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The asymptotic behaviour of elementary symmetric polynomials S'<,(<' of order k, based on n independent 

and identically distributed random variables X1 .... ,Xn • is investigated for the case that both k and n get 

large. 

If k = o(.n v.). then the distribution function of a suitably normalised S'hk) is shown to converge to a stan

dard normal limit. The speed of this convergence to normality is of order e(kn-v.) • provided 

k = e(log- 1 n log21 n ny,) and certain natural moment assumptions are imposed. This order bound is 

sharp, and cannot be inferred from one of the existing Berry-Esseen bounds for U-statistics. 

If k-'> oo at the rate n v. then a non-normal weak limit appears, provided the X~ 's are positive and ff../:> is 

standardised appropriately. On the other hand, if k-'>oo at a rate faster than n then it is shown that for 

positive x1 's there exists no linear norming which causes bi!'' to converge weakly to a non degenerate 

weak limit. 
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1. INTRODUCTION AND RESULTS 

Let X 1 , X 2 , ••• be independent and identically distributed random variables with 

p.=EX1 =/= 0, 0 < u1- = <i1-(X1) < oo. 

Let for any 1 o;;;;; k o;;;;; n, 

S~k> = [n]-1 ~ ... ~ X;, 
k I . . . ,..,,<12< ... <1.,..n 

and let 

n'h (s<k>-µk) 
F<;k>(x) = P ( { n o;;;;; x } ) 

n (kµk-lu) 

for real x. Let «!» denote the standard normal distribution function ( df). 

1 

(1.1) 

(1.2) 

(1.3) 

Clearly s~k) is a U-statistic of degree k with kernel h given by h(xi. ... ,xk) = X1···Xk· If k is fixed, 

then Hoeffding's CLT for U-statistics (Hoeffding (1948)) yields that?,!'> converges in distribution to 

«!», as n~oo, provided assumption (1.1) is satisfied. We shall show that the result remains valid if 

k = k(n)~oo, whenever k = o(n'h). 

THEOREM 1. If p. = EX1 =/= 0, 0 < u1- = <i1-(X1) < oo and k = o(nin) ,then 

lim sup I P,,k>(x)-«l»(x) I = 0. 
n-+oo x 

The speed of convergence to normality in (1.4) is determined in 
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2 Elementary symmetric polynomials of increasing order 

THEOREM 2. Ifµ.= EX1=I=0, 0 < a2 = a2(Xi), E IX1 l3 <oo and k = l9(log- 1n log2 1n n~). 
then, as n--i>oo, 

sup I _P,.k>(x)-fl>(x) I = fJ(kn -~). (1.5) 
x 

H k is fixed, then (1.5) yields the classical rate n -~ for the accuracy of the normal approximation. 
For this very special case Theorem 2 is a simple consequence of the Berry-Esseen theorem for U
statistics of degree k given by van Zwet (1984). On the other hand , if k = k(n)--i>OO but 
k = fJ(log- 1n log2 1n n~), then - perhaps somewhat surprisingly - the orderbound (1.5) cannot be 
inferred from one of the existing Berry-Esseen bounds for U-statistics. Application of Corollary 4.1 
of van Zwet (1984) yields the bound l9(k2(1 + ~ f n -~), for the 1.h.s. of (1.5), which is of course . µ 

· much worse then the bound given in (1.5). A related Berry-Esseen bound for U-statistics of Friedrich 
(1985) also does not give us (1.5). It appears that the dependence on kin these bounds is not optimal. 
In contrast , the bound fJ(kn -~) established in Theorem 2 is sharp. To see this we note that, if 
k = k (n )--i>OO at a rate slower than log- 1 n log2 1 n n ~ and the moment assumptions_ of Theorem 2 
are satisfied, then P,,k> admits an valid one-term Edgeworth expansion i/;,k) (x) = fl>(x) 
+ !n-~</>(x)(l-x2){o- 3E(X1 -µ.)3+3(k-l)oµ.- 1 } with uniform remainder o(kn-~). A proof of 
this assertion may be found in the appendix. There is no need for the usual requirement that F is 
non-lattice. However, if k is fixed, then we must add the assumption that Fis non-lattice, in order to 
guarantee that our expansion is valid uniformly. This latter statement can be inferred from a recent 
paper of Maesano(l984), where an Edgeworth expans_ion for U-statistics of fixed degree k is esta
blished. For the case k=2 we also refer to Theorem 1.2 of Bickel, Gotze and van Zwet(l986), whereas 
the classical case k= 1 is of course well-known and treated, e.g., in Feller(l971). 
We do not know whether the assumption k = fJ(log- 1n log2 1n n~) in Theorem 2 can be relaxed. 

