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Summary. The asymptotic behaviour of elementary symmetric polynomials 
S~k) of order k, based on n independent and identically distributed random 
variables X i. ... , Xn, is investigated for the case that both k and n get large. 
If k=Q(n*), then the distribution function of a suitably normalised S~k> is 
shown to converge to a standard normal limit. The speed of this convergence 
to normality is of order <'9(kn-t), provided k= (O(log- 1 nlog2 1 nn*) and cer­
tain natural moment assumptions are imposed. This order bound is sharp, 
and cannot be inferred from one of the existing Berry-Esseen bounds for 
U-statistics. If k-+r::JJ at the rate nt then a non-normal weak limit appears, 
provided the X/s are positive and S~k> is standardised appropriately. On 
the other hand, if k--+ oo at a rate faster than n* then it is shown that for 
positive X/s there exists no linear norming which causes S~k> to converge 
weakly to a nondegenerate weak limit. 

1. Introduction and Results 

Let X 1 , X 2 , ... be independent and identically distributed random variables 
with common distribution function F and 

(1.1) 

Let for any 1 ~k~n, 

(1.2) 

and let 

F.<k)( )=P ({n*(s~>-µk) ::5: }) 
n x (kµk-la) _x (1.3) 

for real x. Let '1.> denote the standard normal distribution function (df). 
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Clearly s~k) is a U-statistic of degree k with kernel h given by h(x1' ... , X1t) 

=x1 ... xk. If k is fixed, then Hoeffdi.D.g's CLT for U-statistics (Hoeffding (1948}} 
yields that p;kl converges in distribution to <P, as n-+ oo, provided assumption 
(1.1) is satisfied. We shall show that the result remains valid if k=k(n)--.r:X), 
whenever k=.o-(nt). 

Theorem 1. Ifµ= EX 1 =1=0, 0 < cr2 = cr2 (X 1) < oo and k= .o(nt), then 

lim supl.F;kl(x)-45(x)l=0. (1.4) 
n-+o:> .x 

The speed of convergence to normality in (1.4) is determined in 

Theorem2. If µ=EX 1 =1=0, 0<a2 =cr2 (X 1), EIX1 13 <oo and k 
= l!i(log- 1 n log2 1 n nt), then, as n -+ oo, 

(1.5) 

If k is fixed, then (1.5) yields the classical rate n-t for the accuracy of the 
normal approximation. For this very special case Theorem 2 is a simple conse­
quence of the Berry-Esseen theorem for U-statistics of degree k given by van 
Zwet (1984). On the other hand, if k=k(n)-+oo but k= lP(log- 1 n log2 1 n t), then 
-- perhaps somewhat surprisingly -- the order bound (1.5) cannot be inferred 
from one of the existing Berry-Esseen bounds for U-statistics. Application of 

( a2)k 
Corollary 4.1 of van Zwet (1984) yields the bound <9(k2 1 + µ2 n-~"), for the 

1.h.s. of (1.5), which is of course much worse then the bound given in (1.5). 
A related Berry-Esseen bound for U-statistics of Friedrich (1985) also does not 
give us (1.5). It appears that the dependence on kin these bounds is not optimal. 
In contrast, the bound <9(kn-t) established in Theorem 2 is sharp. To see this 
we note that, if k=k(n)-+oo at a rate slower than log- 1 nlog2 1nnt and the 
moment assumptions of Theorem 2 are satisfied, we obtain a valid one-term 
Edgeworth expansion .F,,<k>(x)=<P(x)+J,n-t<P(x)(l-x2){a- 3 E(X1 -µ)3 +3(k 
-l)crµ- 1} for FJ"l with uniform remainder Q(kn-i"). A proof of this assertion 
may be found in the appendix. There is no need for the usual requirement 
that F is non-lattice. However, if k is fixed, then we must add the assumption 
that Fis non-lattice, in order to guarantee that our expansion is valid uniformly. 
This latter statement can be inferred from a recent paper of Maesono (1987), 
where an Edgeworth expansion for U-statistics of fixed degree k is established. 
For the case k=2 we also refer to Theorem 1.2 of Bickel, Gotze and van Zwet 
(1986), whereas the classical case k = 1 is of course well-known and treated, 
e.g., in Feller (1971). 

