. Jacod (1990) and the references 
therein, in particular Godambe and Heyde (1990), Greenwood and Wefelmeyer 
(1989), Gushchin (1990), Sorensen (1990). Due to the representation property (see e.g. 
Jacod and Shiryaev (1987), IIl.4) all local martingales are representable as such 
integrals plus, perhaps, some orthogonal term which will be assumed negligible in 
the sense indicated below. Besides, a local martingale used is assumed square 
integrable, which means according to Liptser and Shiryayev (1989), Lemma 111.5.1, 
assertion 3, that a possible extra term is also assumed to be negligible. Specifically, 
for each fixed value of the parameter all estimators considered admit a martingale 
representation in the sense that they can be represented, after an appropriate centering 
and scaling, as a certain square integrable margingale plus a remainder term 
(absorbing eventually negligible terms mentioned above), which can be ignored when 
determining the principal part of estimation precision (see 1.4 below). Accordingly, 
we say that two estimators are asymptotically equivalent if they have one and the 
same martingale representation (with different remainders, of course). Hence, a 
particular scoring function defines a class of asymptotically equivalent estimators. 

Secondly, the fact that the model is not fully defined entails here that we can use 
only certain integrals with respect to the observed semimartingale (cf. regression and 
time series where only the linear and, respectively, quadratic forms from observations 
are admissible). The margingales so obtained, as well as corresponding scoring 
functions, are called admissible. Correspondingly, an estimator is called admissible if 
it has the martingale representation with an admissible martingale. 
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1.4 The principal part of estimation precision then is naturally determined by the 
scaling factor and the sharp brackets of the involved martingale in the form of a 
dispersion ellipsoid, called below the spread of an estimator. By applying the 
Schwartz inequality we get the lower bound for the spread of all admissible 
estimators. As a side remark we notice that even superefficient estimators obey this 
lower bound. In order to give the lower bound the usual Cramer-Rao form, we have 
to exclude this kind of abnormalities restricting the class of estimators by a certain 
regularity assumption. 

It seems natural to call an admissible estimator with martingale representation for 
each fixed value of the parameter regular if the representation extends to a shrinking 
neighbourhood of the fixed parameter value, with the appropriate shrinkage rate 
related as usual to the growth of information. 

1.5 In view of the fact that the spread of an estimator is defined as an asymptotic 
notion-the principal part of the estimation precision-it makes a sense to assume 
the asymptotic differentiability (weakly in the class of all admissible scoring functions; 
see Section 4) of the predicable characteristics of an observed semimartingale. (One 
can easily trace the simplifications caused by the differentiability assumption for a 
fixed sample size like in Jacod (1990); see Ibragimov and Has'minskii (1981), 17 for 
the classical result and Barndorff-Nielsen and Sorensen (1990) for examples). 

The main statement of the present paper can be described now as follows: under 
the differentiability condition just mentioned, the spread of a regular estimator obeys 
the Cramer-Rao lower bound. 

1.6 As was mentioned above, for fully defined models this lower bound is attained 
by a special scoring function, namely that of involved in the likelihood equation. 
Surely, if the solution (approximate, may be) to this equation has the martingale 
representation, then it is an optimal estimator. The question on existence of this 
representation lies beyond the scope of the present paper (see e.g. Ibragimov and 
Has'minskii (1981), 1.8 and IIl.1 or Chitashvili et al., 1990). For not necessarily fully 
defined models, however, the optimal scoring function can be viewed as the projection 
of the above scoring function to the space of admissible scoring functions. Note that 
generally the projection operation requires the knowledge of some extra parameters 
which are supposed known or at least estimable by the given sample, as for instance 
in linear regression with independent residuals where the best linear unbiased 
estimator involves the variances of residuales (they cancel only in the i.i.d. case). 

2 PRELIMINARIES 

2.1 Let (0. ff, F, P) be a stochastic basis with a filtration F = (ff,Lo· Assume for 
simplicity that .?0 is trivial P a.s. Let X be an adapted !Rd-valued locally square 
integrable semimartingale having on a set QP c n with P (Q1) = 1 the Doob-Meyer 
decomposition X = X 0 + M + A with the compensator A E .91100 and the martingale 
part M = xc + x * (µ - v) E .A foe· As usual xc andµ are the continuous part and the 
jump measure of X with the quadratic variation C and the compensator v respectively, 
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chosen to satisfy the following relations: for each f'e@(IR.+) 

v(w, r x {O}) = 0, ar(w) = v(w, {t} x !Rd) s; 1 indentically and C = c·v (2.1.1) 

with a continuous increasing process v and a nonnegative definite !Rd x !Rd-matrix 
valued predictable process c (see Jacod and Shiryaev (1987), Section II.2 for more 
details). Then the quadratic variation of M is <M> = C + xxr * v - [A]. 

