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Introduction

Consider a light bulb. It has a certain life time X, which is a random
variable with probability distribution function F. After having burned
t hours, there remains a residual life time, with a distribution function

Ft defined by
(1) 1-Ft(x)=P{X-t>x|X>t}°

The residual life time is a random varisble Xt which is defined on the

conditional probability space {X > t}.
-AX

If X has an exponential distribution F(x) = 1-e ", then so has
Xt' Indeed
e-k(X+t) -AXx
1 - Ft(X) =P {X>zx+t | X>t}= T =°¢ .

It is wellknown that this characterizes the exponential distribution:

Ft =F_ for all t > 0 implies that F.(x) = 1-e_>\X for some A > O.

Ig this paper we shall be concegned with the limit behaviour of
the residual life time for t - «: For which distribution functions F
does there exist a norming function a(t) such that Xt/a(t) converges
in distribution to a random variable with non-degenerate distribution
function G?; What are the possible limit distributions G? (section 2);
what are their domains of attraction? (section 3). In section 4 we prove
the remarkable fact that in this situation weak convergence is equivalent
to the convergence of some positive moment.

One of the reasons for publishing these investigations is that they
give a probabilistic interpretation of the fundamental properties of
regularly varying functions.

Although the label '"residual life time" gives clear intuitive
meaning to the random variables Xt~associated with the distribution functions
Ft defined above,the field of applications of this theory in probability
theory is much wider. In many cases one is not so much interested in all
values of a random variable X as in extremely large values (for instance
in the study of heat-waves or storms). One restricts one's attention to
the subset {X > t} i.e. to the set of large values of X and in fact one is
studying the limit behaviour of the probability distributions Ft defined

above.
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Results and techniques from extreme value theory are used. The

possible limit types for Xt are

0 for x < 0
= (x) =
@ -a
1-(1+x)™" for x > 0,
0 for x < 0
I (x) =
1 - ex for x > 0,

where o is & positive constant. The domains of attraction of these
distribution functions are exactly the domains of attraction of the
well-known (see [2]) limit distributions ¢, and A of the partial
maxima of i.i.d4. random variables.

If we allow as norming functions for Xt both a scale transformation
a(t) and a shift b(t), then it is possible to obtain limit distributions
of (Xt-b(t))/a(t) which are discrete. This remarkable result is closely
linked to the problem of convergence of (Xt-b(t))/a(t) where t tends
to infinity through some discrete subset of R'. The necessary theory to
tackle this more general situation is being developed by A.A. Balkema
(who also suggested the problem of limit distributions for residual
life times). We hope to publish the theory in the general situation

in a subsequent paper.

The possible limit distributicns

We say that the distribution function F is in the domain of r.l.t.
attraction of a non-degenerate distributions function G (notation
F e Dr(G)) if for some positive function a and all continuity points

x of G

lim F, (a(t)x) = G(x)
tow

where Ft is defined by (1). To find the possible limit laws G we derive

a functional equation for G.



Lemma 1
A non-degenerate distribution function G has a non-empty domain of
r.l.t. attraction if and only if G(x) < 1 for all x and there exists

a positive function A such that
(2) 1-G(y+x A(y)) = (1-G(x))(1-G(y))
for all positive continuity points x and y of G.

Proof
If (2) holds and G(x) < 1 for all positive x, then G € Dr(G) and hence
G has a non-empty domain of r.l.t. attraction.

Conversely suppose for some distribution dunction F and for some

positive function a we have

(3) lim Ft(a.(t)x) = lim = 1-G(x)

1> 1>

for all positive continuity points x of G. Then t+xa(t) > « for all
such x. Replacing t by t+ya(t) in (3) (where y is some positive

continuity point of G) we get

1-F(t+ya(t) + xa(t+y a(t)))

lim = 1-G(x).
oo 1-F(t+y a(t))
Using (3) this reduces to
(u) 1ip 1=Ety a(t) » x ety a(t))) (4 5(4)) (1-c(y)).

troo 1-F(t)

Now we use a device similar to that of the well-known Khinchine-Gnedenko
lemme (see e.g. [1] p. 2L46). We shall prove that a(t+y a(t))/a(t) has

a limit A(y) for all positive continuity points y of G as t + =.

Suppose for some y there is no limit. Then there exist tweo sequences

t -+ o gnd t - « guch that
Tsn 2,n
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with O <A, <A, <= Because the function a in (3) is defined up to

an asymptotic equivalence, from (3) it follows

a(t. + ¥y a(t. ))
_ i,n i,n
1 F(ti,n + (y + x a(ti n) a(ti’n))
lim B
n-o 1-F(t. )
i,n

for i = 1, 2 and hence by (k4)
1-G(y + xA,) = 1-G(y + x4,) = (1-G(x)) (1-G(¥)).

