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1. Introduction 

i 

1.1. For scalar valued martingales the strong law of large numbers is relatively easily 
proved (see Liptser and Shiryayev, 1989, Section 2.6). But in the multivariate case the 
matter is different due to the possible complicated dependence structure between the 
components (see e.g. Christopeit (1986), Lai and Wei (1982), Le Breton and Musiela 
(1987, 1989), Mel'nikov (1986) andNovikov (1985)). 

As is shown in this paper, the problem still has a relatively simple solution under the 
restriction that the quadratic variation process of the multivariate martingale in question is 
deterministic. 

The first result in this direction bas been proved by Lai, Wei and Robbins (1979) in the 
discrete time setting in a paper on least squares estimation (see also Le Breton and Musiela 
( 1986) ). Their proofs heavily depend on the fact that all components are actually transforms 
of one and the same real valued martingale. Both these limitations are dropped in the 
present paper. Our approach is much in spirit of Lai, Wei and Robbins (1979), and loosely 
speaking generalizes all the intermediate steps undertaken in it. 

It should be noticed however that unlike the present paper in Lai, Wei and Robbins 
(1979) the object in question is not necessarily formed by transforming a real valued 
martingale (but actually any so - called convergence system: see e.g. Chen, Lai and Wei 
(1981), Lai and Wei (1984); cf. also Solo (1981)), while in Kaufmann (1987) it is a 
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transformation of a real valued martingale which satisfies some moment conditions. 
1.2. In Section 2 the main results of this paper are formulated. The calculations presented 
in Section 3 are then used for proving in Section 5 a key convergence theorem formulated 
in Section 4. The proof of the main theorem 1 is given in Section 6. Finally, we discuss in 
Section 7 an application to least square estimation. 

2. Main results 

2.1. The basic setting is as follows. On a complete filtered probability space (Q, rt, JF, P) 
all our stochastic processes are defined. All martingales are understood as being so with 

respect to the filtration JF. 
d dxd 

Let M: Q x [0, oo) -? IR be a martingale. Let < M >: .Q x [0, oo) -? IR be its 

predictable quadratic variation process. So we assume that for all components mi of M we 

have that E (mh2 < oo, for all t;;::; 0, that is M e md 2. Moreover, we will assume 

throughout this paper that the quadratic variation process < M >is deterministic. So for its 
ij - element we have < M >ij = E (mi mj ). 

It may happen that for some ( or all ) t the matrix < M >t is singular. Therefore we will 

consider Eld + < M >t, where E > 0 and I the identity matrix, and denote it by At. Let V = 
(Eid+< M >)-1 = A-1 and B = - V for convenience. 

2.2. We will be interested in the limit behaviour of VtMt as t ~ oo and we will show that 
VtMt ~ 0 a.s. under suitable assumptions. 

First we introduce some notations. Let ei be the i - th unit vector in IR d and let Cit-1 = 
ei'V t ei. 

Let g: [0, oo) ~ lR be such that the following integral exists 

00( )2 f g(x) 
-x- dx < oo. (1) 

0 

Let D: [O, oo) ~ lR dxd be such that Dt is a diagonal matrix for all t :2:: 0, with diagonal 

elements Dit = g ( cit ). 
2.3. The main result of this paper is the following 
Theorem 1. Let g, C, V and D be as defined above. Then 

t~ 00 Dt Vt Mt exists and is finite a.s. 

Moreover if lim cit = oo, then lim ei' Dt Vt Mt= 0 a.s. 
t~oo t~oo 

The proof of this theorem is presented in Section 5. It involves a series of auxiliary 
results, which we present after some additional computations. 
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2.4. Assertion (i) of the following corollary is obvious, and assertion (ii) is proved in 

Section 7.2. 

Co:roHa:ry 2. (i) Let < M >t be non singular for t large enough. Then the assertion of 

Theorem 1 remains true if we take E = 0. 
d 

(ii) Assume fun u'< M >t ufor all u e IR is either zero or infinity. Then 
t~oo 

fun Vt Mt= 0 a.s. 
t ~ 00 

This statement remais valid ifV is substituded by a generalized inverse< M > +. 

