
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Information processes in filtered experiments

K.O. Dzhaparidze, P.J.C. Spreij, E. Valkeila

REPORT PNA-R0125 DECEMBER 31, 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301636507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711



Information Processes in Filtered Experiments

Kacha Dzhaparidze
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Peter Spreij
Vrije Universiteit

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Esko Valkeila
University of Helsinki

P.O. Box 4, 00014 Helsinki, Finland

ABSTRACT

In this paper we give explicit representations for Kullback-Leibler information numbers between a priori
and a posteriori distributions, when the observations come from a semimartingale. We assume that the
distribution of the observed semimartingale is described in terms of the so-called triplet of predictable
characteristics. We end by considering the corresponding notions in a model with a fractional noise.
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1 Introduction

We study a statistical experiment with a filtration. About the parameter space of the experi-
ment we make the assumption that a prior distribution can be defined on it. On this abstract
parameter space the Kullback-Leibler information between a posterior and a prior distribution
is defined. We begin with modelling observations by filtration and discuss some results of a
general nature and afterwards we specify observations that either come to us in the form of
a semimartingale or in the form of a fractional Brownian motion. Given these observations
we define the posterior distribution on the parameter space and we study various information
notions, specifically the information in the posterior given the prior and vice versa (in Bayesian
terminology known as the information from data) between these two distributions on the pa-
rameter space.
Using the notions of arithmetic mean measure and geometric mean measure as they were de-
veloped in [5] (the latter generalizes a probability measure introduced by Grigelionis in [7]) we
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are going to express explicitly the density process of the posterior distribution on the parame-
ter space with respect to the prior distribution as a certain density process on the observation
space. Consequently, relying on the general theory of processes (cf [18]), we are able to use the
machinery of stochastic calculus to obtain representations of the information processes, like e.g.
a Doob-Meyer decomposition.
The study of Hellinger integrals and Hellinger processes started for binary experiments in the
series of papers [12], [13] and [17]. This theory took a complete form in the book [10] where the
notions of Hellinger integrals and Hellinger processes were fully exploited. In the consequent
papers [8] and [9] some of the results were generalized to a filtered experiment with a finite
number of probability measures. In [7] some additional aspects of the latter experiment are
discussed. These results were extended to an arbitrary parameter space in [5]. It turns out that
properties of the Hellinger process are of fundamental importance to understand the Kullback-
Leibler information processes between a posterior and a prior distribution on the parameter
space. Therefore a considerable part of the present paper is devoted to Hellinger processes. To
make the present paper self-contained we included some necessary results from [5].
The paper is organized as follows. In section 2 we summarize and further develop some no-
tions and results from [5]. In section 3 we present explicit version of results by assuming that
we observe a semimartingale. In particular we compute the Hellinger process for a given prior
distribution and the triplet of predictable characteristics under both the arithmetic mean mea-
sure and the geometric mean measure. For the geometric mean measure the triplet is specified
further when the collection of distributions of the observed process constitutes an exponential
family. In section 4 we define the different information measures and show how we can use
the results of section 3 to compute multiplicative and additive (Doob-Meyer) decompositions
of the information processes. Finally in section 5 we investigate the precise form of the results
of section 4 further for a number of examples involving discrete time independent processes,
multivariate point processes, diffusions and processes driven by fractional Brownian motion. In
the latter case we show how one can use the developed theory for diffusion processes by using
a representation of fractional Brownian motion as a stochastic integral with respect to ordinary
Brownian motion where the integral is a certain deterministic kernel.
In turns out that our formulas are closely related to results in [19] for the Shannon information
that is contained in a received signal about the transmitted signal for both the case of diffusion
observations and counting process observations.

2 Randomized experiments

2.1 Basic setup

We consider a filtered statistical experiment (Ω,F , F, {Pθ}θ∈Θ) under the following assumptions.
There exists an equivalent probability measure Q for this experiment, so

{Pθ}θ∈Θ ∼ Q, (2.1)

the right continuous filtration F = {Ft}t≥0 starts from F0 = {∅, Ω} Q-a.s., F0 contains all the
Q-null sets of F , and

∨
t Ft = F∞ = F .
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For a F -stopping time T consider now the optional projections QT and Pθ,T of the probability
measures Q and Pθ to the sub-σ-field FT . Since by (2.1) these projections are equivalent, we
may define the density process z(θ, Q) = z(Pθ, Q) by

zT (θ, Q) =
dPθ,T

dQT
.

We have dPθ/dQ = z∞(θ), since
∨

t Ft = F . The density process possesses the following
properties (see [10], proposition III.3.5, for more details): for each θ ∈ Θ
(i) inf

t
zt(θ, Q) > 0 Q − a.s.

(ii) sup
t

zt(θ, Q) < ∞ Q − a.s.

(iii) the density process z(θ, Q) is a (Q, F )-uniformly integrable martingale with EQ{zt(θ, Q)} =
1, for all t ∈ [0,∞].
Due to these properties, for each θ ∈ Θ the process

m(θ, Q) = z−(θ, Q)−1 · z(θ, Q) (2.2)

is a (Q, F )-local martingale, so that the density process is represented as the Doléans exponential
z(θ, Q) = E(m(θ, Q)) of this martingale.
We endow the parameter space Θ with a σ-algebra A and the measurable space (Θ,A) with a
probability measure α. Define Q as the product measure Q = Q×α on F .= F ⊗A, the product
σ-algebra on Ω = Ω × Θ, and the so-called mixture measure P on F by

P(B) =
∫
B

z∞(ω, θ)Q(dω)α(dθ)

for any set B ∈ F. The Kullback-Leibler information in P with respect to Q is by definition
I(P|Q) = EQ log{dQ/dP}. In the sequel we assume that

0 < I(P|Q) < ∞. (2.3)

For brevity, we denote by ϑ a random element of the parametric space (Θ,A) distributed
according to the measure α. In these terms, we may also write I(P|Q) = EαI(Pϑ|Q) =∫
Θ I(Pθ|Q)α(dθ), where I(Pθ|Q) is the Kullback-Leibler information in Pθ with respect to Q.

In the Bayesian setup this measure is called the prior (or a priori) probability. By means of the
Bayes formula we may define at each stopping time T the posterior (or a posteriori) probability
αT , that for each A ∈ A is

αT (A) =

∫
A zT (θ, Q)α(dθ)∫
Θ zT (θ, Q)α(dθ)

. (2.4)

We will return to this subject in section 4.

2.2 The arithmetic and geometric mean measures

The notions of arithmetic mean measure P̄α and geometric mean measure Gα are basic for the
present theory. They are defined on the aforementioned filtered space (Ω,F , F ). For B ∈ F we
set

P̄α(B) .=
∫

Θ
Pθ(B)α(dθ).
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The following simple lemma allows us to use P̄α as a measure equivalent to whole family {Pθ}θ∈Θ:

Lemma 2.1. Assume (2.1). Then the measures P̄α and Q are equivalent and dP̄α

dQ = a(α, Q).

Proof. First note that the a-mean measure P̄ is dominated by Q and the identity of our assertion
holds. In particular, Q(dP̄

dQ = 0) = 0. Therefore it suffices to show that Q ¿ P̄ , i.e. that

P̄ (dP̄
dQ = 0) = 0. For then dQ

dP̄
:= 1/dP̄

dQ < ∞ P̄ − a.s., so that for each B ∈ F we have

Q(B) =
∫
B

dQ
dP̄

dP̄ . Suppose the contrary P̄ (dP̄
dQ = 0) > 0. By the definition of P̄ we have

Pθ(dP̄
dQ = 0) > 0 at least for a certain θ. But since Pθ ∼ Q we get Q(dP̄

dQ = 0) > 0 which
contradicts P̄ ¿ Q.

The corresponding density process z(P̄α, Q) is referred to as the arithmetic mean process and
denoted by a(α, Q) = z(P̄α, Q). This term is explained by the simple fact that a(α, Q) =∫
Θ z(θ, Q)α(dθ).

Notice that for the special choice of Q = P̄α, we have a(α, P̄α) = 1. Consequently, equation (2.4)
is equivalent to

dαT

dα
(θ) = zT (θ, P̄α). (2.5)

Parallel to the statements (i) - (iii) of section 2.1 on the density processes, the following properties
of the arithmetic mean process can be stated:

Proposition 2.2. Assume (2.1). The arithmetic mean process a = a(α, Q) possesses the fol-
lowing properties:
(i) inf

t
at > 0 Q-a.s.

(ii) sup
t

at < ∞ Q-a.s.

(iii) a is a (Q, F )-uniformly integrable martingale with EQ at = 1 for all t ≥ 0.

Proof. In view of lemma 2.1 it suffices to refer again to [10], section III.3, proposition 3.5.

Due to these properties, the arithmetic mean process a(α, Q), viewed as a density process, may
be represented as a Doléans exponential of a certain (Q, F )-local martingale. We postpone this
till section 3.2 in which this martingale will be given the form (3.6) involving certain posterior
characteristics of observations.

To define the geometric mean measure we introduce yet another process g(α, Q) called the
geometric mean process and associated with the density process z(θ, Q) by

g(α, Q) = eEα log z(ϑ,Q). (2.6)

By Jensen’s inequality the geometric mean process is dominated by the a-mean process identi-
cally, i.e.

g(α, Q) ≤ a(α, Q) (2.7)

so that the geometric mean process also possesses property (ii) of proposition 2.2. As for the
lower bound, we have assumed (2.3) in order to guarantee that the geometric mean process has
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property (i) of proposition 2.2 as well. It will be shown in the next proposition that under the
present conditions the geometric mean process is a (Q, F )-supermartingale of class (D).

