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Introduction 

Consider a light bulb. It has a certain life time X, which is a random 

variable with probability distribution function F. After having burned 

t hours, there remains a residual life time, with a distribution function 

Ft defined ·by 

( 1 ) 1 - Ft(x) = P {X-t > x IX> t}. 

The residual life time is a random variable Xt which 1.s defined on the 

conditional probability space {X > t}. 

If X has an exponential distribution F(x) 

Xt. Indeed 

-AX = 1-e , then so has 

-A(x+t) 
1 - F (x) = P {X > x+t I X > t} = _e ___ = e-Ax 

t -At 
e 

It 1.s wellknown that this characterizes the exponential distribution: 

Ft= F0 for all t > 0 implies that F0 (x) = 1-e-Ax for some A> O. 

In this paper we shall be concerned with the limit behaviour of 

the residual life time fort ➔ 00 : For which distribution functions F 

does there exist a norming function a(t) such that Xt/a(t) converges 

in distribution to a random variable with non-degenerate distribution 

function G?; What are the possible limit distributions G? (section 2); 

what are their domains of attraction? (section 3), In section 4 we prove 

the remarkable fact that in this situation weak convergence is equivalent 

to the convergence of some positive moment. 

One of the reasons for publishing these investigations is that they 

give a probabilistic interpretation of the fundamental properties of 

regularly varying functions. 

Although the label "residual life time" gives clear intuitive 

meaning to the random variables Xt associated with the distribution functions 

Ft defined above,the field of applications of this theory in probability 

theory 1.s mQch wider. In many cases one is not so much interested in all 

values of a random variable X as in extremely large values (for instance 

in the study of heat-waves or storms). One restricts one's attention to 

the subset {X > t} i.e. to the set of large values of X and in fact one 1.s 

studying the limit behaviour of the probability distributions Ft defined 

above. 
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Results and techniques from extreme value theory are used, The 

possible limit types for Xt are 

[rH-" 
for x < 0 

(x) = -Cl 

for X .:... 0, 

c_ 
for x < 0 

IT (x) = 
X for x .:... 0, e 

where a is a positive constant, The domains of attraction of these 

distribution functions are exactly the domains of attraction of the 

well-known (see [2]) limit distributions~ and A of the partial 
a 

maxima of i.i.d. random variables. 

If we allow as norming functions for Xt both a scale transformation 

a(t) and a shift b(t), then it is possible to obtain limit distributions 

of (X -b(t))/a(t) which are discrete. This remarkable result is closely t . 
linked to the problem of convergence of (Xt-b(t))/a(t) where t tends 

+ to infinity through some discrete subset of R. The necessary theory to 

tackle this more general situation is being developed by A.A. Balkema 

(who also suggested the problem of limit distributions for residual 

life times). We hope to publish the theory in the general situation 

in a subsequent paper. 

1. T.r.e possible limit distributions 

We say that the distribution function Fis in the domain of r,l.t. 

attraction of a non-degenerate distributions function G (notation 

FED (G)) if for some positive function a and all continuity points 
r 

x of G 

lim Ft(a(t)x) = G(x) 
t-rw 

where Ft is defined by (1). To find the possible limit laws G we derive 

a functional equation for G. 
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Lemma 1 

A non-degenerate distribution function G has a non-empty domain of 

r.l.t. attraction if and only if G(x) < 1 for all x and there exists 

a positive function A such that 

(2) 1-G(y+x A(y)) = (1-G(x))(1-G(y)) 

for all positive continuity points x and y of G. 

Proof 

If (2) holds and G(x) < 1 for all positive x, then GED (G) and hence 
r 

G has a non-empty domain of r.l.t. attraction. 

Conversely suppose for some distribution dunction F and for some 

positive function a we have 

( 3) lim Ft(a(t)x) = lim 
t+oo t~ 

1-F(t+x a(t)) = 1-G(x) 
1-F( t) 

for all positive continuity points x of G. Then t+xa(t) + 00 for all 

such x. Replacing t by t+ya(t) in (3) (where y is some positive 

continuity point of G) we get 

lim 
t+oo 

1-F(t+ya{t) + xa(t+y a(t))) = 

1-F(t+y a(t)) 
1-G(x). 