3. Auxiliary assertions 

3.1. First we introduce some more notations. Write = [ ~], where m e 

md _/.Surely m = e1'M and M = Jd'M with Jd' = [ 0, Id_ 1]. Denote 

A= eid-l + < M > = !n_'A /d and V = A-1 = - B. 
We repeatedly will use the following identities: 

dA B +A_ dB= dB A+ B_ dA = 0, dA =A_ dB A, dB= B_ dA B 

dA-AdBA~=dAB_~A~O, dB-BdAB=dBA_~B~O. (2) 

We can present Vas follows: 

V = c-lbb' + /dV Id' with b = [- ~ < M, m >] and c-1 = C(l = e 1'V e1. (3) 

(Here and elsewhere the time index twill often be omitted.) This is easily seen by using the 
representation 

[ 1 < m, M >VI c O J[ 1 0 ] 
A = 0 Id_ 1 o y V < M, m > Id_ 1 (4) 

where c = a - < m, M > V < M, m > with a = e + < m >. Observe that 

Ab = ce1 and c = det I det A = b'A b = b'A1 with A 1 =A e1. (5) 

Hence by (3) 

-l [ 0 J V M = c . b b' M + v M (6) 

and we see that the first component in (6) is equal to c-1 M. Therefore it is easily seen 

that studying of V M is equivalent to studying of quantities like c-1 b' M, since any 

component of V M is of this form after a suitable permutation of M and < M >. 
3.2. We need the following multivariate version of Theorem 8 in Liptser and Shiryayev 
(1989), Section 2.2, adapted to the present situation. 

Proposition 3. Let M and M be as above. There exists ad x (d - 1) - matrix valued 
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process tj> with the following properties: 

(i) <1> d< M > = d< M, M >, 

(ii) <I> d< M > <I>' ::;; d< M >. 
The proof proceeds along the same lines as in the univariate case. 

Remark. Unlike in the univariate case the process <I> here may be not uniquely determined 
as, for instance, in the typical case in which M = v · m with a vector valued function v and 
a scalar valued martingale m, because now d< M >t Id< m >t= vtvt' is singular for each t. 
However the martingale <I> • M does not depend on the particular choice of <j>. Here and 
elswhere below · means stochastic integration. 

3.3. Given the d x (d - 1) - matrix valued process <I> define 'JI= $'b which is ad - 1 
dimensional process. 

The behaviour of b' M will be studied by representing it as 
b' M = b'· M + M_'· b (7) 

Proposition 4. Let g = M_'· b. Let N== b'· M and n ='JI'· M with (the integration 

variable is usually omitted) < N >t = J b' d< M > b and < n >t = J 'Jl'd< M > 'I'· Then 
~ ~ij ~tj 

(i) 9t = - f M_'V_ d< M >'JI. 
[O, t] 

(ii) < N - n, M > = 0. 

(iii) < N >t - < n >t =et - J 'JI' A dB A 'JI. 
[O, t] 

(iv) < n >t ~ < N >t ::;; et, t ;::: 0, i.e. d< n >I de~ 1 and d< N >I de ::;; 1. 
(v) d81 << dy with "{= -c-1 = e1'8 e1 and 8 1 = B e1 =yb. 
Proof: (i) By (2) 

db=[-v0d<~,M>b_J = [-v~d<M,M>b] 
= [- ~- d< M >'JI]. 

Indeed, the second and third equality, for instance, are easily verified as follows: 
d(V < M, m >) = V_ (d< M, m > - d< M > V < M, m >) 

= V_ [d< M, m > d< M >] b = V_d< M, M > b 
= V_d< M > $'b = V_d< M >'I'· 

Now, (i) follows from (8) by definition of g. 

