
Cost Sharing over Combinatorial Domains:
Complement-Free Cost Functions and Beyond
Georgios Birmpas
Department of Computer Science, University of Oxford, UK
Department of Informatics, Athens University of Economics and Business, Greece
gebirbas@gmail.com

Evangelos Markakis
Department of Informatics, Athens University of Economics and Business, Greece
markakis@aueb.gr

Guido Schäfer
Networks and Optimization group, Centrum Wiskunde & Informatica (CWI), The Netherlands
Dept. of Econometrics and Operations Research, Vrije Universiteit Amsterdam, The Netherlands
g.schaefer@cwi.nl

Abstract
We study mechanism design for combinatorial cost sharing models. Imagine that multiple items or
services are available to be shared among a set of interested agents. The outcome of a mechanism in
this setting consists of an assignment, determining for each item the set of players who are granted
service, together with respective payments. Although there are several works studying specialized
versions of such problems, there has been almost no progress for general combinatorial cost sharing
domains until recently [7]. Still, many questions about the interplay between strategyproofness, cost
recovery and economic efficiency remain unanswered.

The main goal of our work is to further understand this interplay in terms of budget balance
and social cost approximation. Towards this, we provide a refinement of cross-monotonicity (which
we term trace-monotonicity) that is applicable to iterative mechanisms. The trace here refers to
the order in which players become finalized. On top of this, we also provide two parameterizations
(complementary to a certain extent) of cost functions which capture the behavior of their average
cost-shares. Based on our trace-monotonicity property, we design a scheme of ascending cost
sharing mechanisms which is applicable to the combinatorial cost sharing setting with symmetric
submodular valuations. Using our first cost function parameterization, we identify conditions under
which our mechanism is weakly group-strategyproof, O(1)-budget-balanced and O(Hn)-approximate
with respect to the social cost. Further, we show that our mechanism is budget-balanced and
Hn-approximate if both the valuations and the cost functions are symmetric submodular; given
existing impossibility results, this is best possible. Finally, we consider general valuation functions
and exploit our second parameterization to derive a more fine-grained analysis of the Sequential
Mechanism introduced by Moulin. This mechanism is budget balanced by construction, but in
general only guarantees a poor social cost approximation of n. We identify conditions under which
the mechanism achieves improved social cost approximation guarantees. In particular, we derive
improved mechanisms for fundamental cost sharing problems, including Vertex Cover and Set Cover.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechan-
ism design

Keywords and phrases Approximation Algorithms, Combinatorial Cost Sharing, Mechanism Design,
Truthfulness

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.20

Acknowledgements Part of this work was done while the first author was an intern of the Networks
and Optimization group at Centrum Wiskunde & Informatica. The first author was also partially
supported by the ERC Advanced Grant 321171 (ALGAME).

© Georgios Birmpas, Evangelos Markakis, and Guido Schäfer;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301636395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gebirbas@gmail.com
mailto:markakis@aueb.gr
mailto:g.schaefer@cwi.nl
https://doi.org/10.4230/LIPIcs.ESA.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Cost Sharing over Combinatorial Domains

1 Introduction

How to share the cost of a common service (or public good) among a set of interested agents
constitutes a fundamental problem in mechanism design that has been studied intensively
for at least two decades. Several deep and significant advancements have been achieved
throughout this period, notably also combining classical mechanism design objectives (such as
incentive compatibility, economic efficiency, etc.) with theoretical computer science objectives
(such as approximability and computational efficiency).

However, in the vast majority of the cost sharing models that have been proposed and
analyzed in the literature, it is assumed that the mechanism designer is offering a single
service and that each agent has a private value describing the willingness to pay for the
service. At the same time, there is also a publicly known cost function which describes the
total cost for offering the service to each possible subset of agents. Said differently, this
results in a single-parameter mechanism design problem, where the goal is to select a subset
of the players that will be granted service, subject to covering the cost and achieving an
economically efficient outcome.

Although significant progress has been made for such single-parameter domains, moving
towards more general combinatorial domains has been almost elusive so far. Imagine that
there are multiple goods to be shared among the agents who now have more complex valuation
functions, expressing their willingness to pay for different subsets (or bundles) of goods. The
cost function now depends on the subsets of agents sharing each of the items. An outcome
of a mechanism under this setting, consists of an allocation, which specifies for each agent
the goods for which she is granted service, together with a payment scheme.

The desired properties in designing a cost-sharing mechanism (be it combinatorial or
not) are three-fold: (i) group-strategyproofness: we would like resistance to misreporting
preferences by individual agents or coalitions, (ii) budget-balance: the payments of the players
should cover the incurred cost, (iii) economic efficiency: the allocation should maximize a
measure of social efficiency. The fundamental results in [10, 16] rule out the possibility that all
three properties can be achieved. As a result, if we insist on any variant of strategyproofness,
we are forced to settle with approximate notions of at least one of the other two criteria.
In this context, approximate budget balance means that the mechanism may overcharge
the agents, but not by too much. In terms of efficiency, considering a social cost objective
instead of the classical social welfare objective (definitions are given in Section 2) seems more
amenable for multiplicative approximation guarantees.

These adapted objectives have been investigated thoroughly for single-parameter problems,
especially for cost-sharing variants of well-known optimization problems. In the context
of more general combinatorial cost-sharing mechanisms, a restricted model with multiple
levels of service was first studied in [13]. Ever since, for almost a decade, there was no
additional progress along these lines. It was only recently that a step forward was made
by Dobzinski and Ovadia [7]. In their work, they introduce a combinatorial cost-sharing
model and derive the first mechanisms guaranteeing good budget balance and social cost
approximation guarantees for different classes of valuation and cost functions. As already
pointed out in [7], however, several important questions concerning our understanding of the
approximability of these objectives remain open and deserve further study. This constitutes
the starting point of our investigations reported in this work.

Our Contributions. We make further advancements on the design and analysis of mechan-
isms for combinatorial cost-sharing models. To begin with, the analysis of the mechanisms
we study asks for new conceptual ideas which might be interesting on their own:



G. Birmpas, E. Markakis, and G. Schäfer 20:3

We first provide a refinement of the well-known notion of cross-monotonic cost sharing
functions, which is key in the intensively studied class of Moulin-Shenker mechanisms
[15] for the single-parameter domain. We introduce the notion of trace-monotonic cost
sharing functions which is applicable for mechanisms that proceed iteratively and evict
agents one-by-one. Trace-monotonicity formalizes the fact that the cost-shares observed
by a player for an item do not decrease throughout the course of the mechanism. That is,
these cost shares may depend on the specific order (or trace as we will call it) in which
the mechanism considers the agents.
We identify two different and (to some extent) complementary parameterizations of
the cost functions. Intuitively, these parameters measure the “variance” of the average
cost-share c(S)/|S|, over all agent sets S. We introduce two such notions, which we
term α-average decreasing and α-average min-bounded (see Definition 5 and Definition
15, respectively). We note that for every cost function, there exist respective values of
α (possibly different for each definition) for which these properties are satisfied. These
definitions provide an alternative way to classify cost functions and their respective
approximation guarantees in terms of budget balance and social cost.

