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We consider the estimation of the probability density function of the radii of spheres in a 

medium given the radii of their profiles in a random slice. This problem is known as Wicksell's 

corpuscle problem. We present an estimator related to the classical kernel density estimator 

and discuss its properties. A comparison is made with two other estimators related to the 

kernel estimator. 
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1. Introduction. 

Suppose that we want to estimate the probability density f of the radius of a random sphere in 

an opaque medium such as for instance a drop of oil in a piece of rock, and suppose that we have a 

sample of spheres which we can not observe directly. Instead we do have a sample X1,. .. , Xn of 

radii of n circular profiles obtained by taking slices from the spheres. The estimation of the sphere 

radius density f from the sample of profile radii is known as the corpuscle problem. This problem 

was first considered by Wicksell (1925) who, under suitable assumptions on the way the slices are 

obtained, derived the following two relations between the density g of the radii of the circular profiles 

X 1, .. ., Xn and the density f of the radii of the spheres. If we assume that both the supports off and g 

are contained in the interval [0,R] for some positive constant R then we have 

R 

g(y) = !. J -'1 [ 
2 

f(r)dr, 
µy r - y 

0 < y::; R, (1.1) 
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and 
00 

1 - F(r) 2µ J 1 
- --.) 

2 2 
g(y)dy, r ~ 0, 

nr y-r 
(1.2) 

where F denotes the distribution function of the sphere radii and µ is equal to its expected value, i.e. 
R 

µ = J rf(r)dr. (1.3) 
0 

Taking r equal to zero in relation (1.2) we see that we also have 

00 

1t ( 1 )-1 
µ = 2 J y g(y)dy . (1.4) 

Above we assume that we are dealing with a sample of circle radii, in particular that the observations 

are independent. In many practical cases this will not be true but it can be shown that relations (1.1) 

and (1.2) still hold under more realistic assumptions. Throughout this paper however we shall not 

consider such situations and we assume that the observations are independent. For reviews of the 

Wicksell problem see for instance Ripley (1981) and Stoyan, Kendall & Mecke (1987). In recent 

stereological litterature it is emphasized that having data on close, parallel sections allows much more 

simple and much more nicely behaved estimators. However in practical work this is still not always 

possible. 

Concerning estimation of the density f of the sphere radii several parametric and nonparametric 

methods have been proposed. In this paper we confme ourselves to nonparametric methods and to 

methods related to the classical Parzen-Rosenblatt kernel estimator in particular. To indicate the 

variety of other ways to deal with the Wicksell Problem we mention the following methods. 

Anderssen & Jakeman (1975) derive an estimator for fby numerically solving the equation obtained 

by differentiating (1.2). They use Lagrange smoothing of the empirical distribution function (on a 

chosen grid), product integration and spectral differentiation. In its simplest form (the trapezoidal 

case, using the datapoints as gridpoints) this boils down to substitution of the cumulative frequency 

polygon. Nychka, Wahba, Goldfarb & Pugh (1984) use a penalized least squares method (or cross­

validated spline method) to find an estimator for f. Their solution is a cubic spline on a chosen grid. 

Wilson (1987) uses a smoothed EM-algorithm (EMS), considering the Wicksell problem as a 

problem with incomplete data. Her method combines the EM-algorithm with simple smoothing 

because just applying the EM-algorithm gives very unsmooth solutions. 

In section 2 we introduce an estimator of the density of the sphere radii which is related to the kernel 

estimator. This estimator can be obtained from an estimator of the distribution function of the sphere 

radii studied by Watson (1971). In section 4 we suggest a cross-validation method which can 
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possibly be used to determine suitable bandwidths for this estimator. Two other estimators related to 

the kernel estimator, proposed in Taylor (1983) and Hall & Smith (1988), are given in section 3. In 

the remainder of the paper these three estimators are compared by a simulation study and theoretical 

results concerning their expectations and variances. For the properties of kernel estimators we refer to 

the recent monographs ofDevroye & Gyorfi (1985), Silverman (1986) and Devroye (1987). 