(8) 
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(ii) As is easily seen by definition of <I> and 'If, the martingales N - n and Mare orthogonal: 
< N - n, M > = b' · < M, M > - 'If'·< M > = 0. 

(iii) By (5) de= d(b'A) e1 = b_'d< M > e1 + db' A e1, hence 

de = b_'d< M > b (9) 
and 

< N >t - et= L Ab' A< M > b = L [O - b' A< M, M > v_] A< M > b 
[O, t] [O, t] 

= -Lb' A< M, M > v_ A< M, M > b = -L 'II' A< M > v_ A< M > 'If. 
~tj ~tj 

This gives (iii), since by (2) we have 

< n >t - I 'II' A dB A"':::: L 'II' A< M > AV A"' = -L 'II' A< M > v_ A< M > 'II· 
~tj ~tj ~tj 

(iv) Surely, (iii) implies (iv), since the second term on the right hand side of (iii) gives a 
non negative contribution. 
(v) Observe that c-1 is non increasing because c-1 == e1'V e1 with V non increasing, since 
< M > is non decreasing, and y is non decreasing. The equality 8 1 = y b follows from the 
first relation in (5). 

For any non negative (measurable) function q we have 

J qdy= J qe1'dB e 1 :2: J q8 1'dA 8 1 

[O, co) [O, co) [O, co) 

by (2), so that if q = 0 dy a.e., then 

I q81'dA81=0. 
[O, oo) 

This means thatJ q dA 8 1 = -J q A_ d81 = 0, as A > 0 (see (2)). Hence q is dB 1 

[O, "") [O, "") 

a.e. zero on (0, oo) and so q is a.e. zero on (0, oo) with respect to d81• 

4. A convergence theorem 
4.1. The following theorem is crucial for studing the behaviour of g = M_'· 

For h: [O, oo) -3' lR d we use the following notation h e L2 ([0, oo), dA) if the following 
integral is well defined and finite: 
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f h' dA h. 

[O, oo) 

Theorem 5. Let M be an IR d_ valued martingale with< M >t = E (Mt Mt') < oo for all t 
d 

;::: 0. Let A= eI + < M >, B = - A-1 and h: (0, oo) ~IR , he L2 ((0, oo), dB). 

Then lim f h' dB M_ exists and is finite a.s. 
t~ 00 

(0, t] 

The proof of this theorem is given in Section 5. It is based on a series of technical lemmas 
which are presented below. 

4.2. Let A: [0, oo) + '!Pd where '!Pd is the set of non negative definite (dxd) - matrices. 
Assume that Ao > 0 and that A is non decreasing, so At ~ As for t ~ s. Since all the At are 
invertible, Bt = - At-1 is well defined for all t ~ 0, and fort > 0 we have dB= B dA B_ 

(see (2)). Define similarly L2 ((0, oo), dB). 

Lemma 6. For a given h e L2 ((0, oo), dB), the function ii: [0, oo) + IR d given by 

fit = f dB h (10) 
(t, "") 

is well defined, and moreover .fi e L2 ([0, oo), dA). 
Proof. We prove the following three facts: 

(i) ht' At ht is finite for all t ~ 0 and tends to zero as t + oo, which also shows that fit is 

well defined for all t :::::: 0. 

(ii) Bh e L2 ((0, oo), dA) 

(iii) ~ = fi + Bh e L2 ((0, oo), dA) and J fi• dA fi h' dB h - ii0 'A0 fi0 . 

(0, co) (0, =) 

Observe that the last fact means that he L2 ([0, oo), dA), since 

J fi' dA ii =J h' dA h + fi0 'A0 ii0 with the convention AO-= 0. 
[O, oo) (0, oo) 

(i) Denote by R the matrix such that A= R2 and R = R'. Taking into consideration that Bt+ 
B00 exists and is negative semi definite, we get (i) due to the following consequence of 
Schwartz' inequality: 

fit'Atht=~(ei'Rtfi? =~[f ei' RtdBshsJ2 $~J ei' RtdBsRteJ h' dB h 
l 1 (t, oo) I (t, =) (t, co) 
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- Bt) Rt eiJ h' dB h :::;;~ ei' Rt V t Rt eJ h' dB h = d xf h'dB h. 
(t, oo) l (t, oo) (t, oo) 

( 

(ii) On (0, co) the identities (2) are valid, so that (ii) is implied by dB - B dA B;;;:: 0. 