2.2 With the continuous part xc E v#f00 , we may associate the linear space L 2(X') 
of all IR1 x IR.d-valued predictable processes H such that H c Hr · v e .x11: 0 ; see Jacod 
and Shiryaev (1987), Section III.4a. For HE L2(X<) we define the stochastic integral 
H · xc as in Jacod and Shiryaev (1987), Theorem III.4.5. For Rk x Rd-matrix valued 
predictable processes Hand K with rows in L 2(X') we have 

<H. xc, K. X') = H c KT. v. (2.2.1) 

2.3 Denote fi = Q x 1R. + x !Rd and rJ = f!J ®@ (!Rd) where f!JJ is the predictable 
11-field on Q x IR+. Let W be a #-measurable function on fi such that for each 
Markov time T 

I(T < oo) f I W(w, T, x)lv(w; {T} x dx) < oo P-a.s. 

Associate with it the predictable process 

Wt(w) = f W(w, t, x)v(w; {t} x dx), 

and note that a= i by (2.1.1), If G2(W) E .rt11: 0 with 

G2(W)t =I w - w1 2 * v, + I (1 - a.)I w.1 2 , 
SSI 

(2.3.1) 

then we say WE '§f0e(µ). If W is IR.k-vector valued with components in i§t0 e(µ), then 

W * (µ - v) E v#foc 

and for a couple Wand U 

<W*(µ-v), U*(µ-v)),= wur*Vi- L w.0[. 
sSt 

(cf. (2.3.1)) and 

wur * vr = <W*(µ - v), u *(µ - vl>r with w = w + lta<ii W/(1 - a). (2.3.2) 
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2.4 For brevity, use the following notations for HE L 2(Xc) and WE <g[0 c(µ): 

M(H, W) = H · X" + W * (µ - v) and M(H, W) = H · xc + W * (µ - v). (2.4.1) 

By (2.2.1) and (2.3.2) 

(M(H, W), M(K, U)), = H c KT. v, + wur *Vo (2.4.2) 

while 

(M(H, W) - M(H, W), M(K, U)), = L wsOI (2.4.3) 
s 5, t 

and 

(M(H, W), M(K, U) - M(K, U)), = L l{a_< 1) ws0I/(l - as). (2.4.4) 
s::;;, t 

2.5 Along with any !Rd-valued locally square integrable martingale ME .fif0 c, 

consider another locally square integrable martingale m E .Kf0 c of dimension d', say. 
Suppose that the quadratic variation (M) is positive definite at t- fort large enough, 
and define the [Rd' x !Rd' -matrix valued predictable process 

c(m, M) = (m) - (m, M)(M) - 1(M, m). (2.5.1) 

In Section 5 we will need the following result concerning c(m, M): 

LEMMA 2.5.l (Dzhaparidze and Spreij (1992)) The process c(m, M) defined by (2.5.1) 
is non decreasing, and c(m, M) = 0 iff there exists a ff-measurable random (d' x d)­
matrix C such that m = CM. 

Remark 2.5.2 C need not be :F0 -measurable. In Dzhaparidze and Spreij (1992) 
this result has been proved for the case where (M) - i does not necessarily exist, and 
is replaced by (M) +,the Moore-Penrose inverse process. Notice too that even if C 
is not :F0 -measurable, it is such that the product CM is a martingale. 

The process c(m, M) is not symmetric. Instead we often use the so-called correlation 
process 

p(m, M) = (m)- 112 (m, M)(M)- 112 (2.5.2) 

which is simply related to c(m, M) as follows: 

(m) 1i 2c(m, M)(m) 1i2 =I - p(m, M)p(M, m) :2: 0. (2.5.3) 

The last inequality follows from the assertion of Lemma 2.5.1. In fact this is just the 
matrix version of the Schwartz inequality. 
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3 PARAMETRIZATION 

3.1 Consider a set of probability measures lfl>, and suppose that under all P e IP a 
process X, adapted to a filtered measurable space (0, :F, F, P), is an !R4-valued locally 
square integrable semimartingale. 

It will be supposed that a set of probability measures lfl> allows the parametrization 
to be described in the present section. 

3.2 For a fixed P e IP we single out in the linear spaces of integrands L 2(Xc; P) 
and ~~.(µ; P), introduced in 2.2 and 2.3 respectively, the subspaces £' c L2(Xc; P) 
and "If" c ~r00{µ; P) for all Pe lfl>, related by the condition that also Hx e "If" for each 
HE £' to have that WP E "If"; see (2.3.2). 