Using the above ideas, in Section 3, we derive a scheme for ascending cost sharing mechan-
isms, which can be seen as a (non-trivial) adaptation of the Moulin-Shenker mechanisms from
the binary accept/reject setting to combinatorial cost sharing. Our notion of trace-monotonic
cost shares plays a crucial role here. We show that our proposed mechanism is applicable for
any non-decreasing cost function and for symmetric submodular valuations (i.e., submodular
functions whose value depends only on the cardinality of the set).

By exploiting the first parameterization of α-average decreasing cost functions, our main
result of Section 3 is that for α = O(1), our mechanism is polynomial-time, weakly group-
strategyproof, O(1)-budget-balanced and O(Hn)-approximate with respect to social cost,
where n is the number of agents.1 As a consequence, if both the valuation and cost functions
are symmetric submodular (α = 1), the mechanism is budget-balanced and Hn-approximate.
This is best possible even for a single item, as there exist corresponding inapproximability
results by Dobzinski et al. [6]. Prior to our work, the best known mechanism for symmetric
submodular valuation and cost functions is Hn-budget balanced and Hn-approximate [7].
We anticipate that further extensions and generalizations might be feasible through our
framework and this type of ascending mechanisms.

In Section 4, we exploit our second parameterization of α-average min-bounded cost
functions, and provide results for general valuation functions. As it turns out, our para-
meterization enables us to obtain a more fine-grained analysis of the Sequential Mechanism
introduced by Moulin [14]. This mechanism is budget-balanced by construction, but in gen-
eral only guarantees a poor social cost approximation of factor n. We show that for α-average
min-bounded cost functions with α = O(1), the Sequential Mechanism is budget balanced
and Hn-approximate with respect to social cost. Interestingly, this result does not even
require monotonicity of the valuation functions. In addition, we can push our results even a
bit further by introducing a refinement of this class of cost functions (see Definition 20) for
which we show that the Sequential Mechanism is O(1)-approximate. The refinement allows
us to obtain improved mechanisms for several cost functions originating from combinatorial
optimization problems. For example, our result implies that the Sequential Mechanism is
d-approximate for certain cost-sharing variants of Vertex Cover and Set Cover, where d is
the maximum degree of a node or the maximum size of a set, respectively; this improves
upon existing results, even in the well-studied single-item case, when d is constant.

1 We use Hn to denote the n-th Harmonic number defined as Hn = 1 + 1
2 + · · ·+ 1

n .

ESA 2019



20:4 Cost Sharing over Combinatorial Domains

In general, the two parameterizations of the cost functions introduced in this work seem to
be suitable means to accurately capture the approximation guarantees of both the ascending
cost-sharing mechanism of Section 3, and the Sequential Mechanism of Section 4. In fact, we
have not managed to construct natural examples of cost functions which do not admit an
O(Hn)-approximation by neither of the mechanisms studied here. See also the discussion in
Section 5, where some examples are constructed but they are rather artificial (Proposition 25).
As such, these parameterizations help us to narrow down the class of cost functions which
are not yet known to admit a good social cost approximation and enhance our understanding
towards further progress in combinatorial cost sharing.

Related Work. For the single-item setting and with submodular cost functions, the best
known group-strategyproof and budget balanced cost-sharing mechanism is arguably the
Shapley value mechanism, introduced by Moulin and Shenker [14, 15]. This was also the first
work that tried to quantify the efficiency loss of budget balanced cost-sharing mechanisms.
Later, Feigenbaum et al. [9] showed that if one insists on truthfulness, there is no mechanism
that achieves a finite approximation of the social welfare objective, even if one relaxes the
budget balance property to cost recovery. To overcome this impossibility result, Roughgarden
et al. [17] introduced the notion of social cost as an alternative means to quantify the
efficiency of a mechanism. In the same work, they showed that the Shapley value mechanism
is Hn-approximate with respect to this objective. Dobzinski et al. [6] established another
impossibility result for the social cost objective, and showed that every mechanism satisfying
truthfulness and cost recovery cannot achieve a social cost approximation guarantee better
than Ω(logn). The problem of deriving mechanisms with the best possible budget balance and
social cost approximation guarantees for different cost functions arising from combinatorial
optimization problems has been extensively studied in various works, see e.g., [2, 3, 4, 11].

Moving beyond the single-item case, Mehta et al. [13] introduced a new family of truthful
mechanisms (called acyclic mechanisms) which apply to general demand settings of multiple
identical items when players have symmetric submodular valuations. For additional works
that consider the general demand setting, the reader is referred to [2, 3, 5, 14]. Birmpas et
al. [1] also studied families of valuation and cost functions for the multiple item setting, under
cost sharing models that are motivated by applications in participatory sensing environments.

Most related to our work is the recent work by Dobzinski and Ovadia [7]. To the best
of our knowledge, this is the only prior work that considers a more general approach for
combinatorial cost sharing. They studied a multi-parameter setting and proposed a new
VCG-based mechanism. Basically, the idea is to run a VCG mechanism with respect to a
modified objective function which is defined as the sum of the player valuations minus a
potential. Intuitively, the latter ensures that the payments computed by the mechanism cover
the actual cost. They showed that this mechanism is strategyproof and Hn-approximate with
respect to social cost. They also identified several classes of valuation and cost functions for
which the mechanism is Hn-budget balanced. In particular, this is the case if the valuation
and cost functions are symmetric.2 Additionally, they established that their mechanism
is optimal with respect to the social cost approximation among all symmetric VCG-based
mechanisms that always cover the cost.

2 We note that their definition of symmetry for the cost function differs from the one we use here.



G. Birmpas, E. Markakis, and G. Schäfer 20:5

2 Definitions and Notation

We assume there is a set N = {1, 2, . . . , n} of players and a set M = {1, 2, . . . ,m} of items.
Each item can be viewed as a public good or some service that can be shared by the players.
Each player i has a private valuation function vi : 2M → R≥0 specifying the value that she
derives from each subset of items.

A cost-sharing mechanism takes as input the declared (possibly false) valuation functions
~b = (bi)i∈N of the players and outputs (i) an allocation that determines which players share
each item and (ii) a payment pi for each player i. An allocation is denoted by a tuple
A = (A1, . . . , An), where Ai ⊆ M is the set of items provided to player i. For notational
convenience, we also represent an allocation A = (Ai)i∈N as a tuple over the items space
(T1, . . . , Tm) such that for every item j ∈M , Tj ⊆ N is the subset of players sharing item j,
i.e., Tj = {i ∈ N : j ∈ Ai}.

In this paper, we consider mostly separable cost functions. In the separable setting, we
assume that the overall cost of an allocation decomposes into the cost for providing each item
separately. Hence, every item j is associated to a known cost function cj : 2N → R≥0, which
specifies for each set of players T ⊆ N , the cost cj(T ) of providing item j to the players in T .
Thus, the total cost of an allocation A is defined as C(A) =

∑
j∈M cj(Tj). In Section 4.3,

we also consider the non-separable setting, where we are given a more general cost function
C : (2M )n → R≥0, specifying for every allocation A = (Ai)i∈N the corresponding cost C(A).
Non-separable functions can capture dependencies among different items.