Proposition 2.3. Assume (2.1) and (2.3). The geometric mean process g = g(α, Q) possesses
the following properties:
(i) inf

t
gt > 0 Q-a.s.

(ii) sup
t

gt < ∞ Q-a.s.

(iii) g is a (Q, F )-supermartingale of class (D) with g0 = 1.

Proof. Property (i) is an immediate consequence of (2.3) and Jensen’s inequality and (ii) follows
from equation (2.7).
As for property (iii) we have that the g-mean process is indeed of class (D), since it is dominated
by a process of class (D), a (Q, F )-uniformly integrable martingale a (see (2.7)). It remains to
show that EQ{gt|Fs} ≤ gs for s ≤ t. To this end apply first the Jensen inequality and then
interchange the integration order: on the set {gs > 0} of full Q-measure

EQ

{
gt

gs
|Fs

}
=EQ{eEα log zt(ϑ,Q)

zs(ϑ,Q) |Fs} ≤ EQ{Eα
zt(ϑ, Q)
zs(ϑ, Q)

|Fs}

=Eα{EQ
zt(ϑ, Q)
zs(ϑ, Q)

|Fs} = 1.

These properties of g(α, Q) allow us to characterize in the next theorem its compensator. In
this theorem we define the Hellinger process of order α, denoted traditionally by h(α).

Theorem 2.4. Assume (2.1) and (2.3). There exists a (unique up to Q-indistinguishability)
predictable finite-valued increasing process h(α) starting from the origin h0(α) = 0, so that

M(α, Q) = g(α, Q) + g−(α, Q) · h(α) (2.8)

is a (Q, F )-uniformly integrable martingale. Moreover, two Hellinger processes h(α) determined
under two different dominating measures Q and Q′ are Q- and Q′-indistinguishable.

Proof. By the Doob-Meyer decomposition there exists a (unique up to Q-indistinguishability)
increasing finite-valued predictable process A such that g − A is a (Q, F )-uniformly integrable
martingale. By proposition 2.3, property (ii), on the set {supt gt < ∞} we can put h(α) =
(1/g−) · A which satisfies the requirements of the theorem.
We show the uniqueness of the Hellinger process as follows. Assume Q ¿ Q′. From g(α, Q′) =
Z g(α, Q) and (2.8) we get

g(α, Q′) = Z g(α, Q) = Z {M(α, Q) − g−(α, Q) · h(α)}

so that by the Itô formula

g(α, Q′) = Z M(α, Q) − {g−(α, Q) · h(α)} · Z − Z−g−(α, Q) · h(α).
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The latter equation implies the desired result as the first two terms are Q′-martingales and the
last term equals by g(α, Q′) = Z g(α, Q) to g−(α, Q′) · h(α). Thus similarly to (2.8)

g(α, Q′) + g−(α, Q′) · h(α)

is a Q′-martingale. The proof is complete by the same reasoning as before.

The notions of the Hellinger process and the Hellinger integral of order α are closely related
(see corollary 3.13 below). At a F -stopping time T , the Hellinger integral of the family of
probability measures {Pθ,T }θ∈Θ, is defined according to [10], section IV.1, as the Q-expectation
of the g-mean process evaluated at T :

HT (α) = EQ{gT (α, Q)}. (2.9)

This is called the Hellinger integral of order α. Its definition is independent of the dominating
measure Q.

We are now in the position to define the geometric mean measure Gα with the help of the ratio

ζ(α, Q) =
g(α, Q)

E(−h(α))
(2.10)

as a density process, where E(−h(α)) is the Doléans-Dade exponential of −h(α).

Theorem 2.5. Assume (2.1) and (2.3). Then the ratio (2.10) is a local martingale under Q

and, with M(α, Q) as in (2.8), the following relations are valid:

ζ(α, Q) = 1 +
1

E(−h(α))
· M(α, Q) (2.11)

and
ζ(α, Q) = E(

1
(1 − ∆h)g−

· M(α, Q)). (2.12)

Proof. Apply theorem 2.5.1 of [?] to the positive supermartingale g(α, Q) with the Doob-Meyer
decomposition as in (2.8). This also yields formula (2.12). The expression (2.11) is a direct
consequence of the Itô formula applied to g(α, Q)/E(−h(α)) and the definition of h(α). It is
now clear that ζ(α, Q) is a Q-local martingale.

It is our purpose to use ζ(α, Q) as a density process, for which it is necessary that ζ(α, Q) is
a martingale under Q. Since it is a nonnegative process, it is also a supermartingale, hence a
sufficient condition for ζ(α, Q) to become a martingale is EQζ(α, Q) ≡ 1. In [7] this equality is
assumed to hold.
As is well known, in general a positive local martingale is not necessarily a martingale. However,
in a discrete time setting more can be said. Then it is shown in [11] that a nonnegative local
martingale is in fact a martingale. So working in discrete time one obtains EQζ(α, Q) ≡ 1.
Other cases will be treated in the examples of section 5.
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If we assume that ζ(α, Q) is uniformly integrable, there is a nonnegative random variable
ζ∞(α, Q) with expectation 1 such that EQ{ζ∞(α, Q)|Ft} = ζt(α, Q). We will often need this
property, and therefore we will state this, in the same spirit as in [7], as an assumption. Since
the nonnegative supermartingale ζ(α, Q) has a limit a.s. for t → ∞, call it ζ∞(α, Q), we use it
as a Radon-Nikodym derivative to define a new measure Gα on (Ω,F), so for all B ∈ F we have
Gα(B) = EQ1Bζ∞(α, Q). Alternatively, in terms of a density we have

dGα

dQ
=

g∞(α, Q)
E(−h(α))∞

, (2.13)

with g∞(α, Q) the Q-a.s. limit of g∞(α, Q) for t → ∞ and likewise E(−h(α))∞ the Q-a.s. limit
of E(−h(α))t for t → ∞. Clearly, both limits exist.
Notice that Gα is independent of the choice of the underlying measure Q and that in general Gα

is a subprobability measure. When Gα is a probability measure, we call it the geometric mean
measure.

Lemma 2.6. Assume (2.3). Then the measure Gα is equivalent to Q.

Proof. We have Gα ¿ Q by construction. That Q ¿ Gα follows from the first assertion of
proposition 2.3.

A sufficient condition for existence of Gα as a probability measure is given in the next proposition.
It is in terms of the Hellinger process and we will return to it in section 5 when we treat examples.
Furthermore, in section 3.5 we will see that Gα becomes a probability measure if the collection
{Pθ}θ∈Θ is an exponential family. Notice that the sufficient condition is satisfied if h∞(α) is P̄α

(or Q)-a.s. bounded and in particular if it is deterministic and finite.

Proposition 2.7. Assume that EP̄α
{1/E(−h(α))∞} < ∞. Then the process ζ(α, Q) is a uni-

formly integrable martingale under Q and hence Gα is a probability measure.

Proof. If we use P̄α as the dominating measure, then the geometric mean is bounded above by
the arithmetic mean, which for equals one, i.e. a(α, P̄α) = 1. Hence ζ(α, P̄α) is dominated by
the P̄α-integrable random variable 1/E(−h(α))∞ and is therefore P̄α-uniformly integrable. The
conclusion now follows.

Let us now agree upon the following notations. If {X(θ)}θ∈Θ is a certain parametric family
of processes, then a(X) = EαX(ϑ) and (for a nonnegative family) g(X) = eEα log X(ϑ) denote
its arithmetic and geometric mean processes, respectively. Denote by φ(X) = a(X) − g(X)
the difference of the arithmetic and geometric process and note that this difference process is
homogeneous in the sense that if C is a process independent of θ, then

φ(CX) = Cφ(X). (2.14)

Note also that if the continuous part X(ϑ)c possesses the variance process

v(Xc) .= varαX(ϑ)c = Eα|X(ϑ)c|2 − |EαX(ϑ)c|2 (2.15)
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that is a (Q, F)-submartingale of class (D), then the compensator of v(Xc) is given by

ṽ(Xc) .= a(〈Xc〉) − 〈a(Xc)〉. (2.16)

In these terms the following general statement can be made.

Proposition 2.8. Let {X(θ)}θ∈Θ be a parametric family of (Q, F )-semimartingales with
∆X(θ) > −1 for all θ. Let its arithmetic mean process a(X) = EαX(ϑ) be a (Q, F )-
semimartingale and a−(X) = EαX−(ϑ). Suppose that the increasing processes a(〈Xc〉) and
a(

∑
s≤·(∆Xs − log(1 + ∆Xs))) are finite-valued.

Then the g-mean process g(E) = expEα{log E(X(ϑ))} of the family of the Doléans exponentials
{E(X(θ))}θ∈Θ is well-defined and

g(E) = E{a(X) − 1
2 ṽ(Xc) −

∑
s≤·

φs(1 + ∆X)} (2.17)

where ṽ(·) = a(〈·〉) − 〈a(·)〉 and φ(·) = a(·) − g(·).
Proof. See [5, proposition 4.5].

