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ABSTRACT

In a filtered statistical experiment a priori and a posteriori probability measures are defined on an abstract

parametric space. The information in the posterior, given the prior, is defined by the usual Kullback-Leibler

formula. Certain properties of this quantity is investigated in the context of so-called arithmetic and geometric

measures and arithmetic and geometric processes. Interesting multiplicative decompositions are presented that

involve Hellinger processes indexed both by prior and by posterior distributions.
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1. Introduction

The setup of the present report is the same as in our previous paper [1], where certain
aspects are studied of randomized filtered experiments indexed by an arbitrary parametric
space. Some new aspects discussed in this report concern relationship between prior and
posterior probability distributions on the parametric space. In section 3.3 we will introduce
the notion of the Kullback-Leibler information in the posterior distribution given a prior, and
in section 5.5 we will present its multiplicative representation. The predictable component of
this representation (5.23) involves the Hellinger process h(α) indexed by the prior probability
measure α. This notion is well-known in the particular case of binary experiments (see
the book [5]) or in the case of a finite parametric space (see [3] and [4]). The present
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generalization to an arbitrary parametric space comes from [1]. The martingale component
of the representation (5.23) is the density of the geometric (g-)mean measure with respect
to the arithmetic (a-)mean measure whose definitions and properties are also taken over
from [1]. Some additional aspects of the a-mean measure can be found in [9], section 65.
The g-mean measure confined to a finite parametric space has been introduced in [2]. The
expression (5.24) of the martingale involved in the representation (5.23) seems interesting
because of a natural relationship between the prior and posterior expectations of the drift β
(in the integrand of the continuous part) and the intensity density Y (in the integrand of the
discrete part).

The information defined by (3.11) at any stopping time T > 0, is based on all past
observations up to T . In section 7 a different, dynamical approach is pursued. First an
instantaneous gain of information is defined by the usual Kullback-Leibler formula (cf (7.1)
or (7.4)), that is provided by a single observation at each fixed time instant. By integrating
then all the results up to certain stopping time T > 0, we get the so-called cumulative
information contained in the posterior given a prior, cf definition (7.3) or (7.5). Parallel to
the previous case (5.23), we again have an interesting multiplicative decomposition (7.8).

2. Randomized experiments

2.1 Statistical experiment
Consider a statistical experiment (Ω,F , {Pθ}θ∈Θ), where {Pθ}θ∈Θ is a certain parametric
family of probability measures defined on a measurable space (Ω,F) with a set of elementary
events Ω and a σ-field F . Suppose that each member of the family {Pθ}θ∈Θ is equivalent to
a certain probability measure Q, i.e.

{Pθ}θ∈Θ ∼ Q. (2.1)

For each fixed θ ∈ Θ denote by pθ the Radon-Nikodym derivative of Pθ with respect to Q:

pθ =
dPθ

dQ
. (2.2)

So, for each θ ∈ Θ and B ∈ F

Pθ(B) =
∫

B
pθ(ω)Q(dω) = EQ{1Bpθ}. (2.3)

Here and elsewhere below we use the expectation sign E indexed by a probability measure.

2.2 Randomization
On the set of parameter values Θ define a σ-field A and consider a probability space (Θ,A, α)
where α is a certain probability measure. In this way a statistical parameter ϑ is viewed
as a random variable on the probability space (Θ,A, α) with the probability measure α
determining a priori distribution of ϑ.

Consider now the direct product (Ω,F ,Q) of two probability spaces (Ω,F , Q) and
(Θ,A, α), where Ω = Ω×Θ, F = F⊗A and Q = Q×α. Along with Q define on (Ω,F)
another probability measure P as follows: for each B ∈ F

P(B) =
∫

B
p(ω, θ)Q(dω)α(dθ) .= EQ{1Bp} (2.4)
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so that for each ω = (ω, θ) ∈ Ω we have p(ω) = dP
dQ(ω). Obviously, by (2.2) we have the

identity

p(ω) =
dP
dQ

(ω) =
dPθ

dQ
(ω) = pθ(ω); (2.5)

Observe that in the present setting the probability measure Pθ defined for each θ ∈ Θ by
(2.3) (and satisfying Pθ(Ω) = 1), can be viewed as a regular conditional probability measure,
under the condition that the statistical parameter ϑ takes on the particular value θ. In view
of (2.3) we can rewrite (2.4) as follows: for each B = B ×A ∈ F

P(B) =
∫

A
pθ(B)α(dθ) = Eα {1AEQ{1Bp}} = EQ {1BEα{1Ap}} ,

since by Loève [8], theorem 8.2B, it is allowed to interchange the integration order.
The Kullback-Leibler information in this experiment I(P|Q) = EQ log dQ

dP is positive by
assumption. Later (from section 3.3 onwards) we also assume that this information is finite,
i.e.

0 < I(P|Q) <∞. (2.6)

Note the identity

I(P|Q) = EαI(Pϑ|Q) (2.7)

where I(Pθ|Q) = EQ log dQ
dPθ

is the Kullback-Leibler information in Pθ for each fixed θ ∈ Θ
with respect to a dominating measure Q. This is easily seen in view of (2.5), since

EαI(Pϑ|Q) = EαEQ log
dQ

dPϑ
= EQ log

dQ
dP

.

2.3 Arithmetic mean measure
It is often useful to make a concrete choice of a dominating measure Q. Like in [5], p 163,
a new measure on the same measurable space (Ω,F), the so-called arithmetic mean measure
P̄ = P̄α, is defined as follows: for each B ∈ F

P̄ (B) = P(B ×Θ) = EαPϑ(B).

Lemma 3.2 in [1] tells us that under the assumption (2.1)

P̄α ∼ Q and
dP̄α

dQ
= Eαpϑ. (2.8)

We mention one specific usage of the arithmetic mean measure. In the Bayesian setup the
measure α on (Θ,A) is viewed as a priori probability measure. Along with this, one may
also define on the same space a posteriori probability measure α1 as follows: for all A ∈ A

α1(A) .=
∫

A

dPθ

dP̄α
α(dθ) (2.9)

i.e. for each θ ∈ Θ

dα1

dα
(θ) =

dPθ

dP̄α
. (2.10)
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Note that for fixed A ∈ A the random variable α1(A) is F-measurable. Define now the
Kullback-Leibler information in the posterior α1 with respect to the prior α, given for each
θ ∈ Θ by

I(α1|α) = Eα log
dα

dα1
(ϑ). (2.11)

Since the interchange of the integration order is allowed (see the previous section) we have
the identity EP̄ I(α1|α) = EαI(Pϑ|P̄ ).

In section 5.4 another measure, called the geometric mean measure, will be introduced
which, used as a dominating measure, yields the important equality (5.21); cf also section 6.1.