We assume that the utility functions of the players are quasilinear, i.e., given an allocation
A = (Ai)i∈N and payments (pi)i∈N determined by the mechanism for valuation functions
~v = (vi)i∈N , the utility of player i is defined as ui(~v) = vi(Ai)−pi. All our mechanisms have no
positive transfers (NPT), i.e., pi ≥ 0, and satisfy individual rationality (IR), i.e., pi ≤ vi(Ai).

In addition to the above, we are also interested in the following properties:
Weak Group-Strategyproofness (WGSP): We insist on a stronger notion of res-
istance to manipulation than truthfulness: A mechanism is weakly group-strategyproof
if there is no deviation by a coalition of players that makes all its members strictly
better off. More formally, we require that for every coalition Q ⊆ N of players, every
profile ~v−Q of the other players, there is no deviation ~bQ of the players in Q such that
ui(~bQ, ~v−Q) > ui(~vQ, ~v−Q) for every i ∈ Q, where ~vQ is the profile of the actual valuation
functions of Q.
Budget Balance: We are interested in mechanisms whose payments cover the allocation
cost, ideally exactly. However, the latter is not always possible as it may be incompatible
with the other objectives. We therefore consider an approximate budget balance notion:
A mechanism is β-budget-balanced (β ≥ 1) if for every valuation profile ~v = (vi)i∈N , the
outcome (A, p) computed by the mechanism satisfies

C(A) ≤
∑
i∈N

pi ≤ β · C(A).

Clearly, we want β to be as small as possible to not overcharge players too much for
covering the cost. We say that the mechanism is budget balanced if β = 1.
Economic Efficiency: Our goal is to compute outcomes that are (approximately)
efficient. To this aim, we use the social cost objective, originally defined in [17]. Adapted
to our combinatorial setting, the social cost of an allocation A = (Ai)i∈N is defined
as the actual cost of the outcome plus the value missed by not serving all items to all
players, i.e.,

π(A) =
∑
j∈M

cj(Tj) +
∑
i∈N

[vi(M)− vi(Si)].3

ESA 2019



20:6 Cost Sharing over Combinatorial Domains

A mechanism is said to be α-approximate with respect to the social cost objective if for
every valuation profile ~v = (vi)i∈N , the allocation A output by the mechanism satisfies
π(A) ≤ α · π(A∗), where A∗ is an allocation of minimum social cost.

We assume that both the valuation functions (vi)i∈N and the cost functions (cj)j∈M
are non-decreasing (see below for formal definitions). Further, we focus on certain classes
of valuation and cost functions: More specifically, we consider submodular and subadditive
cost functions, both naturally modeling economies of scale. As to the valuation functions,
we consider submodular valuation functions in Section 3 and general valuation functions in
Section 4. Further, the class of symmetric XOS functions play a prominent role in Section 3.4
Below we summarize all relevant definitions (see also Lehman et al. [12]).

I Definition 1. Let f : 2U → R≥0 be a function defined over subsets of a universe U .
1. f is non-decreasing if f(S) ≤ f(T ) for every S ⊆ T ⊆ U .
2. f is symmetric if f(S) = f(T ) for every S, T ⊆ U with |S| = |T |.
3. f is submodular if f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ) for every S ⊆ T ⊆ U and

i 6∈ S.
4. f is XOS if there are additive functions f1, . . . , fk such that f(S) = maxi∈[k] f

i(S) for
all S ⊆ U .

5. f is subadditive if f(S ∪ T ) ≤ f(S) + f(T ) for every S, T ⊆ U .
6. f is symmetric XOS if it is symmetric and f(S)/|S| ≥ f(T )/|T | for every S ⊆ T ⊆ U .

Some of our mechanisms make use of cross-monotonic cost-sharing functions defined as
follows:

I Definition 2. Let c : 2N → R≥0 be a cost function. A cost-sharing function5 χ : N ×2N →
R≥0 with respect to c specifies for each subset S ⊆ N and every player i ∈ S a non-negative
cost share χ(i, S) such that

∑
i∈S χ(i, S) ≥ c(S).6 χ is cross-monotonic if for all S ⊆ T ⊆ N

and every i ∈ S, we have χ(i, S) ≥ χ(i, T ).

3 An Iterative Ascending Cost Sharing Mechanism

In this section, we present our Iterative Ascending Cost Sharing Mechanism (IACSM) for
the combinatorial cost sharing setting with symmetric submodular valuations and general
cost functions. We first provide a generic description of our mechanism and identify two
properties which are sufficient for our main result to go through. We then show that these
properties are satisfied if the valuations are symmetric submodular.

3.1 Definition of IACSM and Two Crucial Properties
Mechanism IACSM can be viewed as a generalization of the Moulin-Shenker mechanism [15]
to the combinatorial setting in the sense that it simulates in parallel an ascending iterative
auction for each item. To our knowledge this is the first ascending price mechanism for the
combinatorial setting which is not VCG-based and as we will describe below, this adaptation
is not straightforward since there are several obstacles we need to overcome. A description
of our mechanism IACSM is given in Algorithm 1.

4 It is not hard to verify that these functions can equivalently be defined as stated in Definition 1 (see
also [8]).

5 We stress here that we allow cost-sharing functions to overcharge the actual cost c(·). As a result, this
will lead to approximately budget balanced mechanisms.

6 For notational convenience, we define χ(i, S) =∞ for i /∈ S.



G. Birmpas, E. Markakis, and G. Schäfer 20:7

Algorithm 1 Iterative Ascending Cost Sharing Mechanism (IACSM).

Input: Declared valuation functions (bi)i∈N .
Output: Allocation A = (Ai)i∈N and payments p = (pi)i∈N .

1 Initialization: Let X = N be the set of active players and define Tj = N for every item
j ∈M .

2 while X 6= ∅ do
3 Compute an optimal bundle Ai for every player i ∈ X:

Ai ∈ arg max
S⊆M
{bi(S)− pi(S)}, where pi(S) =

∑
j∈S

χj(Tj) (1)

(If there are several optimal bundles, resolve ties as described within Section 3.1.)
4 Let i∗ ∈ X be a player such that |Ai∗ | ≤ |Ai| for every i ∈ X.
5 Assign the items in Ai∗ to player i∗ and remove player i∗ from X.
6 For every item j ∈M \Ai∗ , set Tj = Tj \ {i∗}, and update the cost shares χj(Tj).
7 return A = (Ai)i∈N and p = (pi)i∈N , where pi =

∑
j∈Ai

χj(Tj).

