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In this paper the essentials of stochastic integration with respect to continuous
martingales are reviewed. The presented results are illustrated by applying them
to the theory of option pricing.

1. INTRODUCTION

The purpose of this paper is to summarize a number of results from stochastic
calculus that are of fundamental importance in advanced mathematical finance.
The emphasis will be on the concepts from probability theory, stochastic pro-
cesses and stochastic integration theory. Throughout the paper we will hint at
applications of the presented results to problems in mathematical finance, that
are treated in Section 12.

A variety of good textbooks on the subject is available, each with its own
flavour. We mention ROGERS AND WILLIAMS [10], REVUZ AND YOR [9],
CHUNG AND WILLIAMS [2], OKSENDAL [7], PROTTER [8]. For the prepara-
tion of this paper I heavily leaned on the book by KARATZAS AND SHREVE [5],
which was my main source of inspiration. Readers are supposed to be familiar
with some measure theory and the measure theoretic foundation of probability.
In these notes proofs are usually not given, although sometimes key steps of
a proof are indicated to give the reader an idea of the flavour of the methods
that are used.

The probably most famous model that is used in the theory of option pricing
is that of BLACK AND SCHOLES [1]. One of its ingredients is an equation that
describes the evolution of the price P; of a risky asset over time. We give the
equation first, and after that we discuss what is meant by it and we explain
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also unknown quantities. Let b be a (measurable) function and o a constant.
The equation reads

dPt = b(t)Ptdt-l-(fPtth, P(). (].].)

Sometimes this equation is also written in its integral form
t t
P, =P +/ b(s)Psds + a/ P,dWws. (1.2)
0 0

The first equation (1.1) is called a stochastic differential equation, whereas the
second one (1.2) can be called a stochastic integral equation. It is common
practice to work with the first one, having in mind the interpretation that it is
an abbreviation of the second equation.

Looking at equation (1.1) one is faced with a number of questions. First,
what is meant by W, dW; and [, P,dW,?

W is a stochastic process called (standard) Brownian motion, by dW; we
mean an infinitesimally small increment of this process over a time interval
(t,t+dt) and finally fot P,dW; is called the stochastic integral of P with respect
to W. Furthermore P obviously looks as a solution of (1.1). But what is the
solution concept of a stochastic differential equation?

Below we will define in this order what Brownian motion is, what a stochas-
tic integral is and what (a solution of) a stochastic differential equation is. The
theoretical framework in which this will take place is that of the general theory
of stochastic processes, and (sub)martingales in continuous time. Occasionally
we will use examples from discrete time, when this leads to better understand-
ing. Some fundamental issues of this theory will be discussed in the next
section.

2. GENERAL SETTING

As usual in probability theory we assume that we work with a probability space
(Q,F, P). Since we will deal with (continuous time) stochastic processes we will
also assume to have a filtration F, that is a family of sub o-algebras {F; : t > 0}
of F with the property that Fy C F; for all s < t. The interpretation is that
as time proceeds, we have a growing information pattern to our disposal. The
quadruple (2, F,F, P) is called a filtered probability space.

We also frequently need the assumption that F satisfies the usual conditions,
a technical term meaning two things: F is right continuous, i.e. (5o Fite = Fi
for all ¢ > 0 and that Fy contains all the P-null sets of F.

We will also use the notation F;_ for the smallest o-algebra that contains
all Fs for s < t, and F4 for the smallest o-algebra that contains all Fy for all
s. A filtration that is right continuous and satisfies F; = F; for all ¢ is called
continuous.

By B or B(R) we denote the Borel o-algebra on R. In general we denote by
B(E) the Borel sets of a topological space E. A real valued stochastic process
X on [0,00) is a collection {X; : ¢ > 0} of random variables. So all the maps
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X: : (Q,F) —» (R,B) are measurable. In particular X is a function of two
variables, w and t. Its values are denoted by X (w,t) or by X;(w).

This definition suffices in discrete time for most purposes. However, if we
view X as a map from  x [0, 00) into R then, in general, that this map is not
measurable as a function of the pair of variables (w,t), where measurability
refers to the product o-algebra F ® B([0,00)) on © x [0,00). Here the heart
of the problem is of course that we deal with an uncountable set of random
variables and, as is known, uncountably many operations easily destroy certain
measurability properties.

Here are some other relevant measurability concepts. Consider a stochastic
process X. Then

— X is called measurable if X : (2 x [0,00), F ® B) — (R, B) is measurable.

— X is called adapted to I if for all ¢t the random variable X; is F;-measurable.

— X is called progressively measurable (or progressive) with respect to I if for
all ¢ the map (2 x [0,¢], F ® B([0,t]) = (R, B) is measurable.

If there is no ambiguity about the filtration at hand, we will simply speak of
an adapted or a progressive process.

Adaptedness can be interpreted as follows. Suppose that the information
comes to us in the form of observations of a stochastic process Z, meaning
that the F; are generated by Z, so F; = 0{Zs,s < t}, for all ¢ > 0. In such
a case we often write 77 instead of F; and FZ instead of F. If X is adapted
to FZ | then X, is a functional of the collection {Z;,s < t}. Progressiveness is
a stronger property, a technical concept that one needs to ensure that certain
dynamic transformations of adapted processes remain adapted. It is assured
in a number of cases, see below.

The definition of X as a stochastic process was in terms of the random variables
(measurable functions) X;. Alternatively we can freeze a variable w and look
at the function X (w) : [0,00) — R. The functions X (w) are called the sample
paths of X. Some properties of a process X refer to its sample paths. For
instance, X is said to be (left, right) continuous if all the sample paths X (w)
are (left, right) continuous.

ProPOSITION 2.1. Let X be a stochastic process. Then
(i) X is measurable and adapted if it is progressive.
(11) X is progressive, if it is adapted and left (or right) continuous.

EXAMPLE. Assume that for a progressive process X the expectations Efot | Xs|ds
are finite for each t. We can then consider the process {fot Xsds,t > 0}. Pro-
gressiveness of X ensures by application of Fubini’s theorem that this process
is adapted again, and even progressive in view of Proposition 2.1 by continuity
of its sample paths.

In the theory of stochastic process there are two important concepts of de-
scribing in what sense two stochastic processes are the same. Two stochastic
processes X and Y are called
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— modifications of each other if V¢ > 0: P(X; =Y;) = 1.
— indistinguishable if P(Vt > 0: X; =Y;) = 1.

We now give an example that illustrates why one sometimes needs that the
filtration satisfies the usual conditions. Suppose that this is the case and that
X is an adapted process. Let Y be a modification of X, then Y is again
adapted, since sets {Y; € B} for B € B differ from {X; € B} by a P-null set.

The following proposition relates the two properties of ‘sameness’.

PROPOSITION 2.2. (i) If X and Y are indistinguishable, then they are modifi-
cations of each other.

(i) If X and Y are modifications of each other and they are left (or right)
continuous, then they are indistinguishable.

EXAMPLE. A number of difficulties with continuous time processes can be
illustrated by analyzing properties of the process C' defined for 2 = [0, 00) by
C(w,t) =1 if w =t and zero else. In this case we also use the Borel o-field on
Q as F and for P we take a measure that is absolutely continuous with respect
to Lebesgue measure.

Clearly, the zero process is a modification of C, whereas P(Vt : C; = 0) =
P(p) = 0.

3. BROWNIAN MOTION

Stochastic process are often specified by attributing properties to them in dis-
tributional terms. This happens already in the following definition. The general
setting is that of the previous section.

DEFINITION 3.1. A stochastic process W on a filtered probability space (2, F,
F, P) is called a standard Brownian motion with respect to F, if the following
properties hold.

(i) Wo =0, a.s.
(i) Wy — Wy is independent of Fs for all t > s.
(iii) Wy — W, has a normal distribution with zero mean and variance equal to
t—s forallt > s.
(iv) W is adapted to F and has continuous sample paths.

The interpretation of W is better understood if we look at its discrete time
analogue w. Let &1,&, ... be a sequence of iid standard normal random vari-
ables. Then we define for integers ¢ the random variable w; = ), ., £ Taking
a suitable probability space and F; = a{&, : k < t}, one easily verifies that the
properties (i) — (#47) hold as well as adaptedness to F. The process w is called
a discrete time random walk and W is its continuous time counterpart with
continuous sample paths.

The immediate question is of course: does Brownian motion exist? The
answer, not unexpectedly, is yes. There are a number of ways to show existence
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of Brownian motion. One is based on the Daniel-Kolmogorov theorem. We
refer for instance to [5] for the precise formulation of this theorem and the
terminology underlying it.

So we introduce the space (R%>) | B(R?:%))), where B(R(>)) is the small-
est o-algebra that makes the finite dimensional projections measurable. Let
for each natural n Q" be a family of distributions on (R", B(R"™)), indexed by
t € R*. Denote by Q the union of all the Q™. The Daniel-Kolmogorov theo-
rem states that if this family is consistent, then on the space (RI%:°°)  B(RI?:>)))
there exists a probability measure P such that the stochastic process X defined
by Xi(w) = w(t) (the coordinate process) has exactly the family Q as its family
of finite dimensional distributions.