3. Randomized filtered experiment

3.1 Filtration
Let the measurable space (Ω,F) be equipped with a filtration F = {Ft}t≥0, an increasing
and right continuous flow of sub-σ-fields of F , so that

∨
t≥0Ft = F∞ = F . Assume that the

filtered probability space (Ω,F , F = {Ft}t≥0, Q) is a stochastic basis: F is Q-complete and
each Ft contains the Q-null sets of F . We also assume for simplicity that F0 = {∅,Ω} Q-a.s.
The filtered probability space

(Ω,F , F, {Pθ}θ∈Θ, Q) (3.1)

so defined is called a filtered statistical experiment. Consider the optional projections of the
probability measures Q and Pθ with respect to F , and use the same symbols for resulting
optional valued processes: for a F -stopping time T QT and Pθ,T are then the restrictions of
the measures Q and Pθ to the sub-σ-field FT . Since Pθ,T is equivalent to QT for each θ ∈ Θ,
we can define the Radon-Nikodym derivatives

zT (θ) .=
dPθ,T

dQT
= EQ{pθ|FT }. (3.2)

Thus according to [5], section III.3, for each fixed θ ∈ Θ there is a unique (up to Q-in-
distinguishability) process z(θ) = z(θ,Q) called the density process. We usually stress the
dependence on a dominating measure Q. So zt(θ,Q) = dPθ,t

dQt
for all t ≥ 0. The density process

possesses the following properties (see [5], section III.3, proposition 3.5, for more details): for
each θ ∈ Θ
(i) inf

t
zt(θ,Q) > 0 Q-a.s.

(ii) sup
t

zt(θ,Q) <∞ Q-a.s.

(iii) z(θ,Q) is a (Q,F )-uniformly integrable martingale with EQzt(θ,Q) = 1, for all t ∈ [0,∞].

Consider now the situation of section 2.2. Let (Ω,F ,F,P,Q) be a binary experiment
equipped with the filtration F = {Ft⊗A}t≥0, which is call a filtered randomized experiment.
Take again the optional projections of the probability measures Q and P with respect to F.
For a F -stopping time T (which is clearly F-stopping time, as well) QT and PT are then
the restrictions of the measures Q and P to the sub-σ-field FT , with the Radon-Nikodym
derivative

zT
.=

dPT

dQT
= EQ{p|FT } (3.3)
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with p as in (2.5). We get then the identity EαzT (ϑ,Q) = EQ{p|FT }.
All parametric families of processes {X(θ)}θ∈Θ treated in this paper (such as the family

of density processes {z(θ)}θ∈Θ defined by (3.2)) are supposed to be adapted to the filtration
F, i.e. {Ft⊗A}-measurable for each t ≥ 0, and càdlàg for each θ ∈ Θ. A parametric
family of processes {X(θ)}θ∈Θ is called predictable if it is P⊗A-measurable, where P is
the predictable σ-field on Ω×IR+. Let µ be a random measure defined on IR+×E with an
appropriate measurable space (E, E). With a random measure µ and a probability measure
Q we associate the Doléans measure MQ

µ , defined on (Ω̃, F̃) where Ω̃ = Ω×IR+×E and F̃ =
F⊗B(IR+)⊗E . Recall that MQ

µ (dω; dt, dx) = Q(dω)µ(ω; dt, dx). We will use the common
notation MQ

µ (·|P̃) for the corresponding conditional expectation with respect to P̃ = P⊗E
(for more details see [5], section III.3c, or [7], chapter 3). Define similarly the Doléans
measure MQ

µ on (Ω̃×Θ, F̃ ⊗A), MQ
µ = MQ

µ ⊗α. Write P̃ = P̃ ⊗A. Let W be a nonnegative
F̃ ⊗ A-measurable function. Then we define for each θ the function Wθ(·, ·, ·) = W (·, θ, ·, ·),
which is then F̃-measurable. Likewise we also consider Wϑ. Then we obtain from Fubini’s
theorem MQ

µ (W |P̃) = Eα{MQ
µ (Wϑ|P̃)} = MQ

µ (EαWϑ|P̃). Finally, let ν be the compensator
of µ. Both µ and ν extend trivially to random measures –again denoted by µ and ν– on
IR+×E parameterized by ω, θ via µ(ω, θ; dt, dx) = µ(ω; dt, dx) and likewise for ν. Hence for a
P̃⊗A-measurable positive function W on Ω̃×Θ we can associate the process Ŵ in the usual
way:

Ŵt(ω) =
∫

E
W (ω; t, x)ν(ω; {t} × dx). (3.4)

In the sequel these results will be applied to the well known integer-valued random measure
µX associated to (the jumps of) a càdlàg process X as defined in [5], section II.1, proposition
1.16.

3.2 Prior and posterior measures
Departing from the identity (2.8), we define a new process a(α,Q), called the arithmetic
mean process, by restricting the density dP̄α

dQ to Ft for all t ≥ 0 so that

a(α,Q) = z(P̄α, Q) (3.5)

where zt(P̄α, Q) = EQ{dP̄α
dQ |Ft} for all t ≥ 0. Note that with the choice P̄ as the dominating

measure it becomes particularly simple: identically a(α, P̄ ) = 1. We may also write

a(α,Q) = Eαz(ϑ,Q) (3.6)

with at(α,Q) = zt = EQ{p|F t} for all t ≥ 0, cf (3.3). The a-mean process possesses the
following properties:
(i) inf

t
at > 0 Q-a.s.

(ii) sup
t

at <∞ Q-a.s.

(iii) a is a (Q,F )-uniformly integrable martingale with EQat = 1 for all t ≥ 0,
(iv) if X is a certain (Q,F )-semimartingale, then

〈a,Xc〉 = Eα〈z(ϑ,Q),Xc〉 and MQ
µX

(a|P̃) = EαMQ
µX

(z(ϑ,Q)|P̃).
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The first three statements are quite parallel to that of density processes in section 3.1. For
the proof of property (iv), see [1], proposition 3.1.

Like in section 2.3 consider the Bayesian setup in which the measure α on (Θ,A) is
interpreted a priori probability measure. Along with this define for each stopping time T on
the same space the a posteriori probability measure αT as follows: for ∀A ∈ A

αT (A) .=

∫
A zT (θ,Q)α(dθ)∫
Θ zT (θ,Q)α(dθ)

,

i.e.

dαT

dα
(ϑ) =

zT (ϑ,Q)∫
Θ zT (θ,Q)α(dθ)

.

Compare these equations with (2.9) and (2.10) which we had initially, prior to the filtered
setup. Obviously, the posterior αT so defined is free of the choice of a dominating measure
Q. Note that for fixed A ∈ A the random variable αT (A) is FT -measurable. In view of the
identity a(α, P̄ ) ≡ 1 mentioned above, we get with P̄α as the dominating measure that for
each θ ∈ Θ

dαT

dα
(θ) =

zT (θ, P̄α)
aT (α, P̄α)

= zT (θ, P̄α). (3.7)

3.3 Information in the posterior given a prior
Along with the a-mean process (3.6), we associate with the parametric family of density
processes {z(θ,Q)}θ∈Θ a so-called geometric mean process

g(α,Q) = eEα log z(ϑ,Q). (3.8)

By the Jensen inequality g-mean process is dominated by a-mean process identically, i.e.

g(α,Q) ≤ a(α,Q) (3.9)

so that the g-mean process shares property (ii) of the a-mean process, mentioned in sec-
tion 3.2. As for the lower bound, we have assumed (2.6) in order to let the g-mean process
share property (i) of the a-mean process, as well.