The mechanism maintains a set of active players X and for each item j ∈ M a set of
players Tj who are tentatively assigned to j. Initially, each player is active and tentatively
assigned to all the items, i.e., X = N and Tj = N for all j ∈ M . The mechanism then
proceeds in iterations. In each iteration, each item j is offered to each active player i ∈ X
at a price that only depends on the set of tentatively assigned players Tj . For this, we use
a player-independent cost sharing function χj(·, Tj) for every item j, and since we require
that χj(i, Tj) = χj(k, Tj) for every i, k ∈ Tj , we will simply denote by χj(Tj) the cost share
that each player i ∈ Tj tentatively assigned to j has to pay. Based on these cost shares,
every active player i ∈ X computes an optimal bundle Ai with respect to the payments pi(·),
as defined in Equation (1). If there are ties, we resolve them according to the following
tie-breaking rule: if there are several optimal bundles, then player i chooses one of maximum
size. If there are multiple optimal bundles of maximum size k, then she chooses the bundle
consisting of the k cheapest items (where ties between equal cost share items are resolved
consistently, say by index of the items).

After determining the optimal bundle for each active player, the mechanism then chooses
an active player i∗ whose optimal bundle has minimum size. Again, we break ties consistently,
say by index of the players. The items in Ai∗ are assigned to player i∗ and i∗ becomes
inactive. Finally, for every item j that does not belong to the optimal bundle Ai∗ , i∗ is
removed from the tentative set Tj . The mechanism terminates when all players are inactive.

We next identify two crucial properties that our mechanism has to satisfy for our main
result to go through. To formalize these properties, we introduce first some more notation.

Trace of IACSM. Note that the execution of our mechanism IACSM on an instance of the
problem induces an order τ = (τ1, . . . , τn) on the players. Without loss of generality, we
may assume that the players are renamed such that τ = (1, . . . , n), i.e., player i becomes
inactive in iteration i; however, we emphasize that this order is determined by the run
of our mechanism.

The order τ = (1, . . . , n) together with the final bundle Ai assigned to each player i at the
end of iteration i induces an order of player withdrawals for each item j. More precisely, for
every j ∈M we let τj be the subsequence of τ consisting only of the players who withdrew
from item j (at the end of the iteration when they became inactive). We refer to τj as the
trace of item j. Recall that initially Tj = N and hence all players are tentatively assigned to
j. The length of τj can vary from 0, when nobody withdraws from item j and τj is the null
sequence, all the way to n, when everybody withdraws from j and τj = τ . Given a trace τj

ESA 2019



20:8 Cost Sharing over Combinatorial Domains

in the form τj = (i1, i2, . . . , i`) and k ∈ {0, 1, . . . , |τj |}, let Rkj = N \ {i1, i2, . . . , ik}; define
R0
j = N . Note that the set Rkj is precisely the set of players tentatively assigned to j after k

players have withdrawn from j during the execution of the mechanism. We note that the
notion of trace is valid also for any other iterative mechanism where the assignment of one
player becomes finalized at each iteration, e.g., [13].

Trace-monotonic cost sharing functions. We introduce a new property of cost sharing
functions which will turn out to be crucial below. Intuitively, it is a refinement of the
standard cross-monotonicity property which has to hold only for certain subsets of players
encountered by the mechanism, namely for the sets {Rkj }. More precisely, given a trace τj for
an item j ∈M , we say that the cost sharing function χj is cross-monotonic with respect to τj
(or, trace-monotonic for short), if for every k ∈ {0, . . . , |τj | − 1}, we have χj(Rkj ) ≤ χj(Rk+1

j ).
Note that this ensures that the cost share of item j (weakly) increases during the execution
of the mechanism, as we consider the sequence of sets R0

j ⊃ R1
j ⊃ · · · ⊃ R

|τj |
j . A subtle

point here is that the definition of the cost share χj(Rkj ) may not only depend on the set
of players Rkj , but also on the trace τj specifying how the set Rkj has been reached by
the mechanism.7 It will become clear below that this additional flexibility enables us to
implement our mechanism for arbitrary cost functions.

Properties (P1) and (P2). Our first property is rather intuitive: An item j needs to be
offered to all active players at the same price and this price can only increase in subsequent
iterations. In particular, this ensures that if at the end of iteration i, player i withdraws from
an item j ∈M \Ai, then the price of j for the remaining players in Tj \{i} does not decrease.
This is crucial to achieve strategyproofness, and it is captured precisely by trace-monotonic
cost sharing functions.8

(P1) For each item j ∈M the cost sharing function χj is trace monotonic for every trace τj .

The first property alone is not sufficient to ensure that our mechanism IACSM is weakly
group-strategyproof (or even strategyproof). Additionally, we need to enforce the following
refinement property on the final bundles assigned to the players. We prove below that
Property (P2) is satisfied for symmetric submodular valuation functions.
(P2) The final bundles (Ai)i∈N assigned to the players satisfy the following refinement

property: Ai ⊆ Ai+1 for every i ∈ {1, . . . , n− 1}.

Feasibility of (P1) and (P2). We next define the cost sharing function that we use. The
intuition is as follows: Suppose that S = Tj is the set of players who are tentatively allocated
to item j at the beginning of iteration i for some i ∈ [n]. Ideally, we would like to charge the
average cost cj(S)/|S| to each player in S, but we cannot simply do this because the average
cost might decrease with respect to the previous iteration, and this will destroy Property
(P1). Given our new notion of trace-monotonicity, we can resolve this by defining the cost
share of item j as the maximum average cost over all player sets which were tentatively
allocated to j so far.

7 Notationally, we would have to write here χτj

j to indicate the dependency on τj . However, in the analysis
we focus on a fixed trace produced by an execution of the mechanism and omit the explicit reference to
it for notational convenience.

8 Note that we have to require trace-monotonicity with respect to an arbitrary trace of item j here,
because we cannot control the trace τj that will be realized by IACSM.



G. Birmpas, E. Markakis, and G. Schäfer 20:9

More formally, let τj be the trace of item j induced by IACSM when executed on a given
instance. Let S be the set of players tentatively assigned to item j at the beginning of
iteration i, and fix k such that Rkj = S (by the definition of our mechanism, such a k must
exist and k ≤ i− 1). We define

χj(S) = max
`∈{0,...,k}

cj(R`j)
|n− `|

. (2)

Note that by using this definition we may end up overcharging the actual cost cj(S) of
item j in the sense that |S| · χj(S) > cj(S). As we show in Section 3.2, the budget balance
and social cost approximation guarantees depend on the magnitude by which we might
overcharge.

It is now trivial to show that Property (P1) holds.

I Lemma 3. Consider some item j ∈ M and let cj : 2N → R≥0 be an arbitrary cost
function. Let τj be an arbitrary trace of j. The cost sharing function χj defined in (2) is
trace-monotonic.

We turn to Property (P2). In general, it seems difficult to guarantee (P2), but it is not
hard to see that it holds if the valuation functions are symmetric submodular.

I Lemma 4. Suppose the valuation functions are symmetric submodular. Then Ai ⊆ Ai+1
for every i ∈ {1, . . . , n− 1}.