Since for all P e IP the integrals H · AP and U * vP with He Yi' and U = 
W - Hx E "If" are well defined, fixing P, P' e lfl> we may introduce the process 

gP.P'(H, W) = H ·(Ar - A~+ U * (vr - v1} where U = W - Hx. (3.2.1) 

Note that on a set QP n nP', which has by assumption in Section 2.1 full measure 
under P' if P' is locally dominated by P, we have 

(3.2.2) 

and hence 

(3.2.3) 

by definition in 2.4. In this case gP.P'(H, W) is the Girsanov correction term. Indeed, 
the density process of P' e lfl> relative to P, positive P'-a.s. for all t e !R +, is then the 
Dolean's exponential of the P-martingale J(fP = ~F(p, Y - 1.) -..yhere f3 e L 2(Xc; P) 
satisfies <xcr, J\1P) = cP/3T · v and Y - 1 defined by vr = Y · vP, is such that 

Y 1 p· p P\-1 -1 + {aP<11(a -a )(1-a J E"5100(µ;P) (3.2.4) 

where ar and aP are defined by (2.1.1) relative to P and P' respectively; see Jacod 
and Shiryaev (1987), III.5. Under these circumstances one can apply Girsanov's 
theorem as in Jacod and Shiryaev (1987), Lemma IV.3.19, to get 

(3.2.5) 

Hence (3.2.3) holds with Girsanov's correction term 

gP,P'(H, W) = HcPfJT·v + W*(vr -vP) 

= (MP(H, W), J\1P(p, Y - 1)). 

The last equality is verified by (2.4.2), (3.2.1), (3.2.3) and (3.2.4). It should be noted in 
addition that in the most general case where the local domination property does not 
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necessarily hold, Eq. (3.2.5) takes a more complicated form involving certain correc­
tion terms; see Jacod (1990) or Jacod and Shiryaev (1987), IV.3. 

3.3 Turning back to the restrictions imposed on the sets .Yt and "If', we suppose 
that for all PE IP and 

and all t large enough <MP) 1 > 0 P-a.s. where MP = MP(H, W), and that 

is relatively compact with non degenerate limit points. 
For all PE IP define the subset [P] of IP by 

[P] = { P' E IP: H ·Ar = H · AP for each HE .Yf and W * vP' = W * vP for each WE ir}. 

(3.3.l) 

Hence we have gP.P'(H, W) = 0 for each P' E [P], HE Yf' and WE 'if (see (3.2.1)). 
Therefore on a set QP n Qr we have by (3.2.2) that MP(H, W) = MP'(H, W) for each 
P' E [P], HE Yt and WE '//!·. 

Suppose now that [IP]= {[P]: PE IP} allows a finite dimensional parametrization: 
there exists a one to one mapping 

(3.3.2) 

Thus, by definition of [P] (see (3.3.1)) this mapping induces only a partial 
parametrization upon the characteristics in 2.1 of the observed semimartingale X. In 
fact only integrals of type 

(3.3.3) 

in particular W0 and a0 = f0, are fully parametrized: apart from integrands HE .if' 
and WE w· they depend on a parameter value 0 E 0 only. Here and elsewhere below 
we substitute the index P by 0 whenever PE [PJ = S - 1(8) for some (} E 0. 

3.4 We want to stress that our knowledge of IP is expressed by the finite 
dimensional parametrization (3.3.2) in terms of the functional form of the integrals 
(3.3.3) only, with integrands HE .if' and WE 'iY. The problem of identifying the sets 
[P], PE IP is then equivalent to estimating 8. Therefore, we say that the family of 
IRk-valued martingale transforms 

M 6(H, W) = H · xco + W * (µ - v9), (} E 0 (3.4.l) 

we will deal with in the sequel, is admissible for the above estimation problem if 
HE .Yf and WE "If', that is (Rk x !Rd-matrix valued H's and !Rk-vector valued W's in 
(3.4.1) consist of \Rd-valued columns in Yf' and components in 'if respectively. 
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3.5 We close this section with an important observation. Suppose we have 
parametrized the integrals (3.3.3), that is we have specified the functional dependence 
of these integrals on e. In the practical situation one does this for all (I) En. In a 
more sophisticated way one might then say that all measures PE [P] = 3- 1(8) solve 
a martingale problem that is formulated by imposing that the integrals (3.3.3) are 
compensators of certain processes. Hence we are in a sense in this section in a converse 
situation as in Section 2. There the measures P define on the sets QP the characteristics 
which can be changed arbitrarily outside this set, whereas here we have candidates 
for the characteristics, depending on e, and we assume that there are measures P 
such that under these measures the candidates are indeed versions of the characteris­
tics. As the consequence of this set up the processes gP,P', now denoted by g°· 9', are 
defined on the whole set Q and we may assume that Eqs. (3.2.3) and (3.4.1) are also 
valid on the whole set Q. 

This approach can be applied also to the situation where the measures are mutually 
singular (as, for instance, in case of X 1 = B(t + w,), where w is a standard Brownian 
motion under all measures in [P] = 3- 1(8): here A~ is defined to be Bt, and of course 
M~ = X, - 8t is then a martingale under any PE [P] = &- 1(8)). 