Proposition 3.1. Assume (2.1) and (2.6). The geometric mean process g = g(α,Q) pos-
sesses the following properties:
(i) inf

t
gt > 0 Q-a.s.

(ii) sup
t

gt <∞ Q-a.s.

(iii) g is a (Q,F )-supermartingale of class (D) with g0 = 1.

Property (i) is an immediate consequence of (2.6) and Jensen’s inequality, while (ii) follows
from equation (3.9). As for property (iii), we have that the g-mean process is indeed of class
(D), since it is dominated by a process of class (D), a (Q,F )-uniformly integrable martingale a
(see (3.9)). For the concluding inequality EQ{gt|Fs} ≤ gs as s ≤ t, a consequence of Jensen’s
inequality, see [1], proposition 4.1. Observe that by the identity (3.5) and the inequality (3.9)
we have

g(α,Q)
a(α,Q)

= g(α, P̄α) ≤ 1. (3.10)
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Surely, this fraction depends only on the prior α but not on the choice of a dominating
measure Q.

Similarly to (2.11), we define at a stopping time T > 0 the Kullback-Leibler information
in the posterior probability measure αT with respect to the prior α by

I(αT |α) = Eα log
dα

dαT
(3.11)

which is a non-negative quantity by the Jensen inequality. It is related to the arithmetic and
geometric mean processes as follows:

Theorem 3.2. Let T > 0 be a stopping time, let α and αT be the prior and posterior
probability measures on the parametric space (Θ,A) and let I(αT |α) be the Kullback-Leibler
information in the posterior αT with respect to the prior α, as defined in (3.11). Then

e−I(αT |α) =
gT (α,Q)
aT (α,Q)

= gT (α, P̄α). (3.12)

Proof. The latter equality has already been presented in (3.10). By the definitions (3.7),
(3.8) and (3.11) we have e−I(αT |α) = eEα log zT (ϑ,P̄α) = gT (α, P̄α).

Observe again that the information I(αT |α) depends only on the prior α but not on the
choice of a dominating measure Q. In view of the properties of the arithmetic and geometric
mean processes, presented above, we have

Proposition 3.3. Assume (2.1) and (2.6). Let I(α·|α) be the information process starting
from zero, I(α0|α) = 0, and at t > 0 defined by (3.11). Then it possesses the following
properties:
(i) inf

t
I(αt|α) > 0 Q-a.s.

(ii) sup
t

I(αt|α) <∞ Q-a.s.

(iii) I(α·|α) is a (Pα, F )-submartingale of class (D).

Proof. This is a direct consequence of theorem 3.2 and the corresponding property of the
g-mean process mentioned above.

4. Predictable characteristics

4.1 Triplet of characteristics
Suppose that we are given the observations that constitute a semimartingale X defined on
(Ω,F , F,Q), i.e. a (Q,F )-semimartingale, with the triplet of predictable characteristics
T = (B,C, ν). This and all the triplets considered in the present paper are related to a
fixed truncation function ~ : IR → IR, a bounded function with a compact support so that
~(x) = x in a vicinity of the origin. By the Girsanov theorem for semimartingales (see [5],
Theorem III.3.24, p 159, or [7], Theorem IV.5.3, p 232) X is also a (Pθ, F )-semimartingale
for each θ ∈ Θ. Denote by T (θ) = (B(θ), C(θ), ν(θ)) the corresponding triplet of predictable
characteristics, which is related to the triplet T as follows:

B(θ) = B + β(θ) · C + (Y (θ)− 1) ~ ∗ ν
C(θ) = C
ν(θ) = Y (θ) · ν

(4.1)
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with certain processes β(θ) = β(θ,Q) and Y (θ) = Y (θ,Q) so that |β(θ)|2 · Ct < ∞ and
(Y (θ) − 1) ~ ∗ νt < ∞ Q-a.s. for all t ≥ 0. According to [7], Lemma IV.5.6, p 231, these
processes are described as follows. Let the density process be represented in as a Doléans-
Dade exponential z(θ,Q) = E(m(θ,Q)) with

m(θ,Q) = z (θ,Q)−1 · z(θ,Q). (4.2)

The continuous process β(θ,Q) satisfies β(θ,Q) ·C = 〈m(θ,Q),Xc〉. As for Y (θ,Q), a P̃⊗A
-measurable positive function, it satisfies Y (θ,Q)− 1 = MQ

µX
(∆m(θ,Q)|P̃).

4.2 Characteristics w.r.t. the a-mean measure
In the situation of the previous section, the observations X constitute a semimartingale with
respect to the a-mean measure P̄α, as well. The following theorem, taken over from [1],
section 3.3 (a generalization of a result by Kolomiets [6]; see also [5], Theorem III.3.40, p 163
or [7], Theorem IV.5.4, p 234), relates the triplet under P̄α to the triplets T (θ), θ ∈ Θ:

Theorem 4.1. Assume (2.1). Let X be a (Pθ, F )-semimartingale for each θ ∈ Θ with the
triplet T (θ) of predictable characteristics. Then it is a (P̄α, F )-semimartingale as well, with
the triplet T̄ = (B̄, C̄, ν̄) where

B̄ = Eα{z (ϑ, P̄α) ·B(ϑ)}
C̄ = C
ν̄ = Eα{z (ϑ, P̄α) · ν(ϑ)}.

(4.3)

Proof. See [1], theorem 3.3.

Corollary 4.2. Under the conditions of theorem 4.1 the local characteristics β̄ and Ȳ with
respect to the arithmetic mean measure P̄α are the posterior expectations of β(ϑ) and Y (ϑ):
for each t > 0

β̄t = Eαt−βt(ϑ) and Ȳt = Eαt−Yt(ϑ). (4.4)

Proof. In view of the identity (3.7) the definitions (4.4) are equivalent to

β̄ = Eα{z (ϑ, P̄α)β(ϑ)} and Ȳ = Eα{z (ϑ, P̄α)Y (ϑ)}. (4.5)

By (4.1) and (4.3)

B̄ = B + β̄ · C + (Ȳ − 1) ~ ∗ ν

with β̄ and Ȳ as in (4.5). This confirms the desired assertion.