3.2 Main result for IACSM
In order to state our main result of this section, we need to introduce a crucial parameter that
determines the budget balance and social cost approximation guarantees of our mechanism.

I Definition 5. A cost function c : 2N → R≥0 is α-average-decreasing, for some α ≥ 1, if
for every S ⊆ T ⊆ N , α · c(S)

|S| ≥
c(T )
|T | .

Note that for every cost function c there exists some α ≥ 1 such that c is α-average
decreasing. However, here we are particularly interested in α-average decreasing cost functions
for which the parameter α is small, as can be seen by Theorem 6 below. Average decreasing
functions with small values of α arise naturally in the domains of digital goods and public
goods. For digital goods the cost of serving a non-empty set of customers is typically assumed
to be constant because there is a cost for producing the good and then it can be shared with
no additional cost (hence the definition is satisfied with α = 1). The same is applicable for
some public good models. Note also that symmetric XOS cost functions (see Definition 1)
are average-decreasing (i.e., α = 1).

The following is the main result of this section.

I Theorem 6. Suppose the valuation functions are symmetric submodular and the cost
functions are α-average decreasing, for some α ≥ 1. Then the mechanism IACSM runs in
polynomial time, satisfies IR, NPT, WGSP and is α-budget balanced and 2α3Hn-approximate.

Symmetric submodular cost functions are average decreasing (i.e., α = 1) since they are
a subclass of symmetric XOS functions. As a consequence, we obtain the following corollary
from Theorem 6 (with an additional improvement on the social cost approximation).

I Corollary 7. Suppose the valuation functions and the cost functions are symmetric sub-
modular. Then the mechanism IACSM runs in polynomial time, satisfies IR, NPT, WGSP
and is budget balanced and Hn-approximate.

ESA 2019



20:10 Cost Sharing over Combinatorial Domains

Note that the approximation factor of Hn for symmetric submodular functions is tight:
The impossibility result of Dobzinski et al. [6] for a single public good implies that achieving
a better approximation ratio is impossible, even in the single-item case (m = 1).

Finally we point out that α-average-decreasing functions are subadditive when α = 1,
while this is not necessarily true for α > 1.

I Lemma 8. Let c(·) be an α-average-decreasing cost function where α = 1. Then c(·)
is subadditive and in addition, not necessarily symmetric, or submodular. In case c(·) is
α-average-decreasing with α > 1, then c(·) is not necessarily subadditive.

3.3 Proof of Social Cost Approximation
Due to lack of space, we will only establish the social cost approximation stated in Theorem
6. In this section, we will show that our mechanism IACSM is 2α3Hn-approximate with
respect to the social cost objective for symmetric submodular valuation functions.

Let A = (Ai)i∈N be the allocation computed by the mechanism, where Ai ⊆ M is the
subset of items that player i receives. As before, without loss of generality we assume that
the player order induced by IACSM is τ = (1, . . . , n). Recall that for every item j ∈ M ,
Tj = {i ∈ N : j ∈ Ai} is the final set of players that receive item j. We also use T ij to refer
to the subset of players who are allocated to item j at the beginning of iteration i. Clearly,
T ij ⊇ Tj for every player i and item j.

We first state some simple lemmas which will be helpful to establish the social cost
approximation guarantee.

I Lemma 9. Fix an item j ∈ M and let i be the first player in τ such that j ∈ Ai. Then
Tj = {i, . . . , n}.

I Lemma 10. Consider player i who becomes inactive in iteration i. We have

vi(Ai)−
∑
j∈Ai

χj(Tj) ≥ vi(S)−
∑
j∈S

χj(Tj) ∀S ⊆M.

Proof. In iteration i, the final bundle Ai is chosen as the set of items maximizing the utility
of player i with respect to the current cost shares, i.e.,

vi(Ai)−
∑
j∈Ai

χj(T ij ) ≥ vi(S)−
∑
j∈S

χj(T ij ) ∀S ⊆M. (3)

Recall that T ij is the set of players that are allocated to item j in iteration i. Note that by
Lemma 9, T ij = Tj for every j ∈ Ai. Further, T ij ⊇ Tj for every j ∈ M \ Ai as additional
players might withdraw from j in subsequent iterations. Note that the final set Tj is reached
from T ij by following the trace τj of item j. The claim now follows from the trace-monotonicity
of χj (Property (P1)). J

I Lemma 11. Consider player i who becomes inactive in iteration i. For every item j ∈M ,

χj(T ij ) ≤ α
cj({i, . . . , n})
n− i+ 1 .

I Lemma 12. Let c be an α-average decreasing cost function. Let S, T ⊆ N be arbitrary
subsets with |S| ≤ |T |. Then c(S) ≤ 2αc(T ).

We are now ready to prove the approximation guarantee.



G. Birmpas, E. Markakis, and G. Schäfer 20:11

I Lemma 13. Mechanisms IACSM is 2α3Hn-approximate.

Proof. Let A∗ = (A∗1, . . . , A∗n) be an optimal allocation and let T ∗j be the respective set of
players that receive item j in A∗. We have

π(A) =
∑
i∈N

(
vi(M)− vi(Ai)

)
+
∑
j∈M

cj(Tj)

≤
∑
i∈N

vi(M)−
∑
i∈N

(
vi(Ai)−

∑
j∈Ai

χj(Tj)
)

≤
∑
i∈N

vi(M)−
∑
i∈N

(
vi(A∗i )−

∑
j∈A∗

i

χj(T ij )
)

=
∑
i∈N

(
vi(M)− vi(A∗i )

)
+
∑
i∈N

∑
j∈A∗

i

χj(T ij ),

where the first inequality holds because χj is α-budget balanced and the second inequality
follows from Equation (3) in the proof of Lemma 10.

The proof follows if we can show that∑
i∈N

∑
j∈A∗

i

χj(T ij ) ≤ 2α3Hn

∑
j∈M

cj(T ∗j ). (4)

We use a charging argument to prove (4). Fix some item j ∈M and order the players in
T ∗j according to the player order τ = (1, . . . , n) induced by IACSM; let T ∗j = {i1, . . . , ik∗

j
} be

the ordered set with k∗j := |T ∗j |. We now “tag” each player i in T ∗j with a fraction of the cost
cj(T ∗j ) for item j as follows: For the lth player i = il in T ∗j with 1 ≤ l ≤ k∗j , define

tagi(j) :=
cj(T ∗j )

k∗j − l + 1 . (5)

That is, the first player i1 in T ∗j is tagged with cj(T ∗j )/k∗j , the second player i2 with
cj(T ∗j )/(k∗j − 1) and so forth, and the last player ik∗

j
is tagged with cj(T ∗j ).

We first derive two lower bounds on the tagged cost:

B Claim 14. For every player i ∈ N and for every item j ∈ A∗i :

tagi(j) ≥
cj(T ∗j )
n− i+ 1 and tagi(j) ≥

cj(T ∗j )
|T ∗j |

.