In any case this requirement is only slightly stronger than k = o(kn -~), which is already needed to 
establish asymptotic normality. In section 2.5 we supplement the foregoing discussion, by an example 
establishing the sharpness of the bound (1.5) for zero-one random variables XI>X2 , ••• in a more direct 
way. 

H k = k(n)--i>OO at the rate n~ or faster, then the asymptotic behaviour of S~k> becomes com
pletely different from the one described in the theorems I and 2. From a weak limit theorem for the 
k-th root of s~> due to Szekely (1982), which considers only strictly positive X/s, we derive for posi
tive X/s the following two results. 

THEOREM 3. If P(X1 >0) = I, 0 < a2 = a2(X1) < oo, and k ,...,, en~ for some constant c > 0 
and n--i>OO, then there exists a sequence of positive numbers (sn} ,such that Sn--i>P. and 

s;;•:;t> J exp [ c; Nl (1.6) 

where __,. denotes convergence in distribution and N stands for a standard normal random variable. 
d 

THEOREM 4. If P(X1 >0) = 1, 0 < 02· = a2(Xi) < oo, and kn-~ __,. oo, as n_,.oo, then there 
exists no linear norming which causes S~k) to converge in distribution to a nondegenerate limit distribu
tion. 

Theorem 4 tells us that for positive 10 there exists no linear norming of S~k> that converges in dis
tribution to a nondegenerate limit if kn-~ __,. oo. In view of Szekely's (1982) result (see Lemma 2 in 
the next section) it turns out that for positive 10 if kn-~ __,. oo taking the k-th root is essentially 
r~uired to obtain nondegenerate weak limits, while if k = o(n~) there exist linear normings of both 
S~ > and its k-th root that converge to a nondegenerate limit. The border case k ,...,, en~ (c >0) is 
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treated in Theorem 3. Again Szekely's (1982) result can be used to find that for positive~ the ran
dom variable S~k) can be appropriately scaled to yield a nondegenerate weak limit. 

The limit behaviour of S~k) in the case k,..., en (O.;;;:;e.;;;:;l) was investigated in detail by van Es 

(1986), Halasz and Szekely (1976), Szekely (1974,1982) and M6ri and Szekely (1982). In the latter 
paper it is shown that in the degenerate case (µ=O) nondegenerate limit distributions exist of linear 
normings of S~k) even if k ,..., en (O.;;;:;e .;;;:;; 1) . 

2. PROOFS 

2.1. Proof of Theorem 1 
The Hoeffding decomposition for elementary symmetric polynomials yields 

k 
S~k>-1l = ~Hr(Xi. ... ,Xn) 

r=I 

where 

Hr(Xi. ... ,Xn) = (Z)-1 (Z =~] µk-r . ~ . t[(~, -µ) 
J.;;;.1 1< ... <p•;n 1-l 

as given by Karlin and Rinnott (1982), page 496. Define 

<l(Hr+1) 
qr = 02-(Hr) , r = 1,2, ... ,k -1. 

A simple computation using (2.2) yields 

02 
qr= 2(k-r)2 /((r+l)(n-r)), r=l,2, ... ,k-1. 

µ. 