5. Explicit representations

5.1 Hellinger integrals and processes
Let T be a F -stopping time. We associate with the family of probability measures {Pθ,T }θ∈Θ,
the so-called Hellinger integral of order α which is defined according to [5], section IV.1, and
[1], section 4.2, as the Q-expectation of the g-mean process evaluated at T :

H(α, T ) = EQgT (α,Q). (5.1)
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Note that the Hellinger integral is independent of the choice of the dominating measure Q:
if Q′ is another dominating measure such that Q � Q′ and Z = dQ

dQ′ , then EQg(α,Q) =
EQ′g(α,Q′), since EQg(α,Q) = EQ′{Z g(α,Q)} and by definition (3.8)

Z g(α,Q) = eEα log[Z z(ϑ,Q)] = eEα log z(ϑ,Q′) = g(α,Q′), (5.2)

cf [1], section 4.2.
Next, we define the Hellinger process of order α, denoted traditionally by h(α).

Theorem 5.1. Assume (2.1) and (2.6). There exists a (unique up to Q-indistinguishability)
predictable finite-valued increasing process h(α) starting from the origin h0(α) = 0, so that

M(α,Q) = g(α,Q) + g (α,Q) · h(α) (5.3)

is a (Q,F )-uniformly integrable martingale.

Proof. See [1], theorem 4.2.

Like the Hellinger integrals, the Hellinger processes are independent of the choice of the
dominating measure Q. Note also that up to a Q-evanescent set

∆h(α) < 1 (5.4)

so that the Doléans-Dade exponential of −h(α), a positive decreasing finite-valued process

E(−h(α)) = e−h(α)
∏
s≤·

(1−∆hs(α))e∆hs(α)

is well defined and

E(−h(α))−1 = E
(

1
1−∆h(α)

· h(α)
)

. (5.5)

For these facts on the Hellinger processes we refer to [1], section 4.3; see also section 4.5,
where the Hellinger process h(α) is characterized as the compensator of a certain (Q,F )-
submartingale V of class (D) to be described next (see [1], sections 4.4 and 4.5 for more
details).

The following notations will be used: if {X(θ)}θ∈Θ is a certain parametric family of
processes, then a(X) = EαX(ϑ) and (for a nonnegative family) g(X) = eEα log X(ϑ) denote its
arithmetic and geometric mean processes, respectively (cf the special cases (3.6) and (3.8)).
Denote by φ(X) = a(X) − g(X) the difference of the arithmetic and geometric process and
note that this difference process is homogeneous in the sense that if C is a process independent
of θ, then φ(CX) = Cφ(X). Note also that if the continuous part X(ϑ)c possesses the variance
process

v(Xc) .= varαX(ϑ)c = Eα|X(ϑ)c|2 − |EαX(ϑ)c|2 (5.6)

that is a (Q, F)-submartingale of class (D), then the compensator is given by

ṽ(Xc) .= a(〈Xc〉)− 〈a(Xc)〉. (5.7)
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Assume (2.1) and (2.6). Write m as a shorthand notation for m(ϑ,Q), a (Q,F )-uniformly
integrable martingale given by (4.2). Let the process

V =
1
2
v(mc) +

∑
s≤·

φs(1 + ∆m) (5.8)

be a (Q,F )-submartingale. Then its compensator Ṽ and the Hellinger process h(α) are Q-in-
distinguishable. This is exactly the assertion of theorem 4.7 in [1]. Upon further specification
of the underlying model, we will be able in the next section to express this compensator in
terms of the triplet of predictable characteristics of the observations.

5.2 Representation of Hellinger processes
In order to present the Hellinger processes explicitly, we need further specification of the
randomized experiment in question. We turn therefore back to the setting of section 4.2 and
suppose that a (Q,F )-semimartingale X is observed whose triplet of predictable character-
istics is T = (B,C, ν). In addition to (2.1), assume that all local (Q,F )-martingales have
the representation property relative to X, so that for each fixed θ ∈ Θ the density process is
represented as the Doléans-Dade exponential z(θ,Q) = E(m(θ,Q)) of the (Q,F )-uniformly
integrable martingale

m(θ,Q) = β(θ) ·Xc +

(
Y (θ)− 1 +

Ŷ (θ)− 1̂
1− 1̂

)
∗ (µX − ν) (5.9)

where β(θ) = β(θ,Q) and Y (θ) = Y (θ,Q) are the same as in section 4.2. According to the
notation (3.4) the processes 1̂ = 1̂(Q) and Ŷ (θ) = Ŷ (θ,Q) are associated with the third
characteristics ν and ν(θ) (cf (4.1)) so that

1̂t(ω) = ν(ω; {t} × IR) and Ŷt(ω) =
∫

E
Yt(ω, θ, x)ν(ω, {t}, dx) = ν(ω; {t} × IR).

Add now the representation (5.9) to the conditions (2.1) and (2.6) of the previous section.
It is needed to specify the compensator of V , i.e. the compensators of both terms in (5.8),
that yields the Hellinger process h(α), as was noticed at the end of the preceding section.
The result is asserted in the next theorem (cf [1], theorem 5.3; the proof is reproduced below,
since the basic arguments are needed anew in section 7).

Theorem 5.2. In the situation described in the previous section, assume (5.9). Then

h(α) =
1
2
v(β) · C + φ(Y ) ∗ ν +

∑
s≤·

φs(1− Ŷ ). (5.10)

Proof. The first term in (5.8) is compensated as follows. The compensator ṽ(mc) of the
variance process v(mc) is ṽ(mc) = v(β) · C. this is easily seen by applying (5.6) and (5.7) to
m(θ,Q)c = β(θ) ·Xc. Next, we have to show that the second term in (5.8) is compensated
by the sum of the last two terms in (5.10), i.e. that

∑
s≤·

φs(1 + ∆m)−

φ(Y ) ∗ ν +
∑
s≤·

φs(1− Ŷ )

 (5.11)
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is a (Q,F )-local martingale. But by the same considerations as in [5], Lemma IV.3.22, this
claim holds true, provided

φ(1 + ∆m) = φ(Y (·; ·,∆X))I{∆X 6=0} +
φ(1− Ŷ )

1− 1̂
I{∆X=0}. (5.12)

To prove (5.12), recall first the definition of the stochastic integral W ∗ (µX − ν): It is
any purely discontinuous local martingale having the jumps W (·, ·,∆X)1{∆X 6=0} − Ŵ , cf [5],
definition II.1.27 or [7], theorem 3.5.1. Apply this to the second term of m(θ,Q) in (5.9). We
get

1 + ∆m(θ,Q) = 1 + {Y (θ; ·,∆X) − 1}I{∆X 6=0} −
Ŷ (θ)− 1̂

1− 1̂
I{∆X=0}

= Y (θ; ·,∆X)I{∆X 6=0} +
1− Ŷ (θ)

1− 1̂
I{∆X=0}. (5.13)

From this we immediately obtain (5.12). The proof is complete.