Throughout we well use common notions and facts of the general theory of stochastic processes
as developed e.g. in [10] or [18]. To describe, for instance, the discontinuous parts of processes in
question, we associate with the jumps of a càdlàg process X an integer-valued random measure
µX defined on R+×E precisely following this theory, where R+ is the domain of the time
component and E that of the space component (the range of the jumps of X), usually taken to
be R \ {0}. The same is applied to the notion of the compensator of the random measure µX

with respect to a underlying measure. When this measure is the dominating measure Q, it is
denoted as usual by ν. The latter occurs already in the beginning of the next section, together
with ν(θ) and ν̄ the compensators with respect to the measure Pθ, θ ∈ Θ, and the arithmetic
mean measure P̄α, respectively.

3 Semimartingale observations

3.1 Characteristics w.r.t. the arithmetic mean measure

Suppose that we observe a semimartingale X defined on (Ω,F , F, Q), i.e. a (Q, F )-
semimartingale, with the triplet of predictable characteristics T = (B, C, ν). This and all the
triplets considered in the present paper are related to a fixed truncation function ~ : R → R,
a bounded function with a compact support so that ~(x) = x in a vicinity of the origin. By
the Girsanov theorem for semimartingales (see [10, Theorem III.3.24] or [18, Theorem IV.5.3])
X is also a (Pθ, F )-semimartingale for each θ ∈ Θ. Denote by T (θ) = (B(θ), C(θ), ν(θ)) the
corresponding triplet of predictable characteristics. It is related to the triplet T as follows:




B(θ) = B + β(θ) · C + (Y (θ) − 1) ~ · ν
C(θ) = C

ν(θ) = Y (θ) · ν
(3.1)

8



with certain processes β(θ) = β(θ, Q) and Y (θ) = Y (θ, Q) so that |β(θ)|2 ·Ct < ∞ and (Y (θ)−
1) ~ · νt < ∞ Q-a.s. for all t ≥ 0. In [18, Lemma IV.5.6, p. 231] one can find the relationship of
these processes to the density process z(θ, Q).
Under the present circumstances the observation of X constitute a semimartingale with respect
to the arithmetic mean measure P̄α, as well. The following theorem, taken over from [5, Section
3.3] (a generalization of a result by Kolomiets [14] that also can be found in [10, Theorem
III.3.40] or [18, Theorem IV.5.4]), relates the triplet under P̄α to the triplets T (θ), θ ∈ Θ:

Theorem 3.1. Assume (2.1). Let X be a (Pθ, F )-semimartingale for each θ ∈ Θ with the triplet
T (θ) of predictable characteristics. Then it is a (P̄α, F )-semimartingale as well, with the triplet
T̄ = (B̄, C̄, ν̄) where




B̄ = Eα{z−(ϑ, P̄α) · B(ϑ)}
C̄ = C

ν̄ = Eα{z−(ϑ, P̄α) · ν(ϑ)}.
(3.2)

Proof. See [5, Theorem 3.3].

This theorem yields an important corollary.

Corollary 3.2. Under the conditions of theorem 3.1 the process B̄ can be represented as B̄ =
B + β̄ · C + (Ȳ − 1) ~ · ν, where the local characteristics β̄ and Ȳ with respect to the arithmetic
mean measure P̄α are given by the posterior expectations of β(ϑ) and Y (ϑ): for each t > 0

β̄t = Eαt−βt(ϑ) and Ȳt = Eαt−Yt(ϑ). (3.3)

Proof. In view of the identity (2.5) the definitions (3.3) are equivalent to

β̄ = Eα{z−(ϑ, P̄α)β(ϑ)} and Ȳ = Eα{z−(ϑ, P̄α)Y (ϑ)}. (3.4)

By (3.1) and (3.2) B̄ = B + β̄ · C + (Ȳ − 1) ~ · ν with β̄ and Ȳ as in (3.4). This confirms the
desired assertion.

Observe that the conditional expectations in equations (3.3) and (3.4) are precisely those that
one encounters in the innovations representation in problems of nonlinear filtering. This is linked
to the subject of this section by taking ϑ as the state (process or random variable) and X as
the observations process. See [18, section 4.10] for a treatment of the case with semimartingale
observation and state processes.

3.2 Arithmetic mean process as an exponential

Assume (2.1) and (2.3). For each θ ∈ Θ let the density process be represented as the Doléans
exponential z(θ, Q) = E(m(θ, Q)) of the (Q, F )-local martingale m(θ, Q) given by (2.2). Upon
further specification of the randomized experiment in question, one can assign to this martingale
explicit form in terms of the triplet of predictable characteristics T = (B, C, ν) of the observed
(Q, F )-semimartingale X. Assume therefore the setup of section 3.1. In addition to (2.1), assume
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that all (Q, F )-local martingales have the representation property relative to X. Then for each
fixed θ ∈ Θ the (Q, F )-local martingale (2.2) gets the form

m(θ, Q) = β(θ) · Xc + {Y (θ) − 1 +
Ŷ (θ) − 1̂

1 − 1̂
} ∗ (µX − ν) (3.5)

where β(θ) = β(θ, Q) and Y (θ) = Y (θ, Q) are the same as in section 3.1. According to the
usual ’hat’ notation the processes 1̂ = 1̂(Q) and Ŷ (θ) = Ŷ (θ, Q) are associated with the third
characteristics ν and ν(θ) (cf (3.1)) so that

1̂t(ω) = ν(ω; {t} × E) and Ŷt(ω, θ) =
∫

E
Yt(ω, θ, x)ν(ω, {t}, dx) = ν(ω, θ; {t} × E),

with usually E = R \ {0}, as was noted in subsection 2.2.
As we know, the arithmetic mean process is a certain density process, namely a(α, Q) = z(P̄α, Q)
with nice properties summarized in proposition 2.2. Departing from the representation property
(3.5), we are now going to present this density process as a Doléans exponential of a certain
(Q, F )-local martingale and to link it to that in (3.5).

Theorem 3.3. Assume (2.1), (2.3) and the representation property (3.5). Then the arithmetic
mean process is the Doléans exponential a(α, Q) = E(m̄) of a (Q, F )-local martingale

m̄ = β̄ · Xc + {Ȳ − 1 +
ˆ̄Y − 1̂
1 − 1̂

} ∗ (µX − ν) (3.6)

where β̄ and Ȳ are given by (3.3).

Proof. Since the density process a(α, Q) = z(P̄α, Q) possesses the properties given in propo-
sition 2.2, it is indeed representable as an exponential, say a(α, Q) = E(m̄). A (Q, F )-local
martingale m̄ involved has the presumed form by the assumption of the representation property,
like the one displayed in (3.6). The only question remains, how to identify β̄ and Ȳ in the inte-
grands. But from section 3.1 we already know the answer: they must be of the form (3.3), due
to Girsanov’s transformation and the formula (3.2) for the triplet of predictable characteristics
T̄ under the arithmetic mean measure P̄α. The proof is complete.

Theorem 3.3 has important consequence: it allows us to express the density (2.5) of the posterior
with respect to the prior as a Doléans exponential.

Corollary 3.4. Assume (2.1), (2.3) and assume the representation property (3.5). Then at
each stopping time T the density of the posterior αT with respect to the prior α is a Doléans
exponential at each θ ∈ Θ

dαT

dα
(θ) = E(m(θ, P̄α))T

with m(θ, P̄α) a (P̄α, F )-local martingale defined by

m(θ, P̄α) =
(
β(θ) − β̄

) · Xc,P̄α + {Y (θ)
Ȳ

− 1 +
Ŷ (θ) − ˆ̄Y

1 − ˆ̄Y
} ∗ (

µX − ν̄
)

(3.7)

where Xc,P̄α = Xc − β̄ · C is the continuous local martingale part of X under P̄α.
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Proof. By (2.5) it is required to show z(θ, P̄α) = E(m(θ, P̄α)), that is to show E(m(θ, Q)) =
E(m(θ, P̄α)) E(m̄). Using the well-known multiplication rule for Doléans exponentials, it suffices
to verify m(θ, Q) = m(θ, P̄α)+m̄+[m(θ, P̄α), m̄]. For the continuous parts this is easily verified.
It is then enough to identify the jumps on the both sides and to verify the relation

1 + ∆m(θ, P̄α) =
1 + ∆m(θ, Q)

1 + ∆m̄
. (3.8)

To this end, observe first that

1 + ∆m(θ, Q) =1 + {Y (θ; ·, ∆X) − 1}I{∆X 6=0} −
Ŷ (θ) − 1̂

1 − 1̂
I{∆X=0}

=Y (θ; ·, ∆X)I{∆X 6=0} +
1 − Ŷ (θ)

1 − 1̂
I{∆X=0} (3.9)

(basically, we only need to recall the definition of the stochastic integral W ∗ (µX − ν): it is
any purely discontinuous local martingale having the jumps W (·, ·, ∆X)1{∆X 6=0} − Ŵ , cf [10,
definition II.1.27] or [18, theorem 3.5.1]). Substitute then θ by ϑ and take on both sides the
expectation with respect to the posterior α− to get

1 + ∆m̄ = Ȳ (·; ·, ∆X)I{∆X 6=0} +
1 − ˆ̄Y
1 − 1̂

I{∆X=0} (3.10)

(one may derive this directly from (3.6), of course). Finally, apply this device to (3.7). We get

1 + ∆m(θ, P̄α) =
Y (θ; ·, ∆X)
Ȳ (·; ·, ∆X)

I{∆X 6=0} +
1 − Ŷ (θ)

1 − ˆ̄Y
I{∆X=0}.

