
Centrum voor Wiskunde en Informatica 
Centre for Mathematics and Computer Science 

P.J.C. Spreij 

An on-line parameter estimation algorithm for counting process observations 

Department of Operations Research and System Theory· Report OS-R8406 May 



AN ON-LINE PARAMETER ESTIMATION ALGORITHM FOR COUNTING PROCESS OBSERVATIONS 

P.J.C. SPREIJ 

Centre for Mathematics and Computer Science, Amsterdam 

The parameter estimation problem for counting process observation is consi­
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1. Introduction 
Counting processes frequently occur as the observation processes in mathematical models for indus­

trial processes or in biology, software engineering and nuclear medicine. Usually such a counting process 
. can be considered as the output process of some stochastic system. The underlying state process then 
influences the counting process. The purpose is then to estimate this state given the observations. This 
problem is known as the filtering problem and has been investigated extensively [l]. 

The solution of this problem requires knowledge of the involved parameters, which means that one 
can compute the solution to the filtering problem in a practical case only if one knows the correct param­
eter values. Unfortunately, in many cases these are not known and are therefore to be estimated. This 
may happen before the processes start running on related additional information and/ or on the basis of 
the observations. In the latter case some asymptotic results for off-line rn,urnnum likelihood estimation 
are available [3,4]. 

It is the purpose of the present paper to give a contribution to the on-line parameter estimation prob­
lem in a specific case. The approach undertaken has proven to be fruitful in for instance discrete time 
ARMAX processes [7] or continuous time Gaussian AR processes [6]. 

The paper is organized as follows. In section 2 we give some basic results for counting processes. In 
section 3 we give a heuristic derivation of our parameter estimation algorithm. Section 4 contains the 
convergence proof of the algorithm. 

2. Preliminary results 
2.1. We assume that we are given a complete probability space (0, §';P ), a time set T = [O, oo) and a filtra­
tion {'?fr }1 ;;.o satisfying the usual conditions in the sense of [2]. All stochastic processes in the sequel are 
defined on ~ X T and adapted to { '?fr }1 ;;.o- We study the case that we are given an observed process 
which is a counting process, that is a map n :0 X T • No which has only jumps of magnitude + I. Then 
it is known [1,2] that n is a submartingale and therefore admits the so called Doob-Meyer decomposition 
(w.r.t. {'?fr },;;.0) 

(2.1) 

where A:Q X T • R is a predictable increasing process and m a local martingale. Now assume that A is 
an absolutely continuous process, say A,= f/;>,.3 ds then we can rewrite (2.1) as 

(2.2) 

The process >.. is called the intensity process. 

A major problem for counting process observations is usually to identify the intensity process >... This 
problem can be set up in two stages. In the first stage we have to solve a, filtering problem. To be precise 
we have to determine~, =E(>..,l</JJ'), where </JJ'=a{ns,so;;;t}. Then l\1 is the optimal (in the sense of mean 
squared error) estimate given the observations during [O,t] c T and given the values of deterministic 
parameters. We can then replace (2.2) by the minimal decomposition of n (i.e. with respect to {</JI'}) 

(2.3) 

where in is a local martingale adapted to {'5;'},;;.0• In the second stage one looks for estimates of left 
unknown deterministic parameters. If one adopts the maximum likelihood criterion, (2.3) and the compu­
tation of~, appear to be crucial. The likelihood functional in this case is known [l, p. 174] to be 

t t 

L, =exp[- j(}\5 - l)ds + flog }\s_dn3 ]. (2.4) 
0 0 

2.2 The model. 

From here on we assume that ]\ has a special structure 

X, =pT cf,, (2.5) 
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where p Ellr is the vector of unknown parameters an.I <tdJX T-R is a process adapted to {~}i;;;,,0. The 
minimal decomposition (2.3) now becomes 

(2.6) 

Plugging (2.5) into (2.4) and writing L 1 (p) instead of L, in order to express the dependence of the likeli­
hood functional on p, we get 

I I 

L, (p) = exp[ - p T fctvls + t + f Iog(p T 'Ps _ )dns ]. (2.7) 
0 0 

3. Derivation of the algorithm 
In this section we state a parameter estimation algorithm for the model (2.5), (2.6). The proof that the 

parameter estimates given by this algorithm indeed converge to the true parameter value will be given in 
section 4. The algorithm is constucted in such a way that the estimates p1 of p approximately maximize 
the likelihood functional (2.7), or equivalently, minimize J,O given by 

J1(p)=pT J1>sds- flog(cf>T-p)dns. 
0 0 

(3.1) 

After posing the algorithm we present a heuristic derivation. 

3.1 Algorithm. 

Consider the model (2.5), (2.6). A recursive maximum likelihood parameter estimation algorithm is given 
by 

dft, =R,cf>,-(dnt -cJ,{p,dt),p0 

dRt = - Rtq,1cp{Rtdt, R0 

(3.2) 

(3.3) 

The interpretation is that for each t p1 approximately minimizes J1 (·) as stated above and that R1 is 
up to a multiplicative scalar factor an approximation of the second derivative of J 1(-). Thus (3.2), (3.3) 
can be considered as a quasi Newton scheme for minimizing the family of functions {J1 (-) }t ;;;.o• Observe 
that it follows from (3.3) that Rt stays a positive definite matrix when the initial value R 0 is chosen to be 
symmetric and positive definite. 

3.2. To understand the algorithm (3.2), (3.3) it is useful to consider first a non-stochastic situation. 
To be precise let J:IR+XIRm-lR, JEC2(R+XIRm,IR) such that J(t;):Rm-R has a unique minimum, 
attained for say x (t ). Under some regularity conditions it then follows from the implicit function 
theorem that the function 1-x(t) satisfies the differential equation 

a2 a2 
[ ]

-I 

dx(t)= - ox2 J(t ,x(t)) axa/(t ,x(t))dt. (3.4) 

Let us now return to our estimation problem, that is finding the value Pt that for each t minimizes 
(3.1). For an evolution equation for Pt one then tries to find an equation like (3.4). However the func­
tional J of (3.1) does not satisfy the desired smoothness conditions and therefore one has to look for 
something related to (3.4). Our choice is 

dpt = - [J/'__ (ft1 -) ]- I otJ/&,) (3.5) 

where prime denotes partial differentiation with respect top and a, means the partial forward differen­
tial o:eerator with respect to t. In order to fully specify the algorithm we also need recursive expressions 
for J/ (ft,) and J/(ftt ). Later on we will establish almost sure convergence of the family {ft1 }i ;;;.o to the 
true parameter value p 0• ,, 



From (3.1) we get by formal differentiation 

' f1 f1 

<l>s-J,(p)= 'Psds - T dn8 , hence 
0 OP <1>s-
' 'Pt-

a,Jt(p)=q,,dt - T dn,. 
p </>,-

Define k, = At' and Q, =[J/'(ft,)]- 1
• Using these expressions and (3.7) we can rewrite (3.5) as 

P, 4', 

dp, =Q,_k,_(dn1 -iplft,dt) 
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(3.6) 

(3.7) 

(3.8) 

The next problem is the finding of a recursion for Qt. It turns out that an exact equation for Qt can­
not be obtained for p E!Rm with m ;;;;.2 and that certain approximations are not satisfactory in that these 
cause problems in analyzing the convergence properties of the algorithm. 

On the other hand the case of p EIR 1 is easy to handle and it will be illustrative for the multivariable 
case. In this case (3.6) reads as 

, ft dnt 
J, (p) = 'Ps ds - -, hence 

0 p 

J/'(p)= n~. 
p 

A2 

Therefore Qt becomes f!.!_ and with k, = -1- (3.8) reads as 
nt ft, 

dp, = Pt - ( dnt -'Pt.Pt dt ). 
n, _ 

(3.9) 

(3.10) 

(3.11) 

n t 

Observe that ft, = i;-, where <I>t = f 'Ps ds satisfies (3.11) and this value for Pt is also found by directly 
t 0 

minimizing (3.1). One can prove that Pt given by (3.11) converges to the true parameter value, using the 
method of section 4. · 

A2 

Applying the stochastic calculus rule to Q1 = f!.!_ one can verify that Q, satisfies 
n, 

(3.12) 

Returning to the multivariate case p E!Rm, m ;;;;.2 one would like to extend (3.12) in order to obtain an 
evolution equation for Qt. This suggests 

dQt = -2Q1k1if,lQ,dt +Qt-kt-kl-Qt-dnt. (3.13) 

One hopes that (3.8) together with (3.13) constitutes the desired algorithm. Although (3.8), (3.13) yield 
some appealing properties compared to the scalar case p EIR 1 such as ft, = Q, <I>t, pt Q, - I.Pt = nt and 
<I>lpt =n, we were not able to prove the desired convergence properties. The major bottleneck was the 
verification of the technical condition (see (4.5)) 

00 

f Qt-kt_kl-Qt_dn1<00, (3.14) 
0 

which is however a trivial excercise if p EIR 1. The main cause of this technical problem was the term <t>lft, 
in the denominator of kt. Therefore we tried to incorporate this term in Q1 such that Qt kt = Rt 'Pt, for a 
matrix valued process Rt and the idea was then to find an equation for Rt . 
Inspection of the case p EIR1, neglection of the derivatives of q, and the formula Qtkt =Rt<Pt then leads 
from (3.13)'to 
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(3.3) 

4. Convergence proof 
. . 

In this section we present a convergence proof for the algorithm (3.2), (3.3) which establishes almost 
sure convergence of the parameter estimates to the true parameter value. The proof is completely in the 
spirit of the proofs in [6,7]. We begin with stating an important technical lemma, which is a simple ver­
sion of a more general result in [6], that in turn can be considered as the continuous time counterpart of 
a result in discrete time stochastic approximation [5]. 

4.1 Lem.ma. Let x ,a ,b be nonnegative stochastic processes and m a 1ocal martingale such that 
x =a -b +m and assume that 
{i) a and bare increasing processes with a 0 =b0 =0, 
(ii) 3c E!R + such that /:,.a ..;;;c a.s. 
(iii) lima, <oo a.s: 

1 • 00 

Then 
( a) lim x, exists and is finite a.s. 

1• 00 

(b) lim b1 is finite a.s. 
/• 00 

4.2. Here is our main result: 

Theorem Consider the algorithm (3.2), (3.3). Let p 0 be the true parameter value. Let p, = p, - Po and let 
t 

i[;,=cprcp,, 'lr,= /ts ds +tr(Ro- 1
). 

0 
Assume: 
(i) lim '¥1 = oo a.s. 

1 • 00 

00 

(ii) f '1r,- 2if;1cp1 dt<oo a.s. 
0 

t 

(iii) lim 'Y,- 1 f 1¥s tt as= C, where C EIRm Xm is positive definite a.s. Then 
1• 00 0 

(a) limp, =po a.s. 
1• 00 

t 

(b) lim v,- 1/(c/>Tfts/ds =O a.s. 
1 • 00 0 

Proof. From (3.2), (3.3) it follows that 

dp1 =R,c/>1 -(dn, -cp/ft1 dt)=R1cp1 _(dm, -cp/pdt) 

dR,- 1=cp1cp/dt 

I 

(4.1) 

(4.2) 

Define the Lyapunov like process u1 =p,TR1-
1p1 + J<J/[!f>sfds. Applying the stochastic calculus rule to 

0 
u,, we obtain 

du, =2ftF-!f>,-dm, +q,,r_R,cp,_dn,. (4.3) 

Observe that '¥1 =tr(R,- 1). Define w, =u1 'lr,-
1, then 

dw1 = -"iJ.r,- 1w,i[;,dt +cp/R,q,1 "iJ.r,- 1p'{; cp1dt +dm11 , (4.4) 

where m 1 is a local martingale. We want now to apply lemma 4.1 to equation (4.4). Becuase u,w,'Y are 
positive, we then see that the only thing we have to check is assumption 4.1.iii, 

00 

j cf,rR,q,1 'Y,- 1p'{; q,1dt < oo 
0 

(4.5) 
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To that end, let Pt =trR1 • Let Ytt be one or the eigenvalues of Rt -I, then lim 'Yt-IYit =ci >0 by assump-
t • oo 

tion (iii) of the theorem. Hence yil=ci'Yt(l+o(l)), (t--,,oo). Now Y;-; 1 is an eigenvalue of Rt, 
Y;-; 1 =c; - 1..i,t- 1(1 +o(l)),(t--,,oo ). Hence Pt =v,-1(~c; -I +o{l))(t--,,oo ), or p, =0('1'1-

1),(t--,,oo ). 
· Recall that for a positive definite matrix A, xT Ax .;;;;xT x.tr(A) and xT A 2x .;;;;xT x(tr(A ))2. Then 

00 00 

j c[>{Rtcf>t'Yt- 1/6cf>tdt = j cf>{RtRt- 1R,c[>t'Yt- 1P6cf>tdt.;;;; 
0 0 

00 00 

,;;;:, j cf>{R/c[>tP6 c[>tdt:,:;;;, j c[>{c[>,p/p'{; cf>t = 
0 0 

00 00 

p'{; f if!,p/c[>;dt = p'{; f cf>tif!t0('¥t-2)dt < oo, by assumption (ii). 
0 0 

00 

Then from lemma 4.1 we conclude that w and f W5 'Y5-
1if!sds almost surely converge. We claim that 

0 
lim wt = 0 a.s. If not, there exists a subset of ~ with positive probability and an t:>0, such that 
t • OO 

lim wt ;;;,,,2t: on this subset. But then we also have on the same subset 
t • OO 

j i!,- 1wtif!tdt ;;;,,,t: j 'Y1-
1if!tdt = [1og('Yt) ]

0

00 

= oo, by assumption (i). 
0 0 

But this contradicts the second assertion of lemma 4.1. Since w is the sum of two positive quantities we 
have both 

t 

lim 'Yt- 1J(ft[c[>5 )2ds = 0 a.s. and 
t->00 0 

(4.6) 

R-1 
lim ftt-k-ftt = 0 a.s. 

l • OO 'rt 
(4.7) 

Because of assumption (iii) we know that liminfi!t- 1Rt- 1 = C>O, hence limp1 = 0 a.s. 
t • OO t--->00 

4.3 Example. If c[>:T--,,R2, c[>(t) = [I, sint + I], then the conditions of the theorem are satisfied. The 

matrix C in assumption (iii) becomes ¾ [~ ! ] · 
5. Remarks 
5.1 Clearly, condition 4.2 (iii) is sufficient to identify all the components of p0• But it seems that one can­
not do without. The strict positive definiteness of C is lost in either of the following situations that are 

worked out for p 0El22. Let cf> = [c[>i,</>i] and let lim cf>it = 0. Let Po = [po1{'02f. Then one cannot 
t • 00 cf>it 

expect to identify p 01 • For suppose dnit=p0;c[>itdt+dmi1,i=l,2, and let n1 =n1t+n 2t· Then eventually 
all the observations of nt are almost entirely those of n 2t, which doesn't yield much information about 

p01 • Indeed C now becomes [oO 
0
1]. Similarly if lim cf>it = cE(O,oo), one can only expect to identify 

1--->00 cf>it 

cpo1 +po2• 

5.2 Condition 4.2 (iii) appears as a technical condition, necessary for the proof of theorem 4.2. It seems 
however to be related to 

. 1 ft c[>sc[>[ 
lim -T- -T-ds >0 a.s., 
t• oo Po «l>t o Po cf>s 

(5.1) 
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t 

where 4>1 = f cJ>sds. Here (5.1) has an appealing interpretation. To see this, define a normalized version 
0 

of (3.1) by 

1 
H, (p) = -r-Jt (p ). 

Po <I>, 
(5.2) 

Then minimization of H, (·) is equivalent with minimization of J, (· ). One can easily check that for large 
t H/(p)~=po can be approximated by (5.1). Hence (5.1) says that for 1-00 p 0 is indeed a minimum 
point of H, (-). 
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