Proof. The latter bound holds by definition (5). To see that the former bound holds, observe
that the kth last player (1 ≤ k ≤ k∗j ) in the ordered set T ∗j is tagged by cj(T ∗j )/k. The claim
now follows because there are at most n− i players succeeding i in T ∗j according to the order.

C

Note that the total tagged cost of item j satisfies

∑
i∈T∗

j

tagi(j) =
k∗

j∑
l=1

cj(T ∗j )
k∗j − l + 1 ≤ Hncj(T ∗j ). (6)

Thus, to prove (4) it suffices to show that the total cost share sum is upper bounded by the
total tagged cost, i.e.,∑

i∈N

∑
j∈A∗

i

χj(T ij ) ≤ 2α3
∑
j∈M

∑
i∈T∗

j

tagi(j). (7)

ESA 2019



20:12 Cost Sharing over Combinatorial Domains

We show that for every i and every j ∈ A∗i , χj(T ij ) ≤ tagi(j). Summing over all i ∈ N and
j ∈ A∗i then proves (4). We distinguish two cases:

Case 1: |T ∗j | ≥ n− i+ 1: Let S ⊆ T ∗j be a set such that |S| = n− i+ 1. We have

χj(T ij ) ≤ α
cj({i, . . . , n})
n− i+ 1 ≤ 2α2 cj(S)

|S|
≤ 2α2 cj(T ∗j )

n− i+ 1 ≤ 2α2tagi(j), (8)

where the first inequality follows from Lemma 11, the second inequality follows from Lemma 12,
the third inequality holds because cj is non-decreasing and the last inequality follows from
Claim 14.

Case 2: |T ∗j | < n− i+ 1: Let S ⊃ T ∗j be a set such that |S| = n− i+ 1. We have

χj(T ij ) ≤ α
cj({i, . . . , n})
n− i+ 1 ≤ 2α2 cj(S)

|S|
≤ 2α3 cj(T

∗
j )

|T ∗j |
≤ 2α3tagi(j), (9)

where the first inequality follows from Lemma 11, the second inequality follows from Lemma 12,
the third inequality holds because cj is α-average-decreasing and the last inequality follows
from Claim 14. This concludes the proof. J

4 Mechanisms for General Valuations and Subadditive Cost
Functions

In this section, we move away from symmetric submodular valuation functions and derive
results for more general functions. In particular, we investigate the performance of the
Sequential Mechanism [14] for general valuations and subadditive cost functions. Although for
arbitrary subadditive cost functions this mechanism does not provide favorable approximation
guarantees, we identify conditions on the cost functions under which it achieves significantly
better approximation factors. This is based on considering a different parameterization of
cost functions with regard to their average cost shares.

4.1 The Sequential Mechanism
The Sequential Mechanism (SM) was introduced by Moulin [14] and was also studied
in [7]. A description of the mechanism SM is given in Algorithm 2. We note that this
mechanism is applicable both to separable and non-separable cost functions. Here, we first
focus on separable cost functions, and in Section 4.3, we consider generalizations to the
non-separable setting.

It is trivial to see that SM is budget-balanced and it is also known that it is WGSP [7].
However, for arbitrary monotone subadditive cost functions, the mechanism achieves a (poor)
social cost approximation guarantee of n (see [7]). Despite this, we show that SM has better
guarantees under certain conditions. Namely, we identify a crucial parameter of each cost
function cj with j ∈M that allows us to quantify this improvement. The parameterization
introduced here is different from the one used in Section 3 and it compares the average cost
of a set T ⊆ N with the minimum standalone cost of a player in T .

I Definition 15. A cost function c : 2N → R≥0 is α-average min-bounded, for some α ≥ 1,
if for every set T ⊆ N , we have α · c(T )

|T | ≥ cmin(T ), where cmin(T ) = minj∈T c({j}).

Definition 15 may look contrived at first glance and we thus provide some more intuition on
how we arrived at this parameterization. Given that IACSM performs well for α-average
decreasing functions and small values of α, as we established in Section 3, it is natural to



G. Birmpas, E. Markakis, and G. Schäfer 20:13

Algorithm 2 Sequential Mechanism (SM).

Input: Declared valuation functions (bi)i∈N .
Output: Allocation A = (Ai)i∈N and payments p = (pi)i∈N .

1 Initialization: Fix an order on the set of players N = {1, . . . , n}.
2 for i = 1, . . . , n do
3 Compute an optimal bundle Ai for player i:

Ai ∈ arg max
S⊆M
{bi(S)− pi(S)}, where

pi(S) = C(A1, . . . , Ai−1, S, ∅, . . . , ∅)− C(A1, . . . , Ai−1, ∅, . . . , ∅).

(If there are multiple optimal bundles, choose the lexicographically smallest one.)
4 return A = (Ai)i∈N and p = (pi)i∈N , where pi = pi(Ai).

focus on the complement of this class. For example, fix α = 1 for now. Then the exact
complement is not easy to characterize because it involves two existential quantifiers. We
therefore consider a subset of this complement (with only one existential quantifier) by
demanding that for every T , there exists S ⊆ T such that c(S)/|S| < c(T )/|T |. It is not hard
to verify that this definition is equivalent to the class of 1-average min-bounded functions.
For larger values of α, we can see that α-average-min-bounded functions still capture a
chunk of the complement of α-average-decreasing functions. Thus, a positive result for
α-average-min-bounded functions narrows down on the cost functions that are not yet known
to admit good approximation guarantees.

Note that for every cost function we can find an α ≥ 1 such that it is α-average min-
bounded. As the next theorem reveals, the Sequential Mechanism attains a favorable
performance for small values of α.

I Theorem 16. Suppose we have general valuation functions and for each item j ∈M , the
cost function cj : 2N → R≥0 is non-decreasing, subadditive, and α-average min-bounded
for some α ≥ 1. Then the Sequential Mechanism satisfies IR, NPT, WGSP, and is budget
balanced and α ·Hn-approximate.

For the proof of Theorem 16, we will use the following proposition:

I Proposition 17. If c : 2N → R≥0 is non-decreasing and α-average min-bounded, then∑
i∈T c({i}) ≤ αH|T | · c(T ) for every T ⊆ N .

Proof of Theorem 16. We only need to prove that SM is αHn-approximate. All the other
properties have been established in [7, 14]. Let A = (Ai)i∈N be the allocation output by the
mechanism and let A∗ = (A∗i )i∈N be an optimal allocation. Further, let T ∗j be the respective
set of players that receive item j in A∗. To simplify notation in the analysis, we also let A<i
denote the tuple (A1, . . . , Ai−1, ∅, . . . , ∅). Define now the incremental cost of a player i for
a bundle S ⊆M , with respect to the allocation constructed by the Sequential Mechanism
before i’s turn as ∆i(A<i, S) = C(A1, . . . , Ai−1, S, ∅, . . . , ∅)− C(A1, . . . , Ai−1, ∅, . . . , ∅).

We have

π(A) =
∑
i∈N

[
vi(M)− vi(Ai)

]
+ C(A) =

∑
i∈N

vi(M)−
∑
i∈N

[
vi(Ai)−∆i(A<i, Ai)

]
≤
∑
i∈N

[
vi(M)− vi(A∗i )

]
+
∑
i∈N

∆i(A<i, A∗i ).