Remark 1. The explicit expression for the (Q,F )-local martingale (5.11) is given by the
following decomposition:

∑
s≤·

φs(1 + ∆m) =

{
φ(Y )− φ(1− Ŷ )

1− 1̂

}
∗ (µX − ν) + φ(Y ) ∗ ν +

∑
s≤·

φs(1− Ŷ ). (5.14)

In section 5.4 we will make use of the following simple corollary.

Corollary 5.3. Under the conditions of theorem 5.2, the positive valued process 1 −∆h(α)
can be represented as follows:

1−∆h(α) = g(1 − Ŷ ) + ĝ(Y ). (5.15)

Proof. We have already seen that the process on the left hand side of (5.15) is positive valued,
cf (5.4). Here the notation (3.4) is used, so that for instance

ĝt(Y )(ω) =
∫

E
eEα log Y (ω,ϑ,x)ν(ω; {t} × dx).

Hence (5.10) yields ∆h(α) = φ(1−Ŷ )+φ̂(Y ) that is equivalent to (5.15), since φ(·) = a(·)−g(·)
and a(1− Ŷ ) + â(Y ) = 1. The proof is complete.

5.3 a-mean process as an exponential
In the setting of the previous section the a-mean and g-mean processes (defined in sections 3.2
and 3.3, respectively) have useful representations in terms of the Doléans-Dade exponentials.
In this section we treat the a-mean process. The g-mean process will be treated in the next
section. As was noticed in section 2.3 the a-mean process is in fact a certain density process,
cf (3.5).
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Theorem 5.4. Under the conditions of theorem 5.2 the a-mean process defined by (3.6) (cf
also (3.5)) may be represented as the Doléans-Dade exponential a(α,Q) = E(m̄(α,Q)) of the
(Q,F )-uniformly integrable martingale

m̄(α,Q) = β̄ ·Xc +

(
Ȳ − 1 +

ˆ̄Y − 1̂
1− 1̂

)
∗ (µX − ν) (5.16)

with the posterior expectations β̄ and Ȳ defined by (4.4).

Proof. In virtue of corollary 4.2 it suffices to substitute β and Y in (5.9) by β̄ and Ȳ defined
by (4.4). This yields (5.16).

5.4 Multiplicative decomposition of g-mean process
In this section a multiplicative decomposition of the g-mean process will be presented (cf
(5.20) or (5.22) below). In (5.21) a new dominating measure G = Gα occurs. This measure,
called geometric mean measure, is defined as follows. Suppose once more that the observations
constitute a semimartingale X that possesses the triplet of predictable characteristics T =
(B,C, ν) with respect to the probability measure Q and the triplet T (θ) = (B(θ), C(θ), ν(θ))
with respect to the probability measure Pθ, θ ∈ Θ, cf (4.1). For any fixed α let G = Gα be a
probability measure on the same space (Ω,F , F ), equivalent to Q, that prescribes to X the
triplet of predictable characteristics TG = (BG, CG, νG) where

BG = a(B) + (Y G − a(Y ))~ ∗ ν
CG = C

νG = Y G · ν with Y G = g(Y )

g(1−Ŷ )+ĝ(Y )
.

(5.17)

Recall the notations of lemma 5.3 according to which Y G = g(Y )
1−∆h(α) . In the next theorem a

characterization is given for the density process z(Gα, Q) which is defined at each t ≥ 0 by
zt(Gα, Q) = EQ{dGα

dQ |Ft}, cf [2].

Theorem 5.5. Under the conditions of theorem 5.2 the density process z(Gα, Q) may be
presented as a Doléans-Dade exponential

z(Gα, Q) = E
(

1
1−∆h(α)

·N(α,Q)
)

(5.18)

of a (Q,F )-uniformly integrable martingale

N(α,Q) = a(β) ·Xc +

{
g(Y )− g(1 − Ŷ )

1− 1̂

}
∗ (µX − ν).

that is simply related to M(α,Q) defined by (5.3):

M(α,Q) = g (α,Q) ·N(α,Q). (5.19)

Proof. The relation (5.19) follows from [1], lemma 5.4. From [7], theorem 2.5.1, and the
decomposition (5.3) we get the multiplicative decomposition

g(α,Q) = E
(

1
1−∆h(α)

·N(α,Q)
)
E(−h(α)) (5.20)
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with the process N(α,Q) = g (α,Q)−1 ·M(α,Q) that clearly meets (5.19). From [1], theorem
5.6, we know that

g(α,G) = E(−h(α)). (5.21)

Substitute this in the expression on the right hand side of (5.20) and compare the result with
the identity g(α,Q) = z(G,Q) g(α,G), a consequence of (5.2). This confirms the desired
equality (5.18).

By (5.18), the multiplicative decomposition (5.20) of the g-mean process can be given an
alternative form.

Corollary 5.6. Under the conditions of theorem 5.2 the g-mean process possesses the mul-
tiplicative decomposition

g(α,Q) = z(Gα, Q) E(−h(α)) (5.22)

Proof. Apply theorem 5.5 to (5.20).

Another important consequence is the following useful representation for the Hellinger inte-
gral.

Corollary 5.7. Under the conditions of theorem 5.2

H(α, T ) = EGE(−h(α))T .

Proof. Substitute Q in (5.1) by G and apply (5.21).

5.5 Representation of a posterior information
At a stopping time T > 0, define by (3.11) the information I(αT |α) in the posterior αT with
respect to the prior α. It satisfies identity (3.12) and therefore we have

Corollary 5.8. Under the conditions of theorem 5.2 the information I(αT |α) at a stopping
time T > 0 can be presented as follows:

e−I(αT |α) = zT (Gα, P̄α) E(−h(α))T (5.23)

where the density process z(Gα, P̄α) of the g-mean measure Gα with respect to the a-mean
measure P̄α is the Doléans-Dade exponential

z(Gα, P̄α) = E
(

1
1−∆h(α)

·N(α, P̄α)
)

with

N(α, P̄α) =
(
a(β)− β̄

)
·Xc +

{
g

(
Y

Ȳ

)
− g

(
1− Ŷ

1− ˆ̄Y

)}
∗ (µX − ν̄) (5.24)

where β̄, Ȳ and ν̄ are predictable characteristics of the observed process X with respect to the
arithmetic mean measure P̄α, as defined in section 4.2.