Take F defined by F; = 0{X,,s < t}. Then the finite dimensional distri-
butions implicitly defined by properties (i)-(iii) of Definition 3.1 are consistent
and we obtain the existence of a process X that satisfies these properties and
also satisfies the adaptedness requirement of (iv). However, continuity of the
sample paths of X is not established. Here a technical problem appears, be-
cause it can be shown that C[0,00) does not belong to B(RI%>)). Fortunately,
there is a way out. It follows from the Kolmogorov-Centsov theorem that X has
a modification with continuous paths. This gives us the existence of Brownian
motion, since modifications don’t change the finite dimensional distributions.

Another construction of Brownian motion is via weak convergence. The
approach is as follows. Let &,&,... be a sequence of iid (not necessarily
normal) random variables on some probability space with E¢; = 0 and E? = 1.
Let S = >, & and for each n

X7 =n"2{S ) + (nt = [nt]))E 41}

Then the X™ are continuous processes with X /n = n=3S,, for integers m.
Hence each X™ induces a measure, P" say, on (C[0,00), B(C[0,00))). The
following result (Donsker’s invariance principle) holds.

PROPOSITION 3.2. There ezists a measure PV on (C[0, 00), B(C[0,00))) such
that {P"} weakly converges to PV and under which the coordinate process W
defined by Wi(w) = w(t) is a standard Brownian motion. PYW is called the
Wiener measure.

Brownian motion has a number of attractive probabilistic properties. For in-
stance it is an example of a strong Markov process. On the other hand its
paths exhibit a very irregular behaviour. We mention a few examples. First
we need some notation. If I is a compact interval, [a, b] say, we denote by II,,
or IT,,(I) a partition {tg,...,t,} of I with ¢ty = a and ¢, = b. Its mesh m(IL,)
is then max{|t; — t;—1|:i=1,...,n}.

— Almost all paths of Brownian motion are nowhere differentiable.

— The paths of Brownian motion are not of bounded variation over (non-
empty) bounded intervals, so > |W;, — Wy, _,| tends to infinity a.s. if
m(Il,) tends to zero. But
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— The paths of Brownian motion are of bounded quadratic variation over
bounded intervals [a, b]. More precisely, V;, := Y- (Wi, —=W;,_,)? B b—aif
m(Il,,) — 0. In fact, one can show that E(V,,—(b—a))* = Y (ti—ti1)* <
m(IL,) (b —a). If > m(Il,) < co we also have a.s. convergence of V;, to
b—a.

— Almost all zero sets Z(w) = {t : Wi(w) = 0} have Lebesgue measure
zero, are closed and unbounded and have no isolated points in (0,00). In
particular [ 117} (t)dt = 0 a.s.

The first two items of this list can heuristically justified by using the observation
that for all t,h we can write Wy, — W; = VAN(0,1), where we denote by
N(0,1) any random variable that is a standard normal one. Then we see that,
loosely speaking, the difference quotient w is of order h_%, SO we cannot
expect to have a finite limit.

Now look at sums >, |W%- — Wi-1]. A similar way of reasoning suggests

that this is of order n%, which makes it understandable that the paths are not
of bounded variation. We will return to the quadratic variation in the next
section.

In Definition 3.1 we imposed that Wy = 0 a.s. Instead of standard Brownian
motion, we will occasionally consider Brownian motion with an initial condition
different from zero. This is done as follows. Let W be a standard Brownian
motion on some (2, F,P) with respect to its own filtration. Let By be a
random variable with distribution p, independent of W (extend £ if necessary)
and define B; = By + W;. Then B satisfies the conditions of Definition 3.1
with F = FP with the exception of the zero initial condition. We say that u is
the initial distribution of B.

The measure that B induces on (C[0, 00), B(C[0,00))) is usually denoted
by PH. If i is a Dirac measure concentrated at € R (in this case B is called
Brownian motion starting at ), then we use the notation P? instead of P*.

It is a fact that if we augment the filtration F? with the null sets N* of
P* | so we consider the o-fields F}* = F2 vV N'#, then we get a right continuous
filtration and B is still a Brownian motion with respect to this family of o-
algebras. So the filtration {F},¢ > 0} satisfies the usual conditions.

4. SOME MARTINGALE THEORY

DEFINITION 4.1. A stochastic process X is called a martingale with respect to
F if

(1) X is adapted to F,

(ii) E|X:| < oo, for all t >0,

(iii) E[X¢|Fs] = Xs, a.s. for allt > s. X is called a submartingale if we replace

the equality sign in (iii) by >.

The interpretation of property (iii) of a martingale X is that the best guess
of the future value X; given the information up to the present time s is the
current value Xj,.
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ExAMPLE. Let W be a standard Brownian motion with respect to IF, then W
is a martingale. Indeed, since W; — W is independent of Fy for ¢t > s, we have
E[W; — W4|Fs] =0.

ExXAMPLE. Let M be a martingale with respect to I, such that EM? < oo
for all ¢, then X; = M? defines a submartingale. In particular X = W? is a
submartingale. Notice that since the increments W; — W, have variance equal
to t — s, we see by an easy calculation that {W? —¢ : ¢ > 0} is a martingale
again.

As a preparation for the Doob-Meyer theorem below, we consider a submartin-
gale X in discrete time. Define Ay = 0 and recursively

Ap = Ap1 + B[ Xk | Fr—1] — Xp—1.

From the submartingale inequality we obtain that A is an increasing process
(Ar > Ag_1 a.s) and we also see that Ay is Fp_i-measurable (one says that
A is a predictable discrete time process). If we define My = X — A, then
one easily sees that M is a martingale. Hence we have the Doob decomposition
X = M+ A, with an increasing predictable process A and a martingale M. Such
a decomposition is unique. In continuous time, the proof of the corresponding
result is rather deep. We give this result for nonnegative submartingales only.

THEOREM 4.2. Let X be a nonnegative right continuous submartingale, adapted
to a filtration F satisfying the usual conditions. Then X can be decomposed as
X = A+ M, with a martingale M and a right continuous increasing process A,
such that Ag = 0 and every A; is Fy—-measurable. The process A can be chosen
to satisfy Ef([),t] msdAs = Ef(o,t] ms_dAg for every bounded right continuous
martingale m. Moreover, given that A satisfies this last property it is unique
(up to indistinguishability).

We apply this theorem to the special case where X is the square of a martingale
N, satisfying EN}? < oo for every t. Martingales N with this property are called
square integrable and the class of these martingales is denoted by M. The
class of square integrable martingales with continuous paths is denoted by M$.

So, let N € M» and X = N2. For this case we use the special notation
(N) for the process A that appears in the Doob-Meyer decomposition of X.
The process () is called the quadratic variation process, or the predictable
quadratic variation process of V.

This process can be viewed as a cumulative conditional variance of N. To
see this, use that Ny, = E[N¢|Fs] and consider

E[(N; — No?|Fs] = E[N} — N2|F.] = E[(N), — (N)| 7] (4.1)

The last equality follows from the definition of (V).

If we apply this to standard Brownian motion, we get, using previous results,
<W>t =1t.

The name quadratic variation is explained by the following fact. If IT,, are
partitions of [0,¢] as before whose meshes tend to zero for n — oo and N is a
continuous martingale with EN? < co (so N € M), then
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S (Ve = New 1) 5 (N)e. (4.2)
I,

We have already seen this result for N a Brownian motion in Section 3 and one
could take it as the definition of the quadratic variation process. However, since
this characterization is only true for martingales in M$, we prefer to define the
quadratic variation process via the Doob-Meyer decomposition, which applies
to all martingales in Ms. A natural question is then to ask for what happens
with the sum in (4.2) if we drop the continuity assumption on N. One can
show that again the limit in probability exists (see [3] for instance). In the
theory of martingales it is usually denoted by [N]; or [V, N]; and in general it
differs from (NV);. We illustrate this by an example.

Consider a standard Poisson process, that is a process X defined on some
filtered probability space which satisfies conditions (i) and (ii) of Definition 3.1
and with (iii) replaced with the condition that the increments X; — X have a
Poisson distribution with parameter ¢t —s. In particular we have E(X; — X;) =
t — s and var(X; — X5) = t — s. Define then the process N by Ny = X; — ¢
for all t. From the independence of the increments of X one sees that N is
a martingale. It also belongs to Ma, but obviously doesn’t have continuous
paths. As a matter of fact, its paths are piecewise linear and show upward
jumps of size +1. We take all the paths to be right continuous, the standard
convention.

Now we turn to equation (4.1). Put (N); = ¢t. Then indeed (4.1) is satisfied,
as it follows from the independence of the increments of X and hence of N
and the expression of the variance of Poisson random variables that E[(N; —
Ng)?|Fs] = t —s. On the other hand the limit of the sums in (4.2) is X,
even a.s., which can be seen as follows. Fix a typical sample path of X and
the corresponding one of N. Since the mesh of the considered partition tends
to zero, we assume that it is small enough to have that each time interval
Ji = (ti—1,t;] contains at most one of the time instants where the path of X
has a jump, there are exactly X; of these jump times in [0,¢]. Split the sum in
(4.2) in two parts, one such that all the .J; contain a jump time and one such
that none of them contains one. The former one then equals Y (1 — (t; —t;_1))>
with limit X;, the other one being equal to Y (¢; — t;_1)? has limit zero.

From the definition of the quadratic variation process of a martingale, we
can derive the quadratic covariation process of two martingales. So let M and
N be two martingales in M5. Then the quadratic covariation process of M
and N is defined via the polarization formula

(M,N) = 2 {(M + N) — (M) — (N)}.

Notice that (M, N} is a process of bounded variation over bounded intervals,
that (M, M) = (M) and that

MN — (M, N) is a martingale (4.3)
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again.

ExaMPLE. Here is an example of the use of (M). Let T > 0 and assume
that (M)r = 0 a.s., then M; = 0 a.s. for all ¢ < T. This follows easily from
Chebychev’s inequality and EM}? = E(M); < E(M)7. We will need this result
in Section 10.

We close this section with some examples for discrete time martingales, that
serve to illustrate the results of this section as well as to prepare for the next one.
Let M be a martingale in discrete time, My = 0, and let AM; = My — M;_;.
An example is obtained by taking the AM; to be independent variables with
zero mean. If moreover all AM; have finite variance o7, then we get the Doob
decomposition of the submartingale M2 as M? = m;+Y:_, o7 with m another
martingale, as is easily verified. So (M); = 2221 o?. This again illustrates that
the quadratic variation process is a generalization of the cumulative variance
process.

Let now &p,&1,... be another process, that for simplicity is taken to be
bounded. Assume that this process is predictable, so & is F;_i-measurable.
Consider the process I defined by I; = 22:1 & AMy. Predictability and
boundedness of ¢ yields I a martingale. I is also called a martingale trans-
form of M or a discrete time stochastic integral of ¢ with respect to M.
Furthermore

(D) = (D)1 = El(Ii — I 1)*|Fea] = GE[(My — My —1)?|Fi 1]

(M) — (M)

So we see how to express the quadratic variation of a discrete time stochas-
tic integral in terms of that of M. This properties will be encountered in a
continuous time setting in the next section.

5. STOCHASTIC INTEGRALS

In this section we will define stochastic integrals fOT X,dM, for a suitable class
of stochastic processes X and a continuous martingale M. It should be clear
that we are faced with a problem of definition (see also Proposition 5.1 below).
Take for example M = W, standard Brownian motion. We know that the
paths of W have unbounded variation over bounded intervals, a property that
is shared by all nonconstant continuous martingales, which excludes a naive
approach by trying to mimic the definition of Stieltjes integral. We recall a
fundamental result from Stieltjes integration theory.

PROPOSITION 5.1. (i) Let « : [0,1] — R be a function of bounded variation.

Then for all h € C|0,1] the Stieltjes integral fol hda exists and for partitions
IT, of [0,1] whose meshes tend to zero for n — oo we have

1
> hitr) (o, — o,_,) = / hda.
o, 0

365



(it) Conversely, if a: [0,1] = R and if for all h € C[0,1] the above limit exists,
then « is of bounded variation over [0, 1].

Especially assertion (ii) above suggests that is impossible to define stochastic
integrals with respect to a continuous martingale for a reasonably wide class
of stochastic processes or even functions.

The proof of this assertion of the theorem (see [8], page 40) involves an
application of the Banach-Steinhaus theorem and for a given partition an ar-
gument that involves a continuous function h that satisfies

h(tr) = sgn(a(tisr) — al(ty)). (5.1)

In the construction below we will exclude functions h of this type, since at a
time instant £, such an h uses the future values of the integrator. This exclu-
sion together with a clever use of the fact that the paths of square integrable
martingales are of bounded quadratic variation saves us.

Whatever definition of integral one would choose, there should be no con-
fusion about how to integrate step functions. So, whatever we take for M if
Xi(w) = §(w)1(ap)(t), then the only logical definition of f(f Xs(w)dMs(w) is
E(w)(Mipp(w) — Mipa(w)). Below we drop in the notation the dependence on
w.

Next we assume that £ is F,-measurable and bounded. View the inte-
gral as a stochastic process indexed by t. It is then a straightforward com-
putation to see that this process is a martingale if M is one, and contin-
uous if M is. Moreover we can easily compute (compare with the discrete
time situation of the previous section) its quadratic variation at time ¢ as
E((Meny = (M)ina) = Jy X3d(M),.

By imposing linearity we now also have a definition of fot XsdM;, for step func-
tions X with finitely many values.

We now give the construction of the stochastic integral over a finite interval,
[0,T] say. We first define the class of simple processes, denoted by Lo . It is
the class of all processes X that can be written as a finite sum

Xt = 501{0} (t) + Zgil(ti,tlurﬂ(t)? (52)
=0

where the t; are increasing numbers in [0,7] and the £; are random variables,
such that each ; is F,-measurable and sup; , [£;(w)| < co. Notice that X, ,,
is Fi,-measurable and so X doesn’t peek into the future, in contrast with the
function h in equation (5.1) above.

In the rest of this section we will work on a probability space with a filtration
that satisfies the usual conditions and with a continuous martingale M, that
is square integrable over [0,7], so EM? < oco. As a matter of fact, one thus
defines a norm, || - ||, on the space of (continuous) martingales on the interval
[0,T]: ||M]|| = (EM2)z. Under this norm both Mj and M are Hilbert spaces,
if we restrict ourselves to processes defined on the interval [0, 7] only, instead
of [0, ).
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Let now X be a measurable process, then we define (what is going to be
interpreted as a norm)

T
pe(X) = (B / X2d(M), )}

Notice that this defines a measure on (Q x [0,T], F x B([0,T])) by pam(A) :=

par(1a)-
The next object to define is the pre-Hilbert space of stochastic processes

L5 ={X : X progressive, uy(X) < co}.

Clearly, this space depends on the choice of M. When necessary, we express
this by the notation L£3.(M).

From now on we will identify two processes X and Y if up (X —Y) = 0.
Of course this defines an equivalence relation on £}, whose quotient space is
again denoted by £7. Then we have the following properties.

— L% is a Hilbert space with an inner product that generates the norm pupy.

— The space of simple processes Lo 1 is a dense subset of £ under the norm
Ha-

Let X be an element of Lo 7 of the form as in equation (5.2), then we define

the stochastic integral fot XsdM, of X with respect to M for ¢ < T, in this
section also often denoted by I;(X), as

n
It(X) = Zgi(Mti+1/\t - Mti/\t)- (53)
=0
When there are more martingales around, we will express the dependence on
M by writing I; (X ; M). We have the following properties.

PROPOSITION 5.2. The stochastic integral defined for simple processes in equa-
tion (5.8) enjoys the following properties.

(i) I.(X) is a continuous process with Io(X) = 0.
(ii) 1.(X) is a martingale; E[I;(X)|Fs] = Is(X) for 0 < s <t <T.
t t
(iii) E[(I;(X) — I;(X))?|Fs] = E[[; X3d(M)u|Fs], or (L(X))e = [y Xgd(M)..
(iv) I.(:) is for each t a linear operator on Lo .
(v) |IL(X)|| = pm(X), in particular Iv(-) is an isomorphism from Lo 1 into
Ms.

Having defined the stochastic integral with respect to M for X € Lo, we
extend its definition to the closure of Lo 1, which is £, as follows.

Let X € L%, then there exist a sequence {X"} in Lo 7 such that pa (X" —
X) — 0. Using the isometry property we then have || (X™) — I.(X™)|| =
pp(X™ — X™) = 0, for myn — oco. So {I(X™)} is a Cauchy sequence in
M. Hence it has a limit, denoted by I (X). It is easy to show, by looking at
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mixed sequences, that this limit doesn’t depend on the particular choice of the
sequence { X"}, which makes the definition of I (X') unambiguous. We will use
the following notations I(X) = fOT X dM, = fOT XdM.

Clearly L(X) = f(f XsdM is defined similarly for t < T and I;(X) =
It (10,0 X).

All the properties of Proposition 5.2 remain valid except that Ir(-) now
acts as an operator on £} and it is an isometry from this set onto its image.
Moreover one can show that for X,Y € L5

weo.Lm. = [ ' XYad(M), 1< T. (5.4)

The properties above, in particular equation (5.4) can be extended by looking
also at other martingales in M$. For instance we have

(L.(X),N), = /0 X.d(M.N), < T (5.5)
for X € £%(M) and N € M;. And

(a1 = | XYad(M,N),, < T (56)
for M\,N e M5, X € L5(M) and Y € L%(N).

In fact equation (5.5) provides us with a characterization of the I (X;M):

PROPOSITION 5.3. Let ® € M§ be such that VN € M, the quadratic covaria-
tion process (®,N) is equal to [j X,d(M,N), on [0,T]. Then ® and I.(X;M)
are indistinguishable on [0,T].

Furthermore we have the important chain rule.

PropoOSITION 5.4. If M € M$, X € LH(M) and Y € L5(I.(X;M)), then
XY e L5(M) and [ (YX; M) =1(Y;1(X;M)), which in differential notation
reads (Y X)dM =Y (XdM).

6. EXTENSION TO LOCAL MARTINGALES

The definition of stochastic integral as we have seen it in the previous section
will be extended in the present one. It had been experienced that there was
need for a generalization of the martingale property. The resulting class of local
martingales proves to be closed under a wider set of operations than the class
of martingales.

First we define stopping times. A stopping time T (for F) is a random
variable with values in [0,00] such that the set {T" < ¢} belongs to F; for
all t € [0,00). A fundamental or localizing sequence of stopping times is an
increasing sequence 17,75, . .. such that lim,,_, ., T}, = co.
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By a localization one means that one can find a suitable localizing sequence
of stopping times and that one studies a process on each of the random intervals
[0, T].

DEFINITION 6.1. A stochastic process X is called a local martingale (with re-
spect to F) if there exists a localizing sequence Ty, Ts, ... of stopping times such
that every process { X, at,t > 0} is a martingale. A continuous local martin-
gale is a local martingale with continuous paths.

The class of local martingales is denoted by Mo and the one of continuous

local martingales by Mj, ..
Clearly, every martingale is a local martingale, because we can take T, = oo.
Having extended the class of martingales, we now also extend the class of
integrands L3 that we had in the previous section. But before doing so we
need the following result. Let M, N € M;j . Then there exists a unique (up
to indistinguishability) process of bounded variation denoted by (M, N) such
that MN — (M, N) € M¢, . (compare with (4.3)).

If M = N we simply write (M) and this process has nondecreasing paths.
This process shows up in the definition of the class of integrands.

By definition the class P, also denoted by P (M), for given M € Mj, ., is
the class of progressive processes X such that fOT X2d(M), is finite a.s.

By localization and truncation it is possible to define for ¢ < T the stochastic
integrals I;(X; M) for M € Mj, . and X € P}(M), as an a.s. limit of certain
stochastic integrals I7(X™; M™), where all the M™ belong to M§ and X™ €
L5 (M™) for all n. One can show that this stochastic integral, viewed as a
process in ¢, is again a continuous local martingale on [0,7"]. Another important
property is that equations (5.5) and (5.6) are still valid for continuous local
martingales M and N and X and Y such that the stochastic integrals exist.
Also sample path properties of stochastic integrals with respect to an M € M§
as a rule carry over to the stochastic integrals with respect to continuous local
martingales. However properties involving (conditional) expectations are in
general lost.

As in the previous section I(X;M) can be characterized as the unique
(up to indistinguishability) continuous local martingale ®, such that (®, N) =
Jo Xsd(M,N), (compare with proposition 5.3).

7. THE ITO RULE

The Ito6 rule, also called the change-of-variable rule, could be called the most
important operational rule in stochastic calculus. To prepare for it we need an
auxiliary concept, fundamental in the theory of stochastic processes.

DEFINITION 7.1. A stochastic process X is called a continuous semimartingale
if the following decomposition holds

X, = Xo+ M, + By, Vt >0, (7.1)
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where M is a continuous local martingale with My = 0 and B a continuous
adapted process of bounded variation over bounded intervals with By = 0.

We have already encountered an example of a semimartingale, namely when
X is the square of a martingale N, in which case the process B in equation
(7.1) becomes the quadratic variation process (), or more general when X is
a submartingale.

The decomposition of a continuous semimartingale is unique. Therefore we
are ready to define the stochastic integral with respect to a semimartingale.
Let X be a continuous semimartingale with decomposition (7.1) and let Y be
a progressive process (in particular measurable) and assume that the pathwise
defined Lebesgue-Stieltjes integral fOT |Ys|dBs is finite a.s. Assume also that
Y € L%(M), then the stochastic integral of Y with respect to X is defined as

t t t
/stXs ;:/ stMer/ Y,dB,, t <T. (7.2)
0 0 0

Here the first integral is of course a stochastic integral.

THEOREM 7.2. Let X be a continuous semimartingale as in (7.1) and f €
C?(R,R). Then f(X) is again a continuous semimartingale and for all t > 0

fO6) = )+ [ rax,+3 [ rcaon,

f(Xo) + /0 F1(X,)dM, + /0 F(X,)dB,

+3 | rreegaon,. (7.3

Notice that the semimartingale decomposition of f(X) has [, f(X,)dM; as its
local martingale part and that this stochastic integral is well defined since by
continuity of f' and X almost all sample paths of f'(X) are bounded over
bounded intervals, hence f(f f'(X5)%d(M); is finite a.s. (cf. Section 6).

For a semimartingale X with decomposition (7.1) one usually writes (X)
instead of (M). With this convention equation (7.3) is often written in the
differential form

(X = (X)X, + 3 " (X)X

Application of ordinary calculus rules would only give the first integral in the
right hand side of (7.3). The second one is sometimes referred to as Ito’s cor-
rection term. The next example gives some insight in and explains the presence
of the correction term.

ExampPLE. Take X = M = W, with W standard Brownian motion. Applica-
tion of the Tto rule with f(z) = 2 yields W2 = 2 [,/ W;dW; + T. We clearly
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see that we can’t do without the correction term, since EW3 = T, whereas the
stochastic integral, being a martingale, has expectation zero. Now we consider
a discrete time version of the integral. Let IT,, = {0 = t¢,...,t, = T'} be a par-
tition of [0, 7] and define W{* = 371" Wy, 1 (t). Then pw (W — Wn)2 =
S (tir1 —t;)?, which tends to zero for partitions whose meshes tend to zero.
Elementary algebra shows that

titit]

T n—1 n—1
2/ thth =2 Z Wti (Wti+1 - Wtz) = WTQ" - Z(Wti+l - Wti)Q'
0 i=0 i=0

The term in the left hand side of this equation tends to 2 fOT WidWy, and the
sum in the right hand side to T' in probability (see Section 3), which gives the
desired result.

EXAMPLE. Let f(z) = e” and M € M5, with My = 0. Define Z by Z; =
exp(M; — (M);). Application of It6’s rule yields that Z satisfies

t
Zy=1+ / Z,dM,. (7.4)
0

The process Z thus defined is known as the Doléans exponential of M, and is
often denoted by Z = £(M). We will return to it, when we discuss Girsanov’s
theorem in Section 9.

It0’s rule is also a convenient tool to prove Lévy’s characterization of Brownian
motion, which is stated as

PROPOSITION 7.3. Let M be a continuous local martingale relative to a fil-
tration F. If (M); = t, then M is standard Brownian motion relative to F.

The key to the proof, of which we present only the main steps, is to apply It0’s
rule with the function f(z) = exp(iux). The result is

t 1 t
exp(iudy) = exp(iuMy) +/ exp(iuM;)dM, — §u2/ exp(tub;)dr.
s

8§

Multiplication of this equation by exp(—iul) and taking conditional expec-
tation with respect to F; gives an integral equation for the conditional charac-
teristic function Efexp(iu(M; — My))|Fs], which is then shown to be equal to
exp(—3(t — s)). This proves the proposition. ]

The assertion of Theorem 7.2 can be extended to multivariate processes. We
mention one important application, the product rule for semimartingales.

PROPOSITION 7.4. Let X and Y be (real valued) continuous semimartingales.
Then

T T
XrYr = XoYo + / X,dY; + / YidX, + (X,Y)r, (7.5)
0 0
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where (X,Y) stands for the quadratic covariation of the (local) martingale parts
of X and Y.

This result formally follows from the It6-rule for multivariate processes by
considering the bivariate process (X,Y) and f : (z,y) — zy.

8. REPRESENTATION THEOREM

In many areas of applied probability, the martingale representation Theorem
(theorem 8.3 below) for so called Brownian martingales is a key tool in obtain-
ing certain results. For instance in mathematical finance it is used to show that
in the Black Scholes framework the market is complete, i.e., in the language
of finance, every contingent claim is attainable (see Section 12). Another ap-
plication is in the derivation of the equation of the optimal filter for diffusion
observations. First a weak result.

PROPOSITION 8.1. Let M be a continuous local martingale with respect to a
filtration F and assume that (M) = fo aldt for a strictly positive process c.
Then there exists a Brownian motion W with respect to F such that M =

I(a; W).

The proof of this result is rather simple. a can be shown to be a progressive
process and a~ ! belongs to £ (M) for every T > 0. Hence the stochastic
integral W := I (a~*; M) is well defined and (W); = ¢t. Hence we obtain from
Levy’s characterization that W is a standard Brownian motion.

Actually, the requirement that « is strictly positive can be dropped at the
cost of getting a Brownian motion on an enlarged probability space.

Below we present a stronger result after a general statement. Assume that
the filtration F satisfies the usual conditions. Let N € M,. We denote by
M*(N) the class of all stochastic integrals I(X; N) for X belonging to £(N)
for all T > 0.

PROPOSITION 8.2. Let M € Ma. Then there exists a unique (up to indistin-
guishability) element M* € M*(N) (‘orthogonal projection’) such that M — M*
is orthogonal to M*(N) in the sense that its quadratic covariation with every
element of M*(N) is the zero process.

If we take in this proposition NV to be a standard Brownian motion W, and we
take IF to be the filtration generated by W augmented with the P-null sets of F,
then we obtain a much stronger result, that tells us that the ‘projection error
is zero’. In this case a martingale M € M, is also called Brownian, because of
the special choice of the filtration.

THEOREM 8.3. Let W be a standard Brownian motion adapted to its own filtra-
tion augmented with the P-null sets. Let M be a square integrable martingale,
adapted to the same filtration with My = 0 (a Brownian martingale), then there
exists a progressive process Y € L5 (W) for all T > 0, such that
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t
M, :/ Y,dWy, Yt > 0. (8.1)
0

In particular M is a continuous martingale. Y is essentially unique in the
sense that if Y is another process that satisfies equation (8.1), then E fOOO(Yt -
Y;)2dt = 0.

If M is a local martingale, then (8.1) is still valid for some Y € Py(W), but
the property Y € L3.(W) is lost in general.

We omit the proof of this theorem, but emphasize its content. Every martingale
that at any time ¢ can be considered as a ‘functional’ of Wy, s < t, is actually
a stochastic integral.

This feature has no counterpart in discrete time. For instance if &, &z, ... is
a sequence of iid standard normals, then M; = 22:1 & defines a martingale,
but there is clearly no (predictable) process Y such that M; = 22:0 Yiék.

9. GIRSANOV’S THEOREM

The theorem, known under the name of Girsanov’s theorem, that we treat
in this section gives an expression for the Radon-Nikodym derivative of two
measures on the og-algebra Fp. Of particular interest is the case, in which
this o-algebra is generated by a Brownian motion up to time 7. First we
consider a simple situation common in statistics, in which we in fact deal with
a finite family of random variables. Let Y7, ...,Y}, be real random variables that
are assumed to be independent and such that each Y; has a normal N(6;, ;)
distribution. Keep the d; fixed and denote the probability distribution of the
vector Y = (Y1,...,Y,) on R* by P?. Then the density of P? (with respect to
the Lebesgue measure on R") is given by

L ) 1~ (yi — 6:)°
9(y;0) == H(QW@)_E eXP(—§ Z %)-
=1 i=1
Consider two possibilities. In the first one the 8; equal some real numbers u;,
in the second one all the 6; are zero. Then we can compute the likelihood ratio
(which is a Radon- Nikodym derivative)
9(V;u)/g(Y50) = exp(y_ =Yi— 5> ).

i=1 i=1

£

(2

Thus, we obtained an expression for the Radon-Nikodym derivative of two
(Gaussian) probability measures. Below we construct the Y; from a Brownian
motion under a given measure and we then define a new measure by selecting
a certain random variable as its Radon-Nikodym derivative with respect to the
given measure.

So let (92, F, P) be a probability space and let W be a standard Brownian
motion on this space with respect to its own filtration. Fix a time interval
[0,T]. Let II,, = {0 = to,...,t, = T} be a partition of [0,7]. Consider the
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random variables Y; = Wy, — Wy, _,, i =1,...,n. Then the Y; are independent
random variables with each a N (0, d;) distribution, where §; = t; — ;1.
Define now another measure P, absolutely continuous with respect to P,

2
on F}’ by its Radon-Nikodym derivative Zy = exp(}_;_ | %Y; — 31", 55),

i i

so for F € FVV we have P(F) = E[1pZr] and 4B = Zr (here and below,
as before, £ means expectation under the measure P). Then under P the Y;
are still independent, but now they have a N(u;,d;) distribution. In fact, Zp
equals the likelihood ratio of the independent normal random variables with
N (u;,6;) and N(0,0;) distributions respectively that we have seen above.

Define now the process X on [0,T] by X; = 7", 5-1(t;_, 4,)(t) and then the
process L by L; = fot XsdWs. Then L is a (Gaussian) martingale under P with
quadratic variation given by (L); = fot X2ds. In particular at time T we get
Lr =3, ¥Yiand (L)r = 31, ’g—z Hence we have Zr = exp(Ly — 3(L)7)
and with £(L) the Doléans exponential of L, Zr = £(L)r. We will also write
Z to denote the process £(L).

We can also compute the covariation process (L, W) (under P) and we get
(L,W); = fOt Xsds. In particular (L, W), = Zle u;. Define now the process
w by Wt = Wt - (L,W)t Then Wti - Wti—l = Wti - Wti—l — U; = Y; — U;.
Hence, under the measure P the increments Wti — Wti_l are independent with
a N(0,9;) distribution, just as the Y; had under the measure P. Notice that
the variances remain the same. Since W has continuous paths, this suggests
(and it is true in fact, see Corollary 9.2 below) that W is a Brownian motion
under ﬁ, obtained from W by subtracting a process (in this example even a
function) of bounded variation. Notice that Z is a martingale under P with
EZ,=FEZr=1.

We will now generalize the situation mentioned above. Consider a con-
tinuous local martingale L on the probability space (2, F, P), adapted to a
filtration F. Let Z = £(L), so Z; = exp(L; — $(L);) and assume that EZp = 1
(and hence EZ; = 1,Vt € [0,T]), then Z becomes a martingale on [0,7]. A
sufficient condition for this to be true is Eexp(3(L)r) < oo, which is known
as Novikov’s condition. _

Define a new measure P on Fr by P(F) = E[1pZr]. So Zr is its Radon-
Nikodym derivative with respect to P.

Let now M be another continuous local martingale (adapted to F) and
define the process M by M = M — (M, L).

THEOREM 9.1. The process M is under the new measure P a continuous local
martingale on the interval [0,T]. Moreover the quadratic variation process of

M wunder P coincides with the quadratic variation process of M under P.

The main ingredients in the proof of this theorem are localization and the fact
that M is a martingale under P iff ZM is a martingale under P, which is a
consequence of the Ito rule for products (7.4).
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We specialize to the Brownian case. Let X € L% (W) and L = fo X dWs.
With this choice of L we get

T 1 T
Zr =&(L)r = exp(/ XsdWy — 3 / X2). (9.1)
0 0

Then, defining P as before, we obtain

COROLLARY 9.2. The process W = W — (W,L) =W — [, X,ds is a Brownian
motion under P on the interval [0, T).

This corollary immediately follows from Theorem 9.1, since it gives us that
W is a local martingale under P with quadratic variation (under P) at time ¢
equal to t. The Brownian character then follows from Lévy’s characterization,
Proposition 7.3.

The application of Girsanov’s theorem in finance is the construction of
the ‘equivalent martingale measure’, see Section 12. In problems of statistical
inference for stochastic processes this theorem lies at the basis of maximum
likelihood estimation. This is not surprising in view of the simple situation
that we described in the beginning of this section. To be a bit more precise (we
omit the technical details), consider that one wants to model the probabilistic
behaviour of some observed continuous process Y on a time interval [0, T]. One
model is to assume that the probability measure, call it P, on the background is
such that Y is a standard Brownian motion. In another model we assume that
the probability measure is such that Y is a Brownian motion plus drift, meaning
that we have a process X such that ¥V — fo X,ds is Brownian motion. If one
assumes that the process X is parametrized by a parameter 6, so X = X (0),
then we write P? for the measure that yields Y — [, X(f)ds a Brownian motion.

The likelihood ”ii—];g (which is assumed to exist) is then just the Zr of (9.1), with
X replaced with X (0) and W replaced with Y (recall that ¥ was Brownian
motion under P). The maximizer of this quantity is then by definition the
maximum likelihood estimator of 6.

10. STOCHASTIC DIFFERENTIAL EQUATIONS
In this section we work on a space (2, F, P) and a Brownian motion adapted
to its own filtration F". Moreover on this space lives a random variable ¢
that is independent of W. Below we will work with the filtration F, with each
member F; generated by W for all s <t, £ and augmented by the P-null sets
of FYW v o(€). This filtration satisfies the usual conditions, and W is still a
Brownian motion with respect to it, cf. Section 3.

Let b,o : [0,00) X R — R be two measurable functions. Consider the
following stochastic differential equation

dXt == b(t,Xt)dt + U(t,Xt)th ; XU (101)

This equation is understood as a shorthand notation for the corresponding
integral version
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t t
X =Xo+ / b(s, Xs)ds + / o(s, Xs)dWs. (10.2)
0 0

The function b is called the drift coefficient of equation (10.1) and o is called the
diffusion coefficient. Under appropriate conditions (see below) the Lebesgue-
Stieltjes and stochastic integral on the right hand side of (10.2) are well defined.

Heuristically we have the following for a process X that can be represented
by (10.2). Consider the displacement of X over an infinitesimally small interval
[t,t+dt]. Then the conditional mean of the displacement is E[X;yq: — X¢|Ft] =
b(t, X;)dt and the conditional variance equals o2 (t, X;)dt.

We now introduce the first solution concept for the stochastic differential
equation (10.1).

DEFINITION 10.1. A stochastic process is called a strong solution of equation
(10.1) with initial condition &, if the following requirements hold.

(a) X is adapted to F.

(b) P(Xo=£) = 1.

(c) fg(|b(s,Xs)| + 0%(s,Xs))ds < 00 a.s. for all t > 0.

(d) Equation (10.2) holds a.s. for all t > 0.

One says that strong uniqueness holds for (10.1) if, given (Q,F,P), W and F
as above any two strong solutions with the same initial conditions are indistin-
guishable.

We comment a bit on this definition. Condition (b) expresses that £ is the initial
condition. Condition (c) is a technical condition on X to make the integrals in
(10.2) well defined. Condition (d) justifies that X is called a solution. Finally
condition (a) refers to the ‘strongness’ of the solution. It expresses that we can
interpret (10.2) as a machine that produces at time ¢ the random variable as
an output, if we use Wy, s <t and £ as inputs.

We know from the theory of ordinary differential equations, that equations
with non-unique solutions exist. Consider for example

dX, = |X,|*dt, Xy = 0.

Then we have uniqueness of solutions if « > 1, whereas for 0 < a < 1 we have
that for any s > 0 the function defined by X; = {(1 — a)(t — 5)*}ﬁ is a
solution. Just as for ordinary differential equations we have to impose (local)
Lipschitz conditions on the coefficients of (10.1) to have uniqueness. Notice
that in the last example the function z — |z|* is locally Lipschitz for a > 1,
but not for 0 < a < 1. More precisely we have

PROPOSITION 10.2. Assume that Vn € N : 3K, > 0:Vt > 0,|z|,|ly| < n it
holds that

[b(t, 2) = b(t, y)| + |o(t,2) — ot y)| < Knlz —yl.

Then strong uniqueness for (10.1) holds.
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The key of the proof of this proposition is the following. Assume that X and
X are two strong solutions. Then a localization procedure is followed: define
stopping times S, by S, = inf{t > 0: | X;| V |X¢| > n} and subtract the two
equations for X and X. After some manipulations (using that b and o are
locally Lipschitz) one obtains the inequality

t
E|Xt/\sn — Xt/\sn|2 S 4:(t + ].)KELE/ |Xs/\5n — Xs/\Sn |2d5
0

An application of Gronwall’s inequality gives E|Xins, — AN’t/\gn|2 = 0, from
which the assertion of the proposition follows by letting S,, — oo.

We also know from the theory of ordinary differential equations that a local
Lipschitz condition on the coefficients is insufficient to guarantee the existence
of a solution for all ¢ > 0. For example, the equation

t
Xt:1+/ X2ds
0

has a solution on [0,1) only: X; = 1.

A uniform Lipschitz condition together with a growth condition on the
coefficients is sufficient for the existence of strong solutions for all ¢ € [0, c0).

PrOPOSITION 10.3. Assume that there exists a constant K > 0 such that for
allt > 0,z,y € R the following two inequalities are valid:

b(t,z) — b(t,y)| + |o(t,z) — o(t,y)| < K|z —yl,
and
b(t, )| + |o(t, z)| < K(1+ |z).

Then the stochastic differential equation (10.1) has a unique strong solution
defined for all t € [0,00). If moreover E* < oo, then also EX}? < oo for all t.

We highlight some key steps in the proof of this proposition. The idea is to
mimic the Picard-Lindelof iteration procedure known for ordinary differential
equations. So we define a sequence of processes X* by X° = ¢ and recursively

t t
Xkt :§+/0 b(s,Xf)ds+/0 o(s, Xkaw,.

Then, under the condition E¢? < oo, several computations lead to the estimate
that for all T > 0 there exists a constant L such that

t
Emax | XM — XF? < L/ B|IXF - XF12ds.
0

s<t
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Iteration of this equality leads to E max,<; | X¥+1 —X*|2 < C*(Lt)* /k! for some
finite C*. An application of the Borel- Cantelli lemma yields the existence of
a set (* € F with P(Q*) = 1 such that {X*(w)} is for each w € Q* a Cauchy
sequence in C[0,T] (with sup-norm). The resulting (continuous) limit process
satisfies equation (10.1) on every interval [0,7"] and hence on [0, o).

We now turn to another solution concept for a stochastic differential equa-
tion, that of a weak solution.

DEFINITION 10.4. A weak solution of equation (10.1) consists of

— a probability space (, F, P) together with a filtration F that satisfies the
usual conditions.

— a process X that is adapted to F.

— a Brownian motion W that is adapted to F,

such that conditions (c) and (d) of Definition 10.1 are satisfied. The measure
w:= P(Xqg € ) is called the initial distribution.

One says that uniqueness in law holds for (10.1) if for any two weak solutions
((Q, F,P),F, X, W) and ((Q, F, ﬁ),ﬁ',i’,ﬁ), satisfying

P(X() S ) = f)(fo € '),
it holds that X and X have the same law.

Clearly every strong solution is a weak solution too. Understanding the concept
of a weak solution is a little more problematic. A major difference with a
strong solution is that the probability space is now part of the solution, and
that it is no longer required that X is the output of a machine that uses W
as an input. However the distributional properties of a weak solution that is
unique in law are completely fixed, which is sufficient for most purposes as
long as we are only interested in probabilities that certain events (e.g. that
maxyeo,1] | X¢| < 1) takes place. For questions of this kind it is sufficient that
we can model a process X as (part of) the weak solution of a certain stochastic
differential equation. For similar reasons, the concept of uniqueness in law is a
reasonable one. There are however other uniqueness concepts.

The following proposition concerns a stochastic differential equation with
constant diffusion coefficient. Existence of a weak solution is established under
a growth condition on the drift only, Lipschitz conditions are not needed. The
proof of this proposition illuminates the absence of adaptiveness in the defini-
tion of weak solution as well as the reason why we take a probability space as
part of a weak solution.

ProrosiTioN 10.5. Consider the following stochastic differential equation
dX; = b(t, X;)dt + dWy,t € [0,T]. (10.3)

Let p be a probability distribution on R. Assume that there is a constant K > 0
such that for all t € [0,T] and for all x € R it holds that |b(t,z)| < K(1+ |z]).
Then there exists a weak solution with initial distribution p on [0,T].
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The proof of this proposition proceeds along the following lines. First we pick a
measurable space (2, F) together with a filtration F = {F;, ¢ € [0,T]}, a family
of measures {P*,z € R} and a process X that is Brownian and adapted to F
under each P* and P*(Xy = x) = 1. The growth condition on b ensures that
the process Z defined on [0,T] by

t 1 rt
7y = exp(/ b(s,Xs)dWs - 5/ b(S,Xs)QdS)
0 0

is a martingale under each P*. Hence we can apply Girsanov’s theorem to get
that W defined on [0,T] by

t
Wt:Xt—X[)—/ b(S,XS)dS
0

is a standard Brownian motion under the measure Q% defined on Fr by 3%: =
Zr. But this is just another way of writing (10.3)! The weak solution then
is complete by taking the probability measure P = Q* with Q* defined by
Qu() = [, Q*(Iu(dx).

Notice that from the construction of this solution we get the inclusions
FY¥ c FX, just the opposite of the ones for strong solutions! One can also
establish uniqueness in law.

Of course introduction of two seemingly different solutions concepts is sense-
less if there exists no example of a stochastic differential equation that admits
a weak solution, but fails to have a strong one. Below we present such an,
admittedly somewhat artificial, example.

Let sgn be the real function defined by sgn(z) = 1jg,00)(?) — L(—o0)(7) and
consider the equation

dXt = sgn(Xt)th. (104)

Notice that we cannot apply Theorem 10.3 since the function sgn lacks any
Lipschitz property. Suppose that a weak solution exists. Then the solution
process X is a continuous square integrable martingale with (X); = ¢t. Hence
X is a Brownian motion, because of Lévy’s characterization and consequently
uniqueness in law holds. But for a Brownian X by the same argument the
process W defined by dW; = sgn(X;)dX; is again Brownian. Hence a weak
solution of (10.4) exists. Observe, as a side remark, that along with a weak
solution process X also the process —X is a weak solution and that these
processes have different paths.

Now we observe that sgn(z) = %l{o}c(m)—kl{o}(a:) and that [ 1{0y(X;)dX;
is a square integrable martingale with covariation process fo 1103 (X¢)dt which
is zero by a property of the zero sets of Brownian motion, see Section 3.
Hence, from the last example of Section 4 we obtain that this martingale is
indistinguishable from zero. Combination of these observations with d|X;|*> =
2X;dX; + dt (from Itd’s rule) yields the alternative way of writing equation
(10.4) as
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dw, Lioye (1 X)) d(| Xe[? = 2).

1
2| X]

From this we obtain the inclusions F}V C }-tIX\ for all ¢t.

Suppose now that X were also a strong solution, then we would obtain
from condition (a) of Definition 10.1 the inclusions F;X C .7-'t|X‘ for a Brownian
motion X, in other words, the paths of X are determined by those of |X]|,
which is absurd. A strong solution of equation (10.4) does not exist.

ExAmMPLE. Consider the equation
dXt = —OéXtdt + O'th, X[), (105)

with W standard Brownian motion, a and ¢ real constants. This equation has
a unique strong solution, given by

t
X =Xo+ 0’/ e~ =9 q, .
0

Indeed application of the product rule (proposition 7.4) to e ! f(f e**dW,
shows this.
If m(t) denotes EX;, then m(t) = m(0)e~™* and if V(¢) denotes the variance

of X;, then V(t) = & + (V(0) — &)e oL,

One can show that X is a Gaussian process, when X has a Gaussian distribu-
tion.

If @ > 0 and X has a normal N (0, %2) distribution, then all X; have the same
distribution. Moreover, X is then a stationary Gaussian process, with covari-
ance function EX; X, = %e*a‘t*s‘. This process is known as the Ornstein-

Uhlenbeck process.

ExaMPLE. Let X be a time varying geometric Brownian motion of the type
X; = Xoexp(B(t) + [, 0(s)dWy), where B € C'(R) with B'(t) = (t), o a
measurable function with f(f 0%(s)ds < oo for all t and X, > 0. Application
of Itd’s rule with f(z) = e® gives, that X satisfies the following stochastic
differential equation.

dX; = X (B(1) + %az(t))dt + X, (t)dW, (10.6)

It follows from theorem 10.3, that for bounded 8 and o this equation has a
unique strong solution, the one we started this example with.

Without loss of generality we may take B(0) = 0. Assume that Xy is a
strictly positive positive random variable, independent of W. Then for ¢t > u
we have log ))((—i = B(t) — B(u) + fi o(s)dWy, which is independent of FX and
has a normal distribution with mean B(t) — B(u) and variance fi o2(s)ds. Tt
also follows that X is a Markov process.
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11. CONNECTION WITH PARTIAL DIFFERENTIAL EQUATIONS

There exists a wide range of connections between functionals of the (weak)
solution of a stochastic differential equation and solutions of partial differential
equations, the most simple one being the following. Let W be a standard
Brownian motion. Then W;, which has a N(0,t) distribution for ¢ > 0, has
density = — p(t,z) = \/% exp(—%ﬁ). One easily shows that p is a solution

of the heat equatzon 5 = é gi

Other solutions of the heat equation are u(t, z) f f)p(t,z — y)dy,
when the integral is well defined. These solutions can alternatlvely be written
as E®f(W,;), where E® means expectation under the measure for which W
is a Brownian motion starting at . These solutions have the property that
u(0,z) = f(x).

Something similar holds for the densities at times ¢ (if they exist) of a
solution of a stochastic differential equation. The resulting partial differential
equation is known as the Fokker-Planck equation. In this section we concentrate
on the Cauchy problem.

As an appetizer we consider the heat equation again. Consider a solution
u(t,z) = E* f(W}). Fix a terminal time T" and define v(t, z) = w(T'—t,x). Then
v solves the backward heat equation % + ;gmg = 0 with terminal condition

v(T,z) = f(z) and v(t, :r) = E””f(WT ¢). However, if we write v(f,z) in
mtegral form, then v(t,x) = [, f(y)p(T —t,x—y)dy. But y = p(T —t,x—y)is
for standard Brownian motion also the conditional density of Wt given W, = z.
Denoting expectation with respect to this density by E®*, we get v(t,z) =
Et’mf(WT).

Now we turn to a more general situation, that involves a partial differential
equation, that reduces to the backward heat equation by a proper choice of the
coefficients. Consider again equation (10.1), with the difference that we take
as initial condition X; = x for some ¢ and = and we look for solutions on [¢, c0).
We assume that a weak solution exists, that is unique in law and we denote
the probability measure P that is part of the weak solution by P»® and the
corresponding expectations by E.

Introduce the differential operators A; defined by

(Aef) () = b(t,2) (&) + 50°(t,2) 1" (2).

The Cauchy problem is the following. Find a function v € C*2([0,T) x R) that
satisfies for given functions z — f(z), (t,z) — ¢(t,z) and (¢,z) — k(t,z) the
partial differential equation

? + Aww =kv—y, (11.1)

with terminal condition

o(T,z) = f(z), x e R (11.2)
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The functions f, g and k are supposed to be not too wild (we don’t enter
into details, nonnegativity is one possibility), whereas the coefficients of A;
are supposed to satisfy the requirements of Proposition 10.3. The following
proposition (for the case where X is Brownian motion starting at z known
as the Feynman-Kac formula) gives an expression for v in terms of the weak
solution of (10.1).

THEOREM 11.1. If v is a solution of the Cauchy problem and X the unique in
law weak solution of (10.1) with X; = x, then v can be represented as

T
o(tz) = Et’””[f(XT)exp(—/t k(s, Xs)ds)

T s
+/ g(s,Xs)exp(—/ k(o, X, )do)ds]. (11.3)
t t
Hence, the solution v is unique.

In Section 12 we will need this formula only for ¢ = 0 and & > 0. We will
explain, in heuristic terms, by using It6’s rule the form of the solution (11.3)
for this case. Let X be a (weak) solution of equation (10.1) with some initial
condition and let v be a sufficiently smooth function of ¢ and x. Consider the
process m defined by

my = exp(—/0 k(s, Xs)ds)v(t, Xt). (11.4)

Application of Itd’s rule to m yields the following (where subscripts denote
partial derivatives)

dmt

exp(— / K(s, X2 ds)[(—k(t, Xe)o(t, X2) + ve(t, X2)

+ b, Xp)ve(t, X¢) + %(72(t,Xt)vm(t,Xt))dt

+ v:t(t)Xt)U(t:Xt)th]‘

Hence we see that if we take v to be a solution of equation (11.1) with g = 0,
the process m becomes a (local) martingale.

Conversely, let E|f(Xr1)| < oo and consider the martingale m on [0,7
defined by

T
ms = E[f (Xr) exp(— / K(s, X,)ds)| ]

and let v; = my exp(fot k(s,Xs)ds) = E[f(XT)exp(— ft (s, Xs)ds)|Ft]- Due
to the Markovian character of X, we can write vy = v(t, X;) and then v(T, X7) =
f(Xr). Again applying It0’s rule we get equation (11.1) back with X; as the
second variable of v.
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In the theory of option pricing we get for v(t,z) the price at time ¢ of a
European call option with maturity time 7" and exercise price ¢ if , is the price
of the underlying asset at time ¢ by setting f(x) = (x — ¢)T (for a real number
r we write r* = max{r,0}), g = 0 and k the interest rate. This will be shown
in Section 12.

12. APPLICATIONS TO THE THEORY OF OPTION PRICING

In this section we consider a market in which two assets are traded, one called
stock and the other called bond. We assume that the bond price Py(t) evolves
deterministically in time according to the ordinary differential equation

dPy(t) = r(t) Py ()dt. (12.1)

Here r is the interest rate function, which is assumed to be bounded.
The price P (t) of the stock, the risky asset, is random and evolves according
to the stochastic differential equation

dPy(t) = b(t) P, (t)dt + o (t) Py (t)dWV;. (12.2)

Here b(t) is called the mean rate of return of the stock and o(t) the volatil-
ity. Both b and o are assumed to be deterministic and bounded measurable
functions. We also assume that inf{o?(t) : t > 0} > 0.

W is standard Brownian motion on a space (2, F,P), and we take the
filtration to be the one that is generated by W, augmented with the P-null
sets of F. We have seen in Section 3 that this filtration satisfies the usual
conditions.

Under the stipulated conditions (12.2) has a unique strong solution, given
by the example in Section 10 with 3(t) = b(t) — 307 (¢). Notice that P (t) is
always nonnegative if the initial value is so.

We will start to work under the assumption that the interest rate is zero.
Then we may also assume without loss of generality that Py(t) = 1 for all ¢,
since it is constant. As a matter of fact, one then uses the price of the bond as
the unit in which all other prices are expressed. We write P; for P (¢).

Consider an agent who owns at time ¢ the number No(#) of units of the
bond and Ni(t) units of the stock and that his initial endowment is > 0.
Then his wealth X; at time ¢ is given by X; = Ny (t)P; + No(t). We allow the
N;(t) to be real numbers and hence to take on negative values as well. Ny (t)P;
is called the portfolio process (of the stock) and will be denoted by 7; and the
bivariate process (No, V1) is called an investment strategy or trading strategy.

We assume that changes in the wealth are only due to changes in the stock
price, or if the stock price would be constant over some time interval, the agent
may change the numbers of the two assets only in such a way that his wealth
remains the same (the investment strategy is then called self-financing). Then
we have that

dX, = N (t)dP, (12.3)
- b(t)ﬂ'tdt + O'(t)ﬂ'tth. (124)
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As a matter of fact, equation (12.3) is in mathematical terms the definition of
a self-financing strategy if the bond price is constant and equal to 1.

We impose the reasonable condition that for some time 7', the endpoint of
the interval of trading times, fOT n2dt = fOT N (t)2P2dt is a.s. finite. Then the
stochastic integral in equation (12.4) is well defined, see Section 6.

Notice that for an empty portfolio, 7; = 0, the wealth process is constant,
X: =2 > 0. We will only consider investment strategies for which the resulting
wealth process is nonnegative. These strategies are called admissible.

The wealth process would be a local martingale if b(t) were identically
zero. We accomplish the same result by a change of measure, using Girsanov’s

theorem. Let 6(t) = b(t)/o(t), then 6 is bounded. Define Z = £(— [, 6(s)dW)
for t < T. Then Z is a martingale on [0, 7] and we can define the measure P

on Fr by % = Zr. One easily sees that these two measures are equivalent on
Fr. In the financial literature this measure is called the equivalent martingale
measure. Expectation with respect to P is denoted by E.

Application of Glrsanov s theorem, or rather Corollary 9.2, yields that w
with Wy = W; + fo s)ds is a Brownian motion under P. Using equation

(12.4) and the definition of W, we obtain
dX, = o(t)md W, (12.5)

which makes the wealth process a nonnegative local martingale under the new
measure P. This fact we will use to show that EXr <z

Let {T,,} be a fundamental sequence for X, so {Xr, at,¢t € [0,T]} is a
IS—martingale for each n. Then Fatou’s lemma gives

EXT - E hm XA < hmlnfEXT AT = EXO =z.
n— 00
We define a contingent claim as a nonnegative Fr-measurable random variable.
The investment strategy in this context is called hedging against the contingent
claim if it is admissible and if the the resulting (nonnegative) wealth process
X with X¢ = z is such that X7 = fr.

We now define the fair price of the contingent claim fr at time ¢t = 0 as the
smallest number > 0, such that there exists a hedging investment strategy
with initial wealth z. That this definition is reasonable can be argued as follows.
Suppose that the above minimum is zo. Then nobody wants to pay a price
x > g, since for zp he will already be able to find a hedging strategy resulting
in a terminal wealth equal to fr. The problem we will address now is how to
compute this minimum.

Let = be a value of the initial wealth for which a hedging strategy exists.
We have seen that for any admissible strategy process it holds for the resulting
wealth process that EX7 < . So if the strategy is hedging we obtain E fr < .
We conclude that E fr is alower bound for the fair price of the contingent claim.

Next we show that for an initial wealth equal to Efr a hedging strategy
exists (the contingent claim is then called attainable), thus obtaining that E fr
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equals the fair price. Consider the martingale M defined by M; = E[ fr|F) -
Efr. We apply the representation Theorem 8.3 for Brownian martingales:
there exists a progressive process such that M; = fot YsdW,. We can do this

since T is obtained by a deterministic shift from W, so W and W generate the
same filtration, and because the P-null sets of Fp are the same as its P-null
sets.

Choose m; = Y;/o: and consider the corresponding wealth process with
some initial value z. From equation (12.5) we find that dX; = Y;dW,. Hence
we get Xy =x + My = E[fﬂ]-'t] — Efr + . This holds for any z, so we take
@ = Efr. Then X; = E[fr|F] > 0 and in particular X7 = fr a.s. So we found
a hedging strategy against fr for the initial endowment E fr and we conclude
that E fr is the fair price of the contingent claim at ¢ = 0. As a matter of fact
for each ¢t < T the fair price of the contingent claim is given by f; = E[fr|F].

This has not completely solved the problem of finding the fair price of the
contingent claim, we only found a characterization of the fair price. An explicit
expression is usually not available. The Black-Scholes framework enables one
to give such an expression. In this framework the contingent claim at hand is
the terminal payoff of a European call option, fr = (P (T) — q)T, where ¢ is
the exercise price at maturity. We will return to this later in this section.

So far we have assumed that r was zero. In the case where this is not true, we
define P, = Py (t)/Po(t). If we now denote by X the discounted wealth process,
then Xt = P() (t)_lXt = Po(t)_l (Nl (t)Pl (t) +Ng(t)P[) (t)) = N1 (t)Pt +Ng(t) as
before. Furthermore, we now call the investment strategy self-financing, if the
differential of the discounted wealth process is equal to the right hand side of
(12.3). This is equivalent to having for the wealth process X itself the relation

dX; = Ny (t)dP; (t) + No(t)dPy(t),

again reflecting the idea that changes in the wealth process are due to changes
in the stock or bond prices only.

The rest of the story is as before upon noticing that in equation (12.4) we
have to replace X with )Z', 7« with the discounted portfolio process tilder; =
Py(t)~ 7, b(t) with b(t) — r(t) and that we apply Girsanov’s theorem with

0(t) = % The final result is that the fair price f; of the contingent claim
fr at time t becomes E[}fg((;)) fr|Fi] or, in discounted terms, ft = % =

E[fr|F], as before.

Using the Markov property of both P, and P we can write f; = v(t, Py (t)),
t <Tand f, =o(t, P(t)), t < T.

The functions v and ¢ are related by

T

Py(t)

o(t, ) = 5(t, =) Py (t). (12.6)

Using the results of Section 11 we can then write partial differential equations
for both v and . We get (indicating partial derivatives by subscripts) using
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the stochastic differential equations for both P and P; under P

Bt 7) + %az(t)m%m(t,m) —0 (12.7)

ve(t, ) + %02(75):621)9090@,:6) + r(t)xvg, (8, x) — r(t)v(t,z) = 0. (12.8)

Indeed the relation (12.6) transforms the above two partial differential equa-
tions into each other. We concentrate on equation (12.7) and take o(t) = 1.
Let for this case u(t,x) = o(T — t,z). Then we have

1
Up — §w2um =0. (12.9)
Let now $2(t) = f(f o2 (s)ds, and take 9(t,7) = w(X?(T)—X2(t),z). Then this ¢
solves equation (12.7) if u is a solution of equation (12.9) and #(T, z) = u(0, )
and v and u are related by

o(t,z) = w(SHT) — B2(t), —

Po(t)
Hence, instead of solving the rather complicated looking equation (12.8) it

suffices to solve equation (12.9). If we consider (12.9) together with the initial
condition

u(0,z) = (z — k)T, (12.11)

we find by using methods from the theory of partial differential equations
(which reduce (12.9) to the heat equation, cf. Section 11) the solution

U(t,l‘) = 1‘(§(p+(t,l‘)) - k@(p, (t,l’)), (1212)

where @ is the standard normal distribution function and py is given by
p+(t,z) = %(log% + 1t). So equations (12.10), (12.12) and the substitu-
tion k = #T) give the fair price of a European call option with exercise price
q in the Black-Scholes framework with time varying interest function r and
time varying volatility function o.

As a historical note we mention that in their paper [1] Black and Scholes
worked with equation (12.8) for constant interest rate r and constant volatility
parameter o. In this case we get the explicit (Black and Scholes option pricing)
formula

)Po(t)- (12.10)

fi = ROz llog D 4 (7 - )+ 30%) +
—e—f"(T—t)q@(g\/%(log R +(T—t)(r—%02))). (12.13)

There exists also an alternative way of arriving at equation (12.13). We use the
properties of geometric Brownian motion as we have seen them in the example
in Section 10. Recall that the fair price f; of a contingent claim fp is given
by f: = E[ gf((jt,)) fr|Fi]. In the European call option framework we then get

fi = e’T(T*t)E[(Pl (T) — q)*|F:]. Since under P the price P, satisfies
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dP, (t) = Py (t)(rdt + odW),
we get
fi=e "TVE[(P (t)e(P%”2)(T7t)+J(WT7Wt) - "R

Denote by ¢ the density og a standard normal random variable and let s; be
the solution of Py (t)e(r— 27 )(T-t)+s:0VT—t _ g — (. Then

fir= e TN Py()elra T NIV TG (2)d
- f;o q9(2)dz). (12.14)

Both integrals in (12.14) can be evaluated explicitly in terms of the cumulative
distribution function ®, which after some calculations again yields (12.13).

13. FINAL REMARKS

The theory of stochastic integration and stochastic differential equations that
we outlined in these notes used a continuous (local) martingale as the basis
process. There also exists a similar theory, in which the continuity assumption
is dropped. As a result, the class of integrable processes becomes smaller if
one wants to keep the property that a stochastic integral with respect to a
local martingale is a local martingale again. This smaller class of processes is
formed by the predictable processes. Directly from the definition of predictable
process one sees that every left continuous adapted process is predictable (so
for left continuous adapted processes the distinction between predictable and
progressive disappears). The construction of a stochastic integral in this case
parallels to a large extent what we have done in Section 5. In particular the
simple processes are again dense in the class of predictable ones under a suitable
metric. Obviously the simple processes, defined in Section 5 are predictable,
since they are left continuous and adapted.

The extension of the theory to encompass also integration with respect to
discontinuous local martingales is quite natural from a practical point of view.
Discontinuous processes are widely used, the Poisson process being the most
well known. If IV is the standard Poisson process, then M; = N; —t is a typical
example of a discontinuous martingale. In the books [3], [4], [8] or [6] & general
theory of stochastic integration is treated.

For clarity of exposition we confined ourselves to real valued process. The
extension to multivariate processes, stochastic integrals and stochastic differ-
ential equations in higher dimensions is often rather straightforward, modulo
the usual complications that pop up in multidimensional analysis.
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