4 ASYMPTOTIC DIFFERENTIABILITY 

4.1 Let</>, be a certain predictable \Rk x IRk-matrix valued symmetric positive definite 
process, used below as a norming factor. It may depend on the parameter 8 but this 
is irrelevant in the present context; see definition 4.1.l(iii) where </> is specified, as 
well as another norming factor if! which is of the same type, but unlike </> it may 
depend on particular HE .1t and WE 'if" involved in definition 4.1.1, so that 
!/; = l{!(H, W). 

To a fixed e E 0 relate the set of directions U//1 = </>,- 1(0 - 8), and assume for 
simplicity that a perturbation e + </>,u considered below of a parameter value e in a 
direction u is again a parameter value: e + </>,u E 0. Furthermore, considering below 
any parametrized predictable process {a1(8)} we will always assume that {a,(O + cf;,u)} 
is a well defined predictable process. 

DEFINITION 4.1.1 For each fixed e Ee and each direction u E 011, the compensators 
A11 and v9 are called asymptotically differentiable (weakly in Yf and 1r, with norming 
factors </> and t/I) if there exist an \Hk x !Ra-matrix valued predictable process b9 E £' 
and \Hk-vector valued predictable process J..9 E 'if" such that for each !Rk x !Rd-matrix 
valued HE .1t and \Hk-vector valued WE 'if" all integrals introduced below are well 
defined and in probability P for all PE [P] = 3- 1(8) we have as t-+ oo that 

i) ijJ 1W*(v 8 +<J>,u - v9)1 - t/J,WJ..9T *Vf</>,u-+0, 

ii) i/!,H · (A 0 +<t>,u - A9)1 - t/li(Hc9b91 • v, + HxJ..8T * v~)</>,u-+ 0 and 

iii) the norming factors </> and if! are such that <1>1 -+ <ll and '¥,-+ '¥ where <l> and 
'¥ = l.Jl(H, W) are certain non singular (random) matrices, while 

<I>= (M) 112 c/> and '¥ = l/J(M) 112 
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with (cf. (2.4.2)-(2.4.4)) 

<M)1 = <M0(H, W)), = Hc0HT·v, + wwr*V~ - L WsWI 
s '5 l 

and 

s::;, t 

Here and elswhere below we usually use the following arbridged notation 

M = M 0 = M 8(H, W) and M = M0 = M6(b°, Jc 0 ). 

4.2 The choice of the norming factors </> and ij; in (iii), with the same asymptotic 
behaviour as <M)- 112 and <M)- 112 respectively, is motivated as follows. 

Define first A0 = A0 - x * v0 . Note that -(A0 ' - A0) = xcO' - xco on the set where 
(3.2.2) holds. Then (i) and (ii) in Definition 4.1.1 are equivalent to (i) and 

(ii) ·'· rH·(Ao+.p,u -A0) - Hc0b0T·v ,.1, u 1 ->O 'I' r'l 1 1 'Pr r 

in probability PE [P] = s- 1(8). Next, by (3.2.3) 

so that (i) and (ii') are equivalent to 

with 

<M, M) = <M6(H, W), M8(b 8, )c8)) = Hc0bOT · v + W)c0 T * v8 ; 

cf. (2.4.2) and (2.3.2) with .J:0 = Jc6 + 1 1ao< 11 ~8/(1- a0). Due to (2.4.l) and (4.2.1) 

Mo+.p,u(H, W) - Mo(H, W) = -go,o+q,,u(H, W), 

hence (4.2.2) in turn is equivalent to 

ij; 1 ~o,o+<f>,u(H, W), _,. 0 as t _,. oo in probability PE [P] = s- 1(8) (4.2.3) 

where 

~8 • 8 '(H, W) = M 6'(H, W) - M 8(H, W) + <M, M)(O' - (J). (4.2.4) 

Thus, we have shown that the following statement is true. 
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STATEMENT 4.2.1 The asymptotic differentiability at 0 E 0 and each direction U E OJI, 
of the compensators A9 and v9 (in the sense of Definition 4.1.1) is equivalent to (4.2.3). 

Turning back to the choice of the norming factors <P and l/t, observe that since we 
are interested in weak differentiability of the functionals A9 and v8 (or equivalently, 
A9 and v9) acting on (H, W), the natural scaling of the differences H '(A9' - A9) and 
W * ( v9' - v9) (or equivalently of the difference M 9' - M9 = - g8• w) should be related 
to an L2-norm of the pair (H, W). The reasonable choice is then a positive definite 
square root of the predictable process (M); cf. (4.2.3). This explains the choice of t/J. 
Furthermore, in order to give the weak asymptotic derivative a sensible meaning the 
norming process <P has to be such that the scaled difference 

is bounded by a finite random variable PE [P] = s- 1(0)-a.s. But then, if differenti­
ability (that is (4.2.3)) holds also l/t,(M, M),</J, is bounded in the same way. Again, 
exploiting the fact that we require weak d,ifferentiability, we have to choose the 
norming rp such that these quantities are bounded no matter what H and Ware. But 
then, using the Schwartz inequality for matrices the only way to guarantee this is by 
choosing <jJ such that </J,(M),</>, is bounded as in (iii). Certainly, to make the notion 
of differentiability the strongest possible we should require that </>, tends to zero, but 
not too fast, otherwise this would render the notion vacuous. 