Using (3) this reduces to 

(4) lim 1-F(t+y a(t) + x a(t+y a(t)) )= (,-G(x))(,-G(y)). 
t+00 1-F(t) 

Now we use a device similar to that of the well-known Khinchine-Gnedenko 

lemma (see e.g. [1] p. 246), We shall prove that a(t+y a(t))/a(t) has 

a limit A(y) for all positive continuity points y of Gast+ 00 , 

Suppose for some y there is no limit. Then there exist tweo sequences 

t + 00 

1,n and t 2 . + 00 such that 
,n 

lim 
n+oo 

a(t. + y a(t. )) 
i 2n i,n . __ ...___a_,(_t_. - ... ) __._ ___ = Ai for i = 

i,n 
1 ,2 
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with O ~A1 < A2 ~ m, Because the function a in (3) is defined up to 

an asymptotic equivalence, from (3) it follows 

a( t. + y a( t. ) ) 
1-F(t. + (y + i,n i,n a(t. )) 

lim 
n-+oo 

1 ,n x a( t. ) 1 ,n 
-------------1;..a.;;;an ________ =1-G(y+xA.) 

1 1-F( t. ) 
1,n 

for i = 1, 2 and hence by (4) 

1-G(y + xA~) = 1-G(y + xA2 ) = (1-G(x))(1-G(y)). 

As this is true for all positive continuity points x of G, we must 

have O < A1 = A2 < m, So (2) is true and 

(5) 1 . a( t + y a( t)) = A(y) 
t:! a(t) 

Finally we prove G(x) < 1 for all x. 

Suppose for some positive x0 we have G(x0 ) = 1 and G(x) < 1 for x < x0 . 

Then (2) gives 

y + x A(y) < X 
0 

for all O < x,y < x0 

for all O < y < XO 
.. 

and hence A(y) = 1 - x~ 1y. By (5) we have 

1 . a(t + y a(t)) __ L 
im a( t) -

t+m XO 

Take for ya continuity point of G from (o,x0 ) and t 1 such that for 

t ~ t1 

( 6) 1-F(t + y a(t)) < 1-G(Y/2). 
1-F(t) 

We define the sequence {t} by 
n 

= t + y a(t ) 
n n 

for n = 1,2, •.•• 
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Clearly this sequence is strictly increasing. Suppose t tends to some n 
finite limit K for n ➔ 00 , then 

1-F(tn + y a(tn)) 

lim 1-F( t ) 
n➔00 n 

1-F(tn+ 1) lim 
n➔oo 

= -----,,--.--- = 
1-F ( t ) lim 

n➔oo 
n 

in contradi1:::tion with (6). Hence t ➔ 00 for n ➔ 00 Further we have 
n 

tn+1 - \-i: 
t - t 

= _a.,..( t_n_)__,.. = _a_( t_n_-_1-,-+_y--,-a_( t_n_-_1_)_) ➔ 1 

a(tn-1) a(tn-1) n n-1 

Hence :for n ~ n0 

t -t < (1 _...L.)(t -t ) 
n+1 n 2x0 n n-1 

and by repe19.ted application 

n-no+1 
t - t < ( 1 - ...L.) 

n+1 n 2x0 

Adding thes«~ inequations for n = n0 ' I I I ' 
N we obtain 

N n-no+1 

tN+1 - t < (t - t n -1) I ( 1 - ...L.) 
no no 0 n=n 2xo 

0 

00 n-n +1 
< (t - t ) I ( 1 - ...L.) 0 

no no-1 n=n 
2x0 

0 

L for n ➔ 00 • 

XO 

< 

< 00 

which contradicts tN ➔ 00 for N ➔ 00 , By contradicton we now have proved 

G(x) < 1 for all x. D 

Theorem 1 

The distribution functions with non-empty domain of r,l.t. attraction 

are of the :following types: 

(7) 

with a> O, or 

( 8) 

:: ( X) 
Ct 

TI (x) 
= r --x 

e 

for x < 0 

for x > 0 

for x < 0 

for x > 0. 
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Proof 

Suppose G has a non-empty domain of r.l.t.-attraction. 

