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PREFACE 

This book is an almost exact copy of the authors' dissertation, written under 

supervision of Prof.Dr. P.C. Baayen and Dr. J. de Vries, presented in Amster

dam at the Vrije Universiteit in 1982. 

The subject matter consists of several topics from abstract topological dynam

ics that are closely related to the structure theory for minimal sets. By no 

means is it intended to be complete (for instance the reader will look in vain 

for topics like skew products and cohomology). The central themes are: 

a) quasifactors of minimal ttgs 

b) (weak) disjointness of homomorphisms of ttgs 

c) the equicontinuous structure relation. 

The notion of a minimal transformation group has existed as such for more 

than 50 years, but the structure theory is quite a young branch of mathemati

cal research. Mainly under the influence of J. AUSLANDER, R. ELLIS and H. 

FURSTENBERG that theory arose in the sixties and, supplemented by the works 

of, among others, s. GLASNER, D.C. McMAHON, W.A. VEECH and T.S. Wu, it 

was developed further in the seventies. In the framework of this book it is 

unfeasible to draw a complete picture of the history of the subject. However, 

arguments concerning readability and notation and also the need for a con

sistent reference called for an extensive introduction in the form of chapter I. 

This chapter also contains some easy thoughts about semi-openness of 

homomorphisms that are helpful in the chapters IV and VIL 

In chapter II the action on the hyperspace is introduced as are quasifactors 

and the circle operation. 

The third chapter, as well, is chiefly introductory. The main theme here is to 

determine the equicontinuous structure relation in situations with enough 

almost periodicity to use the 3-topologies as introduced by H. FURSTENBERG 

.in [F 63]. The purpose of this chapter is not only the introduction of the 

necessary notions but also the unification of the current approaches. The 

fourth and fifth chapters are devoted to a special form of proximality: high 

proximality. In chapter IV the highly proximal extensions themselves are 



being studied. In particular, the lifting of homomorphisms to open homomor

phisms through highly proximal extensions is being considered as in the ques

tion of what kind of properties are invariant under this process. Moreover, 

some attention is paid to the Maximal Highly Proximal extension of a minimal 

ttg. In chapter V this will be studied more deeply by considering the structure 

of MHP generators. These MHP generators are certain closed subsets of the 

universal minimal ttg generating the MHP extensions as quasifactors. The 

MHP generator that generates the universal HPI ttg is constructed. 

Disjointness and disjointness relations are the main subject of chapter VI. 

Two minimal ttgs are called disjoint if the cartesian product again is minimal. 

A typical result for this chapter is PinPJ.. c;Dl..J.. in words: a minimal PI ttg 

which is disjoint from every minimal proximal ttg also is disjoint from every 

minimal ttg that is disjoint from every minimal distal ttg. The results are put 

together in two pictures. The results are also applied to the question whether 

or not two minimal ttgs are disjoint if they do not have a common nontrivial 

factor. 

In chapter VII weak disjointness is being considered (two minimal ttgs are 

called weakly disjoint if the cartesian product is ergodic). An important role is 

played by homomorphisms with an additional measure structure: RIM exten

sions. Among others it is shown that for open RIM extensions of minimal ttgs 

the regionally proximal relation is an equivalence relation. Another question 

that is dealt with is to what extent weak disjointness of homomorphisms is 

implied by the disjointness of their maximal almost periodic factors. 

The final chapter is mainly devoted to a study of a sharp form of regional 

proximality. In particular, the question is studied whether or not the equality 

of the regionally proximal relation and the sharply regionally proximal relation 

implies that the regionally proximal relation is an equivalence relation. The 

answer turns out to be the affirmative if the extension is open and also if the 

spaces are metric. 

The chapters IV and V contain the results of research done in collaboration 

with J. AUSLANDER [AW81], and the results in chapter VIII and in VIl.3. 

have been obtained together with J. AUSLANDER, D.C. McMAHON and T.S. 

Wu [AMWW?]. Reading through the text one will encounter the reference 

[VW?]. This concerns a not yet existent book, to be written by J. DE VRIES 

(originally planned to be written by J. DE VRIES and the present author). In 

that monograph the preliminaries for the structure theory will be dealt with in 

detail. It will also contain the results on the structure of minimal ttgs known 

up to the present day. After its completion, it will be a good introduction to 

the present book. 
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I 

BASICS, PRELIMINARIES AND GENERALITIES 

I. transformation groups 

2. the universal ambit 

3. fibered products 

4. miscellanea 

5. remarks 

The branch of mathematics called topological dynamics mainly emerged from 

the qualitative theory of differential equations. It studies classical dynamics 

from a topological point of view. This development was initiated by 

H. POINCARE and carried on by G.D. BIRK.HOFF in the first decades of this 

century [Bi 27). The latter explicitly generalized notions from the qualitative 

theory of autonomous differential equations to those for one parameter 

groups of transformations on abstract spaces. To him we owe notions like 

minimality and recurrence. 
At about the same time the study of geodesics lead to the concept of sym

bolic dynamics ([H 98), [Mo 21,66)). Other related branches of mathematics 

at that time were the theory of measure preserving transformations and that 

of almost periodic functions. 
At the end of the forties W.H. GOTISCHALK and G.A. HEDLUND generalized 

the classical dynamical systems to arbitrary topological transformation 

groups (i.e., actions of arbitrary topological groups on arbitrary topological 

spaces) thus unifying many aspects of the mathematics mentioned above 
[GH 55). 

From 1960 on the activity in the field of topological dynamics grew rapidly 

under the impact of the work of R. ELLIS and H. FURSTENBERG. 

As our main interest is the structure theory of minimal transformation groups 

and their classification, this presentation of the basics of topological dynamics 
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and its concepts is chosen from that point of view. We do not pretend any 
completeness, in fact we try to omit everything not strictly needed for our 
purposes. 
In the first section of this chapter we present the basic definitions of transfor
mation groups and of several dynamical notions, with some of their most 
important properties. The second section deals with the algebraic approach 
to the asymptotic behavior of the action of a certain topological group T as 
developed mainly by R. ELLIS ; i.e., we discuss or rather picture the semi
group action of the universal ambit ~ for T . In section 3. we shall 
prepare us for the comparison of transformation groups with each other (or, 
rather, that of homomorphisms of topological transformation groups with the 
same codomain), e.g. see IV.4. and VII.3 .. 

If references are given, we let references to monographs prevail above others. 
The reader is assumed to be familiar with standard notions in general topol
ogy such as can be found in [Wi 70], [Du 66] and [Kl 55]. 

1.1. TRANSFORMATION GROUPS 

In this section we shall define some basic notions in topological dynam
ics, as far as they are of interest for our purposes, which is mainly the 
structure theory of minimal transformation groups. No efforts to com
pleteness and selfcontainedness are made; on the contrary, as the 
material is completely standard only the most urgently needed concepts 
and properties are discussed. The reader interested in details or eager for 
the motivation of this kind of mathematics is referred to such well organ
ized texts as [B 75179], [E 69] and [VW ?]. 