As this is true for all positive continuity points x of G, we must

have 0 < A1 = A2 < o, S0 (2) is true and

a(t + y a(t))
a(t)

(5) 1lim

t£>0

= A(y)

Finally we prove G(x) < 1 for all x.

Suppose for some positive x. we have G(x.) = 1 and G(x) < 1 for x < x..

0 0 0

Then (2) gives

vy + x A(y) < %, for all 0 < x,y < x|

Y+ xg A(y) 2 %y for all 0 <y < x,
8
and hence A(y) = 1 - x51y By (5) we have

1im a(t +(¥)a(t)) =1L

t> a Xo

Take for y a continuity point of G from (O,xo) and t1 such that for
t 3_t1

(6) ey elt)) < g2,

We define the sequence {tn} by

toq = to+y a(tn) forn = 1,2,...
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Clearly this sequence is strictly increasing. Suppose tn tends to some

finite limit K for n = «, then

lim 1-F(t )

e

11 1 ‘tn Yy a(tn)) _ nt1 1
f.f 1=F(t_) T 1im 1-F(t )

n n n n

in contradiction with (6). Hence tn + » for n > «, Further we have

tn+1 B tn _ a(tn) _ a(tn—1 Y a(tn-1)) > 1 y;_f
t -t Talt. L) a(t_ .) mx torm T
n n-1 n-1 n-1 0
Hence for n zn,
RS (- Eﬁg)(tn - tn—1)
and by repeated application
n—n0+1
tn+1 - tn < (1 - 2xo) (tno - tno—1)'
Adding these inequations for n = Dyseees N we obtain
N n—n0+1
w1 7 g g 7 tage) ,n.z.no T E) -
< © n—n0+1
= ny tno”) nZnO - 2"0) o

which contradicts tN + o for N - «, By contradicton we now have proved

G(x) < 1 for all x. O

Theorem 1
The distribution functions with non-empty domain of r.l.t. attraction

are of the following types:

0 for x < O
(7) =, (x) = .

1 = (1+x) for x > 0
with o > 0, or

0 for x < 0
(8) m(x) =

j - e for x > 0.



Proof

Suppose G has a non-empty domain of r.l.t.-attraction.

First we prove G(0) = 0 and G(x) > O for x > 0. By letting x + 0 in
(2) we easily see G(0) = 0. Suppose for some x > 0 we have G(x) = O,
then from (2) it follows that G(y) = G(y+xA(y)) for all continuity
points y > O and this is impossible.

Next we write (2) in the following form
G(y+xA(y))- - a(y) = a(x)(1-G(y)).
By lemma 1 we have G(y) < 1, hence the righthand side is positive for
all positive continuity points x and y. Thus G(y) is strictly increas-
ing for all positive y.
Interchanging x and y in (2) we obtain

G(y+xA(y)) = G(x+yA(x))

for all positive continuity points x and y of G. Since G is strictly

increasing, this gives

v + xA(y) = x + yA(x),

ALE%:l = constant

and A has the form

where ¢ is a real number. Substitution in (2) gives

(9) 1 = G(xt+y+exy) = (1-G(x))(1-G(y)).
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This relation holds for all positive continuity points x and y of G
and hence for all positive x and y.
(i) Suppose ¢ < 0. This is impossible because now for y > —~" the
lefthand side of (9) is a decreasing function of x.
(ij) Suppose ¢ = 0. It is well-known (see e.g. [1] p. 8) that all
solutions of (9) are of type I.
(iij) Suppose ¢ > 0. Define the distribution function G by

x-1

6(x) = 6(*7) for x > 1.

Using the transformation u = cx+1 and v = cy+1 we get from (9)

~

1 - Gluv) = (1-G(u)) (1-G(v))

for u,v > 1. Again from [1] p. 8 we get that G is of type g, for some

positive o. U

2. The domain of attraction of Ea

To establish necessary and sufficient conditions for the domain

of r.1.t. attraction of Ea we need two lemma's.

Lemma 2
Suppose {tn} is an increasing sequence of real numbers. If for some

positive y

t +1-tn
(10) lim 25— = 14y,
n> n n-1
then
t +1
(11) lim 2 = 1+y.
n+oo n
Proof

Suppose € > 0. There exists an g such that for n > n. we have

0

(1+y—s)(tn-t ) <t -t < (1+y+e)(tn-t ).

n-1 n-1 n-1
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Adding these inequalities for n = Nys oo N we obtain
- — - -+ -
(1+y e)(tN t) _1) Sty m b, < (1+y 6)(tN t _1).
0 0 0
Now (10) implies that t,, - » for N + =, Hence

N
t

1+y-¢€< ! < T +y+e

N
and since € > 0 is arbitrary, (11) holds. [
Lemma 3.
Let U be a positive non-increasing function on (0,») and let p be real.

Suppose that for each o > 1 there exists a sequence {tn} diverging to «

such that

U(t_)

and

for all x > 1, then U varies regularly at infinity with exponent p, i.e.

(12) lim E%%ﬁ%_= <"

g—>®

for all x > O.

Remark
For definition and properties of regularly varying functions see e.g.

[31.

Proof
Suppose o > 1. Let {tn} be a sequence of real numbers such that tn > ©

for n > » and

lim sup
n->-
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For s > 0 we choose n(s) such that
n(s)+1°

th(s)i5<t

Then for all x > 1 we have by the monotonicity of U that

U(tn(s)+1) U(1’-'n(s)+1'X) U(sx) u(e

' ) ) n(g)'x) . U(tn(s))
U(tn(s)) U(tn(s)H) - U(s) — U(tnCS))v U(tn(s)_”)
Hence
o %P j_lig;inf Ué?zg g.lig;iup Ué?:;.i ax’.

Since o > 1 is arbitrary this proves (12) for x > 1, which clearly im-

plies (12) for all positive x. [

Theorem 2
A distribution function F with F(x) < 1 for all real x belongs to the
domain of r.l.t.-attraction of Eu if and only of 1 - F is regularly

varying at infinity with exponent -a.

Proof

Suppose 1 - F is (-a)-varying at infinity i.e. for all positive x

1-F(tx) _ -o

lim T-F(t)

t>c0

Then clearly (3) holds with a(t) =t and G =

{1

a
Conversely suppose that for some positive function a(t) we have

1=F(trxa(t)) o g oz () = (14x

1-F(t) - o] )~

(13) lim

t>o

for all x > 0. From (5) we obtain

(14) 1in 280D < p(y) = 14y

£t

for all y > 0. Fix y > 0. We choose t, such that
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1-F(t+ya(t)) -a
+Y /¢
(15) Lerre(e)) o (147/2)™ < 4
for t > t,. We now define the sequence {tn}:=1 by
(16) e =ty t ya(tn) forn=1, 2, ...

First we showltn + o, Clearly the sequence is strictly increasing.

Suppose lim tn = K < «», then

e lim 1-F(t_, )
im i-
Lin 1-F(t +ya(t )) e n+1 1
n 1-F(tn) iig 1—F(tn)

in contradiction with (15). Hence t, >« for n > o, From (1%) and (16)

we see that

tn+1—tn _ a‘(tn)

tn-—tn_1 a(t

) > 1+y for n > «

and hence by lemma 2

. +
lim E !
n>« n

With (16) this gives

a(tn)
t
n

lim
n->oo

=‘]’

hence (as the function a(t) in (13) is defined up to an asymptotic

equivalence)

(17) lim

for x > 0. Application of lemma 3 to (13) and (17) shows that 1 - F

is (-a)-varying at infinity. O
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3. The domain of attraction of I

Again we first state a lemma.

Lemma L4
If a distribution function F with F(x) < 1 for all real x belongs to

the domain of r.l.t.-attraction of M, then

. 1=F(t-0) _
(18) iiﬁ ) 1.
Proof

Suppose F € Dr(H) and (18) does not hold. Then there exist a sequence
{sn} with s > © for n > = and a constant 1 < ¢ < = such that

1-F(sn-0)

(19) lim ————— = c.
e 1-F(sn)

Fix y such that O < y < log c. Since F € Dr(H), by (3) there exists

a t1 such that

1-F(t+ya(t)) < e—y/2 < 1

1-F(t)
for t > t,. We define the sequence {t } by
(20) e St * ya(tm) form=1, 2, ...

In the same way as in the proof of theorem 2 we can show that tm >
for m + ». We define a subsequence {m(n)} of the positive integers such

that

By the monotonicity of F we have

1-F(s =0)  1-F(t ;)
T=F(s,) =~ 1=F(ty 3] °
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By (3) and (20) the righthand member tends to e’ < ¢ and hence (19)

cannot be true. [

Now we characterize Dr(H) by specifying the auxiliary function a

in (3).

Theorem 3

If a distribution function F with F(x) < 1 for all real x belongs to
tdF(t) < « and

the domain of r.l.t. attraction of II, then

0

(21) lim 1'F§t;?:§t)) =¥

{0 -
for all real x with

(1-F(s)ds
_ 't

(22) a(t) = 1-F(t)
Proof

Suppose F ¢ Dr(H). We define the function U by
U(s) = inf{z|1-F(z)<s}

We shall prove

U(sx)-U(s) _ log x
U(sy)-U(s) ~ log y

(23) lim
s¥0

then by the theorems 2.4.1 and 2.5.1 of [3] we have (21) with (22).

From the definition of U it follows
(24) 1 - F(U(s)) <s <1 - F(U(s)-0)

and hence by lemma U

1-F(U(s)) _
S

lim
sY0

for 0 < 8 < 1.

for all x,y > 0 (y=1),
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If we replace t by U(s) in (3), it follows

1-F(U(s
1

. )+xa(U(s)))
1 =
510 (U(s))

for x > 0. Hence for positive x and € there exists an s.(x,e) such that

o!
for s 2 sq(x,€)

(25) s—1{1—F(U(s)+(x+€)a(U(s)))} < e ¥ < S—T{1—F(U(s)+(x—€)a(u(s)))}.
On the other hand by (24) we have
(26) sT {1-F(U(se¥))} < e™® < 57 {1-F(u(se ¥)-0)}.

Combining (25) and (26) we get

U(s) + (x-€) a(U(s)) < U(se™) < U(s) + (x+e) a(U(s)),

hence

-X
1lim U(SZ(UE
s¥0

-U(s) _
s)) x
for all positive x. So for all x and y from (0,1) we have (23). As it

is shown in the proof of theorem 2.4.1 of [3], this implies the validity
of (23) for all positive x and y (y#1). O

Remark
We have thus shown that F € Dr(H) if and only if there exist sequences
of real numbers a, > 0 and bn such that
lim F%(a x+b ) = exp(-e™ %)
n>o° n .
for all real x. A similar remark can be made concerning the domain of

r.t.1l. attraction of Ea'
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4. Equivalence of weak convergence and moment convergence

In this section we state the conditions for the domains of attrac-

tion in an alternative form using certain moments of the distributions.

Lemma 5.
Suppose F is a distribution function with F(x) < 1 for all x and o is a
positive constant.

a) If 1- F varies regurlarly at infinity with exponent -o, then for all
g€

g from (0,a) the integral x°dF(x) converges and
(® ¢ 0
| vaE)
lim X = (1-£/a)7 ",

oo x°{1-F(x)}

o]

b) If for some £ > 0 and ¢ > 1 the integral J xng(x) converges and
0

Jw y°aF(y)

. X
lim —— = ¢,

x> x5{1fF(x)}

then 1 - F varies regularly at infinity with exponent - Ec(c-1)_1.

Proof

Partial integration of the numerator gives

J yoar(y) j v 1-F(y) tay
X X

5 = g + 1.
x°{1-F(x)}

xP{1-F(x)}

The statement of the lemma now follows from Karamata's theorem for
regularly varying functions (see e.g. [3] theorem 1.2.1 and remark
1.2.1). 0O

Theorem U4

Suppose X is a real-valued random variable with distribution function F
and F(x) < 1 for all real x.

a) (i) If F € Dr(:a)’ i.e. if

lim P{% >x |.X >t} = E, (x=1)

£t
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[oo]

for all x > 0, then for all O < £ < a the integral J yng(y) converges

and 0

lim E((%)g | x> t) = J xaz
oo 0

x-1) = (1-E/a)‘1.

{o0]

(ij) If for some & > 0 the integral f yng(y) converges and for some

c > 1 0
1im B((3)® | X >t) =c,
t—>oo t
then F € Dr(Ea) with o = 6c(c-1)_1.
b) We have F ¢ Dr(H), i.e.
) X-t _
lim P{a(t) >x | X >t} = I(x)

>

for all positive x with (by theorem 3)

o]

{1-F(s)l}ds
alt) = = e S EX -t | x>t

{o o]

if and only if J xng(y) converges and
0

1in BT | x> ¢) = J fan(x) = 2.
tooo 0

Proof

a) This part is a simple consequence of theorem 2 and lemma 5.
b) By theorem 3 and the theorem 2.5.1 and 2.5.2 of [3] we have
F e Dr(H) if and only if

(o]

{1—F(t)}{J f (1-F(s))dsdv}
t ‘v

lim — = 1,
e {J (1-F(s))ds}?
t
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By partial integration we obtain

J J (1-F(s))dsav = % J (s—t)zdF(s)
t ‘v t
and -
J (s-t)%aF(s) v 5
: Xt 121 goiy o g SE {(1=-F(t)3}° -
tiﬁ E((—'—‘a(t)) |x>t) = %ig T O . — > " 2. 0
{J (1-F(s))ds}
t
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