The last three relations imply (3.8). The proof is complete.

3.3 Representation of Hellinger processes

Assume again (2.1), (2.3) and the representation (3.5) of a (Q, F )-local martingale m(θ, Q) for
each θ ∈ Θ. By applying to the latter martingale the notations upon which we have agreed at
the end of section 2.1, we may introduce the process

V =
1
2
v(mc) +

∑
s≤·

φs(1 + ∆m) (3.11)

assumed to be a (Q, F )-submartingale. We have written m as a shorthand notation for m(ϑ, Q).
Then its compensator Ṽ and the Hellinger process h(α) are Q-indistinguishable. As is shown in
[5, section 4.5], this statement is an easy consequence of the general proposition 2.8 applied to
m(ϑ, Q). Therefore we do not dwell upon this here. Instead, we are going now to present in
the next theorem the compensator Ṽ in terms of the triplet of predictable characteristics of the
observations (cf [5, theorem 5.3]; the proof is reproduced below, since the basic arguments are
needed anew in the subsequent sections).
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Theorem 3.5. Along with the conditions (2.1) and (2.3) assume the representation property
(3.5). Then

h(α) =
1
2
v(β) · C + φ(Y ) · ν +

∑
s≤·

φs(1 − Ŷ ). (3.12)

Proof. The first term in (3.11) is compensated as follows. The compensator ṽ(mc) of the variance
process v(mc) is ṽ(mc) = v(β) ·C. This is easily seen by applying (2.15) and (2.16) to m(θ, Q)c =
β(θ) · Xc. Next, we have to show that the second term in (3.11) is compensated by the sum of
the last two terms in (3.12), i.e. that∑

s≤·
φs(1 + ∆m) − {φ(Y ) · ν +

∑
s≤·

φs(1 − Ŷ )} (3.13)

is a (Q, F )-local martingale. But this claim holds true, in view of lemma 3.6 below upon noting
that φ is homogeneous (see equation (2.14)).

Now we formulate a lemma with the computational tool that we needed in the course of proving
theorem 3.5 and that we will also use in the proof of theorem 4.4.

Lemma 3.6. Let m = m(θ, Q) be given by (3.5) and let for a certain function f the process∑
s≤· f(1+∆ms) be a special semimartingale. Then this process has compensator

f(Y ) · ν +
∑
s≤·

f(
1−Ŷs

1 − 1̂s

)(1 − 1̂s)

and the local martingale in its semimartingale decomposition takes the form

{f(Y )−f(
1−Ŷ

1−1̂
)} ∗ (µX−ν). (3.14)

Proof. See [18, theorem 3.5.1].

Remark 3.7. The explicit expression for the (Q, F )-local martingale (3.13) is then (use again
lemma 3.6 and the fact that φ is homogeneous)

{φ(Y )−φ(1−Ŷ )
1−1̂

} ∗ (µX−ν). (3.15)

3.4 Characteristics w.r.t. the geometric mean measure

In this section we compute the predictable characteristics of the observe process under the
geometric mean measure and we give an explicit expression for the multiplicative decomposition
of the geometric mean process g(α, Q).
Suppose once more that the observations constitute a semimartingale X that possesses the
triplet of predictable characteristics T = (B, C, ν) with respect to the probability measure Q

and the triplet T (θ) = (B(θ), C(θ), ν(θ)) with respect to the probability measure Pθ, θ ∈ Θ, cf
(3.1). In the next theorem a characterization is given for the density process z(Gα, Q) which is
defined at each t ≥ 0 by zt(Gα, Q) = EQ{dGα

dQ |Ft}, provided that Gα is a probability measure.
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Theorem 3.8. Assume (2.1), (2.3) and the representation property (3.5). Let the geometric
mean measure Gα be a probability measure. Then the density process z(Gα, Q) may be presented
as a Doléans exponential

z(Gα, Q) = E(
1

1 − ∆h(α)
· N(α, Q)) (3.16)

where

N(α, Q) = a(β) · Xc + {g(Y ) − g(1 − Ŷ )
1 − 1̂

} ∗ (µX − ν) (3.17)

is a (Q, F )-local martingale that is simply related to M(α, Q) defined by (2.8):

M(α, Q) = g−(α, Q) · N(α, Q). (3.18)

Proof. Relation (3.16) follows from (2.12) and equation (3.18).
Next we verify that N(α, Q) has the representation (3.17). Since the martingale M(α, Q) in
theorem 2.4 can be expressed as

M = g−(z) · {a(m) +
1
2
{v(mc) − ṽ(mc)} − (V − Ṽ )},

it follows that N is the difference of a(m) = a(mc) + {a(Y ) − a(1−Ŷ )

1−1̂
} ∗ (µX−ν) and the local

martingale in (3.13) that is according to remark 3.7 given by {φ(Y ) − φ(1−Ŷ )

1−1̂
} ∗ (µX−ν), cf

(3.15). Since φ = a − g, the difference results in a(mc) + {g(Y ) − g(1−Ŷ )

1−1̂
} ∗ (µX−ν), which

coincides with the right hand side of (3.17).

Remark 3.9. Of course the decomposition (3.16) is also valid for the process ζ(α, Q) of equa-
tion (2.10) without condition (3.5). We only needed it to specify the martingale in (3.17).

Theorem 3.10. Assume (2.1), (2.3) and the representation property (3.5). If the geometric
mean measure Gα is a probability measure, then the triplet of predictable characteristics TGα =
(BGα , CGα , νGα) of X with respect to Gα is




BGα = a(B) + (Y Gα − a(Y ))~ · ν
CGα = C

νGα = Y Gα · ν with Y Gα = g(Y )
1−∆h(α) .

(3.19)

Proof. We use theorem 3.8 and focus first on the third characteristic νGα . By Girsanov’s theorem
for random measures (see [10, Theorem III.3.17]) we need to calculate the so-called ”conditional
MP

µ -expectation” of ∆N(α, Q), because it yields Y Gα . The definition of this operation is given
prior to the aforementioned theorem on p.157 of [10] and the rule for calculations in theorem

4.20 on p.170. According to this rule Y Gα has to be related to the integrand g(Y )− g(1−Ŷ )

1−1̂
in the

discontinuous part of N(α, Q) as follows: g(Y )− g(1−Ŷ )

1−1̂
= U + Û

1−1̂
with Y Gα −1 = U

1−∆h(α) . All
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we need then is to verify that the postulated Y Gα = g(Y )
1−∆h(α) indeed satisfies this relationship.

This is accomplished by means of simple algebra upon noting that by equation (3.12) and by
φ = a − g we have

1 − ∆h(α) = ĝ(Y ) + g(1 − Ŷ ). (3.20)

Observe that the latter identity yields 1−∆h(α) + ∆N(α, Q) = g(Y (·, ·, ∆X)), hence by (3.16)
we have for m(Gα, Q) .= z−(Gα, Q)−1 · z(Gα, Q) that 1 + ∆m(Gα, Q) = g(Y (·,·,∆X))

1−∆h(α) . Since the
second equality in (3.19) is trivial, we finally prove the first one. According to Girsanov’s theorem
III.3.24 in [10] we have

BGα = B + a(β) · C + (Y Gα − 1)~ · ν, (3.21)

since 〈N(α, Q), Xc〉 = a(β) ·C. On the other hand, from (3.1) we obtain a(B) = B + a(β) ·C +
(a(Y ) − 1)~ · ν. We get the desired result by subtracting the two expressions.

Remark 3.11. Application of the Girsanov theorem to the change of measure from Q to Gα

yields (like in (3.1)) that BGα is given by BGα = B + βGα ·C + (Y Gα − 1)~ · ν. Comparing this
to (3.21), we obtain that the local characteristic βGα is the arithmetic mean of the β(θ), i.e.
βGα · C = a(β) · C.

By (3.16), the multiplicative decomposition of the geometric mean process g(α, Q) resulting
from (2.10), can be given a specific form.

Corollary 3.12. Assume (2.1), (2.3) and the representation property (3.5). Then the geometric
mean process possesses the multiplicative decomposition

g(α, Q) = E(
1

1 − ∆h(α)
· N(α, Q)) E(−h(α)), (3.22)

with N(α, Q) as in (3.17).
If Gα is taken as the dominating measure, then the above identity can be replaced with

g(α, Gα) = E(−h(α)). (3.23)

Proof. Combine equation (2.10) and theorem 3.8 to get (3.22), whereas (3.23) immediately
follows from (2.10).

Another important consequence is the following useful representation of the Hellinger integral
that has been defined by (2.9).0

Corollary 3.13. Assume (2.1), (2.3) and the representation property (3.5). Then at a stopping
time T the Hellinger integral and the Hellinger process are related as follows:

HT (α) = EGα
E(−h(α))T .

Proof. Substitute Q in (2.9) by Gα and apply (3.23).