ESA 2019



20:14 Cost Sharing over Combinatorial Domains

Note that the inequality holds because Ai was chosen as the optimal bundle for i. The next
step is to prove a bound on the incremental costs in the form∑

i∈N
∆i(A<i, A∗i ) ≤ β · C(A∗). (10)

The proof follows if we can show that (10) holds for β = αHn because we then have

π(A) ≤
∑
i∈N

[
vi(M)− vi(A∗i )

]
+ α ·HnC(A∗) ≤ αHn · π(A∗).

By exploiting the subadditivity of the cost functions cj , we obtain

∆i(A<i, A∗i ) = C(A<i, A∗i )− C(A<i) ≤ C(A<i) + C(A∗i , ∅−i)− C(A<i) =
∑
j∈A∗

i

cj({i}).

Summing over over all i ∈ N , and using Proposition 17, we get:∑
i∈N

∆i(A<i, A∗i ) ≤
∑
i∈N

∑
j∈A∗

i

cj({i}) =
∑
j∈M

∑
i∈T∗

j

cj({i}) ≤
∑
j∈M

αH|T∗
j
|cj(T ∗j ) ≤ αHnC(A∗).

This proves (10) and concludes the proof of Theorem 16. J

By going through the proof of Theorem 16 more carefully, we realize the following:

I Remark 18. For any subclass of non-decreasing, subadditive cost functions, it suffices
to establish inequality (10) to prove that the Sequential Mechanism has a social cost
approximation guarantee of β.

Finally we have that for α = 1 the approximation factor is tight.

I Proposition 19. Even for the single item setting, there exists a 1-average min-bounded
cost function, under which the Sequential Mechanism provides an Hn-approximation.

4.2 Improved Approximation Guarantees and Applications

We continue with a natural refinement of Definition 15 which turns out to provide even
better approximation factors of the Sequential Mechanism.

I Definition 20. A cost function c : 2N → R≥0 is α-average max-bounded, for some α ≥ 1,
if for every set T ⊆ N , we have α · c(T )

|T | ≥ cmax(T ), where cmax(T ) = maxj∈T c({j}).

Clearly, any function that is α-average max-bounded is also α-average min-bounded.
Thus, we already have an αHn-approximation for non-decreasing, subadditive and α-average
max-bounded cost functions. Below we show that we can achieve a much better guarantee.

I Theorem 21. Suppose we have general valuation functions and for each item j ∈M , the
cost function cj : 2N → R≥0 is non-decreasing, subadditive, and α-average max-bounded
for some α ≥ 1. Then the Sequential Mechanism satisfies IR, NPT, WGSP, and is budget-
balanced and α-approximate.



G. Birmpas, E. Markakis, and G. Schäfer 20:15

Example applications of combinatorial cost functions. We give some examples of com-
binatorial cost functions below and show that they are α-average max-bounded (possibly
depending on some parameters of the combinatorial problem). In particular, by applying
Theorem 21 we obtain attractive social cost approximation guarantees for these problems.
For simplicity, all examples consider a single item only; but clearly, we can consider more
general multiple item settings (e.g., when for each item j ∈ M , cj captures one of the
problems below).

Set Cover. We are given a universe of elements U and a family F ⊆ 2U of subsets of U .
The players correspond to the elements of U and the cost c(S) for serving a set of players
S ⊆ U is defined as the size of a minimum cardinality set cover for S.
Vertex Cover. This is a special case of Set Cover. We are given an undirected and
unweighted graph G = (V,E) and the players are the edges of the graph. The cost c(S)
for serving a set S ⊆ E of players is defined as the size of a minimum vertex cover in the
subgraph induced by S.
Matching. We are given an undirected and unweighted graph G = (V,E) and the
players correspond to the edges. The cost c(S) for serving a set S of players is defined as
the size of a maximum cardinality matching in the subgraph induced by S.

Using our α-average max-bounded notion, it is now easy to prove that these problems
admit constant social cost approximation guarantees (under certain restrictions).

I Theorem 22. The Sequential Mechanism is α-approximate for the above problems, where
1. α = d for the Set Cover problem, where d is the maximum cardinality of the sets in F ;
2. α = k for the Vertex Cover problem in graphs of maximum degree k;
3. α = k for the Matching problem in bipartite graphs of maximum degree k;
4. α = (5k + 3)/4 for the Matching problem in general graphs of maximum degree k.

We can now compare these bounds with the existing results in the literature. For Vertex
Cover, there is a mechanism that is 2-budget-balanced and O(logn)-approximate [13]. Thus,
for graphs with maximum degree less than logn, we obtain a better guarantee. For Set
Cover, there is a mechanism that is O(logn)-budget-balanced and O(logn)-approximate [13].
Hence, we obtain an improvement if the sets in F have a size that is no more than o(logn).
Finally, we note that our results do not apply to the weighted versions of these problems.

4.3 Guarantees of the Sequential Mechanism for Non-Separable Cost
Functions

We extend our results to non-separable cost functions. Recall that in this setting, the cost
C(A) of an allocation A = (Ai)i∈N is given by some general (not necessarily separable) cost
function C : (2M )n → R≥0. In particular, C may encode dependencies among different items.

We introduce some more notation. Given two allocations S = (Si)i∈N and T = (Ti)i∈N ,
we define S ∪ T as the componentwise union of S and T , i.e., S ∪ T = (S1 ∪ T1, . . . , Sn ∪ Tn).
Similarly, we write S ⊆ T if this relation holds componentwise, i.e., Si ⊆ Ti for every i ∈ N .
Given an allocation A = (Ai)i∈N and a set of players S ⊆ N , we define A|S = (AS , ∅−S) as
the allocation in which each player i ∈ S receives the items in Ai and all other players receive
nothing. If S = {i} is a singleton set, we also write A|i instead of A|{i}. Throughout this
section, we remain in the domain of non-decreasing and subadditive cost functions. In the
non-separable case, a cost function C : (2M )n → R≥0 is non-decreasing if C(S) ≤ C(T ) for
every pair of allocations S, T , with S ⊆ T . Also, it is subadditive if for every two allocations
S = (Si)i∈N and T = (Ti)i∈N , we have C(S ∪ T ) ≤ C(S) + C(T ).

ESA 2019



20:16 Cost Sharing over Combinatorial Domains

We now adapt Definitions 15 and 20 to non-separable cost functions.

I Definition 23. Let C : (2M )n → R≥0 be a non-separable cost function.
C is α-average min-bounded, for some α ≥ 1, if for every allocation A and every subset
T ⊆ N with |T | ≥ 2, it holds αC(A|T )

|T | ≥ Cmin(T ), where Cmin(T ) = minj∈T C(A|j).
C is α-average max-bounded, for some α ≥ 1, if for every allocation A and every subset
T ⊆ N with |T | ≥ 2, it holds αC(A|T )

|T | ≥ Cmax(T ), where Cmax(T ) = maxj∈T C(A|j).