For the sake of simplicity the norming factors <f> and tf; in (iii) will be identified 
below with (M) - 112 and (M) - 112 respectively, as the necessary modifications to the 
general case are obvious. The relation (4.2.2) for instance can be rewritten then as 
follows: 

where p = p(M, M) is the correlation process between Mand M; see (2.5.2). 
4.3 As was mentioned in Section 3.2, in the specific situation in which the model 

is fully parametrized and all measures involved are mutually locally absolutely 
continuous, Girsanov's theorem applies and the process g°· 8• is Girsanov's correction 
term. Hence for instance b9 in Definition 4.1.1 is the derivative in the above sense of 
/38 that replaces f3 in the definition of the martingale J\1P(f3, Y - 1). Similarly, in this 
case A.8 can be interpreted as "logarithmic derivative" of v9• Moreover, (M) is the 
genuine Fisher information process (see Jacod (1990)). 

5 ADMISSIBLE ESTIMATORS 

5.1 To estimate the unknown parameter value e Ee c !Rk at time instant t, a certain 
class of 3";-adapted statistics, say { 01}, is considered as a class of potential estimators. 
We consider here an asymptotic setting of the estimation problem by assuming that 
when t ....... 00 an estimator e, "estimates" the unknown parameter value e in the sense 
that the appropriately scaled difference P-6,(B, - 8) has a non degenerate limit 
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distribution, where the scaling f!Jt is a IRk x IRk-matrix valued predictable process, 
non singular PE [P] = S - 1(0)-a.s. for t large enough (depending usually on the 
parameter ()but this is irrelevant in the present context). For the sake of generality, 
however, we do not exclude the possibility of a certain bias in estimation by taking 
into consideration also estimators e, for which the limiting distribution of the scaled 
difference f!J,(G, - a,(8)) is non degenerate with a certain deterministic function 
a,: e-+ [Rk for each fixed t, violating the condition 

f!J,(8 - a,(fJ))-+ 0 as t-+ ifJ in probability PE [PJ = s· 1(0). (5.1.1) 

We will say that such estimators 0, are (asymptotically) biased. The difference 

d,( 0) = 0 - a,(O) (5.1.2) 

will be called the (asymptotic) bias of D,. Accordingly, we will say that an estimator e, is (asymptotically) unbiased if it "estimates" 0 in the sense mentioned above, i.e. if 
f!J,(B, - 8) has a non degenerate limit distribution. 

5.2 In this paper we will restrict our attention to estimators called admissible as 
they will be represented below by means of admissible martingales; cf. (3.4.1). Note 
meanwhile that by this representation we will associate with a particular admissible 
martingale M 8(H, W), for fixed HE ft~ and WE 'ff!, a set of asymptotically equivalent 
estimators [O,(H, W)]. The corresponding HE Yt and WE'//'. are usually called the 
scoring functions. 

DEFINITION 5.2.1 Let :%1, be as above, and 4,(0), ()Ee and ~k-vector valued 
%;-adapted process for each fixed e Ee. An (asymptotically) unbiased estimator {J, 
of 0 is called admissible if it is representable for each fixed IJ E 0 by means of an 
admissible martingale M 9(H, W) = M 0 as follows: 

(5.2.l) 

with some ,r;<J, and 881 such that 

6(8)r = f!J,(.#,(0) - 0)-+ 0 as t-+ Cfj in probability PE [P] = s- 1(11). (5.2.2) 

An admissible (asymptotically) biased estimator 0, with the bias (5. l.2) is defined 
similarly but with 

instead of (5.2.2). 
Obviously, (5.2.1) and (5.2.2) (or (5.2.l) and (5.2.3)) are equivalent to 

B,( 01 - 0) = M~ + 11( 0), (or B,( 0, - ai( 0)) = M~ + 11( 0),) (5.2.4) 
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where 

(5.2.5) 

as in (5.2.2) (or (5.2.3)). Recall that if1 = <M0 )- 112 ; cf. the last paragraph in 4.2. Of 
course, if the asymptotic bias (5.1.2) is small in the sense of (5.1.1), then the two 
expressions in (5.2.4) are equivalent. 

5.3 By the assumptions imposed in 3.1 on the right hand side of the represen!ation 
(5.2.1) the scaling factor f!J characterizes the convergence rate of the estimator fJ, and 
for t large enough the ellipsoid generated by the inverse of the symmetric matrix 

(5.3.1) 

characterizes the spread of e around e. 