Since the summands of the r.h.s. of (2.1) are uncorrelated we find 
k 

02-(S~k>) = ~ <l(Hr(Xi. ... ,Xn)) = 
r=l 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Because of (2.4) and the assumption k = o(ny,) we see that for fixed k and n, and n sufficiently large, 

k2 
nr < e- , r=l,2, ... ,k-1, 
:i. rn 

for some constant e > 0. This implies 

k 00 1 
0 .,;;:; ~ q I ···qr - I .,;;:; ~ ( _ l)I 

r=2 r=2 r . 

as n~oo. In view of (2.5) this yields that 

02-(S~k>),..., <l(H1(Xi. ... ,Xn)). 

In other words : 
n 

[c:' r 
H1(X1>···•Xn) = kn- 1µ.k-I ~(X{-µ) 

i=I 

(2.6) 

k' c-
= en -1 =o(l) (2.7) 

(2.8) 

(2.9) 

is the dominant term in the decomposition (2.1). Application of the CLT of Lindeberg-Levy to 
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H 1(Xi. ... ,Xn) shows that (1.4) is valid if S~k>-Ji in (1.3) is replaced by H 1(Xi. ... ,Xn). This com
pletes the proof. 

2.2. Proof of Theorem 2 
To establish (1.5) we rewrite (2.1) as 

s<k> - ,,k = U. + R n r n n 

where 

Un = H1(X1> ... ,Xn) + H2(Xi. ... ,Xn) 

with H 1 as in (2.9), 

H2(Xi. ... ,Xn) = k(k=l} µ.k-2 ~~ (X;-µ.XXj-µ.) 
n (n 1) 1<.i <j<.n 

and 
k 

(2.10) 

(2.11) 

(2.12) 

Rn = ~Hr(Xi. ... ,Xn) (2.13) 
r=3 

is a remainder term of lower order. Clearly Un is a U-statistic of degree 2 with kernel 

1hk/i- 1(x+y-2µ.) + 1hk(k-l)µ.k- 2(x-µ.)(y-µ.): (2.14) 

It follows directly from (2.10) that to prove (1.5) it suffices to show that both 

n'h.Un 
s~p I P({ (kµ.k-Ia) ~ x}) - ~(x) I = e(kn-'h.) (2.15) 

and 

(2.16) 

are satisfied. 
To prove (2.15) we shall need characteristic functions (ch.f) arguments. We shall only treat the case 

that k-HIJ. If k is fixed then Theorem 2 is a simple special case of Corollary 4.1 of van Zwet(l984). 
Let p~k>(t) denote the ch.f of n'h.Un /(kµ!'- 1a), i.e. 

PW>(t) = Eexp(itn'h.Un/(kµ.k-la)). (2.17) 

The usual argument based on Esseen's smoothing lemma implies that 

[ 
It 1- 1 1p~k>(t)-e-'h1' ldt = e(kn-'h.) 

It!<. -"n'I' 
(2.18) 

and 

f It 1- 1 1p~k>(t)-e-'h1' ldt = e(kn-'h.) (2.19) 
k-•n 114 <.lt I <.k-'n" 

together will yield (2.15). The statements (2.18) and (2.19) may be proved by modifying the proof of 
Theorem 2.1 of Helmers and van Zwet (1982). Our proof of (2.19) will require the assumption 
k = e(log- 1n log2 1n n'h). For details of the proof the interested reader is referred to the appen
dix. 

It remains to establish (2.16). An application of Chebychev's inequality yields : 

P( {(~µ.~~I~) ;;;;;.: kn-I } ) ~ n2k-4µ.-2k+2a-2a2(Rn) (2.20) 



Proofs 

Using (2.13) and an argument like (2.5)-(2.7) yields 
k 

02(Rn) = ~02(Hr(X1,. .. ,Xn)) = 
r=3 

Together with (2.20) this gives 

I Rn I I 2 I P({ ;;;;.:kn- })=l9(kn-) 
(kµk- 1a) 

which implies (2.16). This completes the proof. 