After the present paper was submitted for publication Dr. K.O. Friedrich 
informed us that a different proof of our Theorem 2 can be obtained by applying 
the very general Theorem 2.1 -- a Berry-Esseen theorem for arbitrary statistics 
-- of his PH.D. thesis (cf. Friedrich (1985)). In fact, Friedrich's approach leads 
to a slightly improved Theorem 2: the restriction k = <9(log- 1 n log2 1 n n+) can 
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be replaced by the weaker requirement k = 0 (log- 1 n nt). On the other hand, 
in view of the remarks concerning the one-term Edgeworth expansion for ele­
mentary symmetric polynomials of increasing order, we can strengthen the order 
bound (1.5) to obtain a more precise assertion: 

(1.6) 

provided k--+oo at a rate u(nt log- 1 n log; 1 n). The constant c is equal to 
(2n:e3)-t=0.089 ... Thus, to first order, the deviation from normality depends 

only on the coefficient of variation~ of the underlying distribution of the X/s. 
µ 

In Sect. 2 we supplement the foregoing discussion, by an example establishing 
the sharpness of the bound (1.5) for zero-one random variables X 1 , X 2 , ..• in 
a more direct way. 

If k=k(n)--+oo at the rate nt or faster, then the asymptotic behaviour of 
S~k) becomes completely different from the one described in the Theorems 1 
and 2. From a weak limit theorem for the k-th root of S~k> due to Szekely 
(1982), which considers only strictly positive XJs, we derive for positive X/s 
the following two results. 

Theorem 3. If P (X 1 > 0) = l, 0 < a 2 = a2 (X 1) < oo, and k"' c nt for some constant 
c>O and n--+oo, then there exists a sequence of positive numbers {sn}, such that 
Sn---+µ and 

(1.7) 

where--+ denotes convergence in distribution and N stands for a standard normal 
d 

random variable. 

Theorem4. If P(X 1 >0)=1, 0<a2 =a2 (X 1)<oo, and kn-t--+oo as n--+oo, then 
there exists no linear norming which causes S~kl to converge in distribution to 
a nondegenerate limit distribution. 

Theorem 4 tells us that for positive Xi there exists no linear norming of 
S~kJ that converges in distribution to a nondegenerate limit if kn -t--+ oo. In 
view of Szekely's (1982) result (see Lemma 5 in the next section) it turns out 
that for positive Xi if kn-t--+CIJ taking the k-th root is essentially required 
to obtain nondegenerate weak limits, while if k=o(nt) there exist linear normings 
of both S~k) and its k-th root that converge to a nondegenerate limit. The border 
case k"'cnt(c>O) is treated in Theorem 3. Again Szekely's (1982) result can 
be used to fmd that for positive Xi the random variable S~k> can be appropriately 
scaled to yield a nondegenerate weak limit. 

The limit behaviour of S~k) in the case k "'c n(O ~ c ~ 1) was investigated in 
detail by van Es (1986), Halasz and Szekely (1976), Szekely (1974, 1982) and 
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Mori and Szekely (1982). In the latter paper it is shown that in the degenerate 
case (µ=0 and P(IX d=constant)= 1) nondegenerate limit distributions exist 
of linear normings of S~k> even if k- c n(O ~ c ~ 1). 

Proofs 

Proof of Theorem 1. The Hoeffding decomposition for elementary symmetric 
polynomials yields 

k 

s<:>-µ"= L H,(X 1' .•• , Xn) (2.1) 
r= 1 

where 

(n)-1 (n-r) r H,(Xi. ... , X,.)= k k-r µk-r . L . .IJ (Xj,-µ) 
1&,;1< ... <Jr~n 1-l 

(2.2) 

as given by Karlin and Rinott (1982), page 496. Define 

(2.3) 

A simple computation using (2.2) yields 

(]'2 

q,= 2 (k-r)2/((r+ l)(n-r)), r= 1, 2, .. ., k-1. (2.4) 
µ 

Since the sum.mands of the r.h.s. of (2.1) are uncorrelated we fmd 

k 

c;2(S~k»= L 0"2(H,(X1, ... , X,.)) 
r=l 

=u2 (H 1(X1, ... , XJ)(l +q1 +q1 qz + ··· +q1 qz ··· qk-1). 

Because of (2.4) and the assumption k=.o(ni) we see that for fixed k and n, 
and n sufficiently large, 

k2 
q,<c-, r= 1, 2, .. ., k-1, 

rn 

for some constant c > 0. This implies 

k oo 1 (C k2)r- 1 c!:: 
o~ I ql ... q,-1~ .L < -l)' - =e,. -t==u(l) 

r=2 r=2 r . n 

as 11--+-oo. In view of (2.5) this yields that 

(2.6) 

(2.7) 

(2.8) 
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In other words: 

" H 1(X1, ... , Xn)=kn- 1 µk- l L (X;-µ) (2.9) 
i=l 

is the dominant term in the decomposition (2.1). Application of the CLT of 
Lindeberg-Levy to H 1(X 1, ... , Xn) shows that (1.4) is valid if S~k>_µk in (1.3) 
is replaced by H 1 (X 1 , ... , X n)· This completes the proof. 