DEFINITION 5.3.1 Let B be an admissible estimator of 8 for each fixed 8 E 0 (see 
Definition 5.2.1). For fixed t large enough the ellipsoid generated by the inverse of 
the matrix (5.3.1) with f!J involved in (5.2.1) is called the spread of e around e or ai(fJ) 
depending whether 8 is asymptotically unbiased or biased. In the latter case the 
spread of e around () is defined as the ellipsoid generated by the matrix 

I (0) = (.0.1[ ifB1)- 1 + d,(8)d,(8)T, (5.3.2) 
I 

for the bias (5.1.2) which violates the Condition (5.1.1) has to be taken into account. 
5.4 Denote 

( 5.4.1) 

where M = M6(b6, A.8) as in 4.1. By Lemma 2.5.l we have 

c(M, M) = (M)- (M, M)(M)- 1(M, M) 2: 0. 

Therefore 

This means that the spread of B1 around e (or a,(fJ)) exceeds the ellipsoid generated 
by the matrix on the right hand side of the last inequality. This lower bound for the 
spread around e (or ai(8)) of any admissible estimator lies at the basis of the 
Cramer-Rao inequality which will be obtained in Section 6. Meanwhile, even the 
spread of supperefficient estimators satisfy (5.4.2). In order to exclude such abnormali­
ties and, consequently, render the inequality (5.4.2) in the usual Cramer-Rao form, 
we shall, according to the common practice, restrict the class of estimators by certain 
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regularity assumptions; see 6.1 below. Since (M) can be interpreted in the present 
setting as the Fisher information matrix (see Section 4.3), we say that the inequality 
(5.4.2) takes usual Cramer-Rao form if the matrix Don the right hand side is replaced 
by the" derivative" (in the sense of Remark 6.1.2 below) of the bias (5.1.2) with respect 
to e; see (6.2.2) below. Consider for instance the following situation. We will return 
to this situation in Section 6.2. 

5.5 The inequality (5.4.2) already gives the desired Cramer-Rao lower bound for 
estimators admitting the representation 

(5.5.1) 

i.e. the representation (5.2.4) with special B = (M, M) and a(tJ) = 0, for in this case 
D = 0 and hence 

(5.5.2) 

Note that the matrix valued process Dis related to the bias of an admissible estimator 
{J in the following sense. If an estimator satisfies (5.5.1 ), then D = 0 and d(O) = 0, so 
that by (4.2.4) and (5.2.4) it also satisfies the following relation: for each ()' E 0 

(M, M)i(O, - ()') = M 0'(H, W), - ~0 • 0 '(H, W), + 17(0),. (5.5.3) 

Next, evaluate (5.5.3) at tJ' = 0 + cjJ,u under condition (4.2.3) to see that ~e.o+q,,u has 
the same behaviour when t -> rxJ as 17(fJ), i.e. it can be absorbed in the remainder term. 
Thus the estimator b has the linear representation not only at 0 but also in its 
neighbourhood ()' = 0 + cp, u. 

Now, assume D does not vanish, then the bias appears in the representation, as 
even if d(IJ) = 0 we get by (4.2.4) and (5.2.4) that 

Bi(e1 - [O' + Di(O' - 0)]) = M 0'(H, W), - ~ 0 • 0'(H, W)1 + 11(0)1 

where -(°· 0'(H, W) + 17(0) at (J' = 0 + 4> 1u can be considered as a remainder term. 
5.6 According to Lemma 2.5.1, we get equality in ( 5.4.2) iff M = CM with some 

random matrix C, not depending on time. Hence equality in (5.4.2) is only attained 
for estimators that have the representation (5.2.4) of the following special form: 

Notice that C17(0)1 is indeed a remainder term in the sense of (5.2.5): since now 

(M) = C(M)CT 

(see Dzhaparidze and Spreij (1992)), we immediately get 
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6 REGULAR ESTIMATORS. THE CRAMER-RAO INEQUALITY 

6.1 As is known in classical statistics, the minimization problem of the spread of an 
estimator by proving the Cramer-Rao inequality (see, e.g. Ibragimov and Has'minskii 
(1981), or in a more related context, Kutoyants (1984) and Jacod (1990), as well as 
the references therein) can be effectively solved only under certain regularity condi­
tions imposed on estimators. In fully (or partially) specified models with LAN 
property, more sophisticated Hajek's type regularity is required. As our parametriza­
tion in Section 3 admits such models only as special cases, and besides our 
assumptions are too wide to admit establishing asymptotic distributions of estima­
tors, Hajek's definition cannot be taken over here. However our definition of 
regularity can be, in principle, considered as a wide sense version of Hajek's regularity, 
but we don't dwell on this subject here. On the other hand our scheme includes also 
classical regression models in which the Gauss-Markov estimator has minimal spread 
as t --+ oo among asymptotically linear unbiased estimators (there is a certain 
relationship between our definition of regularity and the asymptotic unbiasedness of 
estimators, but again we prefer to avoid this subject here). 