14



3.5 Exponential families of experiments

In this section we apply some of the preceding results to a so called exponential family of
measures and characterize these in terms of geometric mean measures. We confine ourselves to
finite dimensional parameter sets, although extension to infinite dimensional parameter space is
possible, at the cost of increasing technical complexity. So, let Θ be a subset of Rk. We assume
that Θ is convex. Then the expectation (if it exists) θ◦α

.= Eαϑ belongs to Θ for any measure
α on (Θ,A) and hence Pθ◦

α
belongs to the parametric family {Pθ}θ∈Θ. It is already here that

extension to infinite dimensional parameter spaces would become cumbersome, since one has to
use integrals with values in an infinite dimensional space, like Pettis integrals, that presupposes
that Θ is a subset of a (reflexive) Banach space, see e.g. [24].
We continue to work with an observed process X that is a semimartingale under all probability
measures involved and we give necessary and sufficient conditions for the simple identity Gα =
Pθ◦

α
, valid for all a priori distributions α such that θ◦α = Eαϑ exists and is finite. In particular,

validity of Gα = Pθ◦
α

implies that Gα is a probability measure (in general this is not guaranteed,
as was already pointed out). As we will show, this identity holds iff {Pθ}θ∈Θ is an exponential
family. In the book [15] (in particular chapter 11, that deals with semimartingales) exponential
families are defined in a number of specific cases, see also [23, chapter 2]. Exponential families
of a general nature in a static context have been studied in [21]. The definition below is much
in spirit of [15, chapter 11]. We exclude, however, the so-called curved exponential families, for
this would carry us too far afield.
The following notation and terminology will be in use. Vectors will always be understood as
column vectors and > denotes transposition.
A function f on Θ is called affine if both f and −f are convex. For an affine function f there
exist a unique c ∈ R and ḟ ∈ Rk such that f(θ) = c + θ>ḟ . Notice that f(θ◦α) = Eαf(ϑ) if f is
affine and if θ◦α = Eαϑ exists.
A positive function f is called log-affine if l

.= log f is affine. In this case there exist unique
c > 0 and l̇ ∈ Rk such that f(θ) = c exp{θ> l̇}. If f is log-affine, then exp{Eα log f(θ)} = f(θ◦α)
if θ◦α = Eαϑ exists.

Definition 3.14. Consider a family {Pθ}θ∈Θ of probability measures with the associated triplet
(3.1). It is said that this family is exponential with respect to a dominating measure Q if β(θ)
and Y (θ) can be chosen to satisfy the following two requirements.
(i) At each instant t ≥ 0 βt(·) is an affine function of θ ∈ Θ identically for all ω ∈ Ω.
(ii)Either the processes Y (θ) identically vanish, or at each instant t ≥ 0 and x ∈ E

Y (·; t, x) =
l(·; t, x)

1{1̂<1} + l̂t(·)
(3.24)

where l is a certain log-affine function of θ ∈ Θ identically for all ω ∈ Ω.

Remark 3.15. Note that if 1̂ < 1, then (3.24) is equivalent to Y (θ;t,x)

1−Ŷt(θ)
= l(θ; t, x), and that in

the quasi-continuous case Y (·) itself is log-affine in θ ∈ Θ.

The main result of this section is
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Theorem 3.16. (i) If {Pθ}θ∈Θ is an exponential family and θ◦α = Eαϑ exists, then Gα is a
probability measure and the identity Gα = Pθ◦

α
holds.

(ii) If the identity Gα = Pθ◦
α

holds for all α with finite support, then {Pθ}θ∈Θ is an exponential
family.

Proof. (i) Assume that our family of measures is exponential, i.e. by definition 3.14, at θ◦α =
Eαϑ we have β(θ◦α) = a(β) = βGα and (excluding the trivial case of vanishing Y ) Y (θ◦α) =

l(θ◦
α)

1{1̂<1}+l̂(θ◦
α)

= g(l)
1{1̂<1}+ĝ(l) . Thus to show that Y (θ◦α) = Y Gα as well, it suffices to verify

g(Y )
ĝ(Y ) + g(1 − Ŷ )

=
g(l)

1{1̂<1} + ĝ(l)
, (3.25)

cf definition of Y Gα in (3.19) in conjunction with (3.20). But due to (3.24) this follows from
1 − Ŷ (θ) = 1{1̂<1}/(1{1̂<1} + l̂(θ)) and g(Y ) = g(l)/g(1{1̂<1} + l̂), since the former implies that

g(1 − Ŷ ) = 1{1̂<1}/g(1{1̂<1} + l̂) and the latter that ĝ(Y ) = ĝ(l)/g(1{1̂<1} + l̂). Indeed, these
substitutions conform the identity (3.25).
(ii) Since now Gα = Pθ◦

α
for all α with finite support, we have a(β) = β(θ◦α) and Y Gα = Y (θ◦α).

Since this holds for all such α, the first of these equalities implies that β(·) is affine in θ. So
we now focus on the second one and distinguish two cases. Fix a time t. In the first case we
assume that 1̂t = 1. By (2.1) and [10, theorem III.3.17] then also all Ŷt(θ) = 1. Hence we have
g(Y )
ĝ(Y ) = Y (θ◦α). Choosing x0 such that Y (θ◦α; t, x0) > 0, we obtain that (we now and henceforth
in this part of the proof suppress the fixed time instant t)

g(
Y (·; x)
Y (·; x0)

) =
g(Y (·; x))
g(Y (·; x0))

=
Y (θ◦α; x)
Y (θ◦α; x0)

.

Since the extreme sides of this double equation are the same for all α with finite support, we
must have that l(·; x) .= Y (·;x)

Y (·;x0)
is log-affine in θ. Hence Y (·; x) = l(·; x)Y (·; x0) and by taking

hats and using that Ŷt(θ) = 1 we finally obtain Y (·; x) = l(·;x)

l̂(θ)
, which is what we had to show

for this case (cf (3.24)).
In the second case we assume that 1̂t < 1. In view of remark 3.15 it is now sufficient to prove
that Y

1−Ŷ
(again we suppress the fixed time instant t) is log-affine in θ. From Y Gα = Y (θ◦α) we

deduce that
g(

Y

1 − Ŷ
) =

Y (θ◦α)
1 − Ŷ (θ◦α)

.

But since this equality now holds true for all α with finite support, we conclude that indeed
Y

1−Ŷ
is log-affine in θ.

Remark 3.17. The statements of theorem 3.16 can be summarized by saying that the geometric
mean measures Gα are equal to Pθ◦

α
for all α such that Eαϑ exists iff they are equal to Pθ◦

α
for

all α with finite support.

We recall the multiplicative decomposition of the geometric mean process given by (3.22) in
conjunction with (3.16):

g(α, Q) = z(Gα, Q)E(−h(α)). (3.26)
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We may now take Q = Pθ◦
α

as a dominating probability measure to get the following character-
ization of an exponential family.

Proposition 3.18. The family of measures {Pθ}θ∈Θ is exponential iff for all α on (Θ,A) such
that θ◦α = Eαϑ exists we have g(α, Pθ◦

α
) = E(−h(α)).

Proof. This follows directly from theorem 3.16 and equation (3.26) upon the substitution Q =
Pθ◦

α
.

4 Information quantities

4.1 Information in the posterior given the prior

Let us turn back to the Bayes formula (2.4). Recall that, using the arithmetic mean measure
P̄α as a dominating measure, we may present this formula as identity (2.5) of section 2.2. This
representation proves to be useful, since the process z(θ, P̄α) is a martingale with respect to P̄α.
Define at a stopping time T > 0 the Kullback-Leibler information in the posterior probability
measure αT with respect to the prior α by

I(αT |α) = Eα log
dα

dαT
(ϑ) (4.1)

that is a non-negative quantity by the Jensen inequality. It is simply related to the arithmetic
and geometric mean processes as follows:

e−I(αT |α) =
gT (α, Q)
aT (α, Q)

= gT (α, P̄α). (4.2)

Observe that the information I(αT |α) depends only on the prior α but not on the choice of a
dominating measure Q. By (2.5) we have

EP̄α
I(αT |α) = EαI(Pϑ,T |P̄α,T ). (4.3)

In view of the propositions 2.2 and 2.3 we have

Proposition 4.1. Assume (2.1) and (2.3). Let I(α·|α) be the information process starting from
zero, I(α0|α) = 0, and at t > 0 defined by (4.1). Then it possesses the following properties:
(i) inf

t
I(αt|α) > 0 Q-a.s.

(ii) sup
t

I(αt|α) < ∞ Q-a.s.

(iii) e−I(α·|α) is a (P̄α, F )-supermartingale of class (D).

Proof. In view of the relationship (4.2), this is a direct consequence of the propositions 2.2 and
2.3.
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4.2 Information in the prior given the posterior

The previous considerations rely on the condition (2.3) concerning the Kullback-Leibler infor-
mation I(P|Q) in P given Q. Now we need to look at I(Q|P), called sometimes the relative
entropy in P given Q (the term used in the theory of large deviations to characterize this quan-
tity as the average relative entropy in the experiment given a dominating measure Q ; cf e.g.
[4], section 1.4; for a different, statistical context, see e.g. [16]). Contrary to (2.3), we then will
need the condition 0 < I(Q|P) < ∞. Actually, we only apply this to the particular dominating
measure P̄α, so it suffices to require

0 < I(P̄α|P) < ∞, (4.4)

where P̄α is the product measure P̄α × α on Ω . The latter condition is indeed implied by the
former, since I(Q|P) = I(Q|P̄ ) + I(P̄|P).
Define at a stopping time T > 0 the relative entropy in the prior given the posterior with

I(α|αT ) .= EαT log
dαT

dα
(ϑ). (4.5)

In Bayesian statistics this quantity is called information from data (see [3, Definition 2.26]). The
expression EP̄α

I(α|αT ) is called expected utility from data. By taking into consideration (2.5)
we get the following representation:

I(α|αT ) = Eα

{
zT

(
ϑ, P̄α

)
log zT

(
ϑ, P̄α

)}

so that the expected utility from data at the stopping time T equals to

EP̄α
I(α|αT ) = EαI(P̄α,T |Pϑ,T ). (4.6)

Notice that also the information from data process I(α|α·) is a (P̄α, F )-submartingale. Indeed
this follows from the fact that z(θ, P̄α) is a (P̄α, F )-martingale and that I(α|α·) = Eα`(z(ϑ, P̄α))
where `(x) = x log x is a convex function of x ∈ R+.
It is easily seen that at T = ∞ the expected utility from data is nothing else but the relative
entropy in (4.4), this clarifies its necessity in the present context.