As before, if a non-separable function is α-average max-bounded, then it is also α-average
min-bounded.

We remark that it has been shown in [14, 7] that the Sequential Mechanism is weakly group-
strategyproof and budget balanced for the non-separable setting. By adapting Proposition 17
for the non-separable setting and by using the same reasoning as in the proof of Theorem 16,
we obtain the same approximation guarantee of αHn as in the separable setting. Further, the
improvement we obtained in Theorem 21 also goes through in this setting. We summarize
these observations in the following corollary.

I Corollary 24. Suppose we have general valuation functions and a non-decreasing, subaddit-
ive, and α-average min-bounded cost function C : (2M )n → R≥0. Then the Sequential Mech-
anism satisfies IR, NPT, WGSP, and is budget balanced and α·Hn-approximate. Furthermore,
if C is also α-average max-bounded, then the Sequential Mechanism is α-approximate.

5 Discussion

In Section 3, we proposed the mechanism IACSM, which is weakly group-strategyproof
under general cost functions and symmetric submodular valuations. Moreover it is α-budget
balanced and 2α3Hn-approximate when we restrict the cost functions to the α-average-
decreasing class. The social cost approximation guarantee further improves to Hn if the cost
functions are symmetric submodular and this is best possible (due to the known lower bound
for public-excludable goods [6]). It would be very interesting to explore mechanisms that
go beyond symmetric submodular valuation functions. It seems that entirely new ideas are
needed for this setting. It would also be interesting to extend our mechanism to non-separable
cost functions. We note that separability of the costs in Section 3 is needed for IACSM only
to argue that the cost share per item increases as players withdraw (with respect to the
trace). One would need to investigate how to adapt the mechanism and enforce this property
in the non-separable setting. Technically, this seems far from obvious and we leave a proper
treatment of this issue for future work.

In Section 4, we studied the (partially) complementary class of α-average min bounded
cost functions. We showed that the well-known Sequential Mechanism is budget balanced
and αHn-approximate even for general valuation functions. These results also extend to
non-separable cost functions. A very natural question is whether SM is optimal in this
setting and we note that the answer is not yet clear: The impossibility result of [6] holds
for the public-excludable good cost function which is symmetric submodular and thus 1-
average-decreasing. However, it is not hard to see that this does not fall within the α-average
min bounded class for any constant α. This leads to the question of whether there exists
a WGSP mechanism that breaks the Ω(log(n))-approximation in terms of social cost for
α-average-min bounded functions with small values of α.

Finally, what we also find very interesting is to identify the class of cost functions for
which neither of the two mechanisms studied here perform well. Recall that, for any constant
value of α, if a cost function is either α-average decreasing or α-average min-bounded, then
a good performance is guaranteed. Thus, we need look at the complement of the set of



G. Birmpas, E. Markakis, and G. Schäfer 20:17

α-average decreasing functions and the set of α-average min-bounded functions for small
value of α and examine whether these complements have a non-empty intersection. The
following proposition shows that this intersection is indeed non-empty.
I Proposition 25. Given α ≥ 1, the intersection of the complements of α-average-decreasing
and α-average min-bounded functions is non-empty.

The proof of this proposition follows by constructing a cost function that requires non-
constant values of α to be captured by either of our parameterizations. Although the
intersection turns out to be non-empty, the constructed cost function is rather artificial
and more natural examples are elusive so far. In fact, for most of the known cost functions
that have been studied in the literature, at least one of our mechanisms achieves an O(Hn)-
approximation. To make further progress, we believe it is important to understand better
the class of functions defined by the intersection of the two complements, as it would help us
to identify the missing elements for deriving mechanisms for a wider class of cost functions.

References
1 G. Birmpas, C. Courcoubetis, I. Giotis, and E. Markakis. Cost-Sharing Models in Participatory

Sensing. In International Symposium on Algorithmic Game Theory, pages 43–56, 2015.
2 Y. Bleischwitz and F. Schoppmann. Group-Strategyproof Cost Sharing for Metric Fault

Tolerant Facility Location. In International Symposium on Algorithmic Game Theory, pages
350–361, 2008.

3 J. A. Brenner and G. Schäfer. Cost Sharing Methods for Makespan and Completion Time
Scheduling. In Symposium on Theoretical Aspects of Computer Science, pages 670–681, 2007.

4 S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal Cost-Sharing Mechanisms for
Steiner Forest Problems. In International Workshop on Internet and Network Economics,
pages 112–123, 2006.

5 N. R. Devanur, M. Mihail, and V. V. Vazirani. Strategyproof cost-sharing mechanisms for set
cover and facility location games. Decision Support Systems, 39(1):11–22, 2005.

6 S. Dobzinski, A. Mehta, T. Roughgarden, and M. Sundararajan. Is Shapley cost sharing
optimal? Games and Economic Behavior, 108:130–138, 2018.

7 S. Dobzinski and S. Ovadia. Combinatorial Cost Sharing. In ACM Conference on Economics
and Computation, pages 387–404, 2017.

8 T. Ezra, M. Feldman, T. Roughgarden, and W. Suksompong. Pricing Identical Items. CoRR,
abs/1705.06623, 2017. arXiv:1705.06623.

9 J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for multicast
cost sharing. Theoretical Computer Science, 1-3(304):215–236, 2003.

10 J. Green, E. Kohlberg, and J. J. Laffont. Partial Equilibrium Approach to the Free Rider
Problem. Journal of Public Economics, 6:375–394, 1976.

11 A. Gupta, Jochen Könemann, Stefano Leonardi, R. Ravi, and Guido Schäfer. Efficient
cost-sharing mechanisms for prize-collecting problems. Math. Program., 152(1-2):147–188,
2015.

12 B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior, 55(2):270–296, 2006.

13 A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms. Games and
Economic Behavior, 67(1):125–155, 2009.

14 H. Moulin. Incremental cost sharing: Characterization by coalition strategy-proofness. Soc.
Choice Welfare, 16:279–320, 1999.

15 H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: Budget balance vs
efficiency. Economic Theory, 18:511–533, 2001.

16 K. Roberts. The Characterization of Implementable Choice Rules. In J. J. Laffont, editor,
Aggregation and Revelation of Preferences. Amsterdam: North Holland, 1979.

17 T. Roughgarden and M. Sundararajan. Quantifying inefficiency in cost-sharing mechanisms.
Journal of the ACM, 56(4):23:1–23:33, 2009.

ESA 2019

http://arxiv.org/abs/1705.06623

	Introduction
	Definitions and Notation
	An Iterative Ascending Cost Sharing Mechanism
	Definition of IACSM and Two Crucial Properties
	Main result for IACSM
	Proof of Social Cost Approximation

	Mechanisms for General Valuations and Subadditive Cost Functions
	The Sequential Mechanism
	Improved Approximation Guarantees and Applications
	Guarantees of the Sequential Mechanism for Non-Separable Cost Functions

	Discussion