(iii) Along with the identities (2), we have dh = - dB h on (0, co). Now, by 

fi - fi_ = B_ h and h'd(A ii) = -h' A_ dB h + h' dA ii= h' dA B h + h' dA fi = fi' dA fi 
we get 

fi• dA fi -d(h'A h) == h' dB A_ h_ - (h' - fi') dA fi = h' B dA ( fi - fi_) = h' dB h. 
Hence 

fi) = fi• dA fi - h' dB h and f fi• dA fi = f h' dB h - fio'A0 fi0 , 

(0, oo) (0, oo) 

where we have used (i). 

""'"'"""" 7. m be a real valued square integrable martingale. Let A be an increasing 
function with Ao> 0 such that < m ><<A and d< m >I dA is bounded. Assume he 
L2 (dB) where B = - l / 

Then lim J h m_ dB exists and is finite a.s. 
t-t""' 

[O, t] 

by parts we get J h m_ dB = J fi dm - fit mt where fi is given by 
[O, t] [O, t] 

(10). he L2 ([0, co), dA) in view of Lemma 5. Let now 

with E fi\2 = J ii2 d< m > = J ii2 (d< m >I dA) dA, 
[O, t] (0, t] 

is bounded in t. Hence lim m exists and is finite a.s. Surely also J h dm has a t-+ 00 --. 

[O, t] 

limit a.s. ht = J I h I dB. Then Kronecker's lemma for martingales (see Liptser 

(!., "") 

and Shiryayev (1989), Section 2.6) applies, since I ht I decreases to zero, which yields I fitl 
mt ~ 0 a.s. hence I fit mt I -? 0 a.s. 

4.3. want to emphasize here that in this lemma it is important that h and B are 
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deterministic, because now fi is also deterministic and therefore m in Section 4.2 is a 

convergent martingale. If we would started with predictable processes h and B, it would be 

not have been possible to define, as we did above, a martingale like m. 
It is indeed Lemma 7, and its generalization Theorem 5, that has no counterpart if one 

wants to treat only predictable quadratic variation processes. Therefore we want to stress 

that it is at this point that we obtain sharper results then, for instance, in Christopeit (1986), 

Lai and Wei (1982), Le Breton and Musiela (1987, 1989), Mel'nikov (1986) or Novikov 

(1985). 

5. Proof of Theorem 5 

5.1.We use induction with respect to the dimention d of the space where M takes its values. 

Clearly for d = 1 the theorem reduces to Lemma 6. So assume the theorem holds for d - 1. 

As in Section 3 we write M = [ ~], preserving all the notations introduced there. Using (6) 

and the relation dB = B d< M > B_ (cf.(2)) we split the integral in question in two terms 

where 

J h' dB M_ = 11( t) + I2( t) 
[O, t] 

11(t)= J h'Bd<M >[~_M_] = J h'Bd<M,M>V_M_= J h' dB M_ (11) 
[0, t] [0, t] [O, t] 

with h = A <!>'B h and cj> defined by d < M, M > = cpd< M > as in Proposition 3, and 

12( t) = J y_ h' B d< M > b_ b_' M_ = - J h' dB 1 b_' M_ (12) 
[O, t] [O, t] 

(see Proposition 4 (v)), since dB1 = B d< M > B1_ by (2). 

5.2. We will show that h e L2 (dB) ash e L2 (dB) by asumption, and this will imply that 

I 1 ( t ) has a limit a.s. as t ~ oo, that is 

J h' dB h < oo ~ J h' dB M_ < oo a.s. 

[O, oo) [O, oo) 

since by the induction hypothesis we have assumed that the assertion of the theorem holds 
ford - 1. In fact, by (2) and Proposition 3 (ii) 

J h'dBhs;J h'B<j>AdBAcp'BhsJ h'B<j>dAcp'BhsJ h'dBh. 

[0, co) [O, oo) [O, oo) [O, oo) 

5.3. Next we direct our attention towards I2( t ). As above, we denote by N and g the first 



and second terms on the right hand side of (6) to write 12( t) == 13( t) + 14( t) with 

13( t) = - f h' dB 1 N_ = - f h' (dB1 I dy) N_ dy and 
[O, t] [0, t] 

(see Proposition 4 (v)). 

14( t) = - J h' dB1 g_ 
[O, t] 

Since d< N >I dy S 1 by Proposition 4 (iv), 13( t) converges by Lemma 7, provided 

f (h'd81 I dy)2 dy Sf h'(dB I dt) h dt = f h' dB h < oo 

~~ ~~ ~~ 

9 

with t = tr B (so that dB is dominated by dt). We have the second inequality by 
assumption, and the first by the following consequence of Schwartz' inequality: 

(dy I dt)2 (h'dB1 I dy)2 = (h'dB1 I dt)2 ~ h'(dB I dt) h dy I dt. 
5.4. The next term that we have to consider is 14( t ). Introduce 

Integrating by parts we get 

Ii t) = Pt f 'V' A dB M_ - J P'V' A dB M_ (13) 
[O, t] [O, t] 

by (2) and Proposition 4 (i). Again, we will show by the induction hypothesis that the 
second term on the left hand side of (13) has a limit as t ~ oo a.s., that is by checking that 

f p2 'o/1 A dB A 'if ::;; f p2 de < oo. 

[O, oo) [0, co) 

The first inequality follows from Proposition 4 (iii), and second from the fact that p e 
L2(dy) with 'Y = - lie, which is verified as follows: in view of Proposition 4 (v), write 

(t, oo) 

and then apply Lemma 6 (scalar case). Hence, the second term in (13) converges a.s. as t ~ 
oo. Of course, if in this term we replace Pt by 

f lh' (d81 I dy)I dy, 
(t, oo) 
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then we still have that the a.s. limit exists as t ~ oo. Using Kronecker's lemma again, we 
get from (13) that I4( t) converges a.s. as t? oo. This concludes the proof of Theorem 5. 

6. Proof of Theorem 1 
6.1. It is sufficient to look at the first component of DVM which, in the notations of 
Sections 2 and 3, can be written as follows: 

c-1 g ( c ) N + c-1 g ( c) g. (14) 
If c is bounded, so is < N > (see Proposition 4 (iv)) and then both lim ct-1 g ( Ct ) and t-+ 00 

lim Nt are finite a.s. If et~ oo, then ct-1 g ( c 1 ) Nt still has a finite limit which equals zero t-+ 00 

as 

f (c-1g ( c ))2 d< N > sf (c-lg ( e ))2 de < oo 

[O, oo) [O, oo) 

by (1) and Proposition 4 (iv). 
6.2. Next we look at the second term in (16). Consider first 

f c-1 g ( c ) dg. == f c-1 g ( c ) 'I'' d< M > V_ M_ = f c-1 g ( c ) 'I'' A dB M_ 
(0, tJ [O, t] [O, t] 

(see (2) and Proposition 4 (i)). According to Theorem 5 this expression converges since 

f (c-lg ( c ))2 v' A dB A 'I's f (e-lg ( c ))2 de < oo 

[O, oo) [O, co) 

by (1) and Proposition 4 (iii) and (iv). 

If et converges to a finite limit, then it is seen, in a similar manner as above, that 9t has 
a finite limit a.s. as t ~ oo, If Ct? oo, then Kronecker's lemma gives that the second term in 
( 14) tends to zero. Theorem 1 is proved. 

7. Additional remarks. Application to least squares estimation 
7 .1. It may happen that lim V t Mt = 0 a.s. even if the functions cit remain bounded. t-+ 00 

Consider for instance the following example. 

Example. Let w be a standard Brownian motion, and v e :JR d. Let Mt= v wt with < M >t 
= vv' t. Consider 

vt = (Eld + < M >t)-1 = E-1 (Id - (E + v'v t)-1 vv' t ). 

We see that cit-1 = e-1 (E + v'v t)-1 (v'v - vi2) t, where vi is the i-th component of v, tends 
to e-1 (v'v - vi2) I v'v which is in general larger then zero. However 
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Observe that in this example < M >t is singular for all t. Careful inspection of this example 
leads to assertion (ii) of Corollary 2. 

7 .2. This assertion will be proved here. Notice first that rank < M >t is increasing. Assume 

lim rank < M >t == k < d. Then there is tk > 0 such that rank < M >t = k for t ;;::: tk. Assume t --:> 00 

below that t;;::: t1e Write < M >t = rtrt', with rank rt= k. Then 

Vt = e-1 - e-1 rt (Id+ e-lrt'rt)-1 rt'e-1. 
k . 

Since there exist a constant matrix Kand a martingale Yt with values in lR such that 
Mt = K Yt, and an invertible matrix rt such that rt= K rt and rtrt' = < Y >t (this claim 
is proved below), we have 

V M = V KY= V r rl Y = e-1 r (Id+ e-lr'r)··lrl Y = r (eld + r'r)-lr '< Y >-1 Y. 

Use now r (eI0 + r'r)-lr '=(Id - eV) ( K+)' where K+ is a left inverse of K. Since the limit 

of Vt exists as t-? oo and< Y >t-1 Yt tends-to zero by Corollary 2 (i), we have t~= V1 Mt= 
0 a.s. 

In conclusion we prove the above claim in italics as follows. In view of the fact that not 

only rank< M >1 remains constant but also Im< M >t =Im rt, take now k vectors Kl' ... , 

let e lR d such that Im rt= Im K with K = [K1, ... , Kic]. Then there exists an invertible 

matrix rt such that rt= K rt. Define now Yt = K+ Mt. Then Mt= K Yt a.s. for all t. Indeed 

it is easily verified that < M - K Y > = 0, and this proves the claim. 

Observe that rtrt' = < Y >t and < Y >t-? oo. Indeed for a v e lR k' v * 0 there exists u 

e 1R d such that v = K'u, since K' has a full row rank. Then v' < Y >t v = u' < M >t u. If 

remains zero, then u e Ker < M >t for all t;;::: tk. Hence u e Ker K', but this 

contradicts v * 0. Hence v' < >t v ~ co. 

7.3. As an application we treat least squares estimation for linear models. In many 
instances it is possible transform ~e observations in such a way to we may assume that we 

observe x8 = < m >s 0 + m8 on 0 :s; s :s; t, where m is an lR d valued square integrable 

martingale and e un unknown d-dimentional parameter. (For example in case of the 

familiar model Ys = as'O + E8, s = 1, ... , t one may define Xs = aiY1 + ... + 3.sYs) 

The least squares estimator for e by definition then minimizes 

(xt - < m >t 0) < m >t+ (xt - < m >t 0) 

where < m >t+ is a generalized inverse of< m >1. The set of least square estimators et is 

given by { < m >t+ xt + K I Ke Ker< m >t}. If< m >t eventually becomes non singular, 

St - 8 = < m >1-1 mt and Corollary 2 (i) applies. Otherwise let K be as in Section 7.2. 
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Preserving then the notations used there we have 
K' (0t - 9) = K' < m >t+ mt = ( KK+ )' < Y >t- 1 Kt+ mt = < Y >t-1 Yt+ 0 a.s. 

whenever< Y >t-1 + 0. So we obtain that if u' < m >tu eider tends to infinity fort+ oo or 
remains zero for all t, then a.s. fun St - 0 belongs to fun Ker< m >t· 

t~co t~oo 
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