4.3 Representation of a posterior information

The information I(αT |α) in the posterior αT with respect to the prior α satisfies identity (4.2),
therefore we have

Theorem 4.2. Assume is (2.1), (2.3), the representation property (3.5) and that Gα is a
probability measure. Then the information I(αT |α) at a stopping time T > 0 may be presented
as follows:

e−I(αT |α) = zT (Gα, P̄α) E(−h(α))T (4.7)
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where the density process z(Gα, P̄α) of the geometric mean measure Gα with respect to the
arithmetic mean measure P̄α is the Doléans exponential

z(Gα, P̄α) = E(
1

1 − ∆h(α)
· N(α, P̄α))

with

N(α, P̄α) =
(
a(β) − β̄

) · Xc,P̄α + {g (
Y
Ȳ

) − g
(

1−Ŷ

1− ˆ̄Y

)
} ∗ (µX − ν̄) (4.8)

where β̄, Ȳ and ν̄ are predictable characteristics of the observed process X with respect to the
arithmetic mean measure P̄α and Xc,P̄α the continuous local martingale in the semimartingale
decomposition of X under P̄α, cf (3.7).

Proof. Equation (4.7) follows from (3.26) and (4.2). Then, it suffices to substitute Q in (3.17)
by P̄α and to verify that N(α, P̄α) indeed has the asserted form, which we will do by following
the same arguments as in the course of proving corollary 3.4. Firstly, the multiplication rule for
Doléans exponentials is applied according to which the following identity has to hold: N(α, Q) =
N(α, P̄α) + (1 − ∆h(α)) · m̄ + [N(α, P̄α), m̄]. The comparison of the continuous parts is simple.
As for the discontinuous parts, it suffices to equate the jumps and to verify that

1 +
∆N(α, P̄α)
1 − ∆h(α)

=
1 + ∆N(α, Q)/(1 − ∆h(α))

1 + ∆m̄

like in (3.8). To this end use (3.10) and (3.20) and determine ∆N(α, Q)/(1 − ∆h(α)) and
∆N(α, P̄α)/(1 − ∆h(α)) from (3.17) and (4.8), respectively, by following the same device as in
the course of proving corollary 3.4.

Remark 4.3. Under the conditions of theorem 4.2 we have

EP̄α
I(αT |α) = EαI(Pϑ,T |P̄α,T ) = I(Gα,T |P̄α,T ) − EP̄α

log E(−h(α))T . (4.9)

The first identity is (4.3). The second one follows from (4.7).

4.4 Representation of the information from data

Suppose that the observed process X is a (Q, F )-semimartingale with the triplet of predictable
characteristics T = (B, C, ν). As in section 3.3, assume the representation property for the
density processes z(θ, Q).
Denote by L(x, y) the function L(x, y) = x log x

y . The function L may be used to compute
Kullback-Leibler information with respect to a dominating measure, e.g. if for two equivalent
measures P and Q the information I(P |Q) is needed to be calculated in terms of a certain
measure Q′ that dominates both P and Q, then the following relation is applied: I(P |Q) =
EQ′L(z(Q, Q′), z(P, Q′)).
In the next theorem we will use the following notation, in the spirit of section 3.1: for a quantity
f free of θ and g possibly depending on θ we write L̄(g, f) = Eα−L(g(ϑ), f) (assuming of course
the appropriate measurability and integrability conditions). Besides, we will use the posterior
variance of β(ϑ) that is defined like in (2.15) as follows: v̄(β) = Eα−(β(ϑ)− β̄)2. In the present
circumstances we get the Doob-Meyer decomposition of the of the information from data process.
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Theorem 4.4. Assume (2.1), (4.4) and that (Q, F )-local martingales have the representation
property relative to X. Then the nondecreasing finite-valued predictable process

1
2 v̄(β) · 〈Xc〉 + L̄(Y, Ȳ ) · ν +

∑
s≤·

L̄(1 − Ŷs, 1 − ˆ̄Ys) (4.10)

compensates the information from data process I(α|α·) (cf (4.5)) to a (P̄α, F )-martingale.

Proof. It will be seen below that the (P̄α, F )-local martingale just mentioned is in fact the sum
of two terms

Eα

{
z−(ϑ, P̄α) log z−(ϑ, P̄α) · m (

ϑ, P̄α

)}
(4.11)

and

(
L̄(Y, Ȳ )

Ȳ
− L̄(1 − Ŷ , 1 − ˆ̄Y )

1 − ˆ̄Y
) ∗ (µX − ν̄). (4.12)

It is not hard1 to see that I(α|α·) is the sum of the three terms: the local martingale (4.11) plus
the first term in (4.10) and the expression

∑
s≤· Eαs−`(1 + ∆ms

(
ϑ, P̄α

)
) with `(x) = x log x.

It is therefore sufficient to decompose the process in this third summand and to show that its
martingale part is just (4.12), while the compensator may be identified with the last two terms
in (4.10). To this end apply lemma 3.6 – substitute f in its assertion by ` to see that this
compensator is given by Eα−`(Y (ϑ)/Ȳ ) · ν̄ +

∑
s≤· Eαs−`

(
(1 − Ŷs(ϑ))/(1 − ˆ̄Ys)

)
(1 − ˆ̄Ys), equal

indeed to the sum of the last two terms in (4.10). As for the martingale part, by the same lemma
we get Eα−{`(Y (ϑ)/Ȳ ) − `

(
(1 − Ŷ (ϑ))/(1 − ˆ̄Y )

)
} ∗ (µX − ν̄) that yields (4.12). The proof is

complete.

Remark 4.5. We obtain from theorem 4.4 that the expected utility from data at the stopping
time T equals to

EP̄α
I(α|αT ) =EαI(P̄α,T |Pϑ,T )

=EP̄α
{1

2 v̄(β) · 〈Xc〉T + L̄(Y, Ȳ ) · νT +
∑
s≤T

L̄(1 − Ŷ , 1 − ˆ̄Y )}

The first identity is already known, see (4.6). The second one follows from (4.10).

5 Examples

5.1 Discrete observations

As confined to the special case of a discrete-time filtered space (Ω,F , F = {Fn}n∈N), the present
theory is quite straightforward. Let us therefore shortly review the results. Suppose that

1I guess
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the present space is endowed with the family of probability measures {Pθ}θ∈Θ that are all
equivalent to a certain probability measure Q. Denote their restrictions to Fn by {Pθ,n}θ∈Θ

and Qn. Often the nth experiment is described by its outcomes, say vectors (X1, . . . , Xn) that
generate the σ-algebra Fn, and the above restrictions are viewed as their distributions. For
each n and θ ∈ Θ denote by zn(θ, Q) the density of Pθ,n with respect to Qn. The sequence of
densities {zn(θ, Q)}n∈N is related to the martingale sequence {mn(θ, Q)}n∈N according to (2.2),
i.e. ∆mn(θ, Q) = ∆zn(θ, Q)/zn−1(θ, Q) with the convention z0(θ, Q) ≡ 1. Within this setup the
condition (2.1) is equivalent to

∞∑
n=1

EQ

(
(
√

1 + ∆mn(θ, Q) − 1)2|Fn−1

)
< ∞ Pθ + Q a.s. (5.1)

(see [10, Theorem IV.2.36]). The arithmetic mean sequence a(α, Q) = {an(α, Q)}n∈N is defined
by an(α, Q) = Eαzn(ϑ, Q). This is in fact the density (with respect to Qn) of the restriction P̄α,n

to Fn of the arithmetic mean measure, i.e. an(α, Q) = zn(P̄α, Q). The geometric mean sequence
g(α, Q) = {gn(α, Q)}n∈N is defined by gn(α, Q) =

∏n
i=1 γi(α, Q), the product of the geometric

means

γi(α, Q) = eEα log(1+∆mi(ϑ,Q)) = e
Eα log

zi(ϑ,Q)
zi−1(ϑ,Q) . (5.2)

The condition (2.3) is equivalent to

∞∑
n=1

EαEQ log(1 + ∆mn(ϑ, Q)) > −∞ (5.3)

since the sum on the left is identical to −I(P|Q). Compare this with condition (4.4) that now
reads ∞∑

n=1

EαEPϑ
log(1 + ∆mn(ϑ, P̄α)) < ∞. (5.4)

Obviously, the geometric mean sequence g(α, Q) has the multiplicative decomposition (3.22) in
discrete time, with the Hellinger sequence of order α defined by

hn(α) =
n∑

i=1

EQ {1 − γi(α, Q)|Fi−1} .