First we prove G(O) = 0 and G(x) > 0 for x > 0. By letting x + 0 in 

(2) we easily see G(O) = O. Suppose for some x > 0 we have G(x) = O, 

then from (2) it follows that G(y) = G(y+xA(y)) for all continuity 

points y > 0 and this is impossible. 

Next we write (2) in the following form 

G(y+xA(y))-- G(y) = G(x)(1-G(y)). 

By lemma 1 we have G(y) < 1, hence the righthand side is positive for 

all positive continuity points x and y. Thus G(y) is strictly increas

ing for all positive y. 

Interchanging x and yin (2) we obtain 

G(y+xA(y)) = G(x+yA(x)) 

for all positive continuity points x and y of G. Since G is strictly 

increasing, this gives 

i.e. 

y + xA(y) = x + yA(x), 

A(x)- 1 = constant 
X 

and A has the form 

A(x) = 1 + C , X 

where c is a real number. Substitution in (2) gives 

(9) 1 - G(x+y+cxy) = (1-G(x))(1-G(y)). 
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This relation holds for all positive continuity points x and y of G 

and hence for all positive x and y. 
-1 (i) Suppose c < O. This is impossible because now for y > -c the 

lefthand side of (9) is a decreasing function of x. 

(ij) Suppose c = 0. It is well-known (see e.g. [1] p. 80 that all 

solutions of (9) are of type n. 
~ (iij) Suppose c > 0. Define the distribution function G by 

for x > 1. 

Using the transformation u = cx+1 and v = cy+1 we get from (9) 

1 - G(uv) = (1-G(u))(1-G(v)) 

for u,v > 1. Again from [1] p. 8 we get that G is of type_ for some 
a. 

positive a.. D 

2. The domain of attraction of_ 
a. 

To establish necessary and sufficient conditions for the domain 

of r.l.t. attraction of~ we need two lemma's. a. 

Lemma 2 

Suppose {tn} is an increasing sequence of real numbers. If for some 

positive y 

( 10) 

then 

( 11 ) 

Proof 

t -t 
n+1 n 

lim t -t = 1+y, 
n-+-<» n n-1 

t 
1 . n+1 1m--= 
n-+co tn 

1+y. 

Suppose E > 0. There exists an n0 such that for n ~ n0 we have 

( 1+y-E) ( t -t 1) < t 1 - t < ( 1+y+E) ( t -t 1). n n- n- n n n-
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Adding these inequalities for n = n0 , ..• , N we obtain 

Now (10) implies that tN ➔ 00 for N ➔ 00 • Hence 

tN+1 
1 + y - E < -- < 1 + y + E 

- tN 

and since e: > 0 is arbitrary, ( 11 ) holds. D 

Lemma 3. 

Let Ube a positive non-increasing function on (0, 00 ) and let p be real. 

Suppose that for each a> 1 there exists a sequence {t } diverging to 00 

n 
such that 

U( t ) 
n 

lim sup----) < a 
n➔oo U( tn+1 

and 

U(t x) 
lim _..,_n__,.. = xp 

U(t ) 
n 

for all x > 1, then U varies regularly at infinity with exponent P, i.e. 

( 12) 

for all 

Remark 

lim U( sx) = xp 
U( s) 

5➔00 

X > 0. 

For definition and properties of regularly varying functions see e.g. 

[3]. 

Proof 

Suppose a> 1. Let {tn} be a sequence of real numbers such that tn ➔ 00 

for n ➔ 00 and 

TJ( t ) 
n 

lim sup ( ) < a. 
n➔oo U tn+1 
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Fors> 0 we choose n(s) such that 

Then for all x > 

Hence 

we have by the monotonicity of U that 

U(tn(s)+1 'x) < U(sx) < U(tn(~) .x) 

U(tn(s)+ 1) - U(s) - U(tn(s)) 

U(tn(s)) 

U(tn(s)+1) 

Since a> 1 is arbitrary this proves (12) for x > 1, which clearly im

plies (12) for all positive x. D 

Theorem 2 

A distribution function F with F(x) < 1 for all real x belongs to the 

domain of r.l.t.-attraction of_ if and only of 1 - Fis regularly 
a 

varying at infinity with exponent -a. 