A topological transformation group (ttg for short) is a triple < T, X, 7T > , 
where T is a topological group, the phase group; X is a nonempty topologi
cal space, the phase space; and 7T: T X X ~ X , the action, is a (jointly) con
tinuous map, such that 

a) 7T(e,x) = x for every x EX, where e ET is the unit element; 
b) 7T(s,7T(t,x))=7T(st,x) for every xEX and s,tET. 

If T is a topological group then Td denotes the topological group with the 
same underlying group as T , but provided with the discrete topology. 
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Clearly, if < T,X,.,, > is a ttg, then < Td ,x,.,, > is a ttg too. 

Let < T,X,.,, > be a ttg. Then the map .,,, : X ~x defined by 

'1T 1(x): = '1T(t ,x) (x EX) is a homeomorphism and (.,, 1y- = .,,,-i for 

every t E T . So we can consider T as a topological homeomorphism 

group for X. The map "'x: T ~x defined by '1Tx(t) = '1T(t ,x) (t ET) 

is a continuous map for every x EX . We call "'x [T] the orbit of x , and 

"'x [T] the orbit closure of x . 

Unless stated otherwise, we assume T to be an arbitrary, but fixed, Haus

dorff topological group; the phase space X of a ttg < T, X,.,, > will 

always be a compact Hausdorff (CT2) space with unique uniformity 6>Lx • 

Whenever misunderstanding is unlikely, which is almost always the case, we 

shall suppress the action symbol and write the action as a "multiplication". 

So tx: = '1T(t ,x) for every x EX , t ET ; then the axioms for a ttg (apart 

from continuity) can be expressed as follows: 

a) ex = x for every x E X , where e E T is the unit element in T ; 

b) s(tx) = (st)x for every x EX, s,t ET. 

As a consequence, the orbit and orbit closure of x are denoted by Tx and 

Tx respectively. 

The phase group and the action being understood, we shall denote a ttg by 

its phase space only, but in a different font (script capitals). Thus 'X will 

always denote the ttg with X as a phase space and (the fixed) phase group 

T (if misunderstanding is unlikely). 

A subset A of X is called (T-) invariant .if 

TA ={ta itET,aEA}kA 

A is called minimal if A is nonempty, closed and T-invariant and A is 

minimal under that condition; i.e., if B k X is nonempty, closed and T

invariant, and if B k A , then B = A . 

Clearly, if A is T-invariant then A =TA , and the sets A 0 , A and 

X \A are easily seen to be T -invariant. If A is a nonempty closed invari

ant subset of X , then we may restrict the action of T on X to an action 

of T on A ; i.e., lt:= < T,A,'lTlrxA > is a ttg. Such a ttg lt is called 

a subttg of 'X . A ttg 'X is called minimal, if X is a minimal subset of X , 

and so 'X is minimal iff 'X does not have nontrivial subttgs. Note that by a 

straightforward application of Zorn's lemma it follows that every ttg has a 

minimal subttg. 
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1.1. THEOREM. Let ~ be a ttg. The following statements are equivalent: 
a) ~ is a minimal ttg; 
b) every x EX has a dense orbit; i.e., X = Tx for every x EX; 
c) X =TU for every nonempty open set UC X; 
d) for every nonempty open U C X , there is a finite subset F C T 

with X =FU. D 

A nonempty closed invariant subset A of X is called point transitive if 
there is an a EA such that A =Ta ; and such a point a is called a tran
sitive point for A . In addition, ~ is called a point transitive ttg if X is a 
point transitive subset of X . Obviously a minimal ttg is point transitive and 
every point in its phase space is a transitive point. 
A nonempty closed invariant subset A of X is called ergodic if A does not 
have a proper invariant closed subset with nonempty interior (in A ); and a 
ttg ~ is ergodic if X is an ergodic subset of X . We could paraphrase this 
by saying that ~ is ergodic if ~ does not have a proper "substantial" 
subttg. Clearly every point transitive ttg is ergodic; hence every minimal ttg 
is ergodic. Under several conditions the converse is true (see 1.2.b resp. 1.17.) 
but not always (see 4.9. resp. II.1.10,11.). 

1.2. THEOREM. Let ~ be a ttg._ 
a) ~ is ergodic if! X = TU for every nonempty open U c; X if! for 

all nonempty open U and V in X there exists a t E T with 
UntV =I=- 0. 

b) If X has a countable pseudobase, the following statements are 
equivalent: 
(i) ~ is ergodic; 
(ii) ~ is point transitive; 
(iii) there is a dense G 6-set of transitive points in X . 

[Note that a collection '!B of open sets in X is called a pseudobase if 
for every open set Uc; X there is a B E '!B with B c; U [Wi 70).) D 

Let A be an index set and let for every A E A a ttg ~i\ be given. Then we 
define the product ttg ~ = II{~i\ I A EA} as follows: 
The phase space X of ~ is given by X = II { X i\ I A E A} and the action 
of T on X by tx = t (xi\)i\E A = (txi\)i\E A for every t E T, x EX ; i.e., 
the action of T on X is defined coordinatewise. 
Clearly, ~ is a ttg. 
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One could ask several questions about products, for instance (cf. [F 67]): 

(i) when is the product of two minimal ttgs again minimal? 

(ii) when is the product of an ergodic ttg and a minimal ttg ergodic? 

In chapter VI we discuss problems related to (i) and in chapter VII we deal 

with variations on question (ii) (see also the discussion about (weak) disjoint

ness in section I.3.). 

Note that if ~ is a minimal ttg, ~ X ~ is not minimal unless ~ = { *} 

(where { *} denotes the trivial one point ttg), for !::..x ~ X X X is a nonempty 

closed invariant subset of X X X . However, if ~ is ergodic it can occur 

that ~ X ~ is again ergodic; such a ttg is called weakly mixing (e.g. 4.8.). 

Let ~ and 61l be ttgs (for T ) and let cJ>: X ~ Y be a mapping. Then cJ> 

is called equivariant if cJ> (tx) = t cJ> (x) for every x E X , t E T ; i.e., cJ> 

commutes with the actions (of T ) on X and Y . A continuous equivari

ant map cj>: X ~ Y is called a homomorphism of ttgs; as such it will be 

denoted by cJ>: ~~ 61l . If cJ> is surjective we use at random other terminolo

gies like " cJ> is an extension", " 'X is an extension of 61l " or '' 61l is a factor 

of 'X ". If cJ>: X ~ Y is an equivariant homeomorphism, then cJ>: ~~ 61l is 

called an isomorphism ofttgs. For cj>:'X~61l and i/;:61!~'2:, both homomor

phisms of ttgs, the map 0: = if;ocf> is a homomorphism of ttgs and if cJ> is 

surjective, we call if; a factor of 0 (by cJ> ). 

Note that a ttg ~ can be considered as a homomorphism from ~ to{*}· 

We call a property absolute or relative whenever we consider the property for 

ttgs or the corresponding property for homomorphisms of ttgs, respectively. 