The common idea hidden behind any definition of regularity of estimators 
representable as in (5.2.4) consists, roughly speaking, in admitting differentiability in 
a certain appropriate sense of the both sides of the representation. Our Definition 
6.1.1 below is also based on this consideration. Namely, the class of all admissible 
estimators {[B,(H, W)], HE .?It and WE'#'} with the scoring functions HE .?It and 
w E 1f/' is restricted by the regularity assumption: an estimator B,(H, W) = e, with 
the scoring functions HE .?It and WE 1r assumes the representation of type (5.2.4) 
not only at a fixed e Ee but also ate+ <f>,u Ee with the same </; as in 4.l(iii) and 
all directions u E 011,. 

DEFINITION 6.1.1 An estimator Bt(H, W) of the value e with scoring functions HE :Yf 

and WE"#!~, is called regular (with a centering a and scaling B) if 

i) it is representable at each fixed 8 E 8 in all directions U E 0"lf, as follows 

B,(B, - a,(B + </;,u)) = Me+<J>,u(H, W), + ri(u, 8), (6.1.1) 

where 4> = (Nf)- 1' 2 ; 

ii) the remainder term ri(u, 8)1 (depending on HE .?It and WE "If of course) is such 
that as t-+ w 

l/1,ri(u, 8)1 -+ 0 in probability PE [P] = S - 1(8) 

where I/!= (M8)- 112 ; 

(6.1.2) 

iii) there exists a function a: [O, co) x e-+ !Rd x !Rd such that the following holds 
for each fixed 8 E 8 and all directions U E 01f 1: 

f!J1 a~· 9 +<J>,u-+ 0 as t-+ oo in probability PE [PJ = &- 1(8) (6.1.3) 

where 

a8•0' = a(B') - a(B) - a(8)(B' - B). (6.1.4) 
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Remark 6.1.2 The matrix a is the "asymptotic derivative" of a with respect to 8. 
Notice that if the bias (5.1.2) is small in the sense of (5.1.1) not only at a fixed() but 
also in a shrinking neighbourhood, that is we may replace here 8 with 8 + c/>,u, then 
in (6.1.3) we may take a,(8) = !. 

Remark 6.1.3 As u = 0 we get (5.2.4) with an admissible M8(H, W). Note that 
by (5.2.5) and (6.1.2) the remainder term 11(u, ()),in (6.1.l} is asymptotically differenti­
able (in accordance with Definition 4.1) with derivative equal to zero in the 
sense that for each fixed 8 E 8 and each direction U E 1/1 1 We have that in probability 
PE[P]=S- 1(8) 

Conversely, if an estimator 01 satisfies (5.2.4) with an addmissible M 8(H, W) and 
certain 11(8), then it satisfies also (6.Ll) with 11(u, 8) such that 

i/1{11(u, ()) -11(8)} = -1/l{Mw - M8 } - :?4J{a(8') - a(8)} 

= i/J~e.o· _ ,iJ,6'J.e.8' +CU 

where()' = 8 + r/>,u and 

z = P - !Jaa(8)r/> 

( 6.1.5) 

(6.1.6) 

with p = p(M, M); cf. (2.5.2), (4.2.4) and (6.1.4). Therefore the following statement is 
true. 

STATEMENT 6.1.4 If the compensators A 11 and v0 are asymptotically differentiable at 
e Ee and each direction u E 011 t in the sense of Definition 4.1.1, then by Statement 4.2.1 
the regularity of {J is equivalent to the condition that the centering a and scaling B 
involved in its representation are such that as t -+ oo the last term on the right hand 
side of ( 6.1.5) vanishes, that is i;1 -+ 0 in probability PE [ P] = S - 1( 8) where i; is given 
by (6.1.6). 

6.2 As in Section 5.5, suppose an estimator e satisfies the first of expressions 
(5.2.4) with special B = (M, M) which by (5.4.l) means D = 0, or more generally it 
satisfies the second of expressions (5.2.4) where a(8) is differentiable in the sense of 
(6.1.3) with a special B such that 

( 6.2.l) 

It follows then from (6.1.5) and (6.1.6) that under the conditions of Statement 6.1.4 
the estimator {J is regular. Moreover, by (5.4.2) its spread around a(8) satisfies the 
Cramer-Rao inequality 

(6.2.2) 
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cf. (5.5.2). Therefore the following question is important. Suppose fJ is regular. Does 
it then admit the representation (5.2.4) with B satisfying (6.2.1)? The answer given in 
the next section turns out to be affirmative if we sharpen Definition 4.1.l a little bit. 