Proof 

Suppose 1 - Fis (-a)-varying at infinity i.e. for all positive x 

lim 1-F(tx) = 
1-F(t) 

t➔oo 

-a 
X 

Then clearly (3) holds with a(t) = t and G =:: . 
a 

Conversely suppose that for some positive function a(t) we have 

( 13) 11·m 1-F(t+xa(t)) = 1 _ -;:; ( ) = ( 1 )-a 
1-F(t) -a x +x 

t➔oo 

for all x > 0. From (5) we obtain 

( 14) lim a(t+ya(t)) = 
a(t) A(y) = l+y 

for ally> 0. Fix y > 0. We choose t 1 such that 
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1-F(t+ya(t)) < ( 1+Y/ 2 )-a < 1 
1-F( t) 

co 

fort.::_ t 1. We now define the sequence {tn}n= 1 by 

( 16) t 1 = t + ya(t ) n+ n n for n = 1 , 2, ... 

First we show t ➔ co, Clearly the sequence is strictly increasing. n 
Suppose lim t = K < co, then n 

1-F(tn+ya(tn)) lim 1-F(tn+1) 
n➔co lim ---.,...--,--- = ---,----,,-~ = 

1 F(t ) lim 1-F(t ) n➔co - n n 
n➔co 

in contradiction with (15), Hence tn ➔ co 

we see that 

for n ➔ 00 From ( 1 Jn and ( 16 ) 

t -t n+1 n 
t -t 

n n-1 

a( t ) 
n = ......,..(--....-) ➔ 1+y 

a tn-1 

and hence by lemma 2 

t 
. n+1 1 lim -t- = +y. 

n➔co n 

With (16) this gives 

a( t ) 
n lim --- = 1, 

n➔co tn 

for n ➔ co 

hence (as the function a(t) in (13) is defined up to an asymptotic 

equivalence) 

( 17) 
1-F(t ( 1+x)) 

lim ___ n~--.-- = ( 1+x) -a 
1-F( t ) 

n➔co n 

for x > O. Application of lemma 3 to (13) and (17) shows that 1 - F 

is (-a)-varying at infinity. D 



3. The domain of attraction of IT 

Again we first state a lemma. 

Lemm.a 4 
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If a distribution function F with F(x) < 1 for all real x belongs to 

the domain of r.l.t.~attraction of IT, then 

( 18) 

Proof 

lim 1-F(t-O) = 1. 
t-+oo 1-F( t) 

Suppose F € Dr(Il) and (18) does not hold. Then there exist a sequence 

(19) 

for n ➔ 00 and a constant 1 < c 

1-F(s -0) n lim --....-..-- = c • 
n-+oo 1-F(sn) 

< 00 such that 

Fix y such that 0 < y < log c. Since F € Dr(IT), by (3) there exists 

a t 1 such that 

1-F(t+ya(t)) < e-y/2 < 1 
1-F(t) 

for t ~ t 1 • We define the sequence { tm} by 

(20) t = t + ya(tm) m+1 m form= 1, 2, ••• 

In the same way as in the proof of theorem 2 we can show that t ➔ 00 
m 

form ➔ 00 • We define a subsequence {m{n)} of the positive integers such 

that 

t < s < t . m(n)-1 n - m(n) 

By .the monotonicity of F we have 
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By (3) and (20) the righthand member tends to ey < c and hence (19) 

cannot be true. D 

Now we characterize Dr(TI) by specifying the auxiliary function a 

in ( 3). 

Theorem 3 

If a distribution function F with F(x) < 1 for all real x belongs to 

the domain of r.l.t. attraction of TI, then 1: tdF(t) <~and 

(21) lim 1-F( t+xa(t)) -x 
1-F(t) = e 

t-+oo 

for all real x with I: ( 1-F( s )ds 

(22) a(t) = 1-F(t) 

Proof 

Suppose F €· Dr(TI). We define the function U by 

U(s) = inf{zj1-F(z)~s} 

We shall prove 

(23) 1 . U(sx)-U(s) = 
s~~ U(sy)-U(s) 

log x 
logy 

for O < s < 1. 

for all x,y > 0 (y~1), 

then by the theorems 2.4.1 and 2.5.1 of [3] we have (21) with (22). 