Let ~ be a ttg and let R be an equivalence relation on X such that R 

as a subset of X X X is closed and invariant. It is not difficult to show that 

the map 'TT:TXX/R~X/R, defined by 'TT(t,R[x])=R[tx] for every 

t E T , x E X , is a continuous action of T on X/ R . Hence 

61l: = ~/ R is a ttg and the quotient map ": ~ ~ 61l is a surjective 

homomorphism of ttgs with R = {(x 1 ,x2)E X X X I ic(x1) = ic(x2)}. 

Conversely, for a surjective homomorphism cf>: ~~ 61l of ttgs we define 

Then R </> is a nonempty invariant closed equivalence relation on X , ~</> is 

a subttg of 'X X ~,and Y ,....., X/Rq, (61! ,....., 'X/~q,). 

So there is a one to one correspondence between the surjective homomor

phisms with domain ~ and the invariant closed equivalence relations on X. 
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Recall that a map f : X ~ Y of topological spaces is called semi-open if 
inty q, [ U] =I= 0 whenever intx U =I= 0 . 

1.3. REMARK. Let <[>: ~~ 6]j be a homomorphism of ttgs. Then: 
a) if A C X is closed and invariant then <[>[A] is closed and invari

ant; in particular, the image of an orbit closure is an orbit closure; 
b) q, [ X] is a nonempty closed invariant subset of Y , so <[> [~] is a 

subttg of 6]j ; 

c) if 6]j is minimal then q, is a surjective homomorphism of ttgs; 
d) if 6]j is ergodic and <[> is semi-open then q, is a surjective 

homomorphism of ttgs; 
e) if ~ is minimal, point transitive, ergodic or weakly mixing then 

q, [~] has the corresponding property. D 

Openness of homomorphisms plays an important role in our considerations; 
e.g. see sections IV.3. and VII.2. and the result in VIII.3.4 .. Although open
ness is not always guaranteed, homomorphisms of minimal ttgs are open to a 
certain extent (besides the following result see also III.2.8.). 

1.4. THEOREM. Let <[>: ~~ 6]j be a homomorphism of ttgs with 6]j minimal. 
a) If ~ is minimal, <[> is semi-open. 
b) If X has a dense set of points with a minimal orbit closure then <[> 

is semi-open. 

PROOF. 

a) Let U C X be nonempty and open and let V C X be nonempty 
and open such that V C V C U . Let F C T be finite such that FV = X 
(1.1.d). Then 

Y = <f>[X] = q,[FV] =F. q,[V]; 

and so, for some t E F , t <f>[V] has a nonempty interior. As left multiplica
tion with t- 1 is a homeomorphism, q,[V] = t- 1t q,[V] has a nonempty 
interior, so q,[U] has a nonempty interior. 

b) Let U C X be nonempty and open and let Z C X be minimal 
subset of X with U n Z =I= 0 . As (by a) q, I z is semi-open, it follows 
that <[>I z [ U n Z] has a nonempty interior in q, [ Z] = Y . Hence, after 
observing that q, I z [Un Z] C q, [ U] , the proof is completed. D 
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1.5. EXAMPLE. 

Let 'X = < T, X, w > be a ttg. Consider X x equipped with the product 

topology. Under the composition of maps, xx is a right semitopological 

semigroup, and X x is a CT 2 space. 

Define w: T ~ X x by w (t) = w' ; i.e., represent the elements of T as 

homeomorphisms of X . Then the corestriction of w to w[T] is a continu

ous homomorphism of groups. Define 

E(X):= E(< T,X,w>):= clxxw[T], 

then clearly E (X) is a CT2 space. One can show that E (X) is a sub

semigroup of the right semitopological semigroup xx into which T is 

densely mapped by w . 

On E(X) wecandefineanaction ir of T by ir(t,f):=w 1 of for every 

t ET , f E E(X). Clearly, E('X): = < T,E(X),ir > is a subttg of the 

product ttg 'X x . 

The set E (X) as well as the ttg E ('X) are called the enveloping semigroup 

of 'X. The following facts are standard (cf. [E 69], chapter 3): 

a) E ('X) is a point transitive ttg (every " t E T " is a transitive point) 

and E ('X) is minimal if! E (X) is a group. 

b) For every x 0 E X the map 8x0 : E ('X) ~ 'X, defined by 

8x 0 <f): = f (xo) for every f E E(X), is a homomorphism of ttgs; 

and 8x 0 [E(X)] = Tx 0 • 

c) If <f>: ix~ 6Y is a surjective homomorphism of ttgs, then there is a 

unique surjective homomorphism. ~: E ('X) ~ E (6Y) such that for 

every x 0 E X we have <f>o8x 0 = 8<P<xo)o~, and ~ is a semigroup 

homomorphism. 

One could paraphraze b by saying that E (X) acts on every orbit closure in 

X in such a way that it extends the action of T ; E (X) embodies the 

limit behavior of T . 

The investigations with respect to the algebraic properties of this action of 

E (X) on X , that were initiated by R. ELLIS ([E 60]) turned out to be rather 

important for topological dynamics. We shall deal with this in section 1.2 .. 

Another way of constructing ttgs is given by the notion of inverse limit: 

Let P be an ordinal and let ~ be a ttg for every 'A< P • A tower of height 

P , or an inverse system of height v will be a collection { <t>ff I a~ {3< v} of 
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surjective homomorphisms q,f: 'Xp ~ ~ of ttgs such that for every 
a~P~ y< P we have .pfo.Pp = .PJ . 

Let X = invlim{Xx I A< P} in the category of CT2 spaces; we can represent 
X as the subset of II{Xx I A< P} consisting of all P-tuples (xx)>.<v such 

that .P! (x p) = x a for every a~ P < P • Denote the projections by 
cfJA:X~x,_ ,then .pfo.pp=.Pa for every a~P<P. Abaseforthetopol-

ogy on X is formed by the collection 

{</>;\[U] I U open in x,_, A< P}. 

As all spaces are compact, X is a nonempty closed subset of 
II { X x I A< P} and clearly X is T -invariant, so 'X is a ttg and the projec

tions eh.: 'X~ 'X>. are homomorphisms of ttgs. 
The homomorphism <Po: 'X~ ~ is called the inverse limit of 
{.P!la~/J<P}. 

Note that if ~ is a ttg and 

'X= invlim{.pf: <xp~~ I a~P< P} 

then 

~x 'X= invlim{idz x q,f: ~x <xp~~x ~I a~ P< P}. 

It follows that 

'XX 'X= invlim{.p!x q,f: 'XpX <xp~~x ~I a~P< P}. 

1.6. REMARK. let { q,f: 'Xp ~ ~ I a~ P< P} be an inverse system, and let 
'X = inv lim'X>. . Then 'X is minimal, ergodic or weakly mixing if! 'X 

has that property for every A< P • D 

Let 'X be a ttg, then 'X is called strictly-quasi-separable if 'X is the inverse 
limit of ttgs with metric phase spaces and 'X is called quasi-separable if 'X 
is a factor of a strictly-quasi-separable ttg. Note that the definitions here are 
slightly different from the usual ones (e.g. [E 69], [K 71] and [K 72]). 