Note that EQh∞(α) ≤ −EQ
∑∞

n=1 log γn(α, Q) < ∞ by (5.3).
The density (with respect to Qn) of the restriction Gα,n to Fn of the geometric mean measure
Gα is

zn(Gα, Q) =
n∏

i=1

γi(α, Q)
EQ {γi(α, Q)|Fi−1} = En(

1
1 − ∆h(α)

· N(α, Q)) (5.5)

where Nn(α, Q) =
∑n

i=1 (γi(α, Q) − EQ {γi(α, Q)|Fi−1}) . Under the conditions (5.1) and (5.3)
the geometric mean measure exists as a probability measure on each finite time interval. Indeed,
we can apply a result in [11] that implies that every nonnegative discrete time local martingale
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is in fact a martingale.
With the nth experiment the posterior measure αn is associated whose density with respect to
the prior α is defined for each θ ∈ Θ as follows

dαn

dα
(θ) =

zn(θ, Q)
an(θ, Q)

= zn(θ, P̄α) =
n∏

i=1

(1 + ∆mi(ϑ, P̄α)),

cf (2.5). Then the Kullback-Leibler information in the posterior αn with respect to the prior α

is

I(αn|α) = Eα log
dα

dαn
(ϑ) = −

n∑
i=1

log γi(α, P̄α), (5.6)

hence EP̄α
I(αn|α) = −∑n

i=1 EP̄α
log γi(α, P̄α). Note finally that in the present case the expected

utility from data of size n (cf (4.9)) is

EP̄α
I(α|αn) =

n∑
i=1

EP̄α
Eαi−1`(1 + ∆mi(ϑ, P̄α)), (5.7)

that is well-defined, for condition (4.4) ensures the convergence of this series as n → ∞.

Special case: Independent observations. Let X1, X2, . . . be a sequence of independent
real-valued random variables. Suppose that under the measure Pθ for θ ∈ Θ the random variable
Xn possesses a probability density fn(·, θ) and under the measure Q a density fn(·), all with
respect to some σ-finite measure ρ. Then the condition (2.1) is equivalent to

∞∑
n=1

∫ ∞

−∞

(√
fn(x) −

√
fn(x, θ)

)2
ρ(dx) < ∞ ∀θ ∈ Θ,

cf (5.1). Moreover, suppose 0 < Γn(α) .=
∫ ∞
−∞ γα,n(x)ρ(dx) < 1 for all n ∈ N where γα,n =

exp{Eα log fn(·, ϑ)} (this is always less or equal 1 by Jensen’s inequality but the equality is
excluded by the assumption that ϑ is nondegenerate under α). The condition (2.3) is equivalent
to ∞∑

n=1

∫ ∞

−∞
Eα log

{
fn(x, ϑ)
fn(x)

}
fn(x)ρ(dx) > −∞,

cf (5.3). In the present case the Hellinger integral and the Hellinger sequence are given by
H(α, n) =

∏n
i=1 Γi(α) and hn(α) =

∑n
i=1(1 − Γi(α)) with the relationship H(α, ·) = E(−h(α)),

since h(α) is deterministic, cf (2.9). For a sample of size n the posterior measure αn is so that
its density with respect to the prior α is

dαn

dα
(θ) = f1(X1, θ) · · · fn(Xn, θ)/aα,n

where the denominator aα,n =
∫
Θ f1(X1, θ) · · · fn(Xn, θ)α(dθ) is the density with respect to

ρ⊗n of the arithmetic mean measure P̄α restricted to Fn. Note that the observations are
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not independent relative to this measure and this causes considerable computational compli-
cations. For instance, the information in αn given α amounts to I(αn|α) = log{aα,n/gα,n}
where gα,n = γα,n(X1) · · · γα,n(Xn). For further calculations preceding formulas may be ap-
plied (for instance (5.6) and (5.7)) by taking into consideration that in the present example
1+∆mn(θ, P̄α) = fn(Xn, θ)/aα,n and γn(α, P̄α) = γα,n(Xn)/aα,n.
Calculations under the geometric mean measure Gα on the other hand are less cumbersome,
since under this measure the Xn keep on being independent with densities with respect to ρ

given by γα,n(·)/Γn(α). This statement is evident from (5.5).

5.2 Point processes

Suppose that observed is a d-dimensional counting process (N1, . . . , Nd). Under the probability
measure Pθ for θ ∈ Θ the cumulative intensity of the ith component N i is Λi(θ) and under the
measure Q it is Ai, both positive increasing processes so that the densities dΛi(θ)/dAi = Y i(θ)
exist for all i = 1, . . . , d and θ ∈ Θ. The condition (2.1) is equivalent to

d∑
i=1

∫ ∞

0

(√
Y i

s (θ) − 1
)2

dAi
s +

∑
s∈R

(√
1 − ∆Λs(θ) −

√
1 − ∆As

)2
< ∞

Pθ + Q-a.s. for all θ ∈ Θ (see [10, Theorem IV.2.1]). In the second term Λ = Λ1 + · · · + Λd and
A = A1 + · · · + Ad. The expression for the corresponding density process is well-known:

zT (θ, Q) = e−ΛT (θ)c+Ac
T

∏
s≤T

(
1−∆Λs(θ)
1−∆As

)1−∆Ns
d∏

i=1

Y i
s (θ)∆N i

s (5.8)

with N = N1 + · · · + Nd. Moreover, assume that each density Y i(θ) for i = 1, . . . , d satisfies
Eα log{Y i

s (ϑ)/(1 − ∆Λs(ϑ))} > −∞ for all s > 0. The Hellinger process of order α is given by

h(α) =
d∑

i=1

∫ ·

0
φs(Y i)dAi

s +
∑
s≤·

φs(1 − ∆Λ).

The condition (2.3) holds if the expression

d∑
i=1

∫ T

0
as(Y i−1− log Y i)dAi

s +
∑
s≤T

as

(
1−∆Λ
1−∆A−1− log 1−∆Λ

1−∆A

)
(1 − ∆As) (5.9)

evaluated at T = ∞, has a finite expectation with respect to Q.
The arithmetic mean measure P̄α assigns to the component N i the intensity Λ̄i that has the
density Ȳ i with respect to Ai. This density is the predictable posterior expectation of Y i(ϑ) as
in (3.3).
The geometric mean measure Gα is a probability measure if EP̄α

{1/E∞(−h(α))} < ∞, see
proposition 2.7. According to (3.19) this measure assigns to the component N i the intensity
density (with respect to the same Ai) of the form g(Y i)/(1 − ∆h(α)).
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Making use of the formula (2.5) in conjunction with (5.8) we get the density of the posterior αT

with respect to the prior α:

dαT

dα
(θ) = e−ΛT (θ)c+Λ̄c

T

∏
s≤T

(
1 − ∆Λs(θ)
1 − ∆Λ̄s

)1−∆Ns d∏
i=1

(
Y i

s (θ)
Ȳ i

s

)∆N i
s

,

that in turn yields the information I(αT |α). To get EP̄α
I(αT |α), for instance, we have to take

the expectation with respect to P̄α of the expression (5.9) with Y i substituted by Y i/Ȳ i and Ai

by Λ̄i.
According to remark 4.5, the expected utility from the present data equals to

EP̄α
I(α|αT ) = EP̄α

{
d∑

i=1

∫ T

0
L̄(Y i

s , Ȳ i
s )dAi

s +
∑
s≤T

L̄(1 − ∆Λs, 1 − ∆Λ̄s)}.

Finiteness of this expression for T = ∞ is just condition (4.4). The special case d = 1 with
a continuous cumulative intensity process has been considered in [19]. In this special case the
above expression for the expected utility from data reduces to equation (19.132) in [19]. The
latter expression was derived in [19] for the Shannon information about a transmitted message ϑ

that is contained in the received signal N . In that book, ϑ had been taken as a certain random
process, a situation that is also covered in the present paper upon appropriate adjustments.
For the use of the arithmetic mean measure in model testing and for a discussion on computa-
tional problems see [2].

Special case: Cox’ regression model. Assume that the compensators Λi(θ) and Ai are
all absolutely continuous, so we can write Λi(θ) =

∫ ·
0 λi

s(θ)ds and Ai =
∫ ·
0 λi

sds. Then working
under an exponential family of measures basically means that we deal with Cox’ regression
model, see [1, page 477]. So the intensity of the component N i under P θ is assumed to be
modeled so that at each instant t ≥ 0

λi
t(θ) = λ◦

t e
θ>Zi

t γi
t

with θ a k-dimensional parameter vector, λ◦ a deterministic function called the baseline hazard,
Zi a certain k-dimensional predictable process of covariates and γi another (nonnegative) pre-
dictable processes served in survival analysis to model a censoring mechanism. Then we have
Y i

t (θ) = λ◦
t e

θ>Zi
t γi

t/λi
t, which is clearly log-affine, so that indeed we deal with an exponential

family.
The Hellinger process h(α) now takes the form

h(α) =
∫ ·

0
λ◦

t

d∑
i=1

(Eαeϑ>Zi
t − eEαϑ>Zi

t )γi
tdt.

Finally, observe that under the geometric mean measure Gα the compensators ΛG,i are given by
ΛG,i =

∫ ·
0 λ◦

t e
Eαϑ>Zi

t γi
tdt. The information processes can now be given a more specific form by

making the appropriate substitutions.
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5.3 Diffusion processes

Let the observed process X be defined so that under each measure Pθ, θ ∈ Θ, the process
X − ∫ ·

0 βs(θ)ds is a Wiener process W (θ) with the intensity σ2 that is free of the parameter θ.
Then the condition (2.1) is equivalent to

∫ ∞
0 β2

s (θ)ds < ∞ Pθ + Q-a.s. for all θ ∈ Θ (see [10,
Theorem IV.2.1]).
Suppose that at each instant t > 0 the drift βt(ϑ) has non-vanishing variance with respect to α,
denoted as above by v(βt). Then the Hellinger process is h(α) = σ2

2

∫ ·
0 v(βs)ds and the condition

(2.3) is equivalent to EQh∞(α) < ∞.

In the same vain it is easily seen that condition (4.4) in this context is satisfied if
EαEPϑ

∫ ∞
0 (βs(ϑ) − β̄s)2ds < ∞. By applying theorem 4.4 we can rewrite this last condition as

EP̄α

∫ ∞
0 v̄(βs)ds.

As we know from corollary 3.2, the arithmetic mean measure P̄α assigns to our observations the
posterior characteristic β̄, see (3.3), i.e. W̄

.= X − ∫ ·
0 β̄sds is a Wiener process. Assume now

EP̄α
exp{σ2

2

∫ ∞
0 v(βs)ds} < ∞. Then the geometric mean measure Gα is a probability measure

(see proposition 2.7) and under this measure X − ∫ ·
0 as(β)ds is a Wiener process. Alternatively,

under Novikov’s condition EQ exp{σ2

2

∫ ∞
0 as(β)2ds} < ∞, the measure Gα is a probability mea-

sure. A sufficient condition for this to hold is EαEQ exp{σ2

2

∫ ∞
0 βs(ϑ)2ds} < ∞, which follows

from Jensen’s inequality. The latter condition is appealing as it says that the arithmetic mean
of the EQ exp{σ2

2

∫ ∞
0 βs(θ)2ds} is finite. Finiteness of the latter expectation is just Novikov’s

condition for absolute continuity of Pθ with respect to Q, our basic condition (2.1).
According to corollary 3.13 the Hellinger processes h(α) are related to the Hellinger in-
tegrals evaluated at a certain stopping time T as follows: HT (α) = EGα

ET (−h(α)) =
EGα

exp{−σ2

2

∫ T
0 v(βs)ds}. Combining (2.5) and corollary 3.2, we find that the density of the

posterior αT with respect to the prior α is given by

dαT

dα
(θ) = exp{

∫ T

0
(βs(θ) − β̄s)dW̄s − σ2

2

∫ T

0
(βs(θ) − β̄s)2ds}.

Hence the information in αT with respect to the prior α is according to (4.2) given by

I(αT |α) = −
∫ T

0
(a(βs) − β̄s)dW̄s + σ2

2

∫ T

0
a((βs − β̄s)2)ds

and EP̄α
I(αT |α) = σ2

2 EP̄α

∫ T
0 a((βs − β̄s)2)ds. Finally, by Theorem 4.4 the expected utility from

the data equals to EP̄α
I(α|αT ) = σ2

2 EP̄α

∫ T
0 v̄(βs)ds. For related results see also [22] and [19]. In

fact, equation (16.65) of [19] is nothing else but EP̄α
I(α|αT ), although the context is different.

In [19] this formula has been derived for the Shannon information in the received signal X about
the transmitted signal ϑ. As in the counting process example of the previous section, also this
interpretation is covered in our general set up.
Assume now that the family {Pθ}θ∈θ is exponential. Then β is affine, β(θ) = a + θ>β̇, say. It
follows that vs(β) = β̇>

s Γαβ̇s, where Γα, the covariance matrix of ϑ under α, is assumed to be
finite.
Hence the Hellinger process becomes σ2

2

∫ ·
0 β̇>

s Γαβ̇sds. Under the measure Gα the process X
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has the compensator
∫ ·
0(as + Eαϑ>β̇s)ds. By making the relevant substitutions the information

processes can now be given a more specific form.

5.4 Fractional processes

It is said that X is a fractional Brownian motion with self-similarity index H ∈ (0, 1) if it is a
continuous centered Gaussian process with X0 = 0 and with the covariance

EXtXs =
1
2

(
t2H + s2H − |t − s|2H

)

at s, t ≥ 0. For H 6= 1
2 fractional Brownian motion is not a semimartingale and for H = 1

2 it is
the standard Brownian motion. H is also called Hurst index.
Denote by cH the constant

√
2HΓ(3

2 − H)/Γ(H + 1
2)Γ(2 − 2H), where Γ is the gamma function

and let σ2
H = c2

H/4H2(2 − 2H). The following facts are taken from [20]:

Theorem 5.1. Under the conditions of the present section we have
(i) The process M defined by Mt =

∫ t
0 m(t, s)dXs is a continuous Gaussian martingale with

independent increments, where at each instant t > 0 the kernel m(t, s) is non-zero only if
s ∈ (0, t), when it equals to s

1
2
−H(t−s)

1
2
−H/2HB(3

2 − H, H + 1
2) with B(a, b) the beta coefficient.

Furthermore the quadratic variation of M is given by 〈M〉t = σ2
Ht2−2H .

(ii) The process X defined by Xt =
∫ t
0 z(t, s)dMs is a fractional Brownian motion with self-

similarity index H, where at each instant t > 0 the kernel z(t, s) is non-zero only if s ∈ (0, t),
when it equals to 2HtH− 1

2 (t − s)H− 1
2 − H(2H − 1)

∫ t
s uH− 1

2 (u − s)H− 3
2 du.

Proof. See [20, Theorem 3.1 and Theorem 5.2].

The integrals of the kernels z(·, ·) and m(·, ·) with respect to M and X, respectively, is defined by
integration by parts. Since the kernels are non-random, we have the identity FX = FM between
the basic filtration FX generated by the observed fractional Brownian motion X from one hand
and the filtration FM generated by the Gaussian martingale M of theorem 5.1, assertion (i), on
the other hand (we refer to [20] for more details).
Consider the following parametric model. Take Q to be the probability measure that makes
X a fractional Brownian motion with self-similarity index H. Suppose that under the prob-
ability measure Pθ with θ ∈ Θ the process X(θ) = X − ∫ ·

0 βs(θ)ds for some progressive pro-
cess β(θ) is a fractional Brownian motion with self-similarity index H. Then the process
M(θ) =

∫ ·
0 m(·, s)dXs(θ) is a (Pθ, F )-Gaussian martingale with the same quadratic variation

process as M , so that 〈M(θ)〉t = σ2
Ht2−2H .

Since the measures Pθ and Q are completely determined by the characteristics of the corre-
sponding Gaussian martingales M(θ) and M , the change of measure is accomplished by an
ordinary Girsanov transformation as in the diffusion case. So, we have a density process
z(θ, Q) = E(ρ(θ) · M), where the process ρ(θ) is such that M(θ) = M − ∫ ·

0 ρs(θ) d〈M〉s. But in
view of theorem 5.1 we must have

∫ ·
0 ρs(θ)d〈M〉s =

∫ ·
0 m(·, s)βs(θ) ds. Therefore ρ(θ) satisfies

the integral equation∫ ·

0
s

1
2
−H(· − s)

1
2
−Hβs(θ)ds = (2 − 2H)B(3

2 − H, 3
2 − H)

∫ ·

0
ρs(θ)s1−2Hds. (5.10)
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Suppose that the solution ρ to equation (5.10) is so that
∫ ∞
0 ρ2

s(θ)d〈M〉s < ∞ Pθ + Q-a.s for all
θ ∈ Θ. This condition is equivalent to (2.1), see [10, Theorem IV.2.1]).
Switching to P̄α as the dominating measure, we likewise obtain

z(θ, P̄α) = E((ρ(θ) − ρ̄) · M̄), (5.11)

where M̄ =
∫ ·
0 m(·, s)dXs − ∫ ·

0 ρ̄sd〈M〉s is a (P̄α, F )-Gaussian martingale with angle bracket
〈M̄〉 = 〈M〉. Moreover, the Hellinger process of order α is similarly obtained h(α) =
1
2

∫ ·
0 v(ρs)d〈M〉s, provided that the variance process v(ρ) is non-vanishing. These formulas fol-

low directly from the corresponding formulas of the diffusion model. Note by the way that the
process X − ∫ ·

0 β̄sds is (P̄α, F )-fractional Brownian motion with Hurst index H.
The condition (2.3) is equivalent to EQh∞(α) < ∞. Similarly, condition (4.4) is equivalent
to Eα

∫ ∞
0 ρs(ϑ)2d〈M〉s < ∞. If, moreover, EP̄α

exp{h∞(α)} < ∞, then the geometric mean
measure Gα is a probability measure in view of proposition 2.7.
According to corollary 3.13 the Hellinger integral of order α is evaluated at a stopping time
T as follows: H(α, T ) = EGα

exp{−1
2

∫ T
0 v(ρs)d〈M〉s}. In virtue of (2.5), the equation (5.11)

gives the density of the posterior αT with respect to the prior α. We get, in particular, that
EP̄α

I(αT |α) = 1
2EP̄α

∫ T
0 a

(
(ρs − ρ̄s)2

)
d〈M〉s. Finally, by Theorem 4.4 the expected utility from

data equals to EP̄α
I(α|αT ) = 1

2EP̄α

∫ T
0 v̄(ρs)d〈M〉s. As a last remark we note that the family

{Pθ}θ∈Θ becomes exponential if the processes β(θ) above are affine functions of θ. It follows from
equation (5.10) that then also the processes ρ(θ) are affine functions of θ, so that the density
processes z(θ, Q) are of the desired form.
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