6.3 Consider a regular estimator O(H, W) and suppose that it satisfies (6.1.1) not 
only with <P = (M) - 112 but also with <P' = q,p- 1 where p = p(M, M); cf. (2.5.2). Note 
that q,q,T = cjJ'ppT</F 5; <f>'cjJ'r by (2.5.3). Hence the perturbation rate <f/ is not faster 
then cjJ. Of course, if the correlation process p stays bounded away from zero there 
is no need in introducing c/J'. Next, suppose that for the scoring functions H and W 
the relation (i) and (ii) in Definition 4.1 are satisfied with cjJ' instead of </J, that is the 
differentiability still takes place, despite the above remark that the perturbation 
rate cjJ' is not faster then q,. 

PROPOSITION 6.3. l Under the conditions of the present section 

i) 0 admits also the following representation 

where 11'(e) is again a remainder term: 

i/1111'(0)1 -+ 0 in probability PE [PJ = s- 1(0) as t-+ oo. 

ii) The spread of fJ around a(8) satisfies the Cramer-Rao inequality (6.2.2). 

(6.3.1) 

(6.3.2) 

Proof Assertion (ii) follows from (i) since by definition the spread of {J around 
a(O) is generated by the matrix ffT where 

(6.3.3) 

so that 

by Lemma 2.5.1. 
Let us now prove assertion (i). By (5.2.4) and (6.3.1) we get 

with the same e and pas in (6.1.6). Similar to (6.1.6) we immediately obtain that ep- 1 

and hence' tends to zero in probability PE [P] = s- 1(8) as t-+ oo. Therefore (6.3.3) 
yields (6.3.2), for by assumption 11 is a remainder term and {t/11 M1} is a tight family 
(cf. Section 3.1). 

6.4 Let us turn back to the general case where fJ is a regular estimator in the 
sense of Definition 6.1.1. Regarding a lower bound to the asymptotic spread the 
following proposition is true. 

PROPOSITION 6.4.1 Let {J be a regular estimator with the spread generated by (!JIT £?1)- 1. 

Let the compensators A 6 and v0 be asymptotically differentiable at e Ee and each 
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direction u E 0ll1 in the sense of Definition 4.1.1. Then for any symmetric positive definite 
matrix b > 0 the event 

(6.4.1) 

takes place with PE [P] = S - 1(0) probability tending to one as t-> oo. 

Proof With the notations used in Statement 6.1.4 we have 

:?Ja<M> -112 = p + e. 

Therefore the event ( 6.4.1) is eq ui valen t to 

so that the desired assertion follows from (2.5.3) and Statement 6.1.4 according to 
which PtPT ~I and c:,-+O in probability PE[P] = s- 1(0). 

7 OPTIMALITY 

7.1 Throughout this section the compensators A8 and v0 are asymptotically differ­
entiable at 8 E 0 and each direction u E 0/11 in the sense of Definition 4.1.1, and all 
estimators mentioned are admissible in the sense of Definition 5.2.1. 

The assertions of Propositions 6.3.1 and 6.4. l can be interpreted as follows: the 
minimal possible spread around a,( 8) of a regular estimator is generated by the matrix 

where M = M9(b9, .A8) as usual. Hence the following definition 

DEFINITION 7.1.1 A regular estimator B(H, W) is called optimal if it can be re­
presented as in (5.2.4) with a,(8) = e, and if the scoring functions HE :Yf and WE 1// 

are such that the spread attains the lower bound which in this case is generated by 
<M,)-1. 

PROPOSITION 7.1.2 A regular estimator 0 is optimal in the sense of Definition 7.1.l iff 
it admits the following special form of the general representation (5.2.4): 

(7.1.1) 

Proof By definition the spread of an estimator f3 admitting the Representation 
(7.1.1) is generated by < M) - 1, i.e. e is optimal. 

Conversely, if e is optimal, then its spread is generated by the inverse of the matrix 

BT<M)- 1B = <M). (7.1.2) 
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In notations of (6.1.6) the equality (7.1.2) means that 

(7.1.3) 

Since e is regular, Statement 6.1.4 is true: et~ 0 in probability p E [P] = s- 1(8). 
Hence p'{ Pt~ I by (7.1.3). Therefore we can ~pply Proposition 6.3.1, assertion (i) to 
write down the following representation for 8: 

(M, M)(e - 8) = M + YJ· (7.1.4) 

Thus B = (M, M) in (7.1.2), that is c(M, M)1 = 0 for all t. By Lemma 2.5.1 this implies 
M =CM with a possibly random matrix C independent oft. Hence (7.1.4) can be 
rewritten as follows 

C(M, M)(e - 8) = M + Cri; (7.1.5) 

cf. (5.5.1). Since C(M, M) = (M) (see Dzhaparidze and Spreij (1992)) and Cri is a 
remainder term (see Section 5.5), (7.1.5) yields (7.1.1). 
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