1.7. 1HEOREM. ([K 72]) If T is a locally compact a-compact topological 
group, then every point transitive ttg (for T) is strictly-quasi-separable. D 

We shall now turn to some basical dynamical notions (after [GH 55]). 
Fix a collection If of subsets of T , the admissible sets, and let 'X be a ttg. 
A point x EX is called ( locally) recursive if for every U E ~ there is an 
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A E it (and a VE~) such that Ax CU (AV CU); here ~ denotes 

the neighbourhood filter of x . The ttg '?X, is called pointwise (locally) recur

sive if every x EX is a (locally) recursive point. '?X- is called uniformly 

recursive if for every index a E ~x there is an A E it such that Ax C a(x) 

for every x E X . The type of recursiveness we are interested in in this 

booklet is almost periodicity. In order to define almost periodicity we have 

to define a special collection of admissible sets. A subset B of T is called 

( right) syndetic if there is a compact subset K of T such that KB = T . 

If we let it be the collection of syndetic subsets of T , recursiveness with 

respect to it is called almost periodicity. As being syndetic depends on the 

topology of T , almost periodicity seems to depend on the topology of T ; 

however, it turns out it actually doesn't (see 1.9., 1.11.b and 1.12.). If T is 

endowed with the discrete topology, BC T is syndetic if T = FB for a 

finite subset F of T . Almost periodicity with respect to the discrete topol

ogy on T ( Td ) is called discrete almost periodicity. 

Note that if '?X- = < T, X, 'IT > is a ttg for T then any statement about 

discrete almost periodicity concerning '?X- is in fact a statement about almost 

periodicity concerning < Td , X, 'IT > . However, a statement about almost 

periodicity concerning < Td , X, 'IT > is only a statement about discrete 

almost periodicity concerning < T, X, 'IT > provided that < T, X, 'IT > is a 

ttg! 

1.8. REMARK. Let '?X, be a ttg and let x E X . 
a) If '?X- is uniformly almost periodic, then '?X, is pointwise locally 

almost periodic. 
b) If x EX is a locally almost periodic point, then x is an almost 

periodic point. 0 

In the sequel a pointwise locally almost periodic ttg will be called a locally 

almost periodic ttg. 
The next theorem shows the dynamics interest of minimal ttgs. 

1.9. TIIEOREM. Let '?X, be a ttg and x E X . Then the following statements 

are equivalent: 
a) Tx is a minimal subset of X; 
b) x is a discrete almost periodic point in X ; 

c) x is an almost periodic point in X . 0 
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1.10. REMARK. Let <f>: 'X,~ 6lJ be a homomorphism of ttgs. 
a) If x EX is an almost periodic point in X then <f>(x) is almost 

periodic in Y . 
b) If y E <f>[X] is an almost periodic point in Y then there is an 

almost periodic point x E X with <f> (x) = y . 
c) If 'X, is pointwise almost periodic, then <f> ['X,] is. 
d) If ~ is the inverse limit of a tower consisting entirely of pointwise 

almost periodic ttgs, then ~ is pointwise almost periodic. D 

For local almost periodicity we can formulate similar statements, but the 
proofs are substantially harder (e.g. [E 69], [MW 72] and VI.5.6.): 

1.11. THEOREM. Let <f>: 'X,~ 6lJ be a surjective homomorphism of ttgs, and let 
x E X be a transitive point. 

a) The point x E X is locally almost periodic if! x' E X is locally 
almost periodic for every x 'E X ; so 'X, is locally almost periodic 
([GH 55] 4.31.). 

b) The point x E X is locally almost periodic if! x is discrete locally 
almost periodic ([B 75179] 2.8.43.). 

c) If x' E X is locally almost periodic and if <f> is open, then <f> (x ') 
is locally almost periodic. 

d) If 'X, is locally almost periodic, then so is 6lJ (cf. III.5.6.). 
e) If ~ is the inverse limit of a tower consisting entirely of minimal 

locally almost periodic ttgs, then ~ is minimal and locally almost 
periodic (cf. III.5.6.). D 

The following theorem characterizes uniform almost periodicity in terms of 
equicontinuity or compact group actions. 

1.12. THEOREM. Let 'X, = < T, X, '1T > be a ttg. Then the following state
ments are equivalent (cf. [B 75179] 2.8.3. and [E 69] 4.5.): 
a) 'X, is uniformly almost periodic; 
b) 'X, is discrete uniformly almost periodic; 
c) ?T [T] is an equicontinuous family of homeomorphisms; 
d) ?T[T] is a uniformly equicontinuousfamily of homeomorphisms; 
e) E(X) is a CT2 topological group consisting of homeomorphisms of 

X. D 
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1.13. REMARK. 

a) A factor of a uniformly almost periodic ttg is uniformly almost 

periodic. 
b) A subttg of a uniformly almost periodic ttg is uniformly almost 

periodic. 
c) Let v be an ordinal and let exA be a ttg for every A< P. Then 

II{%.. I A< v} is uniformly almost periodic if! exA is uniformly 

almost periodic for every A< v . 
d) The inverse limit of a tower consisting entirely of uniformly almost 

periodic ttgs is uniformly almost periodic. 0 

The uniformly almost periodic ttgs are the "beautiful ones". To illustrate 

this: if the phase space of a uniformly almost periodic ttg is metrizable, there 

is a compatible metric such that the T-translations { 7T 1 I t E T} are 

isometries. In order to indicate how special the uniformly almost periodic 

minimal ttgs are, consider bT , the Bohr compactification of T ; bT is the 

reflection of the topological group T in the category of CT2 topological 

groups. Then t9=<T,bT,µ> is a minimal ttg, with µ:TXbT~bT 

defined by µ (t, x) = t ( t) x , where t: T ~ b T is the reflection. 

1.14. THEOREM. Let ex be a minimal ttg. Then ex is uniformly almost 

periodic if! ex ,..._, t9/H for some closed subgroup H of bT . In fact, 

t9 is the universal uniformly almost periodic minimal ttg for T . It fol

lows that the phase space X of a uniformly almost periodic minimal ttg 

ex is homogeneous (in the Sense that for every X and X I in x there 

is a homeomorphism f : X ~ X with f (x) = x ' ). 0 

No wonder that uniformly almost periodic minimal ttgs play the role of a 

touchstone in the structure theory for minimal ttgs; i.e., one of the 

approaches is to investigate to what extent a certain ttg differs from being 

uniformly almost periodic. One of the first dynamical concepts that was 

attacked in this approach was that of distality. 

