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In this paper the essentials of stochastic integration with respect to continuous
martingales are reviewed	 The presented results are illustrated by applying them
to the theory of option pricing	

�� Introduction

The purpose of this paper is to summarize a number of results from stochastic
calculus that are of fundamental importance in advanced mathematical �nance�
The emphasis will be on the concepts from probability theory� stochastic pro�
cesses and stochastic integration theory� Throughout the paper we will hint at
applications of the presented results to problems in mathematical �nance� that
are treated in Section ���
A variety of good textbooks on the subject is available� each with its own

�avour� We mention Rogers and Williams 	�
�� Revuz and Yor 	���
Chung and Williams 	��� �ksendal 	
�� Protter 	��� For the prepara�
tion of this paper I heavily leaned on the book by Karatzas and Shreve 	���
which was my main source of inspiration� Readers are supposed to be familiar
with some measure theory and the measure theoretic foundation of probability�
In these notes proofs are usually not given� although sometimes key steps of
a proof are indicated to give the reader an idea of the �avour of the methods
that are used�

The probably most famous model that is used in the theory of option pricing
is that of Black and Scholes 	��� One of its ingredients is an equation that
describes the evolution of the price Pt of a risky asset over time� We give the
equation �rst� and after that we discuss what is meant by it and we explain
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also unknown quantities� Let b be a �measurable� function and � a constant�
The equation reads

dPt � b�t�Ptdt� �PtdWt� P�� �����

Sometimes this equation is also written in its integral form

Pt � P� �

Z t

�

b�s�Psds� �

Z t

�

PsdWs� �����

The �rst equation ����� is called a stochastic di�erential equation� whereas the
second one ����� can be called a stochastic integral equation� It is common
practice to work with the �rst one� having in mind the interpretation that it is
an abbreviation of the second equation�
Looking at equation ����� one is faced with a number of questions� First�

what is meant by W � dWt and
R t
�
PsdWs�

W is a stochastic process called �standard� Brownian motion� by dWt we
mean an in�nitesimally small increment of this process over a time interval
�t� t�dt� and �nally

R t
� PsdWs is called the stochastic integral of P with respect

to W � Furthermore P obviously looks as a solution of ������ But what is the
solution concept of a stochastic di�erential equation�
Below we will de�ne in this order what Brownian motion is� what a stochas�

tic integral is and what �a solution of� a stochastic di�erential equation is� The
theoretical framework in which this will take place is that of the general theory
of stochastic processes� and �sub�martingales in continuous time� Occasionally
we will use examples from discrete time� when this leads to better understand�
ing� Some fundamental issues of this theory will be discussed in the next
section�

�� General setting

As usual in probability theory we assume that we work with a probability space
���F � P �� Since we will deal with �continuous time� stochastic processes we will
also assume to have a �ltration F� that is a family of sub ��algebras fFt � t � 
g
of F with the property that Fs � Ft for all s � t� The interpretation is that
as time proceeds� we have a growing information pattern to our disposal� The
quadruple ���F � F� P � is called a �ltered probability space�
We also frequently need the assumption that F satis�es the usual conditions�

a technical term meaning two things� F is right continuous� i�e�
T
���Ft�� � Ft

for all t � 
 and that F� contains all the P �null sets of F �
We will also use the notation Ft� for the smallest ��algebra that contains

all Fs for s � t� and F� for the smallest ��algebra that contains all Fs for all
s� A �ltration that is right continuous and satis�es Ft� � Ft for all t is called
continuous�
By B or B�R� we denote the Borel ��algebra on R� In general we denote by

B�E� the Borel sets of a topological space E� A real valued stochastic process
X on 	
��� is a collection fXt � t � 
g of random variables� So all the maps
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Xt � ���F� � �R�B� are measurable� In particular X is a function of two
variables� � and t� Its values are denoted by X��� t� or by Xt����
This de�nition su�ces in discrete time for most purposes� However� if we

view X as a map from �� 	
��� into R then� in general� that this map is not
measurable as a function of the pair of variables ��� t�� where measurability
refers to the product ��algebra F � B�	
���� on � � 	
���� Here the heart
of the problem is of course that we deal with an uncountable set of random
variables and� as is known� uncountably many operations easily destroy certain
measurability properties�
Here are some other relevant measurability concepts� Consider a stochastic

process X � Then

� X is called measurable if X � ��� 	
����F � B�� �R�B� is measurable�
� X is called adapted to F if for all t the random variableXt is Ft�measurable�
� X is called progressively measurable �or progressive� with respect to F if for
all t the map ��� 	
� t��F � B�	
� t��� �R�B� is measurable�

If there is no ambiguity about the �ltration at hand� we will simply speak of
an adapted or a progressive process�
Adaptedness can be interpreted as follows� Suppose that the information

comes to us in the form of observations of a stochastic process Z� meaning
that the Ft are generated by Z� so Ft � �fZs� s � tg� for all t � 
� In such
a case we often write FZ

t instead of Ft and FZ instead of F� If X is adapted
to FZ � then Xt is a functional of the collection fZs� s � tg� Progressiveness is
a stronger property� a technical concept that one needs to ensure that certain
dynamic transformations of adapted processes remain adapted� It is assured
in a number of cases� see below�

The de�nition of X as a stochastic process was in terms of the random variables
�measurable functions� Xt� Alternatively we can freeze a variable � and look
at the function X���� � 	
���� R� The functions X���� are called the sample
paths of X � Some properties of a process X refer to its sample paths� For
instance� X is said to be �left� right� continuous if all the sample paths X����
are �left� right� continuous�

Proposition ���� Let X be a stochastic process� Then
�i� X is measurable and adapted if it is progressive�
�ii� X is progressive� if it is adapted and left �or right� continuous�

Example� Assume that for a progressive processX the expectations E
R t
� jXsjds

are �nite for each t� We can then consider the process fR t� Xsds� t � 
g� Pro�
gressiveness of X ensures by application of Fubini�s theorem that this process
is adapted again� and even progressive in view of Proposition ��� by continuity
of its sample paths�

In the theory of stochastic process there are two important concepts of de�
scribing in what sense two stochastic processes are the same� Two stochastic
processes X and Y are called
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� modi�cations of each other if 	t � 
 � P �Xt � Yt� � ��
� indistinguishable if P �	t � 
 � Xt � Yt� � ��

We now give an example that illustrates why one sometimes needs that the
�ltration satis�es the usual conditions� Suppose that this is the case and that
X is an adapted process� Let Y be a modi�cation of X � then Y is again
adapted� since sets fYt 
 Bg for B 
 B di�er from fXt 
 Bg by a P �null set�
The following proposition relates the two properties of �sameness��

Proposition ���� �i� If X and Y are indistinguishable� then they are modi��
cations of each other�
�ii� If X and Y are modi�cations of each other and they are left �or right�
continuous� then they are indistinguishable�

Example� A number of di�culties with continuous time processes can be
illustrated by analyzing properties of the process C de�ned for � � 	
��� by
C��� t� � � if � � t and zero else� In this case we also use the Borel ���eld on
� as F and for P we take a measure that is absolutely continuous with respect
to Lebesgue measure�
Clearly� the zero process is a modi�cation of C� whereas P �	t � Ct � 
� �
P ��� � 
�

�� Brownian motion

Stochastic process are often speci�ed by attributing properties to them in dis�
tributional terms� This happens already in the following de�nition� The general
setting is that of the previous section�

Definition ���� A stochastic process W on a �ltered probability space ���F �
F� P � is called a standard Brownian motion with respect to F� if the following
properties hold�

�i� W� � 
� a�s�
�ii� Wt �Ws is independent of Fs for all t � s�
�iii� Wt �Ws has a normal distribution with zero mean and variance equal to

t� s for all t � s�
�iv� W is adapted to F and has continuous sample paths�

The interpretation of W is better understood if we look at its discrete time
analogue w� Let ��� ��� � � � be a sequence of iid standard normal random vari�
ables� Then we de�ne for integers t the random variable wt �

P
k�t �k� Taking

a suitable probability space and Ft � �f�k � k � tg� one easily veri�es that the
properties �i�� �iii� hold as well as adaptedness to F� The process w is called
a discrete time random walk and W is its continuous time counterpart with
continuous sample paths�
The immediate question is of course� does Brownian motion exist� The

answer� not unexpectedly� is yes� There are a number of ways to show existence
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of Brownian motion� One is based on the Daniel�Kolmogorov theorem� We
refer for instance to 	�� for the precise formulation of this theorem and the
terminology underlying it�
So we introduce the space �R����� �B�R�������� where B�R������ is the small�

est ��algebra that makes the �nite dimensional projections measurable� Let
for each natural n Qn be a family of distributions on �Rn �B�Rn ��� indexed by
t 
 R

n � Denote by Q the union of all the Qn� The Daniel�Kolmogorov theo�
rem states that if this family is consistent� then on the space �R����� �B�R�������
there exists a probability measure P such that the stochastic process X de�ned
by Xt��� � ��t� �the coordinate process� has exactly the family Q as its family
of �nite dimensional distributions�
Take F de�ned by Ft � �fXs� s � tg� Then the �nite dimensional distri�

butions implicitly de�ned by properties �i���iii� of De�nition ��� are consistent
and we obtain the existence of a process X that satis�es these properties and
also satis�es the adaptedness requirement of �iv�� However� continuity of the
sample paths of X is not established� Here a technical problem appears� be�
cause it can be shown that C	
��� does not belong to B�R����� �� Fortunately�
there is a way out� It follows from the Kolmogorov��Centsov theorem that X has
a modi�cation with continuous paths� This gives us the existence of Brownian
motion� since modi�cations don�t change the �nite dimensional distributions�
Another construction of Brownian motion is via weak convergence� The

approach is as follows� Let ��� ��� � � � be a sequence of iid �not necessarily
normal� random variables on some probability space with E�i � 
 and E�

�
i � ��

Let Sk �
P

j�k �j and for each n

Xn
t � n�

�
� fSbntc � �nt� bntc��bntc��g�

Then the Xn are continuous processes with Xn
m�n � n�

�
�Sm for integers m�

Hence each Xn induces a measure� Pn say� on �C	
����B�C	
������ The
following result �Donsker�s invariance principle� holds�

Proposition ���� There exists a measure PW on �C	
����B�C	
����� such
that fPng weakly converges to PW and under which the coordinate process W
de�ned by Wt��� � ��t� is a standard Brownian motion� PW is called the
Wiener measure�

Brownian motion has a number of attractive probabilistic properties� For in�
stance it is an example of a strong Markov process� On the other hand its
paths exhibit a very irregular behaviour� We mention a few examples� First
we need some notation� If I is a compact interval� 	a� b� say� we denote by �n
or �n�I� a partition ft�� � � � � tng of I with t� � a and tn � b� Its mesh m��n�
is then maxfjti � ti��j � i � �� � � � � ng�
� Almost all paths of Brownian motion are nowhere di�erentiable�
� The paths of Brownian motion are not of bounded variation over �non�
empty� bounded intervals� so

P
�n
jWti �Wti�� j tends to in�nity a�s� if

m��n� tends to zero� But
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� The paths of Brownian motion are of bounded quadratic variation over

bounded intervals 	a� b�� More precisely� Vn ��
P

�n
�Wti�Wti���

� P� b�a if
m��n�� 
� In fact� one can show that E�Vn��b�a��� �

P
�n
�ti�ti���� �

m��n��b � a�� If
P

m��n� � � we also have a�s� convergence of Vn to
b� a�

� Almost all zero sets Z��� � ft � Wt��� � 
g have Lebesgue measure
zero� are closed and unbounded and have no isolated points in �
���� In
particular

R�
�
�fZ���g�t�dt � 
 a�s�

The �rst two items of this list can heuristically justi�ed by using the observation
that for all t� h we can write Wt�h � Wt �

p
hN�
� ��� where we denote by

N�
� �� any random variable that is a standard normal one� Then we see that�

loosely speaking� the di�erence quotient Wt�h�Wt

h is of order h�
�
� � so we cannot

expect to have a �nite limit�
Now look at sums

Pn
i	� jW i

n

�W i��

n

j� A similar way of reasoning suggests
that this is of order n

�
� � which makes it understandable that the paths are not

of bounded variation� We will return to the quadratic variation in the next
section�
In De�nition ��� we imposed thatW� � 
 a�s� Instead of standard Brownian

motion� we will occasionally consider Brownian motion with an initial condition
di�erent from zero� This is done as follows� Let W be a standard Brownian
motion on some ���F � P � with respect to its own �ltration� Let B� be a
random variable with distribution �� independent ofW �extend � if necessary�
and de�ne Bt � B� �Wt� Then B satis�es the conditions of De�nition ���
with F � F

B with the exception of the zero initial condition� We say that � is
the initial distribution of B�
The measure that B induces on �C	
����B�C	
����� is usually denoted

by P�� If � is a Dirac measure concentrated at x 
 R �in this case B is called
Brownian motion starting at x�� then we use the notation P x instead of P��
It is a fact that if we augment the �ltration FB with the null sets N� of

P�� so we consider the ���elds F�
t � FB

t 
N�� then we get a right continuous
�ltration and B is still a Brownian motion with respect to this family of ��
algebras� So the �ltration fF�

t � t � 
g satis�es the usual conditions�

�� Some martingale theory

Definition ���� A stochastic process X is called a martingale with respect to
F if

�i� X is adapted to F�
�ii� EjXtj ��� for all t � 
�
�iii� E	XtjFs� � Xs� a�s� for all t � s� X is called a submartingale if we replace

the equality sign in �iii� by ��
The interpretation of property �iii� of a martingale X is that the best guess
of the future value Xt given the information up to the present time s is the
current value Xs�
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Example� Let W be a standard Brownian motion with respect to F� then W
is a martingale� Indeed� since Wt�Ws is independent of Fs for t 	 s� we have
E	Wt �WsjFs� � 
�
Example� Let M be a martingale with respect to F� such that EM�

t � �
for all t� then Xt � M�

t de�nes a submartingale� In particular X � W � is a
submartingale� Notice that since the increments Wt �Ws have variance equal
to t � s� we see by an easy calculation that fW �

t � t � t � 
g is a martingale
again�

As a preparation for the Doob�Meyer theorem below� we consider a submartin�
gale X in discrete time� De�ne A� � 
 and recursively

Ak � Ak�� �E	XkjFk����Xk���

From the submartingale inequality we obtain that A is an increasing process
�Ak � Ak�� a�s� and we also see that Ak is Fk���measurable �one says that
A is a predictable discrete time process�� If we de�ne Mk � Xk � Ak� then
one easily sees that M is a martingale� Hence we have the Doob decomposition
X �M�A� with an increasing predictable processA and a martingaleM � Such
a decomposition is unique� In continuous time� the proof of the corresponding
result is rather deep� We give this result for nonnegative submartingales only�

Theorem ���� Let X be a nonnegative right continuous submartingale� adapted
to a �ltration F satisfying the usual conditions� Then X can be decomposed as
X � A�M � with a martingale M and a right continuous increasing process A�
such that A� � 
 and every At is Ft��measurable� The process A can be chosen
to satisfy E

R
���t
msdAs � E

R
���t
ms�dAs for every bounded right continuous

martingale m� Moreover� given that A satis�es this last property it is unique
�up to indistinguishability��

We apply this theorem to the special case where X is the square of a martingale
N � satisfyingEN�

t �� for every t� MartingalesN with this property are called
square integrable and the class of these martingales is denoted by M�� The
class of square integrable martingales with continuous paths is denoted byMc

��
So� let N 
 M� and X � N�� For this case we use the special notation

hNi for the process A that appears in the Doob�Meyer decomposition of X �
The process hNi is called the quadratic variation process� or the predictable
quadratic variation process of N �
This process can be viewed as a cumulative conditional variance of N � To

see this� use that Ns � E	NtjFs� and consider
E	�Nt �Ns�

�jFs� � E	N�
t �N�

s jFs� � E	hNit � hNisjFs�� �����

The last equality follows from the de�nition of hNi�
If we apply this to standard Brownian motion� we get� using previous results�

hW it � t�
The name quadratic variation is explained by the following fact� If �n are

partitions of 	
� t� as before whose meshes tend to zero for n � � and N is a
continuous martingale with EN�

t �� �so N 
Mc
��� then
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X
�n

�Ntk �Ntk���
� P� hNit� �����

We have already seen this result for N a Brownian motion in Section � and one
could take it as the de�nition of the quadratic variation process� However� since
this characterization is only true for martingales inMc

�� we prefer to de�ne the
quadratic variation process via the Doob�Meyer decomposition� which applies
to all martingales inM�� A natural question is then to ask for what happens
with the sum in ����� if we drop the continuity assumption on N � One can
show that again the limit in probability exists �see 	�� for instance�� In the
theory of martingales it is usually denoted by 	N �t or 	N�N �t and in general it
di�ers from hNit� We illustrate this by an example�
Consider a standard Poisson process� that is a process X de�ned on some

�ltered probability space which satis�es conditions �i� and �ii� of De�nition ���
and with �iii� replaced with the condition that the increments Xt �Xs have a
Poisson distribution with parameter t�s� In particular we have E�Xt�Xs� �
t � s and var�Xt � Xs� � t � s� De�ne then the process N by Nt � Xt � t
for all t� From the independence of the increments of X one sees that N is
a martingale� It also belongs to M�� but obviously doesn�t have continuous
paths� As a matter of fact� its paths are piecewise linear and show upward
jumps of size ��� We take all the paths to be right continuous� the standard
convention�
Now we turn to equation ������ Put hNit � t� Then indeed ����� is satis�ed�

as it follows from the independence of the increments of X and hence of N
and the expression of the variance of Poisson random variables that E	�Nt �
Ns�

�jFs� � t � s� On the other hand the limit of the sums in ����� is Xt�
even a�s�� which can be seen as follows� Fix a typical sample path of X and
the corresponding one of N � Since the mesh of the considered partition tends
to zero� we assume that it is small enough to have that each time interval
Ji � �ti��� ti� contains at most one of the time instants where the path of X
has a jump� there are exactly Xt of these jump times in 	
� t�� Split the sum in
����� in two parts� one such that all the Ji contain a jump time and one such
that none of them contains one� The former one then equals

P
����ti� ti�����

with limit Xt� the other one being equal to
P
�ti � ti���� has limit zero�

From the de�nition of the quadratic variation process of a martingale� we
can derive the quadratic covariation process of two martingales� So let M and
N be two martingales in M�� Then the quadratic covariation process of M
and N is de�ned via the polarization formula

hM�Ni � �
�
fhM �Ni � hMi � hNig�

Notice that hM�Ni is a process of bounded variation over bounded intervals�
that hM�Mi � hMi and that

MN � hM�Ni is a martingale �����
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again�

Example� Here is an example of the use of hMi� Let T 	 
 and assume
that hMiT � 
 a�s�� then Mt � 
 a�s� for all t � T � This follows easily from
Chebychev�s inequality and EM�

t � EhMit � EhMiT � We will need this result
in Section �
�

We close this section with some examples for discrete time martingales� that
serve to illustrate the results of this section as well as to prepare for the next one�
Let M be a martingale in discrete time� M� � 
� and let  Mt � Mt �Mt���
An example is obtained by taking the  Mt to be independent variables with
zero mean� If moreover all  Mt have �nite variance �

�
t � then we get the Doob

decomposition of the submartingaleM� asM�
t � mt�

Pt
i	� �

�
i with m another

martingale� as is easily veri�ed� So hMit �
Pt

i	� �
�
i � This again illustrates that

the quadratic variation process is a generalization of the cumulative variance
process�
Let now ��� ��� � � � be another process� that for simplicity is taken to be

bounded� Assume that this process is predictable� so �t is Ft���measurable�
Consider the process I de�ned by It �

Pt
k	� �k Mk� Predictability and

boundedness of � yields I a martingale� I is also called a martingale trans�
form of M or a discrete time stochastic integral of � with respect to M �
Furthermore

hIit � hIit�� � E	�It � It����jFt��� � ��tE	�Mt �Mt����jFt���

� ��t �hMit � hMit����
So we see how to express the quadratic variation of a discrete time stochas�
tic integral in terms of that of M � This properties will be encountered in a
continuous time setting in the next section�

�� Stochastic integrals

In this section we will de�ne stochastic integrals
R T
�
XsdMs for a suitable class

of stochastic processes X and a continuous martingale M � It should be clear
that we are faced with a problem of de�nition �see also Proposition ��� below��
Take for example M � W � standard Brownian motion� We know that the
paths of W have unbounded variation over bounded intervals� a property that
is shared by all nonconstant continuous martingales� which excludes a naive
approach by trying to mimic the de�nition of Stieltjes integral� We recall a
fundamental result from Stieltjes integration theory�

Proposition ���� �i� Let 
 � 	
� �� � R be a function of bounded variation�

Then for all h 
 C	
� �� the Stieltjes integral
R �
� hd
 exists and for partitions

�n of 	
� �� whose meshes tend to zero for n�� we have

X
�n

h�tk��
tk � 
tk����
Z �

�

hd
�
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�ii� Conversely� if 
 � 	
� ��� R and if for all h 
 C	
� �� the above limit exists�
then 
 is of bounded variation over 	
� ���

Especially assertion �ii� above suggests that is impossible to de�ne stochastic
integrals with respect to a continuous martingale for a reasonably wide class
of stochastic processes or even functions�
The proof of this assertion of the theorem �see 	��� page �
� involves an

application of the Banach�Steinhaus theorem and for a given partition an ar�
gument that involves a continuous function h that satis�es

h�tk� � sgn�
�tk���� 
�tk��� �����

In the construction below we will exclude functions h of this type� since at a
time instant tk such an h uses the future values of the integrator� This exclu�
sion together with a clever use of the fact that the paths of square integrable
martingales are of bounded quadratic variation saves us�
Whatever de�nition of integral one would choose� there should be no con�

fusion about how to integrate step functions� So� whatever we take for M if
Xt��� � ������a�b
�t�� then the only logical de�nition of

R t
�
Xs���dMs��� is

�����Mt�b��� �Mt�a����� Below we drop in the notation the dependence on
��
Next we assume that � is Fa�measurable and bounded� View the inte�

gral as a stochastic process indexed by t� It is then a straightforward com�
putation to see that this process is a martingale if M is one� and contin�
uous if M is� Moreover we can easily compute �compare with the discrete
time situation of the previous section� its quadratic variation at time t as

���hMit�b � hMit�a� �
R t
� X

�
s dhMis�

By imposing linearity we now also have a de�nition of
R t
� XsdMs for step func�

tions X with �nitely many values�
We now give the construction of the stochastic integral over a �nite interval�

	
� T � say� We �rst de�ne the class of simple processes� denoted by L��T � It is
the class of all processes X that can be written as a �nite sum

Xt � ���f�g�t� �
nX
i	�

�i��ti�ti��
�t�� �����

where the ti are increasing numbers in 	
� T � and the �i are random variables�
such that each �i is Fti�measurable and supi�� j�i���j � �� Notice that Xti��

is Fti�measurable and so X doesn�t peek into the future� in contrast with the
function h in equation ����� above�
In the rest of this section we will work on a probability space with a �ltration

that satis�es the usual conditions and with a continuous martingale M � that
is square integrable over 	
� T �� so EM�

T � �� As a matter of fact� one thus
de�nes a norm� jj � jj� on the space of �continuous� martingales on the interval
	
� T �� jjM jj � �EM�

T �
�
� � Under this norm bothM� andMc

� are Hilbert spaces�
if we restrict ourselves to processes de�ned on the interval 	
� T � only� instead
of 	
����

���



Let now X be a measurable process� then we de�ne �what is going to be
interpreted as a norm�

�M �X� � 	E

Z T

�

X�
sdhMis� �� �

Notice that this de�nes a measure on �� � 	
� T ��F � B�	
� T ��� by �M �A� ��
�M ��A��
The next object to de�ne is the pre�Hilbert space of stochastic processes

L�T � fX � X progressive� �M �X� ��g�
Clearly� this space depends on the choice of M � When necessary� we express
this by the notation L�T �M��
From now on we will identify two processes X and Y if �M �X � Y � � 
�

Of course this de�nes an equivalence relation on L�T � whose quotient space is
again denoted by L�T � Then we have the following properties�
� L�T is a Hilbert space with an inner product that generates the norm �M �

� The space of simple processes L��T is a dense subset of L�T under the norm
�M �

Let X be an element of L��T of the form as in equation ������ then we de�ne

the stochastic integral
R t
�
XsdMs of X with respect to M for t � T � in this

section also often denoted by It�X�� as

It�X� �
nX
i	�

�i�Mti���t �Mti�t�� �����

When there are more martingales around� we will express the dependence on
M by writing It�X !M�� We have the following properties�

Proposition ���� The stochastic integral de�ned for simple processes in equa�
tion ����� enjoys the following properties�

�i� I��X� is a continuous process with I��X� � 
�
�ii� I��X� is a martingale	 E	It�X�jFs� � Is�X� for 
 � s � t � T �

�iii� E	�It�X�� Is�X��
�jFs� � E	

R t
s X

�
udhMiujFs�� or hI��X�it �

R t
� X

�
udhMiu�

�iv� It��� is for each t a linear operator on L��T �
�v� jjI��X�jj � �M �X�� in particular IT ��� is an isomorphism from L��T into

Mc
��

Having de�ned the stochastic integral with respect to M for X 
 L��T � we
extend its de�nition to the closure of L��T � which is L�T � as follows�
Let X 
 L�T � then there exist a sequence fXng in L��T such that �M �X

n�
X� � 
� Using the isometry property we then have jjI��Xm� � I��X

n�jj �
�M �X

m � Xn� � 
� for m�n � �� So fI��Xn�g is a Cauchy sequence in
Mc

�� Hence it has a limit� denoted by I��X�� It is easy to show� by looking at

��




mixed sequences� that this limit doesn�t depend on the particular choice of the
sequence fXng� which makes the de�nition of I��X� unambiguous� We will use
the following notations IT �X� �

R T
�
XsdMs �

R T
�
XdM �

Clearly It�X� �
R t
�
XsdMs is de�ned similarly for t � T and It�X� �

IT �����t
X��
All the properties of Proposition ��� remain valid except that IT ��� now

acts as an operator on L�T and it is an isometry from this set onto its image�
Moreover one can show that for X�Y 
 L�T

hI��X�� I��Y �it �
Z t

�

XsYsdhMis� t � T� �����

The properties above� in particular equation ����� can be extended by looking
also at other martingales inMc

�� For instance we have

hI��X�� Nit �
Z t

�

XsdhM�Nis� t � T �����

for X 
 L�T �M� and N 
M�� And

hI��X !M�� I��Y !N�it �
Z t

�

XsYsdhM�Nis� t � T �����

for M�N 
Mc
�� X 
 L�T �M� and Y 
 L�T �N��

In fact equation ����� provides us with a characterization of the I��X !M��

Proposition ���� Let " 
 Mc
� be such that 	N 
 M� the quadratic covaria�

tion process h"� Ni is equal to R �� XsdhM�Nis on 	
� T �� Then " and I��X !M�
are indistinguishable on 	
� T ��

Furthermore we have the important chain rule�

Proposition ���� If M 
 Mc
�� X 
 L�T �M� and Y 
 L�T �I��X !M��� then

XY 
 L�T �M� and I��Y X !M� � I��Y ! I��X !M��� which in di
erential notation
reads �Y X�dM � Y �XdM��

�� Extension to local martingales

The de�nition of stochastic integral as we have seen it in the previous section
will be extended in the present one� It had been experienced that there was
need for a generalization of the martingale property� The resulting class of local
martingales proves to be closed under a wider set of operations than the class
of martingales�
First we de�ne stopping times� A stopping time T �for F� is a random

variable with values in 	
��� such that the set fT � tg belongs to Ft for
all t 
 	
���� A fundamental or localizing sequence of stopping times is an
increasing sequence T�� T�� � � � such that limn�� Tn ���

���



By a localization one means that one can �nd a suitable localizing sequence
of stopping times and that one studies a process on each of the random intervals
	
� Tn��

Definition ���� A stochastic process X is called a local martingale �with re�
spect to F� if there exists a localizing sequence T�� T�� � � � of stopping times such
that every process fXTn�t� t � 
g is a martingale� A continuous local martin�
gale is a local martingale with continuous paths�

The class of local martingales is denoted by Mloc and the one of continuous
local martingales by Mc

loc�

Clearly� every martingale is a local martingale� because we can take Tn � ��
Having extended the class of martingales� we now also extend the class of
integrands L�T that we had in the previous section� But before doing so we
need the following result� Let M�N 
 Mc

loc� Then there exists a unique �up
to indistinguishability� process of bounded variation denoted by hM�Ni such
that MN � hM�Ni 
 Mc

loc �compare with �������
If M � N we simply write hMi and this process has nondecreasing paths�

This process shows up in the de�nition of the class of integrands�
By de�nition the class P�T � also denoted by P�T �M�� for givenM 
Mc

loc� is

the class of progressive processes X such that
R T
� X�

t dhMit is �nite a�s�
By localization and truncation it is possible to de�ne for t � T the stochastic

integrals It�X !M� for M 
 Mc
loc and X 
 P�T �M�� as an a�s� limit of certain

stochastic integrals IT �X
n!Mn�� where all the Mn belong to Mc

� and Xn 

L�T �Mn� for all n� One can show that this stochastic integral� viewed as a
process in t� is again a continuous local martingale on 	
� T �� Another important
property is that equations ����� and ����� are still valid for continuous local
martingales M and N and X and Y such that the stochastic integrals exist�
Also sample path properties of stochastic integrals with respect to anM 
 Mc

�

as a rule carry over to the stochastic integrals with respect to continuous local
martingales� However properties involving �conditional� expectations are in
general lost�
As in the previous section I�X !M� can be characterized as the unique

�up to indistinguishability� continuous local martingale "� such that h"� Ni �R �
� XsdhM�Nis �compare with proposition �����

	� The It
o rule

The It#o rule� also called the change�of�variable rule� could be called the most
important operational rule in stochastic calculus� To prepare for it we need an
auxiliary concept� fundamental in the theory of stochastic processes�

Definition 	��� A stochastic process X is called a continuous semimartingale
if the following decomposition holds

Xt � X� �Mt �Bt� 	t � 
� �
���

���



where M is a continuous local martingale with M� � 
 and B a continuous
adapted process of bounded variation over bounded intervals with B� � 
�

We have already encountered an example of a semimartingale� namely when
X is the square of a martingale N � in which case the process B in equation
�
��� becomes the quadratic variation process hNi� or more general when X is
a submartingale�
The decomposition of a continuous semimartingale is unique� Therefore we

are ready to de�ne the stochastic integral with respect to a semimartingale�
Let X be a continuous semimartingale with decomposition �
��� and let Y be
a progressive process �in particular measurable� and assume that the pathwise

de�ned Lebesgue�Stieltjes integral
R T
� jYsjdBs is �nite a�s� Assume also that

Y 
 L�T �M�� then the stochastic integral of Y with respect to X is de�ned asZ t

�

YsdXs ��

Z t

�

YsdMs �

Z t

�

YsdBs� t � T� �
���

Here the �rst integral is of course a stochastic integral�

Theorem 	��� Let X be a continuous semimartingale as in ����� and f 

C��R�R�� Then f�X� is again a continuous semimartingale and for all t � 


f�Xt� � f�X�� �

Z t

�

f ��Xs�dXs �
�

�

Z t

�

f ���Xs�dhMis

� f�X�� �

Z t

�

f ��Xs�dMs �

Z t

�

f ��Xs�dBs

�
�

�

Z t

�

f ���Xs�dhMis� �
���

Notice that the semimartingale decomposition of f�X� has
R �
�
f�Xs�dMs as its

local martingale part and that this stochastic integral is well de�ned since by
continuity of f � and X almost all sample paths of f ��X� are bounded over
bounded intervals� hence

R t
� f

��Xs�
�dhMis is �nite a�s� �cf� Section ���

For a semimartingale X with decomposition �
��� one usually writes hXi
instead of hMi� With this convention equation �
��� is often written in the
di�erential form

df�Xt� � f ��Xt�dXt �
�

�
f ���Xt�dhXit�

Application of ordinary calculus rules would only give the �rst integral in the
right hand side of �
���� The second one is sometimes referred to as It#o�s cor�
rection term� The next example gives some insight in and explains the presence
of the correction term�

Example� Take X � M � W � with W standard Brownian motion� Applica�

tion of the It#o rule with f�x� � x� yields W �
T � �

R T
� WtdWt � T � We clearly

�





see that we can�t do without the correction term� since EW �
T � T � whereas the

stochastic integral� being a martingale� has expectation zero� Now we consider
a discrete time version of the integral� Let �n � f
 � t�� � � � � tn � Tg be a par�
tition of 	
� T � and de�ne Wn

t �
Pn��

i	� Wti��ti�ti��
�t�� Then �W �W �Wn�� �Pn��
i	� �ti���ti��� which tends to zero for partitions whose meshes tend to zero�

Elementary algebra shows that

�

Z T

�

Wn
t dWt � �

n��X
i	�

Wti�Wti�� �Wti� �W �
T �

n��X
i	�

�Wti�� �Wti�
��

The term in the left hand side of this equation tends to �
R T
� WtdWt� and the

sum in the right hand side to T in probability �see Section ��� which gives the
desired result�

Example� Let f�x� � ex and M 
 Mc
�� with M� � 
� De�ne Z by Zt �

exp�Mt � hMit�� Application of It#o�s rule yields that Z satis�es

Zt � � �

Z t

�

ZsdMs� �
���

The process Z thus de�ned is known as the Dol$eans exponential of M � and is
often denoted by Z � E�M�� We will return to it� when we discuss Girsanov�s
theorem in Section ��

It#o�s rule is also a convenient tool to prove L$evy�s characterization of Brownian
motion� which is stated as

Proposition 	��� Let M be a continuous local martingale relative to a �l�
tration F� If hMit � t� then M is standard Brownian motion relative to F�

The key to the proof� of which we present only the main steps� is to apply It#o�s
rule with the function f�x� � exp�iux�� The result is

exp�iuMt� � exp�iuMs� �

Z t

s

exp�iuM	 �dM	 � �
�
u�
Z t

s

exp�iuM	�d��

Multiplication of this equation by exp��iuMs� and taking conditional expec�
tation with respect to Fs gives an integral equation for the conditional charac�
teristic function E	exp�iu�Mt �Ms��jFs�� which is then shown to be equal to
exp�� �

� �t� s��� This proves the proposition� �

The assertion of Theorem 
�� can be extended to multivariate processes� We
mention one important application� the product rule for semimartingales�

Proposition 	��� Let X and Y be �real valued� continuous semimartingales�
Then

XTYT � X�Y� �

Z T

�

XtdYt �

Z T

�

YtdXt � hX�Y iT � �
���

�
�



where hX�Y i stands for the quadratic covariation of the �local� martingale parts
of X and Y �

This result formally follows from the It#o�rule for multivariate processes by
considering the bivariate process �X�Y � and f � �x� y�� xy�

�� Representation theorem

In many areas of applied probability� the martingale representation Theorem
�theorem ��� below� for so called Brownian martingales is a key tool in obtain�
ing certain results� For instance in mathematical �nance it is used to show that
in the Black Scholes framework the market is complete� i�e�� in the language
of �nance� every contingent claim is attainable �see Section ���� Another ap�
plication is in the derivation of the equation of the optimal �lter for di�usion
observations� First a weak result�

Proposition ���� Let M be a continuous local martingale with respect to a
�ltration F and assume that hMi � R �

�

�t dt for a strictly positive process 
�

Then there exists a Brownian motion W with respect to F such that M �
I��
!W ��

The proof of this result is rather simple� 
 can be shown to be a progressive
process and 
�� belongs to L�T �M� for every T 	 
� Hence the stochastic
integral W �� I��


��!M� is well de�ned and hW it � t� Hence we obtain from
Levy�s characterization that W is a standard Brownian motion�
Actually� the requirement that 
 is strictly positive can be dropped at the

cost of getting a Brownian motion on an enlarged probability space�
Below we present a stronger result after a general statement� Assume that

the �ltration F satis�es the usual conditions� Let N 
 M�� We denote by
M��N� the class of all stochastic integrals I�X !N� for X belonging to L�T �N�
for all T � 
�
Proposition ���� Let M 
 M�� Then there exists a unique �up to indistin�
guishability� element M� 
 M��N� �
orthogonal projection�� such that M�M�

is orthogonal to M��N� in the sense that its quadratic covariation with every
element of M��N� is the zero process�

If we take in this proposition N to be a standard Brownian motion W � and we
take F to be the �ltration generated byW augmented with the P �null sets of F �
then we obtain a much stronger result� that tells us that the �projection error
is zero�� In this case a martingale M 
M� is also called Brownian� because of
the special choice of the �ltration�

Theorem ���� LetW be a standard Brownian motion adapted to its own �ltra�
tion augmented with the P �null sets� Let M be a square integrable martingale�
adapted to the same �ltration with M� � 
 �a Brownian martingale�� then there
exists a progressive process Y 
 L�T �W � for all T � 
� such that

�
�



Mt �

Z t

�

YsdWs� 	t � 
� �����

In particular M is a continuous martingale� Y is essentially unique in the
sense that if eY is another process that satis�es equation ������ then E

R�
�
�Yt�eYt��dt � 
�

If M is a local martingale� then ����� is still valid for some Y 
 P�T �W �� but
the property Y 
 L�T �W � is lost in general�

We omit the proof of this theorem� but emphasize its content� Every martingale
that at any time t can be considered as a �functional� of Ws� s � t� is actually
a stochastic integral�
This feature has no counterpart in discrete time� For instance if ��� ��� � � � is

a sequence of iid standard normals� then Mt �
Pt

k	� �
�
k de�nes a martingale�

but there is clearly no �predictable� process Y such that Mt �
Pt

k	� Yk�k �

�� Girsanov
s theorem

The theorem� known under the name of Girsanov�s theorem� that we treat
in this section gives an expression for the Radon�Nikodym derivative of two
measures on the ��algebra FT � Of particular interest is the case� in which
this ��algebra is generated by a Brownian motion up to time T � First we
consider a simple situation common in statistics� in which we in fact deal with
a �nite family of random variables� Let Y�� � � � � Yn be real random variables that
are assumed to be independent and such that each Yi has a normal N��i� 
i�
distribution� Keep the 
i �xed and denote the probability distribution of the
vector Y � �Y�� � � � � Yn� on R

n by P 
� Then the density of P 
 �with respect to
the Lebesgue measure on Rn � is given by

g�y! �� ��

nY
i	�

���
i�
� �
� exp���

�

nX
i	�

�yi � �i�
�


i
��

Consider two possibilities� In the �rst one the �i equal some real numbers ui�
in the second one all the �i are zero� Then we can compute the likelihood ratio
�which is a Radon� Nikodym derivative�

g�Y !u��g�Y ! 
� � exp�

nX
i	�

ui

i
Yi � �

�

nX
i	�

u�i

i
��

Thus� we obtained an expression for the Radon�Nikodym derivative of two
�Gaussian� probability measures� Below we construct the Yi from a Brownian
motion under a given measure and we then de�ne a new measure by selecting
a certain random variable as its Radon�Nikodym derivative with respect to the
given measure�
So let ���F � P � be a probability space and let W be a standard Brownian

motion on this space with respect to its own �ltration� Fix a time interval
	
� T �� Let �n � f
 � t�� � � � � tn � Tg be a partition of 	
� T �� Consider the

�
�



random variables Yi �Wti �Wti�� � i � �� � � � � n� Then the Yi are independent
random variables with each a N�
� 
i� distribution� where 
i � ti � ti���
De�ne now another measure eP � absolutely continuous with respect to P �

on FW
T by its Radon�Nikodym derivative ZT � exp�

Pn
i	�

ui
�i
Yi � �

�

Pn
i	�

u�
i

�i
��

so for F 
 FW
T we have eP �F � � E	�FZT � and

deP
dP � ZT �here and below�

as before� E means expectation under the measure P �� Then under eP the Yi
are still independent� but now they have a N�ui� 
i� distribution� In fact� ZT
equals the likelihood ratio of the independent normal random variables with
N�ui� 
i� and N�
� 
i� distributions respectively that we have seen above�
De�ne now the processX on 	
� T � byXt �

Pn
i	�

ui
�i
��ti���ti
�t� and then the

process L by Lt �
R t
�
XsdWs� Then L is a �Gaussian� martingale under P with

quadratic variation given by hLit �
R t
�
X�
s ds� In particular at time T we get

LT �
Pn

i	�
ui
�i
Yi and hLiT �

Pn
i	�

u�
i

�i
� Hence we have ZT � exp�LT � �

� hLiT �
and with E�L� the Dol$eans exponential of L� ZT � E�L�T � We will also write
Z to denote the process E�L��
We can also compute the covariation process hL�W i �under P � and we get

hL�W it �
R t
�
Xsds� In particular hL�W itk �

Pk
i	� ui� De�ne now the processfW by fWt � Wt � hL�W it� Then fWti �fWti�� � Wti �Wti�� � ui � Yi � ui�

Hence� under the measure eP the increments fWti �fWti�� are independent with
a N�
� 
i� distribution� just as the Yi had under the measure P � Notice that

the variances remain the same� Since fW has continuous paths� this suggests
�and it is true in fact� see Corollary ��� below� that fW is a Brownian motion

under eP � obtained from W by subtracting a process �in this example even a
function� of bounded variation� Notice that Z is a martingale under P with
EZt � EZT � ��
We will now generalize the situation mentioned above� Consider a con�

tinuous local martingale L on the probability space ���F � P �� adapted to a
�ltration F� Let Z � E�L�� so Zt � exp�Lt� �

� hLit� and assume that EZT � �
�and hence EZt � ��	t 
 	
� T ��� then Z becomes a martingale on 	
� T �� A
su�cient condition for this to be true is E exp� �� hLiT � � �� which is known
as Novikov�s condition�
De�ne a new measure eP on FT by eP �F � � E	�FZT �� So ZT is its Radon�

Nikodym derivative with respect to P �
Let now M be another continuous local martingale �adapted to F� and

de�ne the process fM by fM �M � hM�Li�
Theorem ���� The process fM is under the new measure eP a continuous local
martingale on the interval 	
� T �� Moreover the quadratic variation process offM under eP coincides with the quadratic variation process of M under P �

The main ingredients in the proof of this theorem are localization and the fact
that fM is a martingale under eP i
 ZfM is a martingale under P � which is a
consequence of the It#o rule for products �
����

�
�



We specialize to the Brownian case� Let X 
 L�T �W � and L �
R �
�
XsdWs�

With this choice of L we get

ZT � E�L�T � exp�
Z T

�

XsdWs � �
�

Z T

�

X�
s �� �����

Then� de�ning eP as before� we obtain
Corollary ���� The process fW �W �hW�Li �W � R �� Xsds is a Brownian

motion under eP on the interval 	
� T ��

This corollary immediately follows from Theorem ���� since it gives us thatfW is a local martingale under eP with quadratic variation �under eP � at time t
equal to t� The Brownian character then follows from L$evy�s characterization�
Proposition 
���
The application of Girsanov�s theorem in �nance is the construction of

the �equivalent martingale measure�� see Section ��� In problems of statistical
inference for stochastic processes this theorem lies at the basis of maximum
likelihood estimation� This is not surprising in view of the simple situation
that we described in the beginning of this section� To be a bit more precise �we
omit the technical details�� consider that one wants to model the probabilistic
behaviour of some observed continuous process Y on a time interval 	
� T �� One
model is to assume that the probability measure� call it P � on the background is
such that Y is a standard Brownian motion� In another model we assume that
the probability measure is such that Y is a Brownian motion plus drift� meaning
that we have a process X such that Y � R �� Xsds is Brownian motion� If one
assumes that the process X is parametrized by a parameter �� so X � X����
then we write P 
 for the measure that yields Y �R �

�
Xs���ds a Brownian motion�

The likelihood dP �

dP �which is assumed to exist� is then just the ZT of ������ with
X replaced with X��� and W replaced with Y �recall that Y was Brownian
motion under P �� The maximizer of this quantity is then by de�nition the
maximum likelihood estimator of ��

��� Stochastic differential equations

In this section we work on a space ���F � P � and a Brownian motion adapted
to its own �ltration F

W � Moreover on this space lives a random variable �
that is independent of W � Below we will work with the �ltration F� with each
member Ft generated by Ws for all s � t� � and augmented by the P �null sets
of FW

� 
 ����� This �ltration satis�es the usual conditions� and W is still a
Brownian motion with respect to it� cf� Section ��
Let b� � � 	
��� � R � R be two measurable functions� Consider the

following stochastic di
erential equation

dXt � b�t�Xt�dt� ��t�Xt�dWt � X� ��
���

This equation is understood as a shorthand notation for the corresponding
integral version

�
�



Xt � X� �

Z t

�

b�s�Xs�ds�

Z t

�

��s�Xs�dWs� ��
���

The function b is called the drift coe�cient of equation ��
��� and � is called the
di�usion coe�cient� Under appropriate conditions �see below� the Lebesgue�
Stieltjes and stochastic integral on the right hand side of ��
��� are well de�ned�
Heuristically we have the following for a process X that can be represented

by ��
���� Consider the displacement of X over an in�nitesimally small interval
	t� t�dt�� Then the conditional mean of the displacement is E	Xt�dt�XtjFt� �
b�t�Xt�dt and the conditional variance equals �

��t�Xt�dt�
We now introduce the �rst solution concept for the stochastic di�erential

equation ��
����

Definition ����� A stochastic process is called a strong solution of equation
������ with initial condition �� if the following requirements hold�
�a� X is adapted to F�
�b� P �X� � �� � ��

�c�
R t
�
�jb�s�Xs�j� ���s�Xs��ds �� a�s� for all t � 
�

�d� Equation ������ holds a�s� for all t � 
�
One says that strong uniqueness holds for ������ if� given ���F � P �� W and F

as above any two strong solutions with the same initial conditions are indistin�
guishable�

We comment a bit on this de�nition� Condition �b� expresses that � is the initial
condition� Condition �c� is a technical condition on X to make the integrals in
��
��� well de�ned� Condition �d� justi�es that X is called a solution� Finally
condition �a� refers to the �strongness� of the solution� It expresses that we can
interpret ��
��� as a machine that produces at time t the random variable as
an output� if we use Ws� s � t and � as inputs�
We know from the theory of ordinary di�erential equations� that equations

with non�unique solutions exist� Consider for example

dXt � jXtj�dt�X� � 
�

Then we have uniqueness of solutions if 
 � �� whereas for 
 � 
 � � we have

that for any s � 
 the function de�ned by Xt � f�� � 
��t � s��g �
��� is a

solution� Just as for ordinary di�erential equations we have to impose �local�
Lipschitz conditions on the coe�cients of ��
��� to have uniqueness� Notice
that in the last example the function x �� jxj� is locally Lipschitz for 
 � ��
but not for 
 � 
 � �� More precisely we have

Proposition ����� Assume that 	n 
 N � �Kn 	 
 � 	t � 
� jxj� jyj � n it
holds that

jb�t� x�� b�t� y�j� j��t� x�� ��t� y�j � Knjx� yj�
Then strong uniqueness for ������ holds�

�
�



The key of the proof of this proposition is the following� Assume that X andeX are two strong solutions� Then a localization procedure is followed� de�ne
stopping times Sn by Sn � infft � 
 � jXtj 
 j eXtj 	 ng and subtract the two
equations for X and eX � After some manipulations �using that b and � are
locally Lipschitz� one obtains the inequality

EjXt�Sn � eXt�Sn j� � ��t� ��K�
nE

Z t

�

jXs�Sn � eXs�Sn j�ds�

An application of Gronwall�s inequality gives EjXt�Sn � eXt�Sn j� � 
� from
which the assertion of the proposition follows by letting Sn ���
We also know from the theory of ordinary di�erential equations that a local

Lipschitz condition on the coe�cients is insu�cient to guarantee the existence
of a solution for all t 	 
� For example� the equation

Xt � � �

Z t

�

X�
sds

has a solution on 	
� �� only� Xt �
�

��t �
A uniform Lipschitz condition together with a growth condition on the

coe�cients is su�cient for the existence of strong solutions for all t 
 	
����
Proposition ����� Assume that there exists a constant K 	 
 such that for
all t � 
� x� y 
 R the following two inequalities are valid�

jb�t� x�� b�t� y�j� j��t� x�� ��t� y�j � Kjx� yj�
and

jb�t� x�j� j��t� x�j � K�� � jxj��
Then the stochastic di
erential equation ������ has a unique strong solution
de�ned for all t 
 	
���� If moreover E�� ��� then also EX�

t �� for all t�

We highlight some key steps in the proof of this proposition� The idea is to
mimic the Picard�Lindel%of iteration procedure known for ordinary di�erential
equations� So we de�ne a sequence of processes Xk by X� � � and recursively

Xk��
t � � �

Z t

�

b�s�Xk
s �ds�

Z t

�

��s�Xk
s �dWs�

Then� under the condition E�� ��� several computations lead to the estimate
that for all T 	 
 there exists a constant L such that

Emax
s�t

jXk��
s �Xk

s j� � L

Z t

�

EjXk
s �Xk��

s j�ds�

�





Iteration of this equality leads to Emaxs�t jXk��
s �Xk

s j� � C��Lt�k�k& for some
�nite C�� An application of the Borel� Cantelli lemma yields the existence of
a set �� 
 F with P ���� � � such that fXk

� ���g is for each � 
 �� a Cauchy
sequence in C	
� T � �with sup�norm�� The resulting �continuous� limit process
satis�es equation ��
��� on every interval 	
� T � and hence on 	
����
We now turn to another solution concept for a stochastic di�erential equa�

tion� that of a weak solution�

Definition ����� A weak solution of equation ������ consists of

� a probability space ���F � P � together with a �ltration F that satis�es the
usual conditions�

� a process X that is adapted to F�
� a Brownian motion W that is adapted to F�

such that conditions �c� and �d� of De�nition ���� are satis�ed� The measure
� �� P �X� 
 �� is called the initial distribution�
One says that uniqueness in law holds for ������ if for any two weak solutions

����F � P �� F� X�W � and ��e�� eF � eP �� eF � eX�fW �� satisfying
P �X� 
 �� � eP � eX� 
 ���

it holds that X and eX have the same law�

Clearly every strong solution is a weak solution too� Understanding the concept
of a weak solution is a little more problematic� A major di�erence with a
strong solution is that the probability space is now part of the solution� and
that it is no longer required that X is the output of a machine that uses W
as an input� However the distributional properties of a weak solution that is
unique in law are completely �xed� which is su�cient for most purposes as
long as we are only interested in probabilities that certain events �e�g� that
maxt	����
 jXtj � �� takes place� For questions of this kind it is su�cient that
we can model a process X as �part of� the weak solution of a certain stochastic
di�erential equation� For similar reasons� the concept of uniqueness in law is a
reasonable one� There are however other uniqueness concepts�
The following proposition concerns a stochastic di�erential equation with

constant di�usion coe�cient� Existence of a weak solution is established under
a growth condition on the drift only� Lipschitz conditions are not needed� The
proof of this proposition illuminates the absence of adaptiveness in the de�ni�
tion of weak solution as well as the reason why we take a probability space as
part of a weak solution�

Proposition ����� Consider the following stochastic di
erential equation

dXt � b�t�Xt�dt� dWt� t 
 	
� T �� ��
���

Let � be a probability distribution on R� Assume that there is a constant K 	 

such that for all t 
 	
� T � and for all x 
 R it holds that jb�t� x�j � K�� � jxj��
Then there exists a weak solution with initial distribution � on 	
� T ��

�
�



The proof of this proposition proceeds along the following lines� First we pick a
measurable space ���F� together with a �ltration F � fFt� t 
 	
� T �g� a family
of measures fP x� x 
 Rg and a process X that is Brownian and adapted to F
under each P x and P x�X� � x� � �� The growth condition on b ensures that
the process Z de�ned on 	
� T � by

Zt � exp�

Z t

�

b�s�Xs�dWs � �
�

Z t

�

b�s�Xs�
�ds�

is a martingale under each P x� Hence we can apply Girsanov�s theorem to get
that W de�ned on 	
� T � by

Wt � Xt �X� �
Z t

�

b�s�Xs�ds

is a standard Brownian motion under the measure Qx de�ned on FT by dQx

dPx �
ZT � But this is just another way of writing ��
���& The weak solution then
is complete by taking the probability measure P � Q� with Q� de�ned by
Q���� � R���Qx�����dx��
Notice that from the construction of this solution we get the inclusions

FW
t � FX

t � just the opposite of the ones for strong solutions& One can also
establish uniqueness in law�
Of course introduction of two seemingly di�erent solutions concepts is sense�

less if there exists no example of a stochastic di�erential equation that admits
a weak solution� but fails to have a strong one� Below we present such an�
admittedly somewhat arti�cial� example�
Let sgn be the real function de�ned by sgn�x� � �������x� � ������x� and

consider the equation

dXt � sgn�Xt�dWt� ��
���

Notice that we cannot apply Theorem �
�� since the function sgn lacks any
Lipschitz property� Suppose that a weak solution exists� Then the solution
process X is a continuous square integrable martingale with hXit � t� Hence
X is a Brownian motion� because of L$evy�s characterization and consequently
uniqueness in law holds� But for a Brownian X by the same argument the
process W de�ned by dWt � sgn�Xt�dXt is again Brownian� Hence a weak
solution of ��
��� exists� Observe� as a side remark� that along with a weak
solution process X also the process �X is a weak solution and that these
processes have di�erent paths�
Now we observe that sgn�x� � x

jxj�f�gc�x���f�g�x� and that
R �
� �f�g�Xt�dXt

is a square integrable martingale with covariation process
R �
�
�f�g�Xt�dt which

is zero by a property of the zero sets of Brownian motion� see Section ��
Hence� from the last example of Section � we obtain that this martingale is
indistinguishable from zero� Combination of these observations with djXtj� �
�XtdXt � dt �from It#o�s rule� yields the alternative way of writing equation
��
��� as

�
�



dWt �
�

�jXtj�f�gc�jXtj�d�jXtj� � t��

From this we obtain the inclusions FW
t � F jXj

t for all t�
Suppose now that X were also a strong solution� then we would obtain

from condition �a� of De�nition �
�� the inclusions FX
t � F jXj

t for a Brownian
motion X � in other words� the paths of X are determined by those of jX j�
which is absurd� A strong solution of equation ��
��� does not exist�

Example� Consider the equation

dXt � �
Xtdt� �dWt� X�� ��
���

with W standard Brownian motion� 
 and � real constants� This equation has
a unique strong solution� given by

Xt � X� � �

Z t

�

e���t�s�dWs�

Indeed application of the product rule �proposition 
��� to e��t
R t
� e

�sdWs

shows this�
If m�t� denotes EXt� then m�t� � m�
�e��t and if V �t� denotes the variance
of Xt� then V �t� �


�

�� � �V �
�� 
�

�� �e
��t�

One can show that X is a Gaussian process� when X� has a Gaussian distribu�
tion�
If 
 	 
 and X� has a normal N�
�


�

� � distribution� then all Xt have the same
distribution� Moreover� X is then a stationary Gaussian process� with covari�

ance function EXtXs �

�

��e
��jt�sj� This process is known as the Ornstein�

Uhlenbeck process�

Example� Let X be a time varying geometric Brownian motion of the type
Xt � X� exp�B�t� �

R t
� ��s�dWs�� where B 
 C��R� with B��t� � ��t�� � a

measurable function with
R t
� �

��s�ds � � for all t and X� � 
� Application
of It#o�s rule with f�x� � ex gives� that X satis�es the following stochastic
di�erential equation�

dXt � Xt���t� �
�

�
���t��dt�Xt��t�dWt ��
���

It follows from theorem �
��� that for bounded � and � this equation has a
unique strong solution� the one we started this example with�
Without loss of generality we may take B�
� � 
� Assume that X� is a

strictly positive positive random variable� independent of W � Then for t � u
we have log Xt

Xu

� B�t��B�u� �
R t
u
��s�dWs� which is independent of FX

u and

has a normal distribution with mean B�t� � B�u� and variance
R t
u �

��s�ds� It
also follows that X is a Markov process�

��




��� Connection with partial differential equations

There exists a wide range of connections between functionals of the �weak�
solution of a stochastic di�erential equation and solutions of partial di�erential
equations� the most simple one being the following� Let W be a standard
Brownian motion� Then Wt� which has a N�
� t� distribution for t 	 
� has
density x �� p�t� x� � �p

��t
exp�� �

�tx
��� One easily shows that p is a solution

of the heat equation �u
�t �

�
�
��u
�x� �

Other solutions of the heat equation are u�t� x� �
R�
�� f�y�p�t� x � y�dy�

when the integral is well de�ned� These solutions can alternatively be written
as Exf�Wt�� where E

x means expectation under the measure for which W
is a Brownian motion starting at x� These solutions have the property that
u�
� x� � f�x��
Something similar holds for the densities at times t �if they exist� of a

solution of a stochastic di�erential equation� The resulting partial di�erential
equation is known as the Fokker�Planck equation� In this section we concentrate
on the Cauchy problem�
As an appetizer we consider the heat equation again� Consider a solution

u�t� x� � Exf�Wt�� Fix a terminal time T and de�ne v�t� x� � u�T�t� x�� Then
v solves the backward heat equation �v

�t �
�
�
��v
�x� � 
 with terminal condition

v�T� x� � f�x� and v�t� x� � Exf�WT�t�� However� if we write v�t� x� in
integral form� then v�t� x� �

R
R
f�y�p�T � t� x�y�dy� But y �� p�T � t� x�y� is

for standard Brownian motion also the conditional density ofWT givenWt � x�
Denoting expectation with respect to this density by Et�x� we get v�t� x� �
Et�xf�WT ��
Now we turn to a more general situation� that involves a partial di�erential

equation� that reduces to the backward heat equation by a proper choice of the
coe�cients� Consider again equation ��
���� with the di�erence that we take
as initial condition Xt � x for some t and x and we look for solutions on 	t����
We assume that a weak solution exists� that is unique in law and we denote
the probability measure P that is part of the weak solution by P t�x and the
corresponding expectations by Et�x�
Introduce the di�erential operators At de�ned by

�Atf��x� � b�t� x�f ��x� �
�

�
���t� x�f ���x��

The Cauchy problem is the following� Find a function v 
 C����	
� T ��R� that
satis�es for given functions x �� f�x�� �t� x� �� g�t� x� and �t� x� �� k�t� x� the
partial di�erential equation

�v

�t
�Atv � kv � g� ������

with terminal condition

v�T� x� � f�x�� x 
 R� ������

���



The functions f � g and k are supposed to be not too wild �we don�t enter
into details� nonnegativity is one possibility�� whereas the coe�cients of At

are supposed to satisfy the requirements of Proposition �
��� The following
proposition �for the case where X is Brownian motion starting at x known
as the Feynman�Kac formula� gives an expression for v in terms of the weak
solution of ��
����

Theorem ����� If v is a solution of the Cauchy problem and X the unique in
law weak solution of ������ with Xt � x� then v can be represented as

v�t� x� � Et�x	f�XT � exp��
Z T

t

k�s�Xs�ds�

�

Z T

t

g�s�Xs� exp��
Z s

t

k���X
�d��ds�� ������

Hence� the solution v is unique�

In Section �� we will need this formula only for g � 
 and k � 
� We will
explain� in heuristic terms� by using It#o�s rule the form of the solution ������
for this case� Let X be a �weak� solution of equation ��
��� with some initial
condition and let v be a su�ciently smooth function of t and x� Consider the
process m de�ned by

mt � exp��
Z t

�

k�s�Xs�ds�v�t�Xt�� ������

Application of It#o�s rule to m yields the following �where subscripts denote
partial derivatives�

dmt � exp��
Z t

�

k�s�Xs�ds�	��k�t�Xt�v�t�Xt� � vt�t�Xt�

� b�t�Xt�vx�t�Xt� �
�

�
���t�Xt�vxx�t�Xt��dt

� vx�t�Xt���t�Xt�dWt��

Hence we see that if we take v to be a solution of equation ������ with g � 
�
the process m becomes a �local� martingale�
Conversely� let Ejf�XT �j � � and consider the martingale m on 	
� T �

de�ned by

mt � E	f�XT � exp��
Z T

�

k�s�Xs�ds�jFt�

and let vt � mt exp�
R t
� k�s�Xs�ds� � E	f�XT � exp��

R T
t k�s�Xs�ds�jFt�� Due

to the Markovian character ofX � we can write vt � v�t�Xt� and then v�T�XT � �
f�XT �� Again applying It#o�s rule we get equation ������ back with Xt as the
second variable of v�

���



In the theory of option pricing we get for v�t� x� the price at time t of a
European call option with maturity time T and exercise price q if x� is the price
of the underlying asset at time t by setting f�x� � �x� q�� �for a real number
r we write r� � maxfr� 
g�� g � 
 and k the interest rate� This will be shown
in Section ���

��� Applications to the theory of Option Pricing

In this section we consider a market in which two assets are traded� one called
stock and the other called bond� We assume that the bond price P��t� evolves
deterministically in time according to the ordinary di�erential equation

dP��t� � r�t�P��t�dt� ������

Here r is the interest rate function� which is assumed to be bounded�
The price P��t� of the stock� the risky asset� is random and evolves according

to the stochastic di�erential equation

dP��t� � b�t�P��t�dt� ��t�P��t�dWt� ������

Here b�t� is called the mean rate of return of the stock and ��t� the volatil�
ity� Both b and � are assumed to be deterministic and bounded measurable
functions� We also assume that inff���t� � t � 
g 	 
�

W is standard Brownian motion on a space ���F � P �� and we take the
�ltration to be the one that is generated by W � augmented with the P �null
sets of F � We have seen in Section � that this �ltration satis�es the usual
conditions�
Under the stipulated conditions ������ has a unique strong solution� given

by the example in Section �
 with ��t� � b�t� � �
��

��t�� Notice that P��t� is
always nonnegative if the initial value is so�
We will start to work under the assumption that the interest rate is zero�

Then we may also assume without loss of generality that P��t� � � for all t�
since it is constant� As a matter of fact� one then uses the price of the bond as
the unit in which all other prices are expressed� We write Pt for P��t��
Consider an agent who owns at time t the number N��t� of units of the

bond and N��t� units of the stock and that his initial endowment is x � 
�
Then his wealth Xt at time t is given by Xt � N��t�Pt �N��t�� We allow the
Ni�t� to be real numbers and hence to take on negative values as well� N��t�Pt
is called the portfolio process �of the stock� and will be denoted by �t and the
bivariate process �N�� N�� is called an investment strategy or trading strategy�
We assume that changes in the wealth are only due to changes in the stock

price� or if the stock price would be constant over some time interval� the agent
may change the numbers of the two assets only in such a way that his wealth
remains the same �the investment strategy is then called self��nancing�� Then
we have that

dXt � N��t�dPt ������

� b�t��tdt� ��t��tdWt� ������

���



As a matter of fact� equation ������ is in mathematical terms the de�nition of
a self��nancing strategy if the bond price is constant and equal to ��
We impose the reasonable condition that for some time T � the endpoint of

the interval of trading times�
R T
�
��t dt �

R T
�
N��t�

�P �
t dt is a�s� �nite� Then the

stochastic integral in equation ������ is well de�ned� see Section ��
Notice that for an empty portfolio� �t � 
� the wealth process is constant�

Xt � x � 
� We will only consider investment strategies for which the resulting
wealth process is nonnegative� These strategies are called admissible�
The wealth process would be a local martingale if b�t� were identically

zero� We accomplish the same result by a change of measure� using Girsanov�s
theorem� Let ��t� � b�t����t�� then � is bounded� De�ne Z � E�� R �� ��s�dWs�

for t � T � Then Z is a martingale on 	
� T � and we can de�ne the measure eP
on FT by deP

dP � ZT � One easily sees that these two measures are equivalent on
FT � In the �nancial literature this measure is called the equivalent martingale
measure� Expectation with respect to eP is denoted by eE�
Application of Girsanov�s theorem� or rather Corollary ���� yields that fW

with fWt � Wt �
R t
�
��s�ds is a Brownian motion under eP � Using equation

������ and the de�nition of fW � we obtain
dXt � ��t��tdfWt� ������

which makes the wealth process a nonnegative local martingale under the new
measure eP � This fact we will use to show that eEXT � x�
Let fTng be a fundamental sequence for X � so fXTn�t� t 
 	
� T �g is aeP �martingale for each n� Then Fatou�s lemma gives
eEXT � eE lim

n��XTn�T � lim infn��
eEXTn�T � eEX� � x�

We de�ne a contingent claim as a nonnegative FT �measurable random variable�
The investment strategy in this context is called hedging against the contingent
claim if it is admissible and if the the resulting �nonnegative� wealth process
X with X� � x is such that XT � fT �
We now de�ne the fair price of the contingent claim fT at time t � 
 as the

smallest number x � 
� such that there exists a hedging investment strategy
with initial wealth x� That this de�nition is reasonable can be argued as follows�
Suppose that the above minimum is x�� Then nobody wants to pay a price
x 	 x�� since for x� he will already be able to �nd a hedging strategy resulting
in a terminal wealth equal to fT � The problem we will address now is how to
compute this minimum�
Let x be a value of the initial wealth for which a hedging strategy exists�

We have seen that for any admissible strategy process it holds for the resulting
wealth process that eEXT � x� So if the strategy is hedging we obtain eEfT � x�
We conclude that eEfT is a lower bound for the fair price of the contingent claim�
Next we show that for an initial wealth equal to eEfT a hedging strategy

exists �the contingent claim is then called attainable�� thus obtaining that eEfT
���



equals the fair price� Consider the martingale M de�ned by Mt � eE	fT jFt��eEfT � We apply the representation Theorem ��� for Brownian martingales�
there exists a progressive process such that Mt �

R t
�
YsdfWs� We can do this

since fW is obtained by a deterministic shift fromW � so fW andW generate the
same �ltration� and because the eP �null sets of FT are the same as its P �null
sets�
Choose �t � Yt��t and consider the corresponding wealth process with

some initial value x� From equation ������ we �nd that dXt � YtdfWt� Hence

we get Xt � x �Mt � eE	fT jFt� � eEfT � x� This holds for any x� so we take

x � eEfT � Then Xt � eE	fT jFt� � 
 and in particularXT � fT a�s� So we found

a hedging strategy against fT for the initial endowment eEfT and we conclude
that eEfT is the fair price of the contingent claim at t � 
� As a matter of fact
for each t � T the fair price of the contingent claim is given by ft � eE	fT jFt��
This has not completely solved the problem of �nding the fair price of the

contingent claim� we only found a characterization of the fair price� An explicit
expression is usually not available� The Black�Scholes framework enables one
to give such an expression� In this framework the contingent claim at hand is
the terminal payo� of a European call option� fT � �P��T � � q��� where q is
the exercise price at maturity� We will return to this later in this section�
So far we have assumed that r was zero� In the case where this is not true� we

de�ne Pt � P��t��P��t�� If we now denote by eX the discounted wealth process�

then eXt � P��t�
��Xt � P��t�

���N��t�P��t��N��t�P��t�� � N��t�Pt�N��t� as
before� Furthermore� we now call the investment strategy self��nancing� if the
di�erential of the discounted wealth process is equal to the right hand side of
������� This is equivalent to having for the wealth process X itself the relation

dXt � N��t�dP��t� �N��t�dP��t��

again re�ecting the idea that changes in the wealth process are due to changes
in the stock or bond prices only�
The rest of the story is as before upon noticing that in equation ������ we

have to replace X with eX� � with the discounted portfolio process tilde�t �
P��t�

���t� b�t� with b�t� � r�t� and that we apply Girsanov�s theorem with

��t� � b�t��r�t�

�t� � The �nal result is that the fair price ft of the contingent claim

fT at time t becomes eE	 P��t�P��T �
fT jFt� or� in discounted terms� 'ft �� ft

P��t�
�eE	 'fT jFt�� as before�

Using the Markov property of both P� and P we can write ft � v�t� P��t���
t � T and 'ft � 'v�t� P �t��� t � T �
The functions v and 'v are related by

v�t� x� � 'v�t�
x

P��t�
�P��t�� ������

Using the results of Section �� we can then write partial di�erential equations
for both v and 'v� We get �indicating partial derivatives by subscripts� using

���



the stochastic di�erential equations for both P and P� under eP
'vt�t� x� �

�

�
���t�x�'vxx�t� x� � 
 ����
�

vt�t� x� �
�

�
���t�x�vxx�t� x� � r�t�xvx�t� x� � r�t�v�t� x� � 
� ������

Indeed the relation ������ transforms the above two partial di�erential equa�
tions into each other� We concentrate on equation ����
� and take ��t� � ��
Let for this case u�t� x� � 'v�T � t� x�� Then we have

ut � �
�
x�uxx � 
� ������

Let now (��t� �
R t
� �

��s�ds� and take 'v�t� x� � u�(��T ��(��t�� x�� Then this 'v
solves equation ����
� if u is a solution of equation ������ and 'v�T� x� � u�
� x�
and v and u are related by

v�t� x� � u�(��T ��(��t��
x

P��t�
�P��t�� �����
�

Hence� instead of solving the rather complicated looking equation ������ it
su�ces to solve equation ������� If we consider ������ together with the initial
condition

u�
� x� � �x� k��� �������

we �nd by using methods from the theory of partial di�erential equations
�which reduce ������ to the heat equation� cf� Section ��� the solution

u�t� x� � x"����t� x�� � k"����t� x��� �������

where " is the standard normal distribution function and �
 is given by
�
�t� x� � �p

t
�log x

k � �
� t�� So equations �����
�� ������� and the substitu�

tion k � q
P��T �

give the fair price of a European call option with exercise price

q in the Black�Scholes framework with time varying interest function r and
time varying volatility function ��
As a historical note we mention that in their paper 	�� Black and Scholes

worked with equation ������ for constant interest rate r and constant volatility
parameter �� In this case we get the explicit �Black and Scholes option pricing�
formula

ft � P��t�"�
�

�
p
T � t

�log
P��t�

q
� �T � t��r �

�

�
����� �

�e�r�T�t�q"� �

�
p
T � t

�log
P��t�

q
� �T � t��r � �

�
������ �������

There exists also an alternative way of arriving at equation �������� We use the
properties of geometric Brownian motion as we have seen them in the example
in Section �
� Recall that the fair price ft of a contingent claim fT is given

by ft � eE	 P��t�P��T �
fT jFt�� In the European call option framework we then get

ft � e�r�T�t� eE	�P��T �� q��jFt�� Since under eP the price P� satis�es
���



dP��t� � P��t��rdt � �dfW ��
we get

ft � e�r�T�t� eE	�P��t�e�r� �
�

���T�t��
�eWT�eWt� � q��jFt��

Denote by � the density of a standard normal random variable and let st be
the solution of P��t�e

�r� �
�

���T�t��st


p
T�t � q � 
� Then

ft � e�r�T�t��
R�
st

P��t�e
�r� �

�

���T�t��z
pT�t��z�dz

� R�
st

q��z�dz�� �������

Both integrals in ������� can be evaluated explicitly in terms of the cumulative
distribution function "� which after some calculations again yields ��������

��� Final remarks

The theory of stochastic integration and stochastic di�erential equations that
we outlined in these notes used a continuous �local� martingale as the basis
process� There also exists a similar theory� in which the continuity assumption
is dropped� As a result� the class of integrable processes becomes smaller if
one wants to keep the property that a stochastic integral with respect to a
local martingale is a local martingale again� This smaller class of processes is
formed by the predictable processes� Directly from the de�nition of predictable
process one sees that every left continuous adapted process is predictable �so
for left continuous adapted processes the distinction between predictable and
progressive disappears�� The construction of a stochastic integral in this case
parallels to a large extent what we have done in Section �� In particular the
simple processes are again dense in the class of predictable ones under a suitable
metric� Obviously the simple processes� de�ned in Section � are predictable�
since they are left continuous and adapted�
The extension of the theory to encompass also integration with respect to

discontinuous local martingales is quite natural from a practical point of view�
Discontinuous processes are widely used� the Poisson process being the most
well known� If N is the standard Poisson process� thenMt � Nt� t is a typical
example of a discontinuous martingale� In the books 	��� 	��� 	�� or 	�� a general
theory of stochastic integration is treated�
For clarity of exposition we con�ned ourselves to real valued process� The

extension to multivariate processes� stochastic integrals and stochastic di�er�
ential equations in higher dimensions is often rather straightforward� modulo
the usual complications that pop up in multidimensional analysis�
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