Proof. In view of identity (3.12) it suffices to substitute Q in (5.20) by P̄α and to verify that
N(α, P̄α) indeed has the asserted form.
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6. Examples

6.1 Processes with independent increments
Let the Hellinger process h(α) be deterministic. According to [5], remark VI.1.25, this is the
case when the underlying process X has independent increments. It is directly seen from
corollary 5.7 that in this case H(α, ·) = E(−h(α)) at any instant t. Let us turn back to the
setup of section 2.3 in which the a-mean measure P̄ = P̄α has been defined on a measurable
space (Ω,F). Let us define on the same space another measure so that for each B ∈ F

G(B) =

∫
B g(α,ω)Q(dω)∫
Ω g(α,ω)Q(dω)

(6.1)

where the integrand is the geometric mean of pϑ given by (2.5), i.e. g(α,ω) = eEα log pϑ(ω)

(it depends on the dominating measure Q; as usual ω is suppressed). The denominator in
(6.1) is the Hellinger integral H(α) = EQg(α,Q), cf (5.1), so that we have the equality
g(α,Q) = dG

dQ H(α). The measure G just defined is in fact the geometric measure G = Gα of
the preceding section. Take the logarithm of both sides in the latter equality and then the
expectation with respect to Q. By (2.7) we get I(P|Q) = I(G|Q)−log H(α). Note that by the
Jensen inequality H(α) ≤ 1, hence we have on the right the sum of two positive quantities.
Moreover, with the special choice of the dominating measure Q = G this equality reduces to
EαI(Pϑ|G) = − log H(α). We thus see that for any dominating measure Q we have

EαI(Pϑ|Q) ≥ EαI(Pϑ|G), (6.2)

which means that the g-mean measure G minimizes the average information. By the Jensen
inequality the lower bound in (6.2) is estimated by EαI(Pϑ|G) ≥ I(P̄ |Q).

6.2 Discrete time
As confined to the special case of a discrete-time filtered space (Ω,F , F = {Fn}n∈IN), the
present theory is quite straightforward. Let us therefore shortly review the results. Suppose
that the present space is endowed with the family of probability measures {Pθ}θ∈Θ that are all
equivalent to a certain probability measure Q. Denote their restrictions to Fn by {Pθ,n}θ∈Θ
and Qn. Often the nth experiment is described by its outcomes, say vectors (X1, . . . ,Xn)
that generate the σ-algebra Fn, and the above restrictions are viewed as their distributions.
For each n and θ ∈ Θ denote by zn(θ,Q) the density of Pθ,n with respect to Qn. With the nth

experiment the posterior measure αn is associated whose density with respect to the prior α
is defined for each θ ∈ Θ as follows:

dαn

dα
(θ) =

zn(θ,Q)∫
Θ zn(θ,Q)α(dθ)

= zn(θ, P̄ ) (6.3)

where P̄n is the restriction to Fn of the arithmetic mean measure. Its density with respect
to Q is given by an(α,Q) = zn(P̄ ,Q) = Eαzn(θ,Q), cf (3.5) and (3.6). This defines the
a-mean sequence a(α,Q) = {an(α,Q)}n∈IN. It is useful to express the g-mean sequence
g(α,Q) = {gn(α,Q)}n∈IN in terms of the geometric means gi = eEα log ri(ϑ,Q) of the ratios
ri = zi/zi−1, with convention z0 ≡ 1. For we get gn(α,Q) = g1 · · · gn. Obviously, this process
g(α,Q) has the multiplicative decomposition (5.22) in discrete time, with

hn(α) =
n∑

i=1

EQ {1− gi|Fi−1}
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and the density of the restriction to Fn of the g-mean measure Gα with respect to Qn

zn(Gα, Q) =
n∏

i=1

gi

EQ {gi|Fi−1}
= E

(
1

1−∆h(α)
·N(α,Q)

)
n

where Nn(α,Q) =
∑n

i=1 (gi −EQ {gi|Fi−1}) . In view of corollary 5.8, it is now easy to get
the multiplicative decomposition (5.23) with

e−I(αn|α) =
zn(Gα, Q)
an(P̄α, Q)

n∏
i=1

EQ {gi|Fi−1} . (6.4)

6.3 Independent observations
Let X1,X2, . . . be a sequence of independent real-valued observations with Xi drawn ac-
cording to a probability density (with respect to some σ-finite measure ρ) that belongs to a
certain parametric family {fi(·, θ)}θ∈Θ. Suppose that for ρ-a.a. x ∈ IR

γi(x, α) .= eEα log fi(x,ϑ) > 0,

so that by the Jensen inequality

0 < Γi(α) .=
∫ ∞
−∞

γi(x, α)ρ(dx) < 1

(equality on the right hand side is excluded by the assumption that ϑ is nondegenerate
under α) We can use the formulas of the preceding examples, taking into consideration the
correspondence between the pairs gi, EQ{gi|Fi−1} of section 6.2 and γi(Xi, α), Γi(α) of the
present section. The Hellinger integral and the Hellinger sequence are then given by

H(α, n) =
n∏

i=1

Γi(α) and hn(α) =
n∑

i=1

(1− Γi(α))

with the relationship H(α, ·) = E(−h(α)) as in section 6.1, since h(α) is deterministic. For a
certain sample size n the posterior measure αn on the parametric space is determined by its
density with respect to the prior α

dαn

dα
(X1, . . . ,Xn;ϑ) =

f1(X1, ϑ) · · · fn(Xn, ϑ)∫
Θ f1(X1, θ) · · · fn(Xn, θ)α(dθ)

where the denominator, denoted below by an(X1, . . . ,Xn;α), is the density with respect
to ρ⊗n of the a-mean measure restricted to Fn. The information in αn given α has the
representation

e−I(αn|α) =
gn(X1, . . . ,Xn;α)
an(X1, . . . ,Xn;α)

H(α, n)

where gn(X1, . . . ,Xn;α) =
∏n

i=1
γi(Xi,α)

Γi(α) is the density with respect to ρ⊗n of the g-mean
measure restricted to Fn.
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6.4 Diffusion
Let the observation process X be defined so that under each measure Pθ, θ ∈ Θ,

X −
∫ ·

0
βs(θ)ds

is a Wiener process W (θ). Suppose that for each s > 0 the drift βs(θ) has non-vanishing
variance with respect to α, denoted as above by vs(β). Then the Hellinger processes

h(α) =
σ2

2

∫ ·
0

vs(β)ds

where σ2 is the intensity of the Wiener processes W (θ), θ ∈ Θ, are related to the Hellinger
integrals evaluated at a certain stopping time T so that

H(α, T ) = EGE(−h(α)) = EG

{
e−

σ2

2

∫ T
0 vs(β)ds

}
.

Under the g-mean measure G = Gα

X −
∫ ·

0
as(β)ds

is a Wiener process. Hence, if under certain measure Q the observation process X itself is a
Wiener process of intensity σ2, then the density process of Gα with respect to Q is given by
z(G,Q) = ea(β)·X− 1

2
〈a(β)·X〉 with 〈a(β) ·X〉 = σ2

∫ ·
0 a2

s(β)ds. Furthermore, the density process
of P̄α with respect to Q is z(P̄ ,Q) = eβ̄·X− 1

2
〈β̄·X〉, cf (4.4). Hence, the density of the posterior

α· with respect to the prior α is given by

dα·

dα
(θ) = e(β(θ)−β̄)·W̄− 1

2
〈(β(θ)−β̄)·W̄ 〉

and the information in α·, given the prior α, satisfies

e−I(α·|α) = e(a(β)−β̄)·W̄− 1
2
〈(a(β)−β̄)·W̄ 〉 e−

σ2

2

∫ ·
0 vs(β)ds

where W̄ is a Wiener process under the a-mean measure P̄α.