From the definition of U it follows 

(24) 1 - F(U(s)) < s < 1 - F(U(s)-0) 

and hence by lemma 4 

lim 1-F(U(s)) 1. 
s-1-0 s 
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If we replace t by U(s) in (3), it follows 

lim 1-F(U(s)+xa(U(s))) = 
s+O 1-F(U(s)) 

lim 1-F(U(s)+xa(U(s))) = 

s-10 s 

-x 
e 

for x > O. Hence for positive x and E there exists an s 0(x,E) such that 

for S .::__ s0 (x,E) 

(25) s- 1{1-F(U(s)+(x+E)a(U(s)))} < e-x < s- 1{1-F(U(s)+(x-E)a(u(s)))}. 

On the other hand by ( 24) we have 

(26) 1 X -X -1 -X } s- {1-F(U(se- ))} ~ e ~ s {1-F(U(se )-0) . 

Combining (25) and (26) we get 

U(s) + (x-E) a(U(s)) < U(se-x) ~ U(s) + (x+E) a(U(s)), 

hence 

1 . U(se-x)-U(s) 
s~~ a(U(s)) 

= X 

for all positive x. So for all x and y from (0, 1) we have (23). As it 

is shown in the proof of theorem 2.4.1 of [3], this implies the validity 

of (23) fo:r all positive x and y (y;z!1). D 

Remark 

We have thus shown that FE Dr(IT) if and only if there exist sequences 

of real nwnbers an> 0 and bn such that 

for all real x. A similar remark can be made concerning the domain of 

r.t.l. attraction of 
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4. Equivalence of weak convergence and moment convergence 

In this section we state the conditions for the domains of attrac

tion 1n an alternative form using certain moments of the distributions. 

Lemma 5, 

Suppose F :Ls a distribution function with F(x) < 1 for all x and a 1s a 

positive constant. 

a) If 1- F varies regurlarli 

E; from (O,cx) the integral J 
roo 0 

at infinity with exponent -a, then for all 

xE;dF(x) converges and 

J yE;dF(y) 
lim _x ____ = (1-t;/a)- 1. 
x+°° xf;{1-F(x)} 

b) If for some E; > 0 and c > 
roo 

1 the integral J00 

xE;dF(x) converges and 
0 

J yE;dF(y) 
X lim ----- = c, 

x+00 xf;{ 1-F(x)} 

then 1 - F varies regularly at infinity with exponent - E;c(c-1)- 1. 

Proof 

Partial integration of the numerator gives 

J00 

yr,dF(y) J00 

YE;- 1{1-F(y)}dy 
X X 
----- = t; --------- + 1. 
xf;{i-F(x)} xf;{1-F(x)} 

The statement of the lemma now follows from Karamata's theorem for 

regularly varying functions (see e.g. [3] theorem 1.2.1 and remark 

1.2.1). □ 

Theorem 4 

Suppose X :Ls a real-valued random variable with distribution function F 

and F(x) < 1 for all real x. 

a) (i) If ]:i' ED(::), i.e. if r Cl 

lim P{x > x I X > t} = _ (x-1) 
t-+oo t Cl 
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for all x > O, then for all O <~<a the integral J: y~d.F(y) converges 

and 

(ij) If for some~> 0 the integral J: y~d.F(y) converges and for some 

C > 1 

lim E((x)~ I x > t) = c, 
t-+oo t 

then FED (3) with a= ~c(c-1)- 1. r a 

b) We have FED (IT), i.e. r 

. {X-t I } ( ) !!: P a(t) > x X > t = IT X 

for all positive x with (by theorem 3) 

J:{1-F(s)}ds 

a(t) = ( ) = E(X - t I X > t) 1-F t 

if and only if J: x2dF(y) converges and 

. ( ( X-t ) 2 I ) Joo 2 ( ) !.!: E a(t) X > t = O x dIT x = 2. 

Proof 

a) This part is a simple consequence of theorem 2 and lemma 5, 

b) By theorem 3 and the theorem 2.5.1 and 2,5,2 of [3] we have 

FED (IT) if and only if r 

{1-F(t)}{J
00 f00 

(1-F(s))dsdv} 
11.m t V ------------- = 1. 

t-+oo {I: (1-F(s))ds} 2 
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By partial integration we obtain 

and 
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