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Probability plots 

by 

A.J. van Es & C. van Putten 

ABSTRACT 

Probability plotting is a technique for examining the underlying dis

tribution function of a sample by means of a graphical analysis of the 

empirical distribution function. This report gives an outline of the theory 

of probability plots together with a description of the computer procedure 

PLOTDIST, designed for making these plots, and numerous examples. PLOTDIST 

is implemented in the statistical package STATAL. 
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I. INTRODUCTION 

Generally the choice between using a parametric technique and a non

parametric one is one of the first decisions when analysing experimental 

data. Having chosen a parametric technique the second decision might be the 

choice of the underlying distributions of the parametric model which has to 

be postulated in order to perform an appropriate statistical analysis such 

as hypothesis testing or estimation. By postulating a model we mean that we 

assume the data to originate from a specified distribution or family of 

distributions. 

In practical situations the considerations relevant to the choice of 

the model will be based on experience, on the physical circumstances of the 

experiment and on the statistical techniques available for the purpose of 

the experiment. In this setting the choice of the model does not depend on 

the data to be analysed, as is proper to ensure correct statistical results 

of the technique chosen. On the other hand a technique based on a badly 

fitting model, i.e. a model that does not describe the statistical properties 

of the experiment with sufficient accuracy, may render results that do not 

have the statistical characteristics guaranteed by this technique in case of a 

proper model. For instance a test may not have the guaranteed probability of 

type I error or an estimator may not be unbiased. Evidently one has to check 

model assumptions and to find the nature of the departures, if any. 

Other circumstances in which techniques for checking model assumptions 

are relevant are when we are examining old data or data which are not to 

be used as a base for further statistical analysis. For instance when we 

mentioned experience as a consideration in the choice of a parametric model 

for a set of data, we should be aware that this experience might include 

analyses of data of which we have reason to believe that they are statisti

cally similar to the data to be analysed. In this kind of explorative analy

sis model checking techniques are a possible tool to construct a model. 

There is a numerical approach to the problem of checking model 

assumptions regarding distributional properties and a graphical approach. 

The numerical approach consists of the computation of statistics such as the 

Kolmogorov-Smirnov statistic, skewness and kurtosis (cf. BICKEL & DOKSUM 

[3], section (9.6)), while the graphical approach consists of a sraphical 
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analysis of empirical distribution functions (see (I.I)). This graphical 

technique, by means of so called probability ~lots, is the subject of this 

report. 

Let us start. by introducing some notation and definitions concerning 

empirical distribution functions, and let us state some of their properties 

without proving them. 
*) In the sequel .!i,•••,.!n denotes a sample from a distribution F, i.e • 

.!i,·•·,.!n are independent and identically distributed with common distribu

tion function F. Our problem of checking model assumptions can now be de

scribed as checking whether F belongs to P, a specified family of distribu

tion functions. 

Define the empirical distribution function by 

(I.I) F (x) = [number of i such that x. ~ x]/n. 
-n -i 

-- -- - - -

F5 (x) t 
I 

E >' 
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Figure I. Illustration of F5 (x) for a realization x 1,x2 , ••• ,x5 

of .!i ,x2 , ••• ,x5 

To stress the difference between F and F, F will henceforth be called the -n 
theoretical distribution function if there might be any reason for confusion • ... 

nF (x) has a Binomial (n,F(x)) distribution and hence the mathematical 
-n 

expectation and variance are 

*) Random variables are underlined; realizations are usually indicated by the 
same symbol without underlining. 



( I • 2) 

and 

E F (x) = F(x) 
-n 

(I. 3) var F (x) = _!_ F(x)(I-F(x)), 
-n n 

respectively. 

(1.2) shows that for each real x 

F(x) and since (1.3) implies lim var 
n~ 

A 

F (x) is 
... -n 
F (x) = 0 -n 

an unbiased estimator of 

it is consistent. 

Apart from considering F (x) as a random variable for a fixed real 
A -n 

3 

number x we may consider F (x) as a random function on the real line, since 
-n A 

for each realization of ~1, ••• ,~n ~n(x) is a function of x. The Glivenko-

Cantelli theorem (cf. LOEVE [9]) states 

( I • 4) P{lim sup 
n~ -oo<x<oo 

lin(x)-F(x) I = O} = 1, 

which implies that for large sample size the empirical distribution function 

is similar to the theoretical distribution function in the sense that with 
A 

probability one the maximal absolute difference between F (x) and F(x) is -n 
small for large n. Hence the empirical distribution function provides us 

with a means to check whether the theoretical distribution function belongs 

to P. 

A straightforward way of tackling this problem graphically is drawing 

the graph of F , like in Figure I, and comparing it with graphs of distribu-
n 

tions belonging to P. However the graphs of distributions belonging to P 
often are not easily recognizable and comparing them with another graph 

may not be easy, which makes this method difficult to apply. For some 

families P, however, by a suitable transformation of the vertical axis (and 

for some families of the horizontal axis too) the distributions belonging to 

Pare transformed into straight lines, which evidently makes the method 
A 

easily applicable since comparing the graph of F with graphs of distributions 
n A 

belonging to P reduces to comparing the transformed graph of F with straight 
A n 

lines. Such a transformed graph of Fn is called a probability plot. Probabil-

ity plots can be constructed for instance for the following families of dis

tributions: the family of uniform distributions, normal distributions, expon

ential distributions, Gumbel distributions, Laplace distributions, Cauchy 
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distributions and a subset of Weibull distritutions, (see (3.7.1)), i.e. for 

every family of continuous distributions indexed by at most two parameters, one 

being a location parameter and the other a scale parameter . 
.... 
F is an estimator of F and therefore, even if Fis a member of P, a 
-n 

transformed grap~ of En can only approximately be straight. By formula (1.3) 

we see that var F (x) depends on n, x and F. If F belongs to P we might 
-n .... 

expect the transformed graph of F to be more straight for large n then for 
.... -n 

small n, since var F tends to zero as n tends to infinity. The question -n 
arises which deviations from a straight line are due to a stochastic sampl-

ing error of F as estimator of a theoretical distribution function belong-
-n 

ing to P and which deviations are due to the fact that Fis not a member of 

P (if this is the case). This problem is closely related to hypothesis test

ing. Testing the hypothesis H: F = G, with given G, against the alternative 

K: F ~ G at level a a confidence band with confidence level 1-a can be 

constructed. This band consists of the area between two curves around F (x), 
.... -n 

one, the upper confidence bound, lies above F (x) and the other, the lower 
.... -n 

confidence bound, lies below F (x). With probability 1-a the band contains 
-n .... 

the graph of F. Of course, as we did with F, after transformation the -n 
confidence band can be drawn in a probability plot, providing a means for 

testing H: FE P against K: Fi P by rejecting H if the band contains no 

straight line. Apart from being used for testing FE P the confidence band 

gives an impression as for which values of x we might expect small deviations 

of F from F (the values of x where the band is narrow) and for which values 
-n 

of x we might expect large deviations (where the band is wide), these 

deviations being solely caused by the sampling error in the estimate F (x). 
n 

Used in this way the confidence band provides an additional tool for a 

better judgement on whether F belongs to P or not. 

A disadvantage of the technique of probability plots is that it is 

rather subjective. Even when used in combination with a confidence band the 

decision whether or not a model fits is left to the taste of the experimenter, 

with this restriction that one should not accept a distribution, belonging 

to a family P, as underlying distribution of a model if the confidence band 

in the probability plot of type P contains no straight line. One should 

always realize that the choice betwe.en two models which both produce fairly 

straight lines in their corresponding probability plots may be a very diffi-



cult one. It is therefore sensible to be careful when using probability 

plots to construct a model. An advantage of probability plots compared to 

goodness of fit test statistics is that such plots contain all the rank 

properties of a sample, with the effect that for instance outliers can be 

detected more easily. 

Apart from the kind of probability plots described in this report 

there exists another graphical model checking technique using so-called 

5 

full normal plots focussing on the examination of the tails of a normal 

distribution (cf. ANSCOMBE & TUKEY [ 1] and TUKEY [ 14]). The problem of com

paring two samples can also be treated graphically be means of so-called 

paircharts (cf. QUADE [12]), P-P plots and Q-Q plots (cf. WILK & GNANADESIKAN 

[15]). 