2. An estimator of the density of the sphere radii. 

Before we present our estimator of the density of the sphere radii we first recall some 

properties of the kernel estimator. If X1,. . ., Xn is a sample from a distribution with a density f then 

the kernel estimator of this density is given by 

n 

f 1 "' K(X-Xi) 
nh(x) = iih Cl -h- ' (2.1) 

where K is a probability density function called the kernel and his a positive smoothness parameter 

called the window or the bandwidth. One of the ways the kernel estimator can be obtained is to take 

the derivative of a smoothed empirical distribution function Fn. A simple calculation shows 

d 
00

1 x-s 
fnh(x) = dx J Ii K( h)Fn(s)ds. (2.2) 

We shall need this formula later but first we proceed with some other properties of the kernel 

estimator. It follows that the expectation off nh(x) is independent of the sample size n, we have 

00 

1 (x-s) E f nh(x) = J Ii K T f(s)ds. (2.3) 
-oo 

If f is twice differentiable and if K is symmetric then it can be shown under some additional regularity 

conditions that we have for h tending to zero 

00 

E fnh(x) = J K(s)f(x+hs)ds = 

-oo 

00 

J K(s)(f(x) + hsf(x) + ¥i2s2f'(x) + ... )ds = 

00 

f(x) + ~2f'(x) J s2K(s)ds + .... 
-oo 
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Notice that we have explicitly used the fact that K is symmetric, otherwise the second term would 

have been of order h and thus the bias would have been larger. On the other hand a standard 

computation shows that the variance of fnh(x) is of order l/nh. The usual conclusions drawn from 
these observations is that we should use sequences of bandwidths (h.n) satisfying hn~O and nhn~oo, 

and that bandwidths which for smooth densities asymptotically minimize the mean integrated squared 

error 

00 

MISEn(h) := J (fnh(x) - f(x))2dx = 

00 00 

J (Efnh(x) - f(x))2dx + J var(fnh(x))dx (2.4) 
-oo -oo 

are of order n-115.The best possible mean integrated squared error is of order n-4'5• This is seen from 

the fact that the integrated squared variance is of order l/nh and from the fact that the integrated 

squared bias, i.e. the first term in (2.4), for smooth densities f is of order h4. 

It follows from the previous remarks that if we want to construct a kernel type estimator of the 

sphere radius density f we would like the expectation to be equal to (2.3). Taking the kernel K equal 

to a differentiable probability density function and defining the estimator fnh(x) for x>O by 

n Xi 
-2 ""' J 1 cx-u) f nh(x) := --2 /..J V 2 2 K' 11 du, 1tilh 1=1 o X· _ u 

l 

(2.5) 

the next theorem shows that the expectation of this estimator, apart from an unknown factor 11µ and a 

correction term, equals the expectation of a kernel estimator based on n observations of sphere radii. 

This means that we can use fnh as an estimator of the function f/µ. 

Theorem 2.1. lfK is a differentiable probability density function with a bounded derivative and iff 
is a bounded density with a support contained in [E,R]for some O<E<R<oo then we have for h>O 

1 
00

1 cx-s) 1 (x) Efnh(X)=- J -K -f(s)ds--K - , 
µ_

00
h h µh h 

(2.6) 

where µ is given by (1.3). 
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Proof. Notice that the conditions imposed on f and relation (1.1) imply that g is a bounded density 

with a support contained in [0,R]. By Fubini's theorem we can rewrite the expectation of fnh(x) as 

follows, 

Efnh(x) = 

00 t 
2 J { J 1 -1 (x-u) ) - IT K' h du g(t)dt = 
1t o o "1t2 _ u2 h 

00 00 

J {~ J 1 g(t)dt )-l K'CX-u)du. 
o 7t u "°'1t2 _ u2 h2 T 

Next by formula (1.2) we see that this integral equals 

00 

1 J -1 (x-u) - {1 - F(u)) ;::y K' T du= 
µo h 

00 00 

.!. I ( J f(s)ds) ~ K'(r)du = 
µo u h 

00 s 
.!. J { J 5-K'CX!iu)du)f(s)ds = 
µo oh 

00 

1 J (1 (x-s) 1 (x)) · - fiK 11 -fiK Ii f(s)ds= 
µo 

00 

1 J 1 (x-s) 1 (x) - hK h- f(s)ds - -K Ii, 
µo µh 

which completes the proof of the theorem. 0 

Concerning the correction term in (2.6) notice that if xK(x) converges to zero for x tending to infinity 

we have 
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(2.7) 

for every positive x. If K is a density with support [-1,l], which we shall assume from now on, this 
term is equal to zero for all ~h. 

The next result gives an upperbound for the variance of the estimator (2.5). Notice that this bound is 
larger than the variance of the usual kernel estimator which is of order 1/nh. The proof of this theorem 
is left to the appendix. 

Theorem 2.2. If K is a symmetric differentiable probability density function with a bounded 
derivative and with support [-1,1], and if f satisfies the conditions of theorem 2.1 then we have 

var(f, (x)) = g(x) o(-log(h)) + .!.o(-log(h)) as hJ,o 
nh x nh2 x nh2 ' ' (2.8) 

for all x>O, where the order bounds are independent of x. 

Just as in (2.2) the estimator (2.5) can be derived by taking the derivative of a smoothed estimator of 
the distribution function F of the sphere radii. Let On denote the empirical distribution function of the 
sample of circle radii Xi. ... ,Xn. From formula (1.2) we then obtain an estimator Fn ofF by plugging 
in On. We get 

where 

1 ~ (( 2µ(X1, ... ,X) 1 ) ) Fn(x) = - ~ 1 - I[o Xi)(X) + I[xi,oo)(X) = 
n l=l 1t '1xr - x2 ' 

I ( ) 2µ(X1, ... ,Xn) f 1 I ( ) 
[0,oo) x - . 

1 
~ I 2 2 [0,Xi) x , 

1tn l= \I x i - x 

n 2 
µ(Xi, ... ,Xn) = 1tn /~ X· . 

1=1 1 
(2.9) 

This is an unsatisfactory estimator of F since it is not monotonous and has values out of [0,1]. 
However, Watson (1971) showed that in spite of these bad properties Fn is a consistent estimator of 
F. We obtain our estimator from Fn as follows, 

d 
00

1 (x-s) dx f ii K 11 Fn(s)ds = 
-00 

~ r!...K(x-s)ds - 2µ(Xi, ... ,Xn) f ~ j!...K(x-s) 1 I . (s)ds = 
dx 0 h h 1tn i=l dx -00 h T '1xr - s2 [O,Xi) 
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which is equal to our estimator fnh except for the estimate µ(Xi, ... ,Xn) ofµ and the first term. 

Remark 2.3. A direct consequence of theorems 2.1 and 2.2 is that in order to get a consistent 

estimator off(x)/µ for a fixed x>O we have to use sequences of bandwidths (hn) satisfying hn~O and 

-nhWlog(hn)~co. There is no need to worry about the factor g(x)/x in (2.8) since under our 

conditions on fit can be shown that g(x)/x converges to a finite constant as x tends to zero. The 

variance is discussed further in section 6. 

Remark 2.4. It is readily checked that (2.6) also holds if K is a continuous density function which 

has a bounded derivative except in finitely many points. Thus we are allowed to use the 

Epanechnikov kernel 

(2.10) 

which has a well known optimality property with respect to the mean integrated squared error 

criterion. However, it should be noted that, since the variance of our estimator is not the same as the 

variance of the usual kernel estimator, this optimality property does not hold here. An advantage of 

this kernel is that we have explicit expressions for the integrals in (2.5) needed to compute the 

estimator so we don't need numerical integration. 

Remark 2.5. The usual argument against higher order kernels, i.e. the fact that the corresponding 

kernel estimator can become negative at some points does not hold here since even if we use positive 

kernels our estimator can also have a negative value at some points. 

3. Two other estimators related to the kernel estimator. 

Above we have seen that our estimator (2.5) can be obtained by first transforming the 

empirical distribution function Gn of the circle radii into an estimator of the distribution function F of 

the circle radii, which is then followed by smoothing and differentiation to obtain a kernel type 

estimator. For two previous estimators this transforming and smoothing is interchanged. Taylor 

(1983) first estimates the density g of the circle radii by a kernel estimator and then transforms the 

estimate by formula (1.2) into an estimate of the density f. If gnh is a kernel estimator of the density g 

then the estimator is given by 

00 

:r 2µ d J 1 
fnh(X) = - - dx -'1 

2 2 
gnh(y)dy. 

1t x y -x 
(3.1) 
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Hall & Smith ( 1988) base their estimator on the squares of the radii. Let f 1 and g1 denote the 

densities of the squares of the sphere radii and the circle radii then we have fi(x)=(2xll2)-lf(xl12) and 

gi(x)=(2x112)-lg(x112). It turns out that the relation between these densities has a convolution 

structure which makes them easier to work with. The estimator fiiYt of ft is a transformed kernel 

estimate of gi based on the sample x1, ... ,X~, i.e. 

f (l) ( ) 2µ d Joo 1 (1)( )d nh x = --- gnh y y, 
7t dx x ...ry::-x (3.2) 

where g:£(y) is given by 

n 4 
giiYt(y) = 1._ ~ K(Y-X1). 

nh 1=1 h 
(3.3) 

An estimator off is then obtained by 

~(x) = 2xfiiYt(x2). (3.4) 

Above we have assumed that the value ofµ is known. Since µ depends on the unknown density we 

either have to be satisfied with an estimator off/µ, which we get by omitting the factorµ in (3.1) and 

(3.2), or we have to estimateµ. A straightforward estimator ofµ is given by (2.9), but since l/Xi 

does not have a finite variance it does not converge at a rate of {ii. However, Hall and Smith show 

that the rate of convergence does come arbitrarily close to {ii, which is faster than the rate of 

convergence of the density estimators given above. Therefore this estimator can be used without 

disturbing the asymptotics. The same estimator ofµ can be used to construct an estimator off from 

our estimator (2.5). 

4. Selecting the bandwidth by least squares cross-validation. 

Let us again assume that the support off is contained in an interval [E,R], O<E<R<oo, and let 

fnh denote the estimator (2.5). A major problem in kernel estimation is the choice of the smoothing 

parameter h. Suppose that we would like to use a bandwidth h which minimizes the mean integrated 

squared error 

00 f 2 
MISEn(h) := EJ (fnh(x) - (x)) dx, h>O, 

£ µ 
(4.1) 

or at least one which asymptotically minimizes this error, then this bandwidth depends on the 

unknown density and is therefore unknown itself. In this section we suggest a least squares cross-

,,, 
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validation method to compute a suitable bandwidth from the data. The method is similar to the least 

squares cross-validation bandwidth selection method for the ordinary kernel estimator. 

We proceed as follows. Notice that minimizing (4.1) is equivalent to minimizing 

(4.2) 

In order to construct an estimator of (4.2) we define the leave one out estimator tm(x) by 

n Xi 
,,<n -2 ~ J 1 '(x-u) . 
Ifil:l(X) := 2 . "'-! . V 2 K -r- du, J = 1, ... ,n, 

n:(n-l)h 1=1,l~J 0 xi - uz n ' 
(4.3) 

i.e. the estimator (2.5) based on the observations Xi, ... , Xn with Xj left out. Next we define the 

random function Ln 

co 4 n Xj 1 d . 
Ln(h) := J f~h(X) dx - - ~ I[e,oo)(Xj) J 2 2 dXfil6(x) dx, h>O. (4.4) 

e n:nJ-l e VXj - x 

The following result shows that the expectation ofLn(h) equals (4.2) apart from a term 2Efnh(e)/µ. 

Theorem 4.1. IJK is a symmetric probability density function with a bounded second derivative 

and support [-1,1] and ijf satisfies the conditions of theorem 2.1 then we have 

00 2 00 2 
E Ln(h) = E J f~h(x) dx - - J E fnh(X) f(x) dx + - Efnh(e). (4.5) 

£ µ£ µ 

Proof. We compute the expectation of the second term in (4.4) as follows. By Efil6(x) = Efnh(x) and 

the transformation formula (1.2) we have 

4 n Xj 1 d · 
E- l: l[e,oo)(Xj) J V dx fil6(x) dx = 

n:nJ=l £ xj - x2 

00 t 
1:. J J g(t) d E fil6(x) dxdt = 
n: £ £ V 12 _ x 2 dx 

4 j ( j g(t) <lt) i._Efnh(x) dx = 
n: £ x Vt2 - x2 dx 
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2 
00 

d - J (1 - F(x)) -d Efnh(x) dx = 
µ£ x 

2 2 
00 

- -(1 - F(e)) Ef nh(E) + - f E f nh(x) f(x) dx = 
µ µ£ 

2 2 
00 

- - Efnh(c) + - f E fnh(x) f(x) dx, 
µ µ£ 

which proves (4.5). 0 

The results above suggest that we might obtain a good bandwidth if we minimize the criterion 

function LSn(h) defined by 

(4.6) 

where µn is suitable estimator ofµ such as for instance (2.9). A straightforward computation shows 

that this function can also be written as 

LSn(h) = jf~h(x) dx -
2

fn:(£) + 
£ µn 

XiXj (4.7) 
8 LI (X)J J 1 1 K"(x-u)d d 

n2(n-l)nh3 h~j [e,oo) j o e ..Jxr - x2 '\/xj - u2 T x u. 

Remark 4.2. If h is smaller than £, which implies that the correction term (2.7) in (2.6), is equal to 

zero on [£,oo ), and if f is equal to zero on the interval [0,£+h) then it is readily seen that E fnh(E) 

vanishes. This implies that in that case the term 2fnh(c)JPn in (4.6) can be omitted. 

Since we have not proved that this method works, which would require a more detailed analysis than 

just a computation of the expectation of Ln, we should be very careful when we actually use it to 

compute a bandwidth. This should be stressed even more because the least squares cross-validation 

method for the ordinary kernel estimator is known to have slow convergence properties (see Hall & 

Marron (1987a, 1987b)). We have not performed simulations with this bandwidth selection method 

since we could not find a kernel such that numerical integration in the computation of the last term of 

(4.7) can be avoided. Without such a kernel evaluation of the cross-validation criterion seems to 

require a lot of computing time. 
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S. Simulations. 

To avoid the problem of estimating µ we consider the three methods as methods to estimate 

f/µ instead of f. As before let fnh denote the estimator (2.5), let f~ denote the e&timator given by (3.1) 

with the factor µ omitted, and let ~ denote the estimator off/µ obtained by omitting the factor µ in 

(3.2). The main objective of the simulation study is to compare these three estimators. 

The sphere radius density fin our simulations is equal to a mixture of two normal densities 

conditioned to be positive. The density of the mixture is equal to 0.7 <\>1(x) + 0.3 <\>2(x), where <1>1 is a 

normal density with mean 0.15 and standard deviation 0.03 and <1>2 is a normal density with the same 

standard deviation but with mean 0.275. The same density, but truncated on the left at 0.04, together 

with two other densities, was used by Wilson (1987) in her simulation study. For the generation of 

the samples of circle radii we have to be aware of the fact that their density is equal to fc(x)=xf(x)/µ 

instead of f. This is caused by the fact that spheres with a large radius have a higher probability to be 

cut by the slice, and so they have a higher probability to appear in the sample of profile radii. To 

generate samples from the density f we have used random number generators from the IMSL 

package. Next, to obtain samples of observations with density fc, we have used a rejection technique 

, see for instance Ripley (1987) p.60. The kernel used in the computation of the estimators is the 

Epanechnikov kernel (2.10). For this kernel the integrals in the definition of the estimators can be 

derived analytically. 

Figures l.a, l.b, and l.c contain the graphs of the estimators fnh, f1i and~. computed from the 

same sample of size 500. The graph off/µ is denoted by the dotted line. In figure 1.a the continuous 

line is the estimator f nh plus an estimate of the correction factor in (2.6), i.e. 

(5.1) 

where µ(X1,. . .,Xn) is given by (2.9). For ~h the corrected and uncorrected estimates are equal, 

since then the second term vanishes. The dashed line on [0,h] denotes the uncorrected estimate fnh on 

this interval. The same is repeated in figures 2, 3 and 4 for different samples of size 500, and in 

figures 5, 6, 7 and 8 for different samples of size 1000. The bandwidths were chosen by eye. 

The estimates ofµ for these samples are given in the next table. The true value ofµ is 0.1875. 
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Fig. n estimate ofµ 

1 500 0.1809 

2 500 0.1812 

3 500 0.1868 

4 500 0.1966 

5 1000 0.1874 

6 1000 0.1820 

7 1000 0.1865 

8 1000 0.1973 

Table 1. Estimates of ii. for the samples of figures 1. .... 8. 

The mean of the four estimates computed from the samples of size 500 is 0.1864 and the standard 

deviation is 0.0073. For the four estimates computed from the samples of size 1000 the mean is 

0.1883 and the standard deviation is 0.0064. 
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Figure 9. The estimates fDb and~ of figiires 1.a and 1.b. n=500. h=0.036. 

In figure 9 we have drawn fnh and f~ for the sample of figures 1.a and 1.b. The picture shows that 

there is practically no difference between these two estimators except close to zero. 
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6. Discussion. 

The most striking things about the estimator fnh given by (2.5) are the appearance of the 

correction term in its expectation (2.6) and its remarkably short derivation. In the asymptotic 

expansions of the expectation of Taylor's estimator and their own estimator in Hall & Smith (1984, 

1988) such a term is absent. However, the simulation results in the previous section indicate that 

these estimators also have systematic large errors close to zero. This can be explained from the fact 

that, however smooth the density f may be, the density g of the circle profile radii will always have a 

kink in zero. Moreover, the density gi of the squared circle radii will have a jump in zero, which is 

clear from the relation gi(x)=(2x112r 1g(x112). If we use kernels with support [-1,1] then this sort of 

discontinuities in f and its derivative in zero will cause a kernel estimator to have a large bias on the 

interval [-h,h]. On that interval the bias will be oflarger order than the order h2, which is the order of 

the bias for smoother densities. For Taylor's estimator f~ this means that the estimator of the circle 

radius density will have a larger bias on [0,h], which in its turn implies that the bias off~ will also be 

large on this interval. Similarly a kernel estimator of gi will also have a large bias on [0,h], so ~ 

will have a large bias on [0,h112
]. The impact of discontinuities off and its derivative on the bias of 

kernel estimators is treated in detail in Van Es (1988). 

Another important observation is that, except for small samples and large bandwidths, the estimators 

fnh and f~ are practically equal on the interval [h,oo). Since Hall & Smith (1984,1988) show that the 

asymptotic variance of Taylor's estimator is of order 1/nh2, this also means that the upper bound on 

the variance of f nh given by (2.8) is probably not sharp, and that the factor log(h) can be omitted. 

However, we have not been able to derive the exact asymptotic variance. 

Supposing that the asymptotic variance of our estimator is indeed of order l/nh2, just as the variances 

of f1i and 11~, which is also shown in Hall & Smith (1988), this means that the asymptotically 

optimal bandwidths for the mean integrated squared error for these estimators are of order n-116, and 

that the resulting best possible error is of order n-213• Here we should be a little bit more careful and 

define the mean integrated squared error as the expectation of the squared error, integrated over an 

interval [c,oo), where c is some positive constant, otherwise the large bias close to zero causes a larger 

error. It is shown by Hall & Smith that the fact that n-2' 3 is of larger order than n-4' 5, the 

corresponding order for the usual kernel estimator, is not a defect of the three estimators considered 

here, but rather a property of the estimation problem. 

Appendix. Proof of theorem 2.2. 

Since the terms of (2.5) are independent we have 
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Xi 
1 { -2 J 1 •(x-u) ) 

var(fnh(x)) = ii var 2 ..../ 2 2 K T du S 
7th o xi - u 

( 
Xi ) 2 ! E ..:l_ J 1 K'(x-u)du 

n 7th2 o ..../xr - u2 T ' 

so it suffices to show the following bound for x>O and h small enough 

By two successive substitutions v=(u-x)/h and z=(t-x)/h we get for h<x 

Xi . 
E (..:L J 1 K'(x-u)du )2 = 

7th2 o ..../xr - uz T 

00 t 
4 J { J 1 '(x-u) )2 24 ..../ K -h du g(t)dt = 

7t h O O t2 - u2 

oo (t-x)/h 
4 ( 1 )2 

22 J Jh ..../ 2 2 K'(v)dv g(t)dt = 
7t h 0 -X/ t - (x+hv) 

00 z 

...i_ J ( J 1 
K'(v)dv)

2 
g(x+hz)dz = 

7t2h -X/h -X/h ..../2hx(z-v) + h2(z2-v2) 

00 z 
2 ( 1 1 )2 

22 I I . r=--:: K'(v)dv g(x+hz)dz. 
7t h -1 -1 v z-v "\/ x + ¥i<z+v) 

Next write this integral as the sum of two terms 

2 1( z 1 1 )2 
22 I I . r=--:: K'(v)dv g(x+hz)dz 
7t h -1 -1 vz-v ,Yx + ¥i<z+v) 

(7.2) 

and 

00 z 
2 ( 1 1 )2 

22 / I .r=--:: K'(v)dv g(x+hz)dz, 
7t h -1 v z-v "\/ x + ¥i<z+v) 

(7.3) 

which we sllall treat separately. 
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By the conditions on f relation (1.1) implies that g is a bounded density and thus it is readily shown 

that the term (7.2) is bounded by a constant times l/(xh2) for h small enough and so it satisfies (7.1). 

For the term (7 .3) the argument is more involved. For z;:::l we have for some positive constants c and 

c' 
z 

I J - 1
-

1 
K'(v)dvl ~ 

-1 --./ z-v '1 x + ~(z+v) 

1 1 
...£.. f -dv= 
..fX-1 --./ z-v 

~ (--./ z+ 1 - --./ z-1) ~ 

c' 1 
{.X ..JZ' 

since it follows from the mean value theorem that for all P-1 we have 

for some positive constant c". By this bound the term (7.3) is dominated by 

oo R 
2c'2 1 2c'2 1 
22 f -g(x+hz)dz = ""'22 J -g(x+y)dy. 
X7t h 1 z X7t h Ii y 

Rewriting the integral we get 

R 1 R 

J ~g(x+y)dy = - g(x) log(h) + J ~(g(x+y) - g(x))dy + / ~ g(x+y)dy, 

and consequently 

~ 11 ~ 
I J -g(x+y)dy + g(x) log(h)I ~ J -lg(x+y) - g(x)ldy + J - g(x+y)dy. 
liY liY 1Y 

By our conditions on f the density g is bounded and continuous on [0,R], so the second term is 

smaller than a constant independent of x. Next, using the fact that g is uniformly continuous on 

[0,R], we see that for every £>0 there exists a 0>0 such that O<yd) implies lg(x+y) - g(x)I~£. This 

gives for~o 



1 
1

1 
lo~(h) J y lg(x+y) - g(x)ldy = 

3 1 
-1 J 1 I I -1 J 1 I log(h) li y g(x+y) - g(x) dy + log(h) 3 y g(x+y) - g(x)ldy ~ 

log(3) - log(h) 2 
e -log(h) + -31og(h). 

Since this bound is smaller than 2e for h small enough we have now shown 

R 
J !..g(x+y)dy = -g(x)log(h) + o(-log(h)), 
li y 

which implies that the term (7.3) also satisfies (7.1). 

21 

0 



22 

References. 

Anderssen, R.S. and A.J. Jakeman (1975), Abel type integral equations in stereology, J. Microsc. 105, 135-153. 

Devroye, L. (1987), A Course in Density Estimation, Birkhauser, Boston. 

Devroye, L. and L. Gyorfi (1985), Nonparametric Density Estimation, The L1 view, Wiley, New York. 

Es, A.J. van (1988), Aspects of Nonparametric Density Estimation, Ph.D. Thesis, University of Amsterdam, In 

preparation. 

Hall, P. and J.S. Marron (1987a), Extent to which least squares cross-validation minimizes integrated squared error in 

nonparametric density estimation, Probab. Th. Rel. Fields 74, 567-581. 

Hall, P. and J.S. Marron (1987b), On the amount of noise inherent in bandwidth selection for a kernel density 

estimator, Ann. Stat. 15, 163-181. 

Hall, P. and R.L. Smith (1984), Unfolding a nonparametric density estimate, Technical Report, Imperial College, 

London. 

Hall, P. and R.L. Smith (1988), The kernel method for unfolding sphere distributions, J. Comp. Phys. 74, 409-421. 

Nychka, D., Wahba, G. Goldfarb, S. and T. Pugh (1984), Cross-validated spline methods for the estimation of three­

dimensional tumor size distributions from observations on two dimensional cross sections, J. Amer. Statist. Ass. 79, 

832-846. 

Ripley, B.D. (1981), Spatial Statistics, Wiley, New York. 

Ripley, B.D. (1987), Stochastic Simulation, Wiley, New York. 

Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York. 

Stoyan, D. , Kendall, W.S. and J. Mecke (1987), Stochastic Geometry and Its Applications, Akademie-Verlag, Berlin. 

Taylor, C.C. (1983), A new method for unfolding sphere size distributions, J. Microsc. 132, 57-66. 

Watson, G.S. (1971), Estimating functionals of particle size distributions, Biometrika 58, 483-490. 

Wicksell, S.D. (1925), The corpuscle problem, Part I, Biometrika 17, 84-99. 

Wilson, J.D. (1987), A smoothed EM algorithm for the solution of Wicksell's corpuscle problem, Technical Report, 

University of Bath. 