Let ex be a ttg and let x I and x 2 be elements of x . Then x I and x 2 

are called proximal, or (x 1 , x 2) is called a proximal pair if 

T ( x 1 , x 2) n a x =I= 0 ; in other words, x 1 and x 2 are proximal if there is 

a net {t; }; in T with limt;x 1 = limt;x 2 . If x 1 = x 1 or if (x 1 ,x2) is 

not a proximal pair then (x 1 , x 2) is called a distal pair, and x 1 and x 2 
are called distal. If (x 1 , x 2) is distal for every x 2 E X then x 1 is called a 

distal point for ex . The ttg ex is called distal (proximal) if every pair in 
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X X X is distal (proximal), ~ is called point distal if there is a transitive 
distal point for X . 
Before we indicate the connection between distality and almost periodicity we 
shall state some generalities on distal and proximal ttgs; the proofs of 1.15.b 
and l.18. depend on the algebraic theory in 1.2 .. 

l.15. TIIEOREM. Let ~ be a ttg. Then the following statements are 
equivalent: 
a) ~ is distal; 
b) E (X) is a group (hence E (X) is distal and minimal; cf. 1.4. and 

l.16.); [E 69] 5.3., 5.9.; 
c) ~n is pointwise almost periodic for every n E l'\I . D 

1.16. REMARK. ([E 69] chapter 5) 
a) A factor of a distal (proximal) ttg is distal (proximal). 
b) A subttg of a distal (proximal) ttg is distal (proximal). 
c) A product of distal (proximal) ttgs is distal (proximal). 
d) An inverse limit of distal (proximal) ttgs is distal (proximal). D 

An interesting (and nontrivial) result is the following: 

1.17. 1HEOREM. An ergodic and distal ttg is minimal ([E 78] 1.9.) . D 

Part of the relation between uniform almost periodicity and distality is given 
by: 

l.18. 1HEOREM. A ttg ~ is uniformly almost periodic if! ~ is distal and 
locally almost periodic ([E 69] 5.28.). D 

That distality alone is not sufficient for uniform almost periodicity may be 
seen from 4.5.(iii). 
In the case of minimal ttgs the relation between uniform almost periodicity 
and distality is given by the FURSTENBERG STRUCTURE THEOREM ((1.24.), 
abbreviated:FST), which is the germ of a considerable part of topological 
dynamics. 

Before we can state FST in full generality, we shall discuss the relative ver
sions of notions such as almost periodicity. So let cp: ~~ 61:1 be a surjective 
homomorphism of ttgs. The extension cp is called a group extension if there 
is a CT2 topological group K and an action of K on X that commutes 
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with the action of T on X (i.e., tkx = ktx for every x E X , t E T 

and k EK ) such that, in addition, cf>._cf>(x) = Kx for every x EX . 

The map cf> is called an almost periodic extension if cf> is a factor of a group 

extension. 

1.19. NOTE. A minimal ttg 'X is uniformly almost periodic if! if;: 'X-') {*} is 

an almost periodic extension (1.14.). 

In studying uniform almost periodicity, the (relativized) regionally proximal 

relation plays an important role. Define the regionally proximal relation for 

c/> by 

Q.p: = n {Tan Rq, I aE 6h.x }. 

and let Q~ be defined as Q~:= Q,p where i{;:'X-'){*}. Then Q.p is 

always a closed, T -invariant, reflexive and symmetric relation, but in general 

Q .p is not an equivalence relation (see VIII.1.5.). 

Note that (x 1 ,x 2)E Q.p iff there is a net {(x\ ,x~)}; in Rip and a net 

{t; }; in T such that 

(x\ ,x~)-')(x 1 ,x 2) and t; (x;1 ,x~)-')(z ,z) for some z EX. 

Define the equicontinuous structure relation E .p for 

ant closed equivalence relation that contains 

i{;:'X-'){*}. 

cf> as the smallest invari

Q .p; Erx,: = E,p where 

One of the main themes in the structure theory for minimal ttgs is the ques

tion: under what conditions is Eq, equal to Q.p. The importance of this 

question may be illustrated by the following theorem. 

1.20. THEOREM. Let cf>: 'X-') 6!l be a surjective homomorphism of ttgs. 

a) The following statements are equivalent: 
(i) cf> is an almost periodic extension; 

(ii) Q.p = llx; 
(iii) for every a E 6h.x there is a /3 E 6h.x with Tan R .p C /3 . 

b) Let K: 'X-') 'X/ E .p be the quotient homomorphism and let 

if;: 6.X/ E .p--') 6!l be such that if; o K = cf> . Then if; is the maximal 

almost periodic factor of cf>. I.e., if 0: 2:--') 6!l is an almost periodic 

extension such that cf> factorizes over () , then if; factorizes over () . 
c) If X is a metrizable space, then cf> is almost periodic if! there 

exists a continuous map d: R .p-') ~ which is T-invariant (i.e., 

d (tx, ty) = d (x ,y) for every t, x, y), such that d is a metric on 

each jiber (such a cf> is called isometric/). 
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PROOF. Cf. [V 77] 2.4.3., [E 69], and [MW 76] 1.1.. D 

The homomorphism cf> is called distal (proximal) if every pair (x 1 , x 2) E R rp 

is a distal (proximal) pair, and cf> is called point distal if there is a transitive 
point x EX such that (x, x ') is distal for every x' E cf> .... cf>(x) (then x is 
called a c/>- distal point). 
Define the ( relative) proximal relations P rp and Prx for cf> and ~ respec
tively by 

Prp:= n{TanRrpjaE62ix} and P-x:= n{TajaE62Lx}-

Then clearly, P rp = P-xn Rrp, P rp is the collection of proximal pairs in Rrp ; 
and cf> is distal (proximal) iff P rp =Ax ( P rp = Rrp ). In general P rp is not 
closed and not an equivalence relation (4.7.(iii)). If P rp is closed it is an 
equivalence relation ([A 60]), but not the other way round ([S 70]). 
We shall now state some properties of distal, proximal and almost periodic 
extensions. (In the proof of 1.23.a,b the algebraic theory of 1.2. plays a role.) 

1.21. 1HEOREM. 

a) Let cp: ~~ ~, 0: 2:~ ~ and if: 2:~ ~ be surjective homomor
phisms of ttgs such that cf> = if o 0 . 
Then cf> is proximal if! 0 and if are proximal. 
If cf> is distal (almost periodic) then 0 is distal (almost periodic). 
If ~ is pointwise almost periodic then cf> is distal if! 0 and if are 
distal. 

If ~ is minimal and cf> is almost periodic then 0 and if are 
almost periodic. 

b) Let A be an index set and let for every A E A a surjective 
homomorphism of ttgs $>-,: ~>-. ~ ~>-. be given and let 
ip: rrA~A ~TIA ~A be defined coordinatewise. Then cf> is distal, 

proximal or almost periodic if! cf>A is such for every A E A . 
c) Let cf> be the inverse limit of a tower { cf>! I a.;;;; /3< P} . Then cf> is 

distal (proximal) if! cJ>:+ 1 is distal (proximal) for every a+ 1 < P • 

PROOF. Cf. [B 75179] 3.12.28.,29. and [VW ?]. D 

In general, the composition of two almost periodic extensions fails to be 
almost periodic, as can be seen from 4.5.(iii) and FST (1.24.). Sometimes, 
however, an almost periodic extension of a uniformly almost periodic ttg can 
be shown to be uniformly almost periodic: 
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1.22. REMARK. Let <P: ix~ 6Y be a surjective homomorphism of ttgs. If R q, 

is open and closed in X X X, then Q.p = Qx. 