6.5 Point processes
Consider a d-dimensional counting process (N1, . . . ,Nd) with the cumulative intensities
(Λ1(θ), . . . ,Λd(θ)) under the measure Pθ, θ ∈ Θ. Suppose that the family {Λi(θ)}θ∈Θ is
equivalent to some positive increasing process A and that the densities (Y 1(θ), . . . , Y d(θ))
satisfy

Eα log
Y i

s (ϑ)
1−∆Λs(ϑ)

> −∞ with Λ = Λ1 + · · · + Λd

for all s > 0 and i = 1, . . . , d. The Hellinger process of order α is given by

h(α) =
∫ ·

0
φs(Y)dAs +

∑
s≤·

φs(1−∆Λ) with φ(Y) = φ(Y 1) + · · ·+ φ(Y d).
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It is related to the Hellinger integral of order α as in the assertion of corollary 5.7 where the
g-mean measure Gα is specified as follows: under Gα the intensity density (with respect to
the same A) of N i is

g(Y i)
1−∆h(α)

=
g(Y i)

g(∆Λ) + g(1−∆A)
with g(∆Λ) = g(∆Λ1) + · · ·+ g(∆Λd). (6.5)

Since under the a-mean measure P̄α the intensities are (Λ̄1, . . . , Λ̄d), with the densities
(Ȳ 1, . . . , Ȳ d) (w.r.t. A; cf (4.4)), we have

dα·

dα
(θ) = e−Λ(θ)c+Λ̄c

∏
s≤·

(
1−∆Λs(θ)
1−∆Λ̄s

)1−∆Ns d∏
i=1

(
Y i

s (θ)
Ȳ i

s

)∆N i
s

with N = N1 + · · ·+ Nd and Λ̄ = Λ̄1 + · · · + Λ̄d. Finally, by (6.5)

e−I(α·|α) = eφ(Λ)cE(−h(α))
∏
s≤·

1
1−∆hs(α)

gs

(
1−∆Λ
1−∆Λ̄

)1−∆Ns d∏
i=1

gs

(
Y i

Ȳ i

)∆N i
s

.

7. Cumulative information in the posterior given a prior

7.1 Definitions; discrete time
Parallel to (6.4), it seems instructive to trace how the information accumulates in case of
the discrete time parameter, by first defining the amount of information provided by a single
observation Xi, for any i = 1, 2, . . . , that is the Kullback-Leibler information in the posterior
αi, given αi−1:

I(αi|αi−1) = Eαi−1 log
dαi−1

dαi
(ϑ), (7.1)

α0 = α is understood as the a priori measure, of course. Then the cumulative information
in the nth experiment Ī(αn|α) is defined by summing up the amount of information provided
by each individual observation Xi, i = 1, . . . , n, i.e.

Ī(αn|α) =
n∑

i=1

I(αi|αi−1). (7.2)

In view of (6.3), the Kullback-Leibler information defined by (7.1) may be rewritten in terms
of the densities zi(Pθ, P̄α) as follows I(αi|αi−1) = −Eα{zi−1(Pϑ, P̄α) ∆ log zi(Pϑ, P̄α)}. Thus
the expression (7.2) for the cumulative information may be abbreviated to

Ī(αn|α) = −
n∑

i=1

Eα{zi−1 ∆log zi} = −Eα(z · log z)n (7.3)

with zi = zi(Pϑ, P̄α). The stochastic integral (truly the sum, as time is discrete) on the right
hand side of (7.3) is written in the form usual in stochastic calculus - it proves useful in the
general setting we are going to treat next.
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7.2 Multiplicative decomposition
The considerations of the preceding section extend to the general case of filtered statistical
experiments (3.1). For each t > 0 and θ ∈ Θ define the density

dαt−

dαt
(θ) =

zt−(θ, P̄α)
zt(θ, P̄α)

that agrees with (3.7). Then the Kullback-Leibler information in the posterior measure αt

with respect to αt− is given by

I(αt|αt−) = Eαt− log
dαt−

dαt
(ϑ) (7.4)

Analogously to (7.3), we define the cumulative information Ī(αT |α) at any stopping time T
by

Ī(αT |α) = −Eα(z · log z)T (7.5)

with zt = zt(ϑ, P̄α). We intend to show that the cumulative information Ī(αT |α) satisfies a
relation similar to (5.23) - a certain multiplicative decomposition. Assume therefore the condi-
tions of section 5.4. The predictable part of the new multiplicative decomposition will involve
a new (dynamic version of) Hellinger process h̄(α) that is defined similarly to h(α) of (5.10),
however with the expectations Eα− instead of Eα. In order to carry out these substitutions
we will extend as follows our previous notations concerning an arbitrary parametric family of
processes {X(θ)}θ∈Θ: put X̄

.= ā(X) = Eα−X(ϑ) and v̄(X) .= varα−X(ϑ) = ā(|X − X̄|2) for
the first two predictable posterior moments (when they exist, of course). For positive valued
processes put ḡ(X) = eā(log X) and φ̄(X) = ā(X) − ḡ(X). Then the predictable finite-valued
increasing process h̄(α) is defined by

h̄(α) =
1
2
v̄(β) · C + φ̄(Y ) ∗ ν +

∑
s≤·

φ̄s(1− Ŷ ), (7.6)

cf (5.10). We will need also a new (dynamic version of) g-mean measure Ḡα that is defined
analogously to Gα, with the same substitutions as above. In the situation described in
the beginning of section 5.4, suppose that the measure Ḡα prescribes to semimartingale
observations X the triplet of predictable characteristics T Ḡ = (BḠ, CḠ, νḠ)

BḠ = B̄ + (Y Ḡ − Ȳ )~ ∗ ν

CḠ = C

νḠ = Y Ḡ · ν with Y Ḡ = ḡ(Y )

ḡ(1−Ŷ )+ˆ̄g(Y )
.

(7.7)

Theorem 7.1. Under the conditions of theorem 5.2 the cumulative information Ī(αT |α) at
a stopping time T > 0, defined by (7.5), can be presented as follows:

e−Ī(αT |α) = zT (Ḡα, P̄α) E
(
−h̄(α)

)
T

(7.8)

with the Hellinger process h̄(α) given by (7.6) and the g-mean measure Ḡα prescribing to
observations the triplet given by (7.7). The density process z(Ḡα, P̄α) of the g-mean measure
Ḡα with respect to the a-mean measure P̄α is the Doléans-Dade exponential

z(Ḡα, P̄α) = E
(

1
1−∆h̄(α)

· N̄(α, P̄α)
)

(7.9)
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with

N̄(α, P̄α) =

(
ḡ(Y )
Ȳ
− ḡ(1− Ŷ )

1− ˆ̄Y

)
∗ (µX − ν̄) (7.10)

where β̄, Ȳ and ν̄ are predictable characteristics of the observed process X with respect to the
arithmetic mean measure P̄α, as defined in section 4.2.