Proof of Theorem 2. To establish (1.5) we rewrite (2.1) as 

(2.10) 

where 
(2.11) 

with H 1 as in (2.9) 

(2.12) 

and 
k 

Rn= L HAX1, .. ., x.) (2.13) 
r"" 3 

is a remainder term of lower order. Clearly U,. is a U-statistic of degree 2 
with kernel 

!kµk-l (x+ y-2µ)+!k(k-1)µk- 2 (x-µ)(y- µ). (2.14) 

It follows directly from (2.10) that to prove (1.5) it suffices to show that both 

s~p JP ( {(k::~1n er) ~x} )-- <li(x)j = C!J(kn-t) (2.15) 

and 

(2.16) 

are satisfied. 
To prove (2.15) we shall need characteristic functions (ch.f) arguments. We 

shall only treat the case that k-+ oo. If k is fixed then Theorem 2 is a simple 
special case of Corollary 4.1 of van Zwet (1984). Let p~k>(t) denote the ch.f of 
nt u./(kµk- l er), i.e. 

p~kl(t) = E exp(it nt U ,j(kµk- lo)). (2.17) 

The usual argument based on Esseen's smoothing lemma implies that 

J I w· 11 P~ki (t)-e-±'2 1 d t= m(kn-±) (2.18) 
ltJ~k-*n* 
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and 

s (2.19) 

together will yield (2.15). The statements (2.18) and (2.19) may be proved by 
modifying the proof of Theorem 2.1 of Helmers and van Zwet (1982). Our proof 
of (2.19) will require the assumption k= lP(log- 1 n log2 1 nnt). For details of the 
proof the interested reader is referred to the appendix. 

It remains to establish (2.16). An application of Che byshev's inequality yields: 

P({ IR11I >k -1})< 2k-4 -2k+2 -2 2(R) (kµk-lq)- n =n µ CF O' n· 

Using (2.13) and an argument like (2.5}-{2.7) yields 

k 

<r2 (Rn)= L <r2 (H,(Xi. ... ,Xn)) 
r=3 

k 

=a2 (H1(X1, ... , XJ) L qi ... q,-1 
r=3 

k 

=k2n-1µ2k-2(f2 I qi ... q,_ 1 

r=3 

~k2n-1µ2k-2a2 I _1_1 (ck2)r-1 
r= 3 (r-1). n 

k 1 (ck2)r-3 ~c2k6n-3µ2k-2a2 L __ 1 _ 

r=3 (r-1). n 

~c2k6n-3 µ2k-2a22-1 f: _1_1 (ck2)r-1 
,.,, 1 (r-1). n 

kl 
~c2k6n-3 µ2k-2a22-1/11 

=(!)(k6n-3 µ21<-2). 

Together with (2.20) this gives 

which implies (2.16). This completes the proof. 

(2.20) 

(2.21) 

(2.22) 

Proof of Theorem 3. The following result of Szekely (1982) will be used. 

Lemm.a 5. If P(X 1 >0)=1, 0<a2 =a2 (X1)< oo and k=~(n), then, as, n_,,.oo 

nt((S~k>) 11"'-sJ-N(O, a 2 ) 

d 

(2.23) 
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where { sn} denotes a sequence of positive numbers, such that Sn ~ µ, and N (0, cr2) 

stands for a normal random variable with expectation zero and variance cr2 . 

Define 
(2.24) 

and note that because of (2.23) V,, is asymptotically N(O, cr2). In addition we 
have that sn + n-t v;,;:;;; 0. A Taylor expansion argument yields 

S~l =exp [k log(sn + n -t V,.)J 

=exp [k(log s,. + n-t ~)] 

=s~ exp(kn-t ~) (2.25) 

where ~is asymptotically N(O, cr 2 µ- 2) distributed. This directly yields (1.7) 
and the proof of the theorem is complete. 

Proof of Theorem 4. In view of (2.25) it suffices to prove the statement of the 
theorem for the random variables 

(2.26) 

Let us suppose that there exist sequences {an} and { bn} with an> 0 such 
that an(Zn-bn) converges in distribution to a nondegenerate limit distribution 
F. Then there exist three points - oo < u1 < u 2 < u3 <co, continuity points of 
F, with O~F(u1)<F(u2)<F(u3)~ 1. 

It follows from this and (2.26) that 

for i = 1, 2, 3. This implies 

(2.28) 

and hence 

(2.29) 

Since nt k- 1 --+ 0, evidently an b"-+ -u1 • But the same argument also holds 
for Uz, and U3, implying anbn-'>-U2, Which is in contradiction With anbn~-U1· 
This completes the proof of the Theorem. 



28 AJ. van Es and R. Helmers 

An example establishing the sharpness of the bound ( 1.5 ). 
Consider i.i.d. zero-one random variables X 1 , X 2 , •.. with P(X 1 =0) = P(X 1 

= 1) =i. The elementary symmetric polynomial S~k> then reduces to s~> = 0 if 

En<k, S~k>=(~n)/(~) if En"i?,k where En denotes the number of ones in 

X 1, ••. , X n· Of course En is binomially distributed with parameters n and -!. 
This example is also treated in van Es (1986) for the case k ~ c n (0 < c < 1 ). 
We prove the following lemma. 

Lemma 6. If P(X 1 =0) = P(X 1 =1) = t and k = o(nt) then there exists a sequence 
Xn, n odd, satisfying 

(2.30) 

and 

(2.31) 

asn-+oo. 

To prove Lemma 6 we first note that (1.3) can be rewritten as 

(2.32) 

where the function gk,n: JN -+JR. is defined by 

Since gk,n is increasing on the set {k, k+ 1, ... }it follows that 

(2.34) 

But this probability is exactly equal to 1- if we take m=t(n-1) (for n odd). 
Thus defining 

(2.35) 

we obtain 

(2.36) 

In the appendix it is shown that (xn) satisfies (2.30). A simple Taylor expansion 
argument then directly yields, in view of (2.36), relation (2.31). This completes 
the proof of Lemma 6. Note that (2.31) can also be deduced from the Edgeworth 
expansion type result, mentioned in Section 1, for the case that k-+ OJ but at 
a rate slower than nt log- 1 n log2 1 n. For k is fixed this is not true, because 
F is lattice. 
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Appendix 

Proof of (2.18) and (2.19 ). We will indicate how (2.18) and (2.19) can be obtained 
by modifying the proof of Theorem 2.1 of Helmers and van Zwet (1982). 

Define functions g and if! by 

(Al) 

and 
t/l(x, y)=fk(k- l)µk- 2 (x-µ)(y-µ) (A.2) 

and note that the U-statistic Un (cf. (2.11) and (2.14)) can be written as 

11 

U11 =2n- 1 L g(X;)+2(n(n-1))- 1 LL rfr(Xi,XJ (A.3) 
i= 1 l~i<j;:!;n 

We first prove (2.18). 
Let x denote the ch.f. of <Y- 1 (X1 - µ),thus 

x(t)=Eexp{it<Y- 1 (X 1 -µ)} (A.4) 

and let 

Elg(X1)J3 EIX1 -µl 3 

a= (Eg2(X i))3f2 = a3 
(A.5) 

To proceed we follow the argument given in Helmers and van Zwet (1982), 
with some minor changes. Using (2.17) and the elementary inequality I e;" - 1 
-ixl ~2x2 for all real x, we find 

where 

and 

p~k>(t)= E exp(itnt U J(kµk-l u)) 

= E exp {itnt(Un-.dn(m))/(kµk-l a)} 

-(1 + i tnt .dn(m)/(k µk- l <Y)) + R11 

m n 

L1,.(m)=2(n(n-1))- 1 L 2: r/l(X;, Xi) 
i"'l j=i+l 

uniformly for any integer m= 1, 2, ... , n-1 and for all real t. 
Taking m = (n - 1) first and using the fact that 

(A.6) 

(A.7) 
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and the independence of X 1 , X 2 , .•• , we obtain after a little calculation 

n 

IEnt(kµk-l 0')- 1 Lln(n-1) exp{2itn-t(kµk-l or 1 L g(XJ}I 
i= l 

2 

~nt(kµk-l a)- 1 IEt/l(X1 , X 2) TI [exp(2itn-t(kµk-i ar 1 g(XJ)-1]1 
1=1 

·1Eexp(itn-ta- 1(X1 -µ))in- 2 

~n-t(kµk-i or 3 t2 Elg(X i)g(X2) l/l(X 1, X 2)1 · JE exp(itnt u- 1 (X1 -µ))ln- 2 . 

(A.8) 

Using (A.1) and the well-known inequality 

JEexp(itn-ta- 1 (X1 -µ))!~exp (- ~:) 

for all It I~ a- 1 nt we easily conclude that, uniformly for all It I~ a- 1 nt, the 
quantity in (A.8) is of order 

Combining this with (A.6) and (A.7) directly yields 

(A.9) 

as n-i-oo. In view of (A.1) and (A.2) it is easily checked that 

(A.10) 

as k-i- oo. 
The proof of the classical Berry-Esseen theorem for sums of i.i.d. random 

variables ensures that 

f It 1- 11 x"(n-tt)-e-tt2 I dt= l!J(n -t) (A.11) 
ltl~a-•ni-
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Together the relations (A.9)-{A.11) directly imply (2.18). It remains to prove 
(2.19). Instead of (A.9) we now employ the following bound: Uniformly for 
any integer m = 1, ... , n - 2 and for all It I ~a - 1 nt 

IP(kl(t)j=(!){Et/12(X1,X2) mn-2t2 
n Eg2 (X 1) 

( - mt2
) Elt/l(X1 , X 2)1 -tl I (- (m-2)t2)}(A 12) 

+exp 3n + (Eg2(X1))t mn t exp 3n . 

as n-+oo. 
The bound (A.12) follows by an argument similar to the one leading to 

(A.10). For any fixed m~n-2 we employ, instead of(A.8), the inequality 

IE(kµk-l or 1 L1n(m) exp{itnt(u n-t1n(m))/(kµk- l o)}I 

I m n 

;;;; 2n-t(n-l)- 1 (kµk-ta)i~l i=~l Et/l(X;, X) 

·exp{2itn-t(kµk- 1 a)- 1 (f g(Xk)+(n-1)- 1 L:I l/l(X,.,X1))~1 
k=l m<k<l~n 'f 

< m Eil/J(X 1. X2)i IE (' -t -1(X ))lm-2 
= nt (Eg2(X i))-t exp itn (l i - µ (A.13) 

from which (A.12) is easily verified. Using (A.1) and (A.2) once more we also 
have that 

(A.14) 

as k-+oo. 
It follows now directly from (A.10), (A.12) and (A.14) that 

f itr 1 IP~k>(t)-e-tt2 ldt 

=(!) {: logn log (V:)+n-c13 Iog (V:)+k3' 2n114-c/3 }ogn} 

(A.15) 

provided we take m=[cn !~gn] in (A.12) with c sufficiently large and by requir­

ing k = (!)(log- 1 n log2 1 n nt). This completes the proof of relation (2.19). 

Proof of the validity of the Edgeworth expansion .F;kl 

We derive the one-term Edgeworth expansion for F~kl, referred to in the discus­
sion after Theorem 2, for the case k-+ oo. Suppose that the moment assumptions 
of Theorem 2 are satisfied and, in addition that k = o (log- 1 n log2 1 n n*). 
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To begin with we note that the argument leading to (2.22) can easily be 
modified to find that 

P ((k~~~~ u) ~(logn)-t kn- 1)= o-(kn-t). (A.16) 

Thus, R,. is of negligible order of magnitude for our present purposes as well. 
It remains to show that F~k> is an Edgeworth expansion for n!UJ(kµk- 1 a), 
where Un is as in (2.11), with uniform remainder o-(kn-t). To prove this we 
again employ Esseen's smoothing lemma and find that it suffices to show that 
(2.18) and (2.19) remain true, if we replace the region of integration I tl ;;;.k-t n1' 4 

in (2.18) by ltl~(logn)-tk-tn 1 '4, and, similarly in (2.19) the interval k-tn1t4 

;;i!ltl~k- 1 nt by (logn)-tk-tn1l4 ;;i!ltl;;i!Mk- 1 nt, for any fixed constant M>O, 
and the two big (!)'s on the r.h.s. of (2.18) and (2.19) by little u's. Finally we 
replace the term e-tr2 appearing in the common integrand of (2.18) and (2.19) 
by 

p~>(t)=e-tr2 {1 + ~~: (u- 3 E(X1 -µ) 3 +3(k- l)aµ- 1)}. (A.17) 

Note that p~k> is the Fourier-Stieltjes transform of P;k>. 
Let (2.18)* and (2.19)* denote the above-mentioned modifications of (2.18) 

and (2.19). We first prove (2.18)*. Taylor expanding p~>(t) we find that uniformly 
for all ltl;;ii(logn)-tk-tn114 

IP~>(t)- P~k>(t)I 

= (!) ( E~~~~ ~2) n- 1 t2)+o(kn-tl tl P(I tl) exp(-lt2)) (A.18) 

as n ~ oo, where P is a fixed polynomial. 
To check this we follow the pattern of the proof of Theorem 1.2 of Bickel, 

Gotze and van Zwet (1986) (see also Callaert, Janssen and Veraverbeke (1980)) 
with some slight modifications. The details of the proof of (A.18) are as follows: 
Because of (A.3) we know that 

p~k)(t)= E exp(itnt UJ(kµk- 1 a)) 

=E exp (it {1n-t itl g(Xi)+2n-t(n-1)- 1 
1 t&~'J1t&n t{l(X;, X1)}/(kµk-l a)) 

with g and if1 as in (A.1) and (A.2). Taylor expanding p~k)(t) now yields 

p~k)(t)=E exp (it2n-t(kµk- i a)- 1itl g(XJ) 

[ it2n-t(n-1)- 1 ~ 
. 1+ (k k-1 ) IL: t{l(Xi.X1) 

µ (j 1 t!i<jt&n 
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After some easy calculations, exploiting the independence present, this reduces 
to 

p~kl(t) = x"(tn-t) + it(k-1) µ- 1 a- 1 nt 2 - l xn- 2 (tn --5:) 

· E exp{itn-t a- 1 ((X1 -µ)+(X2 -µ))} ·(X 1 - µ)(X 2 - µ) 

(!) (Ei/!2 (X 1' X 2) _ 1 2) 
+ Eg2(X1) n t . 

By a simple Taylor expansion argument 

E exp {itn-t a- 1 ((X1 - µ) + (X 2 - µ))} ·(X 1 - µ)(X2 - µ) 

t2 
=--a2 (1+o(l)) for [t[=b(nt). 

n 

We also need the well-known fact that (cf. Feller (1971), p. 539) for all jt[;;:;:ent 
and some e > 0, 

xn(tn-t)=e-tt2 {i +i~t)3 ~~;3-µ)3} 
+ o(n-t It I P(J tj) e-t11) 

where Pisa fixed polynomial. Also note that [2 (tn-·~")=l+l!J(t2 n- 1 ) for [tj 
=o(lf~). Combining all these results we obtain 

p~kl(t)=exp(-it2){1+ ~~: E(X~;µ)3} 

+it(k-l)µ- 1 a- 1 nti- 1 

( 't)2 
·-1 - a 2 (1 + o(l)) exp(-tt2) 

n 

from which (A.18) directly follows. Combining (A.18) with the first part of (A.10) 
directly yields (2.18)*. To prove (2.19)* we simply follow the calculations leading 
to (A.15) and the argument following it, to find that with minor changes the 
same proof also yields (2.19)*, provided we require k = .o(log- 1 n log2 1 n nt) 
instead of k =(!)(log- 1 n logz- 1 n nt). Since M k- 1 n! =;i. (nt), as k-+ oo, we do not 
need a non-lattice condition here. This completes the proof of (2.19)* and the 
validity of the expansion F,,<k> is established. 
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Proof of (2.30 ). We first treat the case k -HtJ. Using the refinement of Stirling's 
formula given on page 54 of Feller (1968), we find, for odd n, 

gk.nH(n- l))=nt k- 1 2k (~r 1 (Hn; 1)) 

and therefore 

=nt k-12kn-n-t(n-k)n-k+f(t(n- l))t<n-1)+t 

-(t(n-1)-k)-t<n- l)+k-t ( 1 + (9 (~)) 

=nt k- 1 exp {<n-k+!) log ( 1-~)+tn log (1-~) 

-(tn-k) log ( 1-2k: 1)} (i +m (~)) 

=ntk- 1 exp{-t k: (l+o(l))}(1+(1)(~)) 
=nt k- 1 (i-t~~ (l+o(l))) (1 +(!) (~)) 
=nt k- 1 -fkn-i(l +o(l))+<Y(n-t k- 1) 

and (2.30) is proved. If k is fixed the calculation simplifies to 

gk,nf!-(n- l)) = nt k- 1 2k(t(n- l))(t(n- l)- l) ... (!(n-1)-k+ 1) 
n(n-1) ... (n-k+l) 

=ntk- 1 (i-t k(k:l) +m(:2)) 

=ni k- 1 -t(k+ l)n-t + (!)(n- 312 ) 

which also yields (2.30) in this case. 
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