In particular, if card(Y) < ~o and <P is almost periodic, then ix is uni

formly almost periodic (compare [MW 76] 2.1.). 

PROOF. For some aoE6lLx, TaCRq, so Ta= TanRq, for every 

aC ao. Hence 

Q x = n {Ta I a E 6lLx} = n {Tan R .p I a E 6lLx } = Q .p . 
D 

1.23. THEOREM. Let cp: ix~i;y be a homomorphism ofttgs with 6Y minimal. 

a) If <P is distal then ix is pointwise almost periodic. 

b) The extension <P is distal if! R q, is pointwise almost periodic. 
c) If <P is proximal then ix has a unique minimal subttg. 

d) The extension <P is proximal if! R q, has a unique minimal subttg. 

PROOF. Cf. [G 76] Il.1.1.,2. and [VW ?]. D 

We shall now formulate the Furstenberg Structure Theorem ( FST ). 

Although H. FURSTENBERG did not prove FST in its fullest generality, we still 

call 1.24. "the Furstenberg Structure Theorem" to honour the father of the 

basic idea in revealing the structure of distality. (The same we do with the 

Veech Structure Theorem IV.1.13 .. ) 

At first FST was proven by H. FURSTENBERG in the absolute case and for 

metric ttgs [F 63]. R. ELLIS proved it in the relativized form for quasi

separable ttgs [E 69]. In [E 78] R. ELLIS also could get rid of the countability 

assumptions for the absolute case. The definitive version was proven by 

D.C. MCMAHON and T.S. WU [MW 81]. 

1.24. THEOREM. FST : Let cp: ix~ 6Y be a homomorphism of minimal ttgs. 

Then <P is distal if! <P is the inverse limit of a tower consisting of almost 

periodic extensions. D 

1.25. COROLLARY. A minimal ttg ix has a nontrivial distal factor if! it has a 

nontrivial uniformly almost periodic factor. D 

In some special cases, for instance for ttgs with manifolds as phase space and 

a decent topological group as phase group, one can calculate the height of 

the tower (in 1.24.), e.g. [IM?], [R ?] and [B 75179] section 3.17 .. 
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The structure of point distal homomorphisms of minimal ttgs is determined 

similar to FST, see the discussion in IV.I.. 

1.2. THE UNIVERSAL AMBIT 

For several properties of ttgs there exists a universal ttg with that pro

perty which is unique up to isomorphism. In particular, the universal 

point transitive ttg ~ and the universal minimal ttg ~ for a given 

topological group T are of considerable importance in topological 

dynamics. 
In this section we shall deal with ~ , ~ and their technical impact 

on topological dynamics. But we shall also briefly discuss other universal 

ttgs. 
As the theory presented here is completely standard, and as it is only 

incorporated in this monograph for the sake of notation and reference, 

we shall omit proofs. For more details see [E 69) chapters 3 and S, 

[B 75179) section 1.4., [VW ?] and [G 76) chapter I. 

In the sequel a ttg ~ together with a distinguished transitive point x EX 

will be called an ambit; notation: (~, x) . An ambit morphism 

<1>: (~,x)~(611,y) will be a surjective homomorphism <1>: ~~611 of point 

transitive ttgs, such that </>(x) = y . 

Note that every ambit morphism is unique. 

As the phase space of a point transitive ttg is the image of f3Td , the Cech

Stone compactification of Td , there can only be a set of essentially different 

ambits for T . So let A be a set of ambits for T , such that for every 

ambit (~,x) there is an (ll,a)E A which is isomorphic to (~,x). Let 

!!': = IT{ll I (ll,a)E A} and z = (a)(lt,a)EA' 

and define ~: = Tz . Then (~, z) is an ambit, which projects onto each 

ambit for T . Hence (~,z) is the (unique up to isomorphism) universal 

ambit for T; say, (~,z) = (< T,Z ,~ > ,z). 

We shall mention two other ways to describe the universal ambit. 

Let < T, X,.,, > be a topological transformation group with X a Haus

dorff space which need not be compact. Then there exists a ttg 

<T,/3rX,ii"> and a homomorphism ix:<T,X,'TT>~<T,/3rX,ii"> 
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with f3rX a CT2 space and ix [X] dense in f3rX , such that every dense 

equivariant map <f>: < T,X,'fT >---') < T, Y,a > with Y a CT2 space, fac

torizes over < T,f3yX,7'r>, [dV 75]. 

If ix is an embedding, < T,f3yX,7'r> is called the T-compactification of 

< T,X,'fT>. Under some mild conditions such a T-compactification 

exists, ([ dV 77], [L V 80]). For example, if T is discrete and X is a 

Tychonoff space, then the action of T can be extended to f3X so 

< T, f3X, fr > is the T -compactification of < T, X, 'fT > . If T is not 

discrete, then the extended action of T on f3X may fail to be jointly con

tinuous, however. 
An other simple example is the T -compactification of < T, T, A > where 

;\ denotes the multiplication on T . One can show that the map 

Ly:< T, T,A. >---') < T,f3yT,X > is an embedding, ([dV 75], [LV 80]). 

Clearly, (<T,/3rT,'f...>,ir(e)) is an ambit. As fz:T---')Z is an 

equivariant map that takes e to z , it factorizes over < T, f3r T ) .. > say 

L: < T,f3yT,X >---') < T,Z ,t > , taking iy{x) to z . Hence 

(< T,f3yT,'f...> ,iy(e)) is isomorphic to (2:,z). 

Note that this shows that T acts effectively on Z ; i.e., for every t E T 

with t -=/= e there is a z' E Z with tz' =f= z' . 

For a third description of the universal ambit consider S (T) , the Gel'fand 

dual of the Banach algebra RUC* (T) of bounded right uniformly continuous 

functions on T . Then T can be densely embedded in S (T) by assigning 

to each t E T the evaluation map 81 : RUc* (T)---') C . One can show that 

the multiplication A on T can be extended to a jointly continuous action 

µ of T on S (T) . Then ( < T, S {T), µ >, 8e ) is an ambit; moreover it 

turns out that ( < T, S {T), µ > , 8e ) is isomorphic to (2:, z) . 

Using this characterization of the universal ambit, it can be shown that the 

action of T on Z is strongly effective in case T is locally compact 

([V 77]); i.e., tz' -=/= z' for every t E T with t -=/= e and for every z E Z . 

In our studies the exact construction of the universal ambit will never play a 

role. The pure existence of a universal ambit for T in which 

( < T, T, A > , e ) is densely embedded and which is unique up to isomor

phism is sufficient. 
We shall denote the point transitive ttg in the universal ambit by ~ , with 

phase space Sr , and we shall consider T as a subspace of Sr ; the unit 

element e in T will always be the transitive point of the universal ambit. 