The purpose of this report is to give a short outline of the theory of 

probability plots and some related subjects together with a detailed descrip

tion of the computer procedure PLOTDIST for drawing these plots. PLOTDIST 

is contained in the statistical package STATAL of the Mathematical Centre. 

In chapter 2 we shall give a description of the theory of probability 

plots and confidence bands. For proofs the reader is referred to the rele

vant literature. For each type of probability plot a description of the 

specific properties is given in chapter 3. Chapter 4 contains a description 

of the procedure PLOTDIST while chapter 5 contains guidelines for the inter

pretation of probability plots and numerous examples of plots made by 

PLOTDIST. 

Some general references on probability plotting are BURY [4], DOKSUM 

[5], HEMELRIJK & KRIENS [7] (in Dutch) and WILK & GNANADESIKAN [15]. 

2. PROBABILITY PLOTTING 

In the introduction we presented a rough description of probability 

plots and claimed that these plots can be constructed for certain families 

of distributions. In this chapter we shall make this more specific by de

fining what we mean by a "probability plot" and by defining families of 
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distributions for which these plots can be constructed. These families 

include many important families of distributions. The third part of this 

chapter is devoted to confidence bands. 

2.1. Probability plots 

We shall restrict our attention to continuous distribution functions 

of the following type: 

There exist numbers a and b with - 00 :,; a< b:,; 00 such that 

(2.1.1) 

i) X:,; a 

ii) a< x < b 

iii) X ~ b 

~ F(x) = 0 

~ 0 < F(x) < 1 

~ F(x) = 1 

iv) Fis invertible on (a,b). 

The interval from a to b, including a and bin case they are finite, is 

called the support of F. 

Let F- 1 : (O,l) • (a,b) denote the inverse of Fas a function defined 

on (a,b). We extend F-l to [0,1] by F-1(0) = a and F- 1(1) = b. With this 

extended definition of F-l we have 

(2.1.2) F-l (F(x)) 
= { :

a if X :,; a 

if a< x < b 

if X ~ b. 

Now suppose F0 satisfies the conditions of (2.1.1) with constants a 

and band consider the family of distributions 

(2. I. 3) 

where 0 is a subset of JR x (0, 00). (Note that the definition of P depends 

on FO and 0 only). 

By (2.1.2) we have for all FE P 



(2. I. 4) 
-1 

F O (F (x)) 

if X ~ (a - 8 1)/8 2 
if (a - 8 1)/~ 2 < X < 

if x ~ (b - 81)/82. 

b - - - - - ------

a 

7 

Figure 2. 
-1 

Graph of FO (F(x)) for FE P corresponding to (8 1,0 2) Ee 

Conversely, if Fis a distribution function satisfying (2.1.4) for 

some (8 1,0 2 ) Ee then it is easily seen that F belongs to P. Hence the 

family Pis equal to the family of distributions satisfying (2.1,4) for 

some (0 1,0 2 ) Ee. 

As mentioned in the introduction our original problem of checking model 

assumptions is equivalent to checking whether F, the theoretical distribution 

function of a sample ~l ' ••• •~n' belongs to a specified family P of distributions. 

If this family can be defined by (2. 1. 3) for suitable F O and 8 then by the 

previous remarks this is equivalent to checking whether F; 1F satisfies (2,: 1.4) 

for some(81'8 2)E8.Asproposedintheintroductionwenow replace F by Fn, a 

realization of the empirical di~stribution function of the sample ~l ' ••• '~n' and 

. . h k h h -l b . . f F-JF . 1 . it remains to c ec w et er FO Fn' eing an estimate o O , approximate y satis-

fies (2.1.4) for some (0 1 ,0 2 ) Ee. But if F =FO(0 1+0 2x) E P, (8 1 ,0 2) Ee then 

~a-81 )/e 2 <:: min(~ 1 , ... •~n) <;max(~ 1 , .•. '~n) ~ (b-8 1 )/8 2 with probability 1. Since 

F is constant outside the interval [min(x 1 , •.. ,x ) , max(x 1 , ... ,x ) ] it follows 
n _ 1~ n n 

that checking whether FO Fn approxima~tely satisfies (2.1.4) for some (8 1 ,0 2 ) Ee 

is equivalent to checking whether F; 1F n is approximately equal to a straight line 

0 1+0 2x on the interval [min(x 1 , .•. ,xn~' max(x1 , ..• ,xn)] for some (8 1 ,0 2) Ee. To 

be able to do this we make a plot of F~ 1Fn. Such a plot is called a probability plot. 
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DEFINITION. 

(2. I. 5) 

Let x 1, ••• ,xn be a realization of a sample x , ••• ,x. Fn is the -1 -n 
corresponding realization of the empirical distribution function 
,.. 
F • 
-n 
Pis a family of distributions corresponding to a distribution 

function F0 by (2.1.3). 

A probability plot of type Pis a plot of (x,F;1Fn(x)) for values 

of x satisfying min(x , ••• ,x) ~ x ~ max(x , ••• ,x ). 
I n I n 

It follows that by judging the linearity of the probability plot of 

type P of x 1, ••• ,xn we are able to judge whether the theoretical distribu

tion function F of ~ 1, ••• ,~n belongs to P. While doing this we should be 

aware that since it depends on a realization of a sample a probability plot 

is subject to random fluctuations. Therefore stochastic arguments should 

be included in our judgement. These arguments are related to the concept 

of confidence bands for a distribution function which is to be discussed in 

section (2.3). Guidelines for the interpretation of probability plots are 

given in section 5.1. 

REMARKS. 

I. The families of distributions defined by (2.1.3) include many important 

families, such as the uniform distributions, the normal distributions and 

the exponential distributions. In such cases we speak of uniform probability 

plots, normal probability plots and exponential probability plots etc •• 

2. Since the presented construction of probability plots depends on the 

specific type (2.1.3) of the families P we might ask whether probability 

plots can be constructed for other families. The answer is affirmative. 

Suppose we want to check whether the theoretical distribution function of 

~ sample ~1, •.• ,~n belongs to a family P satisfying the condition: 

(2. I.6) 

There exists a transformation~ such that the family of distribu

tions P' = {FIF is the distribution function of~(~) where x 

is a random variable having a distribution function belonging 

to P} is of type (2.1.3). 



9 

When dealing with families of this type we apply the previous theory 

to the sample $(x1), ••• ,~(x) and check whether the theoretical distribution - -n 
function of this sample belongs to P'. Actually this is equivalent to trans-

forming the horizontal axis in the probability plot of type P' of x 1, ••• ,xn. 

Examples of families satisfying (2.1.6) are the lognormal distributions and 

families of Weibull distributions with fixed location parameter. (See 

(3.7.2).) 

3. Probability plots can also be used to examine parts of the theoretical 

distribution function. For instance we might be interested in the tails only. 

If a probability plot of type Pis approximately linear on an interval then 

this indicates a resemblance of the theoretical distribution function on 

this interval to an element of P. 
4. Instead of the empirical distribution function defined by (I.I) we use 

a slightly different one, i.e. 

(2.1.7) 
... 
F (x) = 
-n 

m - 0.3 

n + 0.4' 

where m denotes the number of i such that x. ~ x. We prefer this definition 
-1. 

because then for each jumppoint x of !n(x) the probability of overestimat-

ing F(x) is approximately equal to the probability of underestimating F(x) 

which is not true for the empirical distribution function defined by (1.1) 

(cf. BENARD & B0S-LEVENBACH [2]). 

The different types of probability plot which can be made by the 

procedure PL0TDIST will be discussed in chapter 3. In this chapter, as an 

example, we proceed with the construction of probabili~y plots for the 

family of exponential distributions. 

2.2. The exponential probability plot 

The construction of probability plots in the previous section depends 

on the specific distribution F0 chosen and the set of parameters e. In this 

section we shall discuss this construction for a specific F0 and two sets 

e1 and e2, resulting in a so called exponential probability plot. For a 

discussion on normal probability plots-the reader is referred to HEMELRIJK & 
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KR.IENS [7] (in Dutch). 

Let F0 be the standard exponential distribution function, i.e. 

(2.2.1) - { 0 F0 (x) 

1 - exp(-x) 

if X:,; 0 

if X > 0 • 

F0 is of the type (2.1.1) with a= 0 and b = oo. 

Let e 1 and.02 be defined as 

(2.2.2) el= {O} X (O,oo), 02 = ]R X (O,oo). 

As in the previous section we shall define two families of distributions 

P1 and P2 corresponding to the parameter sets e 1 and·e2• Since for 

(e 1,e2) E ei, i = 1,2 

(2.2.3) 

the families P1 and P2, defined by (2.1.3) are equal to 

(2.2.4) 

and 

(2.2.5) 

where IA is a function which is 1 on A and O outside A. 

It follows that P1 is the family of exponential distribution functions 

with threshold parameter equal to O and that P2 is the family of exponential 

distributions with arbitrary threshold parameter. 
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With 

{ -ln(l-y) if 0 ~ y < 1 
(2.2.6) 

-1 
FO (y) = 

CX) if y = 
we have by (2.1.4) for F = F0 (8 1+8 2x), (81,82) E 0., i = 1 , 2 

l. 

(2.2. 7) 
-1 

F0 F(x) 

By (2.1.5) an exponential probability plot is a plot of -ln(I-Fn(x)) for 

values of x satisfying min(x 1, ••• ,xn) ~ x ~ max(x 1, ••• ,xn) where x 1 , ••• ,xn is 

a realization of a sample x x and F the corresponding realization of 
-1 '· · · '-n n 

the empirical distribution function !n· 
2.3. Confidence bands 

This section contains a discussion on confidence bands for a distribution 

function and their relation to hypothesis testing. Most of the remarks are 

from DOKSUM [ 5 ] • 

The concept of confidence bands and the problem of testing the hypo

thesis H: F = G against alternatives K: Ff. G, 1.n case ~I," •• '~n is a sample 

from a distribution F, are closely related. Using a test statistic for test

ing H against K we are able to derive a confidence band for F, in a way 

'Which will be presented in this section for two specific test statistics, 

and conversely starting with a confidence band a testing procedure for H 

against K can be derived. 

For instance consider the Kolmogorov-Smirnov test statistic 

-(2.3.1) d = max abs(F (x) - F(x)). -n x -n 

Under the hypothesis that x 1, ••• ,x is a sample from the distribution F d 
- -n -n 

has the same distribution for all continuous distributions F (cf. BICKEL & 

DOKSUM [3], p. 379) and hence for given a E (0,1) there exists a critical 

constant k(n,a), independent of F, such that 

(2.3.2) P{d ~ k(n,a)} = 1 - a. 
-n 
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This probability is equal to 

.,.. .,.. 
(2.3.3) P{Fn(x) - k(n,a) ~ F(x) ~ [n(x) + k(n,a), for all real x}, 

implying that with probability I - a the theoretical distribution function 
- + Fis contained in the area between H and H where 

(2.3.4) -F (x) ± k(n,a). 
-n 

Next, let us consider the test statistic 

- 1 
(2.3.5) w -n = max abs(~(x) - F(x))/(F(x)(l-F(x)) 2 , 

XES 

S being the support of F, defined in (2.I.t). Under the hypothesis that 

~1, ••• ,~n is a sample from a distribution F the distribution of ~n is 

equal for all continuous F and a critical constant k(n,a) satisfying 

(2.3.6) P{w ~ k(n,a)} = 1 - a -n 

can be obtained (see the references in DOKSUM [5]). This probability is 

equal to 

(2.3. 7) P{g-(x) + 
~ F(x) ~ !! (x), for all x ES}= I - a, 

where H and H+ are defined by 

(2.3.8) 
+ - 2 H-(x) = [F (x) + ½ k(n,a) ± 

- -n 
k(n,a){F (x)(I-F (x)) + -n -n 

2 l 
¼ k(n,a) } 2 ]/ 

(I+k(n,a) 2). 

As before it follows that with probability 1 - a the theoretical 



+ 
distribution Fis contained in the area between H and H. 
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- + In both cases ( (2. 3. 4) and (2. 3. 8)) the area between!! and!! is called a level 

1-a confidence hand,!!- and!!+ are called the low~r and upper confidence bound. 

Roughly speaking the difference between d and w as test statistics -n -n 
for the hypothesi's H: F = G is that d gives equal weight to the differences -n 
A 

F (x) - F(x) for each real x, irrespective of the variance of these differ
-n 
ences (see (1.2) and (1.3)), while w measures the differences in units -n 
equal to the standard deviation of F (x) - F(x). This reflects in the proper-n 
ties of the corresponding confidence bands. The band (2.3.8) based on w -n 
narrower in the tails than the band (2.3.4) based on d and is preferable 

-n 
unless one is particularly interested in the center of the distribution. 

A confidence band can be drawn in a probability plot after trans-
-I -1 - -1 + formation by F0 , i.e. F0 H and F0 H can be drawn in the plot. The 

band (2.3.8) is the one used by the procedure PLOTDIST. 

is 

Now, conversely, we shall discuss a test procedure for the hypothesis 

H: FE P against K: Fi P, P being a class of distributions suitable for . 

probability plotting, using a confidence band in a probability plot of type 

P. Consider the test procedure 

(2.3. 9) 
Reject H: FE P if the confidence band in the probability plot 

of type P of the sample x 1, ••• ,x contains no straight line. 
- -n 

From (2.3.7) it follows that under the hypothesis H: FE P the probability 

of rejection satisfies 

(2.3.10) 

P{the band contains no straight line IH is true} 

~ P{the band does not contain the line corresponding to FIR 

is true} 

= I - P{the band contains the line corresponding to FIR is true} 

= - ( 1-a) = a • 

Hence the probability of type I error, i.e. rejection of H when His true, 

is at most a. The procedure is conservative and not very powerful, as can 
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be seen from the plots in subsections (5.2.3.2) and (5.2.3.3). It may 

therefore be advisable to use other, more specific, tests, if available. 

A confidence band can also be used as an aid for the interpretation of 

probability plots. This and other guidelines will be discussed in section 

5. 1. 

,9900 
,9600 
,9300 
,9000 

,8000 

.7000 

,6000 

,5000 

,4000 

,3000 

,2000 

2 
MC 
UNIFORM PROBABILITY PLOT 
OF 500 OBSERVATIONS 
WITH 90 7. CONFIDENCE BAND 

Figure 3. Sample from a standard normal distribution 
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OBSERVATIONS• 100 

Figure 5. Sample from a standard normal distribution 
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Figures 3,4 and 5 contain three probability plots of one sample of 

size 500 from a standard normal distribution •. In the plots a 90% confidence 

bend;: i.e. a confidence band for a equal to 10%, is drawn. The inner curve 

in the plots is t~e transformed empirical distribution function, while the 

two outer curves are the transformed lower and upper confidence bound. The 

jumppoints of the transformed empirical distribution function and of the 

transformed confidence bounds are connected by straight lines. 

Figure 3 shows a uniform probability plot of the sample, which is 

equal to a plot· of the untransformed empirical distribution function and 

untransformed confidence band since for the family of uniform distributions 

F~ 1 equals the identical mapping of [0,1] into the real line (see section 

(3.1)). Figure 4 contains a normal probability plot of the sample and shows 

the expected linearity, while in Figure 5, an exponential probability plot 

of the sample, there is no such linearity. Remark that in Figures 3 and 5 

no straight line can be drawn in the confidence band and that therefore the 

test procedure (2.3.9) correctly rejects both a uniform and an exponential 

di8tribution as the theoretical distribution of the sample. 

3. DIFFERENT TYPES 

The computer procedure PLOTDIST is designed to construct probability 

plots of seven different types. For each of these types several options 

are available, which are described in chapter 4 of this report and in the 

STATAL manual [15]. These options consist of a confidence band, a straight 

line for reference and layout options. Clearly there are characteristics of 

the procedure which depend on the requested type of plot, such as the trans

formation F~ 1 used in the construction of the plot (see section (2.1)) and 

the procedure for drawing the reference line. This chapter is devoted to 

the description of such features of PLOTDIST, in contrast to the preceding 

chapter which was devoted to the general theory. 

Before describing the type-dependent features of PLOTDIST let us 

first discuss the reference line. As is seen in section (2.1) an empirical 

distribution function plotted in a probability plot of appropriate type 

should resemble a straight line, since the underlying theoretical distribu

tion function corresponds with a straight line in this plot. An estimate 
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of this line thus yields an estimate of the underlying distribution, which 

in its turn can be used to estimate the param~ters of this distribution. 

This is not the aim of the straight line drawn by PLOTDIST (on request), 

which is meant merely as reference line. It enables the user to compare the 

transformed empirical distribution function with a straight line without 

drawing one himself. Bearing this in mind we have chosen for quick, and 

therefore sometimes rough, procedures for drawing the line which do not 

pretend to yield the "best" line possible. 

The type-dependent features of PLOTDIST will be discussed in the follow

ing seven sections each devoted to one type. For each type we mention 

- the distribution function F0 used in (2.1.3) 

h . f h" f . F-l - t e inverse o tis unction, 0 

- the parameter space e used in (2.1.3)*) 

- the procedure for the reference line. 

Since the family of Weibull distributions is indexed by three parameters it 

will be treated more extensively. 

In the sequel we shall use the following notation 

X min 

X max 

X 

s 

3. I. Uniform 

function Fis 

F(x) 

= min 
i=l, ••• ,n 

= max 
i=l, ••• ,n 

n 
= I 

n i=l 
x. 

i 

x. the sample minimum i 

x. ' 
the sample maximum i 

, the sample mean 

n 
= { < I 

i=l 

2 -2 1 
x. - nx )/(n-1)} 2 , the sample standard deviation. 

i 

The general form of a Uniform (a,b) (-00<a<b<00 ) distribution 

= { 

0 

(x-a)/(b-a) 

if X < a 

if a:,; x < b 

if X ?: b • 

F0 is the Uniform (O,l) distribution function 

*) Note that the ~aram7ter (0 1,0 2) E 0 are not the usual parameters of the 
distributions in this section. 
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Its 

{ 
0 

F0 (x) = X 

inverse 
-1 

FO l.S 

-] 
FO (y) = y 

0 = JR x(O,co). 

if X < 0 

if O ~ X < 

if X ~ ]. 

y E [O,I]. 

- -The reference line 1.s drawn through the points (~ - l,O) and(~+ l,l), 

where 

C = ½(x. + X ) min max 

l = ½(xmax - xmin)(n+l)/(n-1). 

c and l are the best linear unbiased estimators of (a+b)/2, the center of 

the interval (a,b) and b-a, the length of (a,b) (cf. JOHNSON & KOTZ [8], 

2, p.60). 

3.2. Normal 

The general form of the Normal (µ,a) (µ E JR, a > O) distribution 

function Fis 

X 

F(x) I = 
a& 

t-µ 2 exp(-1 (-) )dt 
z a ' -co < X < co, 

-co 

FO is the Normal (O, l) distribution function 

X 

F0 (x) I 2 =-- exp(-½t )dt, 
& 

-co < X < co, 

-co 

There is no explicit formula for the inverse of F0 , which therefore has tobe 

approximated numerically. 

E>=JR.x(O,co), 



The reference line is drawn through the points (x,O) and (i+s,1). 

x ands are the usual estimators ofµ and cr (cf. JOHNSON & KOTZ 

[8], I, p.59). 

3.3. Exp 1 and Exp 2 

The general form of the Exponential (µ,A) 

tion function Fis 

{ 

0 

F(x) = 

1 - exp(-)..(x-µ)) 

if X < µ 

if X ~ µ, 

(µ E ]R , A > 0) distribu-

The exponential probability plot is discussed in section (2.2). 
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In case of Exp 1 the reference line is drawn through the points (O,O) 

and (x,1), while in case of Exp 2 it is drawn through (µ,O) and (x,1), where 

.... 
µ = (nx . - x) / (n- I ) • min 

x. and x - x. are the maximum likelihood estimators ofµ and 1/L -min -min 
From E x . = µ + I /n).. and E i = µ + I /A it follows that 

-min 

E H. = E (nx . -x)/(n-1) 
-nun -

= {n(p+ 1/n)..) - (µ+ 1/)..)}/(n-1) 

= µ. 

Henceµ is an unbiased estimator ofµ (cf. JOHNSON & KOTZ [8], 1, p.211). 

3.4. Gumbel 

The general form of the Gumbel (µ,cr) (µ E ]R ,cr > O) distribution 

function Fis 

F(x) = exp(-exp(-(x-µ)/cr)) ,-oo<x<oo, 

F0 is the Gumbel (0,1) distribution function 



20 

F0 (x) = exp(-exp(-x)), 

-1 
Its inverse F0 is 

-1 . 
FO (y) = f = :n(-ln(y)) 

l + 00 

8 = Rx(O ,oo) 

if 

if 

if 

- oo < X < oo. 

y = 0 

0 < y < 1 

y = 1. 

-The reference line 1.s drawn through the points (µ,O) and (µ+cr,l) where 

µ = x - y/6 s hr 

CJ = /6 s/TT 

and y is the Euler constant (y ~ 0.5772156649). g and cr are estimators of 

µ and cr (cf. JOHNSON & KOTZ [8], 1, p.285). 

3.5. Laplace 

The general form of the Laplace (µ,cr) (µER, cr > O) distribution func

tion F is 

exp ( (x-µ) /cr) if X :,;; µ 

F(x) 
= { '. 

- ½exp(-(x-µ)/cr) if x > µ, 

-] 
Its inverse Fo l.S 

-1 
FO (y) = 

0 = Rx 

- CX) 

ln(2y) 

- ln(2-2y) 

+ CX) 

(O,oo). 

if y = 0 

if 0 < y 

if ½ < y 

if y = I. 

::;; l 
2 

< 



The reference line is drawn through the points (x,O) and 

(x + s/12, 1). 
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The expected value and standard deviation of the Laplace (µ,o) distribu

tion areµ and If o. ! and ~//2 are used as estimators ofµ and o (cf. 

JOHNSON & KOTZ [8], 2, p.23). 

3.6. Cauchy 

The general form of the Cauchy (µ,o) (µ E :JR, o > O) distribution 

function Fis 

F(x) = ½ + .!. tan-1((x-µ)/o), 
1T 

F0 is the Cauchy (0,1) distribution function 

1 -1 
F0 (x) =½+;tan (x), 

Its inverse F~1 is 

{ 
- 00 

-) 
tan( (y-½)1r) FO (y) = 

+ 00 

0 = lRx (O,oo). 

-oo<x<oo. 

-oo<x<co. 

if y = 0 

if 0 < y < 

if y = 1 • 

The reference line is the least squares line determined by nine points 

of the transformed empirical distribution function described in subsection 

(3.6.1). 

3.6.1. The least squares line 

* * * * (xi ,£ 1 ), ••• ,(x9 ,£9 ) are defined as 

*=the smallest observation x. such that F (x.) ~ 
1 n 1 

X 
m 

f * 
m 

(m = 1,2, ••• ,9). 

m/10 
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The line drawn by PLOTDIST is the least squares line determined by 

these nine points of the transformed empirical distribution function. 

3.7. Weibull2 and Weibull3 

The general form of the Weibull (µ,cr,c) (µ E lR, cr > O, c > 0) 

distribution Fis 

F(x)" = 
J 0 

l C 1 - exp(-{(x-µ)/cr}) 

if X::;; µ 

if X > µ 

Since the technique of probability plots is not designed for a three para

meter family, such as the family of the Weibull distributions, it cannot be 

applied directly without further knowledge about the parameters. However 

if the value of c is known a Weibull probability plot (dependent on c) can 

be constructed using the method of chapter 2. If the value ofµ is known 

the data can be transformed in such a way that they become Gumbel distributed 

after which they can be plotted in a Gumbel probability plot. If neither 

µ nor c is knownµ can be estimated and then the same procedure as with 

knownµ can be applied. 

3.7.1. The value of c is known 

We apply the theory of chapter 2 with F0 equal to the Weibull (0,1,c) 

distribution function. 

I 0 if X ::;; 0 

F0 (x) = 

l C 
if X > 0 • 1 - exp(-x) 

Its inverse -1 
FO is 

{ 
0 if y = 0 

-1 1/c if 0 1 FO (y) = {- ln(l-y)} < y < 

00 if y = 1. 



The reference line is the least squares line of section (3.6.1). 
-1 

Remark that the transformation F0 depends on c. 

3.7.2. The value ofµ is known, 
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If the value ofµ is known and if ! 1, ••• ,~n is a sample from a Weibull 

(µ,cr,c) distribution then -ln(x1-µ), ••• ,-ln(x -µ) is a sample from a Gumbel 
- -n 

(-ln cr, 1/c) distribution which can be plotted in a Gumbel probability 

plot (see section 3.4)). 

3.7.3. Neitherµ nor c is known 

If bothµ and care unknown,µ can be estimated first, after which the 

data can be transformed and treated as in (3.7.2) whereµ is assumed to 

be known. 

µ can be estimated using the method of moments. 

If x , .•. ,x is a sample from a Weibull (µ,cr,c) distribution then 
-1 -n 

E i = µ + crr ( 1 + 1 / c) 

Ex . = µ + crn-l/cr(l+l/c) 
-min 

1/c q = µ + cr(-ln(l-a)) , 
a 

where r denotes the gamma function and q is defined by F(q) = a, F being a a 
the Weibull (µ,cr,c) distribution function (cf. JOHNSON ( KOTZ [8], 1, 

pp. 250-271). 

Estimates P,8 and care obtained from a solution of the following 

three equations 

x = µ + crf(l+l/~) 

x. ·min 
;n -l/2r(l+l/~) 

,.. 
= µ + 

= µ + ;(-ln(I- i/(n+l))l/c 

where x(i) denotes a realization of the ith order statistic and i is chosen 

in such a way that a numerical solution of the previous three equations is 

likely to be found. 
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To be more precise, i = entier (0.4n) unless abs(x(.)-x)/(x-x. ) < 0.1 
1. min 

in which case i = entier (0.9n). Here, entier(a) denotes the greatest integer 

less than or equal to a and abs(a) denotes the absolute value of a. (n ~ 3 

is an obvious condition for this to make any sense.) 

After elimination of~ and; from the equations, 0 = 1/; is seen to 

be a zero of the function~, defined by 

- e - e 
~(e) = {x. -x(.)+(x(.)-x)/n }r(1+e)+(x-x. )q (")' min 1. 1. min 1. 

where q(i) = -ln(l - i/(n+l)). 

Some properties of this function are the following 

1 • lim He) = O; 
0-}0 

2. lim ~(e) = - 00. 

e~ 

The procedure PLOTDIST tries to compute one or two zeros, according to 

whether ~(0.001) is positive or not. If two zeros are found, the one for .... .... ... e 
which the estimate of the medianµ+ cr (ln(2)) is closest to the sample 

median is chosen. 

4. DOCUMENTATION ON THE PROCEDURE PLOTDIST 

This chapter contains the description of the procedure PLOTDIST, as 

it is to be found in the STATAL manual [13]. 

TITLE: PLOTDIST 

AUTHORS: A.J. VAN ES, C. VANPUTTEN, I. VAN DER TWEEL 

INSTITUTE: MATHEMATICAL CENTRE 

RECEIVED: 830301 



BRIEF DESCRIPTION: 

A PROBABILITY PLOT OF REQUESTED TYPE AND SIZE IS PLOTTED 
VIA A PLOTTER. ON REQUEST THE PLOT CONTAINS A CONFIDENCE 
BAND OR AN ESTIMATED STRAIGHT LINE FOR REFERENCE. ENLARGE
MENTS OF PARTS OF THE PLOT ARE POSSIBLE. 

KEYWORDS: 

EMPIRICAL DISTRIBUTION FUNCTION, PROBABILITY PLOT, CONFIDENCE 
BAND 

CALLING SEQUENCE: 

HEADING: 
"PROCEDURE" PLOTDISTCGRFILE,V, LV, UV, TYPE, LB, UB, MODE, 

PART,SIZE,OPTION, BETA, SORTED, PAR, IDENT); 
"VALUE" V, LV, UV, LB, UB, MODE, PART, SIZE, OPTION, BETA, 

SORTED, PAR; 
"INTEGER" LV, UV, MODE, PART, SIZE, OPTION; 
"REAL" LB, UB, BETA, PAR; 
"BOOLEAN" SORTED; 
"ARRAY" V; 
"STRING" GRFILE, TYPE, !DENT; 
"CODE" 47005; 

FORMAL PARAMETERS: 
GRFILE: <STRING>,NAME OF THE FILE ON WHICH THE PLOT MUST BE 

WRITTEN AS A MAINGRAPH. IF THE STRING GRFILE IS 
EMPTY THEN THE NAME OF THIS FILE IS GRFILE. IN 
SUBSEQUENT CALLS OF PLOTDIST THE SAME VALUE MAY 
BE CHOSEN FOR GRFILE; 

V: <ARRAY IDENTIFIER>, V[LVJ, ••• , V[UV] IS A VECTOR 
CONTAINING THE SAMPLE; 

LV: <INTEGER ARITHMETIC EXPRESSION>, SMALLEST INDEX OF 
THE SAMPLE ARRAY; 

UV: <INTEGER ARITHMETIC EXPRESSION>, GREATEST INDEX OF 
THE SAMPLE ARRAY; 

TYPE: <STRING>, TYPE OF PROBABILITY PLOT. TYPE SHOULD CON
TAIN ONE OF THE FOLLOWING IDENTIFIERS: UNIFORM, 
NORMAL, EXP1, EXP2, LAPLACE, GUMBEL, CAUCHY, 
WEIBULL2, WEIBULL3; 

LB, UB: <REAL ARITHMETIC EXPRESSION>, LOWER AND UPPER BOUND, 
RESPECTIVELY, FOR THE POSSIBLE ENLARGEMENT. THE PLOT 
CONTAINS THE EMPIRICAL DISTRIBUTION FUNCTION AND 
CONFIDENCE BAND (WHEN REQUESTED) IN THOSE ARGUMENTS 
FOR WHICH THE EMPIRICAL DISTRIBUTION FUNCTION IS 
GREATER THAN OR EQUAL TO LB AND LESS THAN OR EQUAL 
TO UB. IF NO ENLARGEMENT IS DESIRED LB SHOULD BE 
TAKEN EQUAL TOO AND UB EQUAL TO 1; 

25 
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MODE: <INTEGER ARITHMETIC EXPRESSION>, IF MODE= -1 THE 
JUMPS OF THE EMPIRICAL DISTRIBUTION FUNCTION WILL 
BE CONNECTED BY STRAIGHT LINES. IF MODE> 0 SYMBOLS 
WITH INTEGER REPRESENTATION MODE (SEE TABLE 1) WILL 
BE PLOTTED AT THE JUMPS; 

PART: <INTEGER .ARITHMETIC EXPRESSION>, IF PART= 0 ALL 
JUMPS OF THE EMPIRICAL DISTRIBUTION FUNCTION WILL BE 
PLOTTED. IF PART> 0 THE EMPIRICAL DISTRIBUTION FUNC
TION WILL BE PLOTTED IN PART+ 1 EQUIDISTANT ARGU
MENTS; 

SIZE: <INTEGER ARITHMETIC EXPRESSION>, SIZE OF THE PLOT. 
THERE ARE TWO POSSIBILITIES FOR THE PARAMETER SIZE. 
IF SIZE EQUALS O, 1, 2, 3, 4 OR 5 THE FORMAT OF THE 
PLOT WILL BE REPORT FORMAT (I.E. THE PLOT WILL FIT 
ON A PAGE OF A MATHEMATICAL CENTRE REPORT), A1, A2, 
A3, A4 OR AS, RESPECTIVELY. THE OTHER POSSIBILITY IS 
THAT SIZE EQUALS A NONNEGATIVE INTEGER OF SIX DIGITS, 
OF WHICH THE FIRST THREE INDICATE THE WIDTH OF THE 
PLOT, WHILE THE LAST THREE INDICATE THE HEIGHT (IN 
MM). THE MINIMUM SIZE ALLOWED IS 100100. THE HEIGHT 
OF THE PLOT SHOULD BE LESS THAN OR EQUAL TO 725 MM; 

OPTION: <INTEGER ARITHMETIC EXPRESSION>, INDICATING WHETHER A 
CONFI~ENCE BAND OR A STRAIGHT LINE FOR REFERENCE HAS 
TO BE PLOTTED; 
OPTION= 11: BOTH THE BAND AND THE LINE ARE PLOTTED 
OPTION= 10: ONLY THE BAND IS PLOTTED 
OPTION= 01: ONLY THE LINE IS PLOTTED 
OPTION= 00: NEITHER ONE IS PLOTTED; 

BETA: <REAL ARITHMETIC EXPRESSION>, CONFIDENCE LEVEL OF 
THE CONFIDENCE BAND. BETA SHOULD EQUAL 0.9, 0.95 OR 
0.99; 

SORTED: <BOOLEAN EXPRESSION>, INDICATING WHETHER THE SAMPLE 
IS SORTED (IN A NONDECREASING OR NONINCREASING 
ORDER). IN CASE OF A SORTED SAMPLE SORTED SHOULD BE 
"TRUE", OTHERWISE SORTED SHOULD BE "FALSE"; 

PAR: <REAL ARITHMETIC EXPRESSION>, CONTAINING INFORMATION 
ABOUT THE THEORETICAL DISTRIBUTION FUNCTION IN CASE 
TYPE EQUALS WEIBULL2 OR WEIBULL3; 

IDENT: <STRING>, IDENTIFYING TEXT TO APPEAR BELOW THE PLOT. 
THE MAXIMUM NUMBER OF CHARACTERS ALLOWED DEPENDS ON 
THE SIZE OF THE PLOT, AS INDICATED BY SIZE. IF WAND 
H DENOTE THE WIDTH AND HEIGHT OF THE PLOT (IN MM), 
RESPECTIVELY, THEN IT IS 0.5 * W IF H <= 210 AND 
0.5 * W * 210 / H OTHERWISE. 

TABLE 1 - INTEGER REPRESENTATION OF SOME SYMBOLS (FOR THE 

2 6. 
3 + 
4 X 

11 * 

COMPLETE TABLE SEE [2], CALCOMP, P.8) 



DATA AND RESULTS: 

THE EMPIRICAL DISTRIBUTION FUNCTION OF THE SAMPLE V[LVJ, ••• , 
V[UV] IS COMPUTED AND PLOTTED IN A PROBABILITY PLOT, THE 
TYPE OF WHICH IS INDICATED BY THE PARAMETER TYPE. A DETAILED 
DESCRIPTION 0~ THE METHOD AND PERFORMANCE OF PLOTDIST FOR 
THE VARIOUS TYPES CAN BE FOUND IN [1]. IT SUFFICES TO GIVE 
A DESCRIPTION OF THE TYPES EXP1, EXP2, WEIBULL2 AND 
WEIBULL3, SINCE ALL OTHER VALUES OF TYPE REFER TO DISTRIBU
TIONS OF THE GIVEN TYPE WITH THE USUAL PARAMETERS. 

EXP1 AND EXP2: 

THE PLOTS OF TYPE EXP1 AND EXP2 ARE BOTH EXPONENTIAL 
PROBABILITY PLOTS WHICH DIFFER ONLY IN THE WAY THE STRAIGHT 
LINE (IF REQUESTED) IS COMPUTED. IN A PLOT OF TYPE EXP1 THE 
THRESHOLD PARAMETER IS ASSUMED ZERO AND THE LINE RUNS THROUGH 
THE ORIGIN, WHILE FOR PLOTS OF TYPE EXP2 THE THRESHOLD PARA
METER IS ESTIMATED. 

WEIBULL2 AND WEIBULL3: 

THE CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBU
TION IS F(X) = 1 - EXP(-((X - LOC)/SCALE) ** C). 
WEIBULL2: 

WHEN LOC IS KNOWN TO BE EQUAL TOO PAR SHOULD HAVE THE 
VALUE 0. THEN THE EMPIRICAL DISTRIBUTION FUNCTION OF THE 
SAMPLE -LN(V[LVJ), ••• , -LN(V[UVJ) WILL BE PLOTTED IN A 
GUMBEL PROBABILITY PLOT. 
WHEN THE VALUE OF C IS KNOWN PAR SHOULD BE EQUAL TO C 
(AND HENCE PAR> 0). THEN THE EMPIRICAL DISTRIBUTION 
FUNCTION OF V[LVJ, ••• , V[UVJ WILL BE PLOTTED IN A WEIBULL 
(FIXED C) PROBABILITY PLOT. 

WEIBULL3: 
WHEN THE VALUE OF LOC IS KNOWN PAR SHOULD BE MADE EQUAL 
TO LOC. THEN THE EMPIRICAL DISTRIBUTION FUNCTION OF 
-LN(V[LVJ - LOC), ••• , -LN(V[UV] - LOC) WILL BE PLOTTED IN 
A GUMBEL PROBABILITY PLOT. 
WHEN PAR EQUALS O, ALL THREE PARAMETERS ARE ASSUMED 
UNKNOWN. IN THIS CASE THE LOCATION PARAMETER LOC IS 
ESTIMATED AND THEN THE PROCEDURE IS THE SAME AS ABOVE. 

ERRORMESSAGES WILL BE WRITTEN ON FILE OUTPUT VIA CHANNEL 61. 

PROCEDURES USED: 

AXIS 
NUMBER 
PLOT 
PLOTS 
SCALE 
SYMBOL 

(CALCOMP) 
(CALCOMP) 
(CALCOMP) 
(CALCOMP) 
(CALCOMP) 
(CALCOMP) 
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VECINDQSORT 
LOGGAMMA 
PHI 
PHIINV 
ZEROIN 

(STATAL3 11021) 
(STATAL3 40400) 
(STATAL3 41500) 
(STATAL3 41501) 
(NUMAL3 34150) 

LANGUAGE: ALGOL 60 

REFERENCES: 

[1] ES, A.J. VAN & PUTTEN, C. VAN 
PROBABILITY PLOTS 
STATAL REPORT 3 
MATHEMATICAL CENTRE, AMSTERDAM, 1983 

[2] GRAPHICS 
SARA PUBLICATIE 11 
STICHTING ACADEMISCH REKENCENTRUM AMSTERDAM, 1980 

EXAMPLE OF USE: 

PROGRAM: 
"BEGIN" 

"ARRAY" V[1 :20]; 
"PROCEDURE" PLOTDIST(GRFILE,V,LV,UV,TYPE,LB,UB,MODE,PART, 

SIZE,OPTION,BETA,SORTED,PAR,IDENT); 
''VALUE'' V, LV ,UV ,LB,UB,MODE,PART, SIZE,OPTION,BETA,SORTED, 

PAR; 
"INTEGER" LV ,UV ,MODE, PART, S IZE,OPT ION; 
"REAL" LB,UB,BETA,PAR; 
"BOOLEAN" SORTED; 
"ARRAY" V; "STRING" GRF ILE, TYPE, !DENT; 
"CODE" 47005; 

INARRAY (60, V); 
PLOTDIST("("")", V, 1, 20, "("NORMAL")", 0, 1,-1, 0, 

100100, 11, 0.90, "FALSE", 0, 
"("SAMPLE FROM A STANDARD NORMAL DISTRIBUTION")"); 

PLOTDIST("('"')", V, 1, 20, "("EXP2")", 0, 1, 3, 0, 
160110, 11, 0.90, "FALSE", 0, 

"END" 

INPUT: 
-0.80 
-1. 05 
1. 39 

-0.10 

1. 58 
0. 20 
1 .18 

-1. 40 

" ( "SAMPLE FROM A STANDARD NORMAL DISTRIBUTION")") 

0.02 
-1.07 
-0.73 
-2. 22 

0.83 
0.09 

-0.04 
-1. 05 



RESULTING PLOTS, OBTAINED BY SENDING THE GRAPHFILE GRFILE TO A PLOTTER 

( SEE [2] ) : 

,9980 

,9970 
,9960 

,9940 
,9920 
,9900 

,9800 

,9700 
,9600 

,9400 
,9200 
,9000 

,8000 

.7000 

.6000 
,4000 
.2000 
.0020 

,9980 
,9950 
,9900 
,9800 
,9600 
,9300 
,9000 

.0000 
,7000 
,6000 
.sooo 
,4000 
,3000 
.2000 

,0900 
,0600 
.0400 
.0200 
,0070 
,0040 
.0020 

:z 
MC 
NORMAL PROBABILITY PLOT 
OF 20 OBSERVATIONS 
WITH 90Z CONFIDENCE BA 

-320,00 -160.00 o.oo 
OBSERVATIONS• 100 

160,00 

SAMPLE FROM A STANDARD NORMAL DISTRIBUTION 

:z 
MC 
EXPONENTIAL PROBABILITY PLOT 
OF 20 OBSERVATIONS 
WITH 90Z CONFIDENCE BAND 

-280,00 -200,00 -120.00 -40,00 
OBSERVATIONS• 100 

+ 

+ 

40.00 120.00 

SAMPLE FROM A STANDARD NORMAL DISTRIBUTION 

200.00 
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5. INTERPRETING PROBABILITY PLOTS AND EXAMPLES 

5.1. Guidelines for interpreting probability plots 

This section contains a brief outline of information that may be ob

tained by looking at probability plots. The material presented here is 

covered in more detail by BICKEL & OOKSUM [3], BURY [4] and HEMELRIJK & 

KRIENS [7] (in Dutch). 

To fix ideas, assume that a probability plot of some type, A say, is 

given, including an estimated straight line (see chapter 3) and a confidence 

band with coefficient 8 = 1-a (see section (2.3)). The straight line does 

not pretend to be a very good estimate of the underlying distribution 

function, it is merely for reference. The width of the confidence band at 

some argument x, i.e. the distance between upper and lower bound of the 

band at x, may provide a relative weight of the departure of the empirical 

distribution function from the straight line at x. By this we mean that a 

departure is more serious as the width is smaller. 

First we consider the case where the observations have been transformed 

by a linear transformation only. 

a. When there are but minor deviations from a straight line, one has to be 

aware that this does not prove that the observations come from a type A 

distribution; some other distribution might fit equally well. 

b. When there are major deviations, one might want to reject the hypothesis 

of a type A distribution, if no straight line fits into the confidence 

band. This is a conservative procedure (BURY [4], p.383, see also section 

(2.3)), by which we mean that the size of this test is smaller than 1-8. 

Note that the confidence band covers the graph of the underlying, unknown 

distribution function with probability$. As an alternative procedure one 

could use a general goodness of fit test, like the Kolmogorov test (cf. 

BICKEL & DOKSUM [3], section (9.6)), or a test designed for a particular 

family of distributions, such as the Shapiro-Wilk test for normal 

distributions. 

The nature of the deviations from a straight line may provide addition

al information. 

1. When the right part of the empirical distribution is concave, this 



indicates that the right tail of the underlying distribution might be 

heavier than the one corresponding to a straight line. In the same way 

convexity indicates a relatively lighter right tail., 

2. Similar statements about the left tail can be obtained by replacing 

"concave" by "convex" and "convexity" by "concavity" in I. 
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3. When the graph of the empirical distribution function looks like one of 

those in Figure 6, one might suspect a mixture of type A distributions. 

To be more precise, one might suspect the observations to be a non

decreasing, piecewise linear transformation of type A distributed under

lying data. Note that, generally, mixtures with distribution functions of 

the type pF + qG, where F and Gare distribution functions and p and q 

are weights, do not yield linear probability plots. 

-----
observations+ 

Figure 6, 

Secondly, we consider the presence of a location parameter in case of 

a logarithmic transformation of the observations. To be more explicit, the 

case is considered where the empirical distribution function based on 

- ln(x-loc), instead of observations x, is plotted. Here loc is an estimate 

of the location parameter. Convexity or concavity of the graph in this 

situation may also be due to a bad value of loc. If one is convinced that 

the transformed observations are a sample from a type A distribution, the 

convexity of the graph may indicate that the location estimate should be 

increased. Of course, concavity indicates that the estimate should be 

decreased. As an illustration of this see Figures 62, 63, 64 and 65, 

which present three Weibull plots of the same data with different values of 

loc. 
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REMARK. When plotting heavy tailed distributions or plotting on heavy tailed 

probability paper, we strongly reconnnend to m~ke enlargements (too). We 

suggest the following values of the parameters LB and UB. 

TYPE 

LB 

UB 

EXP 

0 

.9 

CAUCHY 

• 1 

.9 

WEIBULL 

0 

.9 

For Weibull plots with very heavy or light tails, sometimes it is 

favourable to delete the plotting of a confidence band and to increase the 

vertical size of the plot. 

5.2. Examples of probability plots 

This section contains numerous examples of probability plots. The 

first subsection shows the effect of the layout parameters of PLOTDIST 

(see chapter 4) on the actual plot. Changes of probability plots due to 

variation of the sample size, are presented in the second subsection. The 

third subsection consists of three parts, the first one containing plots of 

samples on the correct type of probability paper, the second one showing 

what samples from different distribution plotted on uniform, normal and 

exponential probability paper look like, the third one presenting the con

verse, i.e. uniformly, normally and exponentially distributed samples 

plotted on different types of probability paper. 

All samples used here have been generated by means of the pseudo-random 

number generator ASELECT from the library STATAL [13] (cf. VAN ES & VAN 

PUTTEN [6]) in addition to transformation procedures as given in VANPUTTEN 

& VAN DER TWEEL [11]. All procedures used are implemented in STATAL. They 

will be described in the final version of [13]. 

Relevant information about the values of the parameters is displayed at 

the top and the bottom of the plots. To interpret the parameter PAR correctly 

in Weibull2 and Weibull3 plots, the reader is referred to chapter 4. 

Since the program had to be adapted to a new ALGOL compiler the plots 

made by the current version of PLOTDIST are slightly different from the 

plots presented in this section. The main difference is in the horizontal 

axis which now gives equidistant numberso 



5.2.1. Layout parameters of PLOTDIST 

This subsection contains nine plots of one sample from a standard 

normal distribution. They illustrate how the layout of the plot can be 

controlled when using the STATAL procedure PLOTDIST. Relevant information 

about the parameters of this procedure is given as a bottom line. 
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Figure IO. 
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5.2.2. Effect of the sample size. 
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Figure 16. First sample from the standard normal distribution 
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Figure 17. Second sample from the standard normal distribution 



40 

,9995 
,9990 
,9980 
,9950 
,9900 
,9800 
,9600 
.9400 
.sooo 
.aooo 
,7000 
,6000 
,5000 
,4000 
,3000 
.2000 

,0900 
.0600 
,0400 
.0200 
,0080 
,0040 
,0020 
,0007 

2 
MC 
NORMAL PROBABlLlTY PLOT 
Of 100 OBSERVATIONS 
WITH 90 X ~ONFIDENCE BAND 

.0003c:;_.&,._ __ ..__.L_.,__._ _ _.____._...___._ __ _.___.__._.____.___..__..__,____.___, _ _._~.____, 
-255 -213-191-16s-u1-12&103-84-67-50-3~1s-2 9 2s 42 59 76 93 112 134 156 183 .8 

OBSERVATIONS• 100 

Figure 18. Third sample from the standard normal distribution 
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Figure 19. Fourth sample from the standard normal distribution 
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Figure 20. Fifth sample from the standard normal distribution 
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Figure 21. Sixth sample from the standard normal distribution 
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Figure 22. First sample from the standard exponential distribution, i.e. 

with parameters O and 
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Figure 23. Second sample from the standard exponential distribution 
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Figure 24. Third sample from the standard exponential distribution 
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Figure 25. Fourth sample from the standard exponential distribution 
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Figure 26. Fifth sample from the standard exponential distribution 
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Figure 27. Sixth sample from the standard exponential distribution 
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5.2.3. Samples from several distributions in several types of plots 

5. 2. 3. 1. Samples in plots of corresponding typ'e 

In the first_ part of this subsection uniform, normal, exponential, 

Laplace, Gumbel and Cauchy probability plots, with sample sizes 20, 50, 100 

and 500, of corresponding samples are presented, followed by numerous 

examples of Weibull probability plots of samples from the Weibull (1,1,2) 

distribution, which has fairly "normal" tails, and the Weibull (0,1,0.25) 

distribution, which has heavy tails. 
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Figure 28. A sample from the uniform (0,1) distribution 
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Figure 29. A sample from the uniform (0,1) distribution 
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Figure 30. A sample from the uniform (-10,10) distribution 
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Figure 31. A sample from the uniform (0,50) distribution 
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Figure 32. A sample from the nonnal (0,1) distribution 
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Figure 33. A sample from the normal (0,1) distribution 
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Figure 34. A sample from the normal (10,I) distribution 
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Figure 35. A sample from the normal (0,25) distribution 



50 

.9980 

.9970 

.9960 

.9940 

.9920 

.9900 

,9800 

.9700 

.9600 

,9400 
,9200 
.9000 

,8000 

,7000 
,6000 

2 
MC 
EXPONENTIAL PROBABILITY PLOT 
Of 20 OBSERVATIONS 
WITH 90 Z CONFIDENCE BAND 

, 4000 l~~~::::::::i:~=L=i::~~~2:~~=============~ .2000 
.0020 

3.7515 25 35 45 55 65 75 85 95 110 125 140 155 170 185 200 215 232.5 
OBSERVATIONS• 100 

Figure 36. A sample from the exponential (0,1) distribution 
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Figure 37. A sample from the exponential (0,1) distribution 
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Figure 38. A sample from the exponential (0,3) distribution 
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Figure 39. A sample from the exponential (0,25) distribution 
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Figure 40. A sample from the Laplace (0,1) distribution 
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Figure 41. A sample from the Laplace (0,1) distribution 
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Figure 42. A sample from the Laplace (10 ,5) distribution 
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Figure 43. A sample from the Laplace (-10,25) distribution 
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Figure 44. A sample from the Gumbel (O,l) distribution 
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Figure 45. A sample from the Gumbel (0,1) distribution 
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Figure 46. A sample from the Gumbel (2,1) distribution 
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Figure 47. A sample from the Gumbel (3,1) distribution 
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Figure 48. A sample from the Gumbel (0,1) distribution 
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Figure 49. Enlargement of the previous plot 
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Figure 50. A sample of the Cauchy (5, I) distribution 
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Figure 51. Enlargement of the previous plot 
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Figure 52. A sample from the Cauchy (10,1) distribution 
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Figure 53. Enlargement of the previous plot 
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Figure 54. A sample from the Cauchy (-10,25) distribution 
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Figure 55. Enlargement of the previous plot 
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In the following plots the underlying distribution of the sample is 

denoted by WEIBULL (LOC, SCALE, C), where the.parameters are defined in 

(3.7). 

Let us sunnnarize the effect of the parameter PAR 

TYPE PAR ACTION 

WEIBULL 2 > 0 C := *) . PAR, observations are plotted in a WEIBULL 
(c fixed) prob. plot 

WEIBULL 2 0 LOC := O, -ln (observations) are plotted in a GUMBEL 
prob. plot 

' 
WEIBULL 3 'f 0 LOC := PAR, -ln (observ.ations-LOC) are plotted in a 

GUMBEL prob. plot 

WEIBULL 3 0 LOC is estimated, -ln(observations-LOC) are plotted in 
a GUMBEL prob. plot 

*) read: becomes, attains the value 

Note that in the remaining part of 5.2.3.1 the samples are equal iff 

1. the sample sizes are equal 

2, the corresponding parameters LOC, SCALE and Care equal. 

Hence the samples in the first, second and third plot are equal etc •• 
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Figure 56. 
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Figure 57. 

TYPE:MEIBULL2,PAR:2. 
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Figure 58. 
TYPE:WEIBULL3,PAR=1, WEIBULL! 1, 1.21 
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The following three plots suggest 40w a preliminary guess of the 

parameter C may be obtained when one is sure to have a sample from a 

Weibull distribution. 

The next f_our plots (Figures 62,63,64,65) show that estimating LOC 

graphically seems more difficult. 
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Figure 59. 
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Figure 60. 
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Figure 61. 
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Figure 62. 
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Figure 63. 
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Figure 64. 
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Figure 65. 
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Since the Weibull (25,1,0.25) distribution has heavy tails, its 

probability plot of type WEIBULL2 is not ve~y informative (Figure 66). 

It may be improved by deleting the confidence band and by enlargement 

(Figures 67 and 68). 

Note that -ln(observations-L0C) is a decreasing transformation of the 

observations, which implies that their order is reversed in WEIBULL 3 

plots (Figures 69 and 70). 
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Figure 66. 
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Figure 67. TYPE:WEIBULL2.PAR:0,25. WEIBULL(25,l,0,25J 
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Figure 68. Enlargement of the previous plot 
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Figure 69. Location estimate is 24.9997! 
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The following nine plots show what may happen when one tries to 

estimate the parameter C graphically in this ~ase, where the three para

meters of the distribution are supposed to be unknown. Figures 71, 72 and 

73 include a confidence band, unlike Figures 74, 75 and 76. Figures 

77, 78 and 79 are enlargements of the three preceeding plots. 
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5.2.3.2. Uniform, normal and exponential probability plots of samples 

from different distributions 
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Figure 88. Sample 6, enlargement (LB= 0.1, UB = 0.9) 
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Figure 95. Sample 3 
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Figure 99. Sample 6, enlargement (LB= 0.1, UB = 0.9) 
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Figure 101. Sample 7, enlargement (UB = 0.9) 
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Figure 103. Sample 8 HEIBULLI O, 1 ,3 ,6 l 

The skewness of the Weibull (0,1,3.6) distribution is approximately 

0 and the kurtosis is 2.72 (JOHNSON & KOTZ [8]), explaining partially the 

close resemblance to a normal distribution. 
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Figure 108. Sample 5 
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Figure mo. Sample 6, enlargement (LB = 0.05, UB = 0.95) 
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Figure Ill. Sample 7 
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Figure 112. Sample 7, enlargement (UB = 0.9) 
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Figure 113. Sample 7, enlargement (UB = 0.5) 
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Figure 114. Sample 8 

5.2.3.3. Different types of probability plots of uniformly, normally 

and exponentially distributed samples 

The first sample is from the uniform (0,1) distribution, the second 

one is from the standard normal distribution and the third one is from 

the exponential (0,1) distribution. 
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Figure 115. First sample 
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Figure 116. First sample 
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Figure 117. First sample 
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Figure 118. First sample 
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Figure 119. First sample 
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Figure 120. First sample, TYPE= WEIBULL3, PAR= 0 
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Figure 121. First sample 
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Figure 122. First sample, enlargement 
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Figure 123. Second sample (from the normal (0,1) distribution) 
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Figure 124. Second sample 
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Figure 125. Second sample 
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Figure 126. Second sample 
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Figure 127. Second sample 
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Figure 128. Second sample, TYPE= WEIBULL3, PAR= O 
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Figure 129. Second sample 
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Figure 130. Second sample, enlargement 
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Figure 131. Third sample (from the exponential (0,1) distribution) 
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Figure 132. Third sample 
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Figure 133. Third sample 

,9997 
,9994 
,9990 

,9970 
,9940 
,9900 

,9700 
,9400 
,9000 
.aooo 
,6000 
,4000 
,2000 

,0700 
,0400 
.0200 

,0070 
,0040 
.0020 

.oooa 
,0005 
,0003 

2 
MC 
LAPLACE PROBABILITY PLOT 
OF 100 OBSERVATIONS 
WITH 90 7. CONFIDENCE BAND 

0 30 50 70 90 115 145 175 205 235 265 295 325 355 385 415 445 475 505 535 
OBSERVATIONS• 100 

Figure 134. Third sample 
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Figure 135. Third sample 
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Figure 136. Third sample. Note that exponential (0,1) = Weibull (0,1,1)! 
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Figure 137. Third sample 
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Figure 138. Third sample, enlargement 
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