2.3. Proof of Theorem 3 
The following result of Szekely (1982) will be used. 

LEMMA 1. If P(X1 >0) = 1, 0 < 02 = 02(X1) < oo and k = o(n), then, as, n~oo , 

n'h ((S~k))lfk _sn)7N(0,02) 

5 

(2.21) 

(2.22) 

(2.23) 

where {Sn} denotes a sequence of positive numbers, such that sn~JL , and N (0,02) stands for a normal 
random variable with expectation zero and variance 02. 

Define 

Vn = n 'h((S~k))I I k -sn) (2.24) 

and note that because of (2.23) Vn is asymptotically N(0,02). In addition we have that 
Sn + n -'h Vn ;;;;;.: 0. A Taylor expansion argument yields 

S~k> = exp[klog(sn+n-'hVn)J = (2.25) 

= exp[k(logsn + n -'h Wn)J = 

= s~exp(kn-'h Wn) 

where Wn is asymptotically N(0,02µ- 2 ) distributed. This directly yields (1.6) and the proof of the 
theor,em is complete. 
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2. 4. Proof of Theorem 4 
In view of (2.25) it suffices to prove the statement of the theorem for the random variables 

Zn = exp(kn-~Wn) (2.26) 

Let us suppose that there exist sequences {an} and { bn} with an >0 such that an(Zn - bn) con
verges in distribution to a nondegenerate limit distribution F. Then there exist three points 
-oo < u 1 < u2 < u 3 < oo , continuity points of F, with 0 ~ F(u 1) < F(u2) < F(u 3) ~ 1. 

It follows from this and (2.26) that 

limP( { On(Zn - bn) ~ U; } ) = (2.27) 
n-->oo 

for i = 1,2,3. This implies 

(2.28) 

and hence 

(2.29) 

Since n~k- 1 -70, evidently anbn-?-u 1 • But the same argument also holds for u2, and u 3, 

implying anbn-?-u2, which is in contradiction with anbn-?-u 1 • This completes the proof of the 
theorem. 

2.5. An example establishing the sharpness of the bound (1.5) 
Consider i.i.d. zero-one random variables X1'X2 , ••• with P(X1 = 0) = P(X1 = ll = l/2. The ele-

mentary symmetric polynomial Slk) then reduces to sf.'' = 0 if E. <k, SI'' = [ 1;'.' J / [ k J if E. >k 

where En denotes the number of ones in X" ... ,Xn. Of course En is binomially distributed with param
eters n and l/2. This example is also treated in van Es(l986) for the case k ,...,,, en (0 < c < 1). We 
prove the following lemma. 

LEMMA 2. If P(X1 = 0) = P(X1 = 1) = 1h and k = o(n~) then there exists a sequence Xm n odd, 
satisfying 

Xn = 'h(k + l)n-~(l +o(l)) 

and 

as n-?OO. 

To prove Lemma 2 we first note that (1.3) can be rewritten as 

P,,k>(x) = P(gk,n(En) - n~k- 1 ~x) 

where the function gk,n : 1\1 -7 Iii is defined by 

gk,n(m) = 0 if m <k, gk,n(m) = n'hk- 12k [zr1 [!:] if m ;;;;..k 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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Since gk,n is increasing on the set {k,k + 1, ... } it follows that 

J1,k)(gk,n(m) - n~k- 1 ) = P(En..;;.m),m ;;a.k. 

But this probability is exactly equal to 1h if we take m = 1h(n -1) (for n odd). Thus defining 

Xn = gk,n(1h(n -1))-n~k-l 

we obtain 

7 

(2.34) 

(2.35) 

(2.36) 

In the appendix it is shown that (xn) satisfies (2.30). A simple Taylor expansion argument then 
directly yields, in view of (2.36), relation (2.31). This completes the proof of Lemma 2. Note that 
(2.31) can also be deduced from the Edgeworth expansion t~e result, mentioned in section 1, for the 
case that k~oo but at a rate slower than n~ log- 1n log:Z n. Fork is fixed this is not true, because 
F is lattice. 

3. APPENDIX 

3.1. Proof of (2.18) and (2.19) 
We will indicate how (2.18) and (2.19) can be obtained by modifying the proof of Theorem 2.1 of 

Helmers and van Zwet (HZ)(l982). 
Define functions g and 1/t by 

g(x) = 1hkµ.k- 1(x -µ.) (A.l) 

and 

1/t(x,y) = 1hk(k-I)µ.k-2(x-µ)(y-µ) (A.2) 

and note that the U-statistic Un (of (2.11) and (2.14)) can be written as 
n 

Un = 2n-1 ~g(Xj) +2(n(n -1))- 1 ~~ 1/t(X;,~). (A.3) 
i =I l<i <j<.n 

We first prove (2.18). 
Let x denote the ch.f. of a- 1(X1 -µ.),thus 

x(t) = Eexp{ita- 1(X1 -µ.)} (A.4) 

and let 

(A.5) 

We now simply follow the proof of relation (3.6) of HZ(l982) (taking their p equal to 2), except that 
we don't use the second bound given in Lemma 3.1 of HZ(l982) in the strings of inequalities on page 
504 of their paper, to find that (cf(2.17)) uniformly for all It j ..;;.a- 1 n~ 

IP~k>(t)-x"(n-~t)I = e(Ei/}(;i.X2)n-1t2 (A.6) 
Eg (Xi) 

+ Ejg(X1)g(X2)1/t(Xi.X2)I n-~ltl 3ex (-(n-2)t2)) 
(Eg2(X1))3/2 p 3n 

as n ~ oo. In view of (A. I) and (A.2) it is easily checked that 

Ei/}(Xi.X2) 2 E jg(X1)g(X2)1/t(X1>X2)I 
--- - fJ(k ) = e(k) 

Eg2(X1) - ' (Eg2(X1))3f2 
(A.7) 
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as k-HYJ. 

The proof of the classical Berry-Esseen theorem for sums of i.i.d. random variables ensures that 

J It l- 1 lx"(n-~t)-e-~t' ldt = l9(n-~) (A.8) 
Jtj.;;;a-•n• 

as n~oo. 
Together the relations (A.6)-(A.8) directly imply (2.18). It remains to prove (2.19). In stead of (A.6) 

we now employ the following bound: Uniformly for any integer m = l, ... ,n -2 and for all 
It j .;;,;a- 1 n~ 

I (k)( ) I = /Cl{ Ei/l'(X1>X2) -2 2 Pn t v 2 mn t 
Eg (X1) 

(A.9) 

+ ( mt
2

) + EI o/CX1>X2) I -~I I p( (m -2)t2 
)} exp --- mn t ex - - -

3n (Eg2(X1 ))~ 3n 

as n~oo. 
The bound (A.9) follows directly from the proof of formula (3.7) of HZ(l982) similarly as (A.6) was 

inferred from their relation (3.6). Using (A.I) and (A.2) once more we also have that 

EI o/CX1>X2) I = 0(k) (A.10) 
(Eg2(X1))~ 

as k~oo. 
It follows now directly from (A.7), (A.9) and (A.10) that 

r it 1- 1 1p~k)(t)-e-~'
2 

ldt 
k-"n 11•..;i1 j .;;;k-'n" 

(A.11) 

= l9{JClogn log( Vn )+n-c/ 3 1og( Vn )+k312n 114-cf 3Iogn} 
n k k 

= l9(_k_) 
Vn 

provided we take m = [en :~rp] m (A.9) with c sufficiently large and by requiring 

k = l9( log- 1n log2 1n n~). This completes the proof of relation (2.19). 

3.2. Proof of the validity of the Edgeworth expansion F,,k) 
We derive the one-term Edgeworth expansion for F,,k), referred to in the discussion after Theorem 

2, for the case k~oo. Suppose that the moment assumptions of Theorem 2 are satisfied and, in addi-
tion that k = o( log- 1n log2 1n n~). . 

To begin with we note that the argument leading to (2.22) can easily be modified to find that 

P( IR~I ~(logn)-~kn- 1 ) = o(_kn-~) (A.13) 
(k,i 1a) 

'[hus, Rn is of negligible order of magnitude for our present purposes as well. It remains to show that 
F,,k) is an Edgeworth expansion for n ~Un / (k,i- 1 a), where Un is as in (2.11 ), with uniform 
remainder o(_kn-~). To prove this we again employ Esseen's smoothing lemma and find that it 
suffices to show that (2.18) and (2.19) remain true, if we replace the region of integration 
It I .;;;,; k-~n 1 14 in (2.18) by It I .;;;,; (Iogn)-~k-~n 1 14, and, similarly in (2.19) the interval 
k-~n 1 1 4 .;;;,; It I .;;;,; k- 1 n~ by (logn)-~k-!InI/4 .;;;,; It I .;;;,; Mk- 1 n~, for any fixed constant M>O, 
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and the two big e•s on the r.h.s. of (2.18) and (2.19) by little c>s. Finally we replace the term e-Vzt' 

appearing in the common integrand of (2.18) and (2.19) by 

p~k)(t) = e-'ht' {1 +(it)~ (o-3 E(X1 -p.)3 +3(k-l)op.- 1)}. (A.14) 
6n 

N h -(k) • th F . S . I . " f :ik) ote t at Pn is e ouner- tie tjes trans1orm o p·~ . 

Let (2.18}* and (2.19)* denote the above mentioned modifications of (2.18) and (2.19). We first 
prove (2.18)*. Taylor expanding p~kl(t) we find that uniformly for all It I ~ (logn)-'hk-'hn I/4 

IP~k)(t)-p~k)(t)I = (A.15) 

= e(Ei/}(;.,x2
) n- 1t 2) + o(_kn-'h It IP(lt l)exp(- !12)) 

Eg (X1) 

as n ~oo, where P is a fixed polynomial. 
To check this we follow the pattern of the proof of Theorem 1.2 of Bickel, Gotze and van 

Zwet(l986) (see also Callaert, Janssen and Veraverbeke(l980)) with some slight modifications. Com
bining (A.15) with the first part of (A.7) directly yields (2.18)*. To prove (2.19)* we simply follow the 
calculations leading to (A.11) and the argument following it, to find that with minor changes the same 

proof also yields (2.19) *, provided we require k = o(_ log- 1 n log2 1 n n ¥z) instead of 

k = e( log- 1n log2 1n n'h). Since Mk- 1n¥z = o(_n'h), ask~ oo, we do not n~ a non-lattice con
dition here. This completes the proof of (2.19)* and the validity of the expansion F,,k) is established. 

3.3. Proof of (2.30) 
We first treat the case k~oo. Using the refinement of Stirling's formula given on page 54 of 

Feller(l968), we find, for odd n, 

gk,n(1h(n -1))= n¥zk- 12k (zr• (1h(\- l)) (A.16) 

= n'hk- 12kn-n -'h(n -kf-k +¥z(1h(n - l))Vz(n -l)+¥z(1h(n -1)-k)-Vz(n -t)+k-'h(l +e(..!..)) 
n 

= n'hk- 1exp{(n -k +1h)log(l -!.) + l/2nlog(l -..!_) - (1hn -k)log(l - 2k + 1 
)}(1 +e(..!..)) 

n n n n 

k2 1 
= n¥zk- 1exp{-1h-(l +o(_l))}(l +e(-)) 

n n 

= n¥zk- 1(I-1h!.:_(l +o(_l)))(l +e(..!..)) 
n n 

and therefore 

Xn = gk,n(1h(n -1))-n'hk- 1 = -1h(k + l)n-'h(l +o(_l)) 

and (2.30) is proved. If k is fixed the calculation simplifies to 

(
1h(n - l)) = n'hk- 12k(1h(n -1))(1h(n -1)- l) .... (1h(n -1)-k + 1) 

gk,n n(n -1) .... (n -k + 1) 

= n'hk-l(l-1hk(k+l) +e(-1 )) 
n n2 

(A.17) 

(A.18) 
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which also yields (2.30) in this case. 
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