18 Topological Dynamix 

2.1. REMARK. The CT2 space Sr has a semigroup structure which extends 

the group structure of T , such that the right translation 

Pp : ~i-+ ~p : Sr ~Sr is continuous for every p E Sr , and the left trans

lation "'A.1 : ~ i-+ t ~: Sr ~ Sr is an homeomorphism for every t E T . 

Moreover, the right translations Pp are just the extensions to Sr of the 

right translations Pp I r induced by the action of T on Sr , and the left 

translations are just the ones induced by that action; (see [VW ?] and 

[V 77) section 2.2.). D 

As for every ttg ~ the pair (£ (~), e) is an ambit (here e is idx ), there 

is an ambit morphism t:x: (Sr, e) ~ (E (~), e) and t:x: Sr~ E (X) is a 

semigroup homomorphism. 

In a certain sense Sr acts on the phase space X of a ttg ~ (via E (X) ): 

assign to p E Sr and x EX the element t:x(p )(x) in X . This is a kind 

of right semitopological semigroup "semiaction", for Sr is a right semitopo

logical semi group which acts on X as a semi group (and extends the action 

of T ), but in general it lacks continuity. 

As l>x : E (~ ~ ~ is a homomorphism of ttgs for every x E X , the map 

Px: = l>x ot:x: (Sr,e)~(~,x) is an ambit morphism; in particular, "evalua

tion" in x is a continuous map from Sr onto Tx for every x EX . So 

for p E Sr and for a net {t; }; in T converging to p in Sr , the net 

{ t; x }; converges to Px (p) in X for every x E X . This observation is 

valid for every ttg ~, so we may interpret Sr as a universal enveloping 

semigroup; and so Sr embodies the universal limit behavior of T . 

Define px:=t:x(p)(x)=px(p) for every pESr, xEX. Note that for 

every p,q E Sr, x EX we have 

a) p (qx) = (pq)x ; 
b) Px : r i-+ rx : Sr ~ X is continuous, but m general 

"'AP : y i-+ py : X ~ X is not continuous. 

If </>: ~~ 6Y is a homomorphism of ttgs, then </> commutes with the 

"action" of Sr ; i.e., </>(px) = p</>(x) for every p E Sr , x EX . 

We can now apply the theory of compact right semitopological semigroups to 

reveal some of the structure of Sr . Although the statements to follow are 

valid in a more general setting, we shall state them just for Sr , except in 

the case of 2.6.. As enveloping semigroups are homomorphic images of Sr , 

this theory is easily transferable to the enveloping semigroups in general. 
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A subset E of Sr is called a left ideal if Sr.EC E ; so a closed subset 

E of Sr is a left ideal iff E is T -invariant, and this in turn implies that 

the closure of a left ideal is a left ideal again. A typical example of a left 

ideal is a subset of Sr of the form Sr.p ( = Tp) for a p E Sr . This 

observation shows that every minimal left ideal is closed and that every left 

ideal contains a minimal left ideal (Zorn). Moreover, a subset E of Sr is 

a minimal left ideal iff E is a minimal subset of Sr . Minimal left ideals 

of Sr (which are subsemigroups of Sr ) have a nice structure: 

2.2. THEOREM. Let I be a minimal left ideal in Sr and let J = J (/) be 

the set of all idempotents in I . Then the following statements hold: 

a) J -=/=- 0 ; ( I is a closed subsemigroup of Sr is sufficient!) 

b) pv = p for every p EI , v E J ; 
c) for every v E J the set vl ( = { vp Ip EI} ) is a subgroup of I 

with unit element v , and vl = {p E I I vp = p } ; 
d) for every v, w E J the map Aw : pH wp : v/ ~ wl is an isomor

phism of groups with inverse Av ; 
e) { v/ I v E J} is a partitioning of I ; 
f) if u E J , then every p E I has a unique representation as 

p = wa , where w E J , a E ul . D 

For convenience we establish some notation. 

Let I be a minimal left ideal in Sr (or in E(X) for some ttg 'X ). Then 

we denote the set of all idempotents in I by J (/) . 

Let p E Sr ; then Ap will denote the left multiplication with p ( q Hpq , 

q E Sr ) and Pp will be the right multiplication with p (which is continu

ous). If 'X is a ttg and x EX then Px denotes the evaluation at x 

("right multiplication" with x ); i.e., Px : Sr ~ X is defined by 

Px (q) = qx (q E Sr) . 

2.3. THEOREM. Let I and K be minimal left ideals in Sr . 
a) For every v E J (/) there is a unique v' E J (K) such that 

vv' = v' and v 'v = v ; notation: v ,_, v' . 
b) For every v E J (/) the map Pv : K ~I is a homeomorphism with 

inverse Pv •: I ~ K , where v 'E J (K) with v' ,_, v ; moreover, Pv 

is an isomorphism of semigroups and Pv is equivariant. 
c) Fix uEJ(/) and let pEI, say p =va for vEJ(/), 

a E ul . Then Pp : K ~I is an equivariant homeomorphism with 

inverse Pq: I ~K, with q = va- 1v', where v' E J(K) is such 

that v ' ,_, v . D 
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2.4. THEOREM. Let I be a minimal left ideal in Sr and let u E J (I) . 
Every equivariant endomorphism q,: I ~I has the form <P = Pa for 
some a E uI . In particular, it follows that every equivariant endomor
phism of I is an isomorphism. D 

The minimal left ideals of Sr and their idempotents are closely related to 
the notion of almost periodicity; this is expressed in the next theorem. 

2.5. THEOREM. Let ~ be a ttg and let x E X . The following statements 
are equivalent: 
a) x is an almost periodic point in ~; 
b) Tx is a minimal subset of X ; 
c) there exists a minimal left ideal I of Sr such that x E Ix ; 
d) for every minimal left ideal I of Sr there is a v EJ(I) with 

vx =x. D 

Note that if x is an almost periodic point in ~, then Tx =Ix for every 
minimal left ideal I in Sr . Moreover, let ~ be minimal and x EX , 
then each minimal left ideal I of Sr is mapped homomorphically onto 
X by the map Px : Sr ~ X . This shows that every minimal left ideal I 

of Sr considered as a subttg g of ~ is a universal minimal ttg. 
Let ~ be the universal minimal ttg. As g is a minimal ttg there is a 
homomorphism q,: ~~g of minimal ttgs. But g is a universal minimal 
ttg; so there is a homomorphism if;: g ~ ~ of minimal ttgs. Hence 
</Jot/;: I ~I is an endomorphism of I ; which, by 2.4., implies that </Jot/; is 

an isomorphism. Consequently, ~ and g are isomorphic ttgs. Therefore, 
we may conclude that there exists a universal minimal ttg for T , which is 
unique up to isomorphism. This universal minimal ttg will be denoted by 
~ and its phase space by M . We shall always consider ~ as a subttg 

of ~ , i.e., we consider M as a minimal left ideal in Sr . As such, M 
acts on every minimal ttg as a semigroup. Sometimes it is necessary to 
specify a particular minimal left ideal in Sr , which is used as the universal 
minimal ttg (for instance, if we want to apply 2.7. below). 
In general the existence of ~ and its structure suffice. So if no minimal left 
ideal is specified its choice is irrelevant and we just assume M to be some 
(fixed) minimal left ideal in Sr . 
Note that 2.2. pictures the structure of M as a disjoint union of subgroups 
"centered around the idempotents" in M . We shall denote the set of those 
idempotents in M by J . Usually, for a fixed u E J we shall denote the 
subgroup uM by G ; then for v E J , vM = vG . 
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We shall end our considerations about compact right semitopological semi

groups by mentioning the following result ([E 69)). 