The proof of this theorem is preceded by the following two lemmas.

Lemma 7.2. Under the conditions of theorem 7.1

e−Ī(αT |α) = E(−S(α, P̄α))T (7.11)

where

S(α, P̄α) =
1
2
v̄(β) · C +

∑
s≤·

φ̄s(1 + ∆m(·, P̄α)) (7.12)

with

m(ϑ, P̄α) = (β(ϑ)− β̄) ·Xc +

(
Y (ϑ)

Ȳ
− 1 +

Ŷ (ϑ)− ˆ̄Y

1− ˆ̄Y

)
∗ (µX − ν̄). (7.13)

Proof. Since 〈Sc〉 = 0 and ∆S = φ̄(1+∆m(·, P̄α)) = 1− ḡ(1+∆m(·, P̄α)) (here the shorthand
notation S = S(α, P̄α) is used), we have by the usual exponential formula that

E(−S) = e−S− 1
2
〈Sc〉

∏
s≤·

(1−∆Ss)e∆Ss = e−
1
2
v̄(β)·C

∏
s≤·

ḡs(1 + ∆m(·, P̄α)).

So, we need to prove that

e−Ī(αT |α) = e−
1
2
v̄(β)·CT

∏
s≤T

ḡs(1 + ∆m(·, P̄α)). (7.14)

The definition of the cumulative information (7.5) involves the integral with respect to
log z(ϑ, P̄α) = log E

(
m(ϑ, P̄α)

)
, i.e. with respect to

m(ϑ, P̄α)− 1
2
〈m(ϑ, P̄α)c〉+

∑
s≤·
{log(1 + ∆ms(ϑ, P̄α))−∆ms(ϑ, P̄α)}. (7.15)

But the integral with respect to m(ϑ, P̄α) vanishes, since by z(ϑ, P̄α) = 1+z (ϑ, P̄α)·m(ϑ, P̄α)
and by the identity Eαz(ϑ, P̄α) = a(α, P̄α) ≡ 1 of section 3.2, we have Eαz (ϑ, P̄α)·m(ϑ, P̄α) =
Eαz(ϑ, P̄α)−1 = 0 (note the following direct way to verify this: evaluate Eαz (ϑ, P̄α)·m(ϑ, P̄α)
to get 0 by using (4.4) and (7.13)). Besides, we have

Eαz (ϑ, P̄α) · 〈m(ϑ, P̄α)c〉 = ā(|β − β̄|2) · 〈Xc〉 = v̄(β) · C (7.16)

and ∑
s≤·

ā(log(1 + ∆m(·, P̄α)) =
∑
s≤·

log ḡs(1 + ∆m(·, P̄α)). (7.17)
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On determining thus the cumulative information (by evaluating the expectation Eα of the
integral in (7.5) with respect to (7.15)) we get only the contributions corresponding to (7.16)
and (7.17):

Ī(αT |α) =
1
2
v̄(β) · CT −

∑
s≤T

log ḡs(1 + ∆m(·, P̄α)).

This yields (7.14).

Lemma 7.3. Under the conditions of theorem 7.1 the (P̄ , F )-supermartingale S(α, P̄α) of
class (D), defined by (7.12), has the following Doob-Meyer decomposition

S(α, P̄α) = −N̄(α, P̄α) + h̄(α), (7.18)

cf (7.6) and (7.10).

Proof. In view of (7.6), (7.10) and (7.12), the decomposition (7.18) is equivalent to∑
s≤·

φ̄s(1 + ∆m(·, P̄α)) =

{
φ̄(Y )

Ȳ
− φ̄(1− Ŷ )

1− ˆ̄Y

}
∗ (µX − ν̄)

+ φ̄(Y ) ∗ ν +
∑
s≤·

φ̄s(1− Ŷ ). (7.19)

Note that in the first term (and in (7.10)) the substitution of φ̄ by −ḡ is allowed. Compare
the latter equation with (5.14) to conclude that by the same arguments as in the course of
proving theorem 5.2, we only need to show the following relationship between the jumps of
the (P̄α, F )-local martingale m(ϑ, P̄α) and the observed process X:

1 + ∆m(ϑ, P̄α) = 1 +
{

Y (ϑ; ·,∆X)
Ȳ (·, ·,∆X)

− 1
}

I{∆X 6=0} −
Ŷ (ϑ)− ˆ̄Y

1− ˆ̄Y
I{∆X=0}

=
Y (·, ·,∆X)
Ȳ (·, ·,∆X)

I{∆X 6=0} +
1− Ŷ (ϑ)

1− ˆ̄Y
I{∆X=0},

which is derived similarly to (5.13). Thus we have

φ̄(1 + ∆m(·, P̄α)) =
φ̄(Y (·, ·,∆X))

Ȳ (·, ·,∆X)
I{∆X 6=0} +

φ̄(1− Ŷ )

1− ˆ̄Y
I{∆X=0},

which implies (7.19) exactly in the same manner as (5.12) implies (5.14).

7.3 Proof of theorem 7.1
The lemmas 7.2 and 7.3 provide key arguments in the course of the following

Proof. Note that in view of (4.3) and (7.7) the drift coefficient of Xc is β̄ under both P̄α

or Ḡα. Therefore, there is no continuous part in the expression (7.10) for the (P̄α, F )-
uniformly integrable martingale N̄(α, P̄α). Note also that by the same considerations as
above, cf corollary 5.3, we have 1 − ∆h̄(α) = ḡ(1 − Ŷ ) + ˆ̄g(Y ). Hence Y Ḡ = ḡ(Y )

1−∆h̄(α)
and
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Ŷ Ḡ = ˆ̄g(Y )
1−∆h̄(α)

. Taking these equalities into consideration, one can easily reduce the usual

exponential representation for the density process z(Ḡα, P̄α) = E
(
m(Ḡα, P̄α)

)
with

m(Ḡα, P̄α) =

(
Y Ḡ

Ȳ
− 1 +

Ŷ Ḡ − ˆ̄Y

1− ˆ̄Y

)
∗ (µX − ν̄)

to (7.9) with (7.10). In view of (5.5), (7.9) and (7.11) the desired equation (7.8) is equivalent
to

E
(

1
1−∆h̄(α)

· N̄(α, P̄α)
)

= E(−S(α, P̄α)) E
(

1
1−∆h̄(α)

· h̄(α)
)

(7.20)

i.e. to
1

1−∆h̄(α)
· N̄(α, P̄α) = −S(α, P̄α) +

1
1−∆h̄(α)

· (h̄(α)− [S(α, P̄α), h̄(α)]), (7.21)

since the product of exponentials in (7.20) is itself an exponential, namely the exponential of
the process on the right. But (7.21) is an easy consequence of the decomposition (7.18).
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