2.6. THEOREM. Let E be a compact T 1 topological space provided with a 

group structure such that the maps Px : y ~ yx : E ~ E are continuous 

(x E E) , and let M be a nonempty closed subsemigroup of E . Then 

M is a subgroup of E . 0 

We shall now relate the structure of Sr and M to the notions of proxi

mality and distality. 

2.7. THEOREM. Let 'X be a ttg. The following statements are equivalent for a 

pair (x,y)E XX X: 
a) (x,y)E P-x; 
b) there is a p E Sr with px = py ; 
c) there is a minimal left ideal I in Sr such that px = py for every 

p El. 

Moreover, { vx I v E Sr , vv = v} C P -x[x] ; if 'X is minimal, then 

P-x[x] = {vx Iv EJ(J) for some m.l.i. I in Sr}. 
0 

2.8. REMARK. Let 'X be a ttg. For every minimal left ideal I in Sr and 

for every v E J (I) we have that each pair in vX is a distal pair; here 

vX = {vx Ix EX}. 

Paraphrased: if (x ,y) is a almost periodic point in X X X , then the 

pair (x ,y) is a distal pair (compare 1.15.c for n = 2 ). 0 

2.9. COROLLARY. 

a) Let 'X be proximal minimal ttg. Then the only equivariant 

endomorphism of 'X is the identity idx on 'X ([G 76] 11.4.1.). 
b) Let T be an abelian group. then there are no non trivial proximal 

minimal ttgs for T (for a more general result see [G 76] 11.3.4.). 0 

Let 'X be a minimal ttg and let I be a minimal left ideal in Sr . Define 

(Sr)x:={pESr lpx =x}, lx:=Jn(Sr)x and Jx(/):=J(J)n(Sr)x. 

2.10. REMARK. Let </>: 'X~ 6]j be a homomorphism of minimal ttgs. A point 

x EX is a </>-distal point if! Jx = J .p(x). Hence x EX is a distal 

point if! Jx = J and 'X is distal if! uX = X for every u E J . 0 
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Fix u E J . Let ex be a minimal ttg and let x E X be such that ux = x . 

Then the Ellis group @(ex, x) of ex with respect to x in G ( = uM) is 

defined as 

@(ex,x):=MxnG ={aEG lax =x}. 

Clearly, @(ex, x) is a subgroup of G . 

2.11. NOTE that if </>: ex~ 6lJ is a homomorphism of minimal ttgs and 

x = ux EX, then @(ex,x)C @(6ll,cp(x)). 

2.12. THEOREM. Let cp: ex~61J be a homomorphism of minimal ttgs and 

x = ux EX . Then </> is distal iff cp .... cp(px) = p@(6ll, cp(x ))x for 

every p E M . In particular, ex is distal iff X = pX for every 

pEM. D 

2.13. THEOREM. Let </>: ex~ 6lJ be a homomorphism of minimal ttgs and let 

x = ux E X . Then the following statements are equivalent: 

a) </> is proximal· 
b) @(ex,x) = @(6ll,cp(x)); 

c) forevery (x 1 ,x 2)ER<I> thereisa vEJ with x 2 =vx 1 . 

In particular, ex is proximal iff @(ex, x) = G iff X = J x iff 
uX={x}. D 

From these observations (2.12. and 2.13.) it follows easily that if </>,if; and 

0 are homomorphisms of minimal ttgs such that </> = Oalf;, then </> is distal 

(proximal) iff 0 and if; are distal (proximal). 

We shall proceed with some observations on other universal ttgs. 

Let 6lJ be a minimal ttg. Then there is a set A6!J of homomorphisms 

</>: ex~ 6lJ of minimal ttgs such that every minimal extension of 6lJ is iso-

morphic to a unique member of A6!J (i.e., for every homomorphism 

0: 6llf ~ 6lJ of minimal ttgs there is a if; E A6!J and an isomorphism ~ such 

that Oa~ =if;). Let C be a property of homomorphisms of minimal ttgs 

and let Ac : = { </> E A6!J I </> has property C } . Then every extension of 6lJ 

with property C is isomorphic to exactly one member of Ac (so Ac is 

the set of "essentially different" extensions of 6lJ with property C ). Define 

£c-: = II{exx I A E Ac, A: 'X>. ~ 6ll}, 

and let </>c : £c- ~ 6lJ 1 Ac 1 be defined coordina tewise. Let y 0 E Y and 
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u EJy 0 ; and let xAE XA be such that xA = uxA and i\(x;\.) =Yo. Then 

z : = (x;\.);\.e Ac is an almost periodic point in Zc . So W: = Tz is a 

minimal subset of Zc which is mapped onto 6]j by <Pc (more precisely, 

Zc is mapped onto the diagonal in 6]jlAc 1 ). 

Let iii: 6llf ~ 6]j be the restriction of <Pc to W . Then, clearly, iii factorizes 

over each i\ E Ac by projection (i.e., each i\ E Ac is a factor of iii ). This 

shows that iii: 6llf ~ 6]j is the universal minimal C -extension of 6]j , provided 

that iii has property C , and provided that uniqueness can be shown. For 

several properties C this can be guaranteed. For instance, if C stands for 

distality, proximality or almost periodicity, then iii has property C by 

1.21.b. The property of point distality behaves less well. But, if 6]j is distal 

then, for suitably chosen x A , the map iii: 6llf ~ 6]j is point distal. In all these 

cases it can be shown that iii is unique up to isomorphism. 

Thus we obtain the following theorem: 

2.14. THEOREM. Let 6]j be a minimal ttg. There exists a universal almost 

periodic (distal, proximal) extension of 6]j , which is unique up to isomor

phism. 
If 6]j is distal then there exists a universal minimal point distal extension 

of 6]j which is unique up to isomorphism. 

In particular, there is a universal minimal almost periodic (distal, point 

distal, proximal) minimal ttg for T , which is unique up to isomorphism; 

notation: s(T) ( 6D(T) , p 6D(T) , ~(T) ) . D 

Another construction of the universal almost periodic, distal or proximal 

minimal extensions of 6]j can be given as follows: 

Let y: ~~ 6]j be a homomorphism of minimal ttgs. 

Then iii: ~/ E y ~ 6]j is the universal almost periodic minimal extension of 

6]j (cf. 1.20.b). 
Define Sy to be the smallest invariant closed equivalence relation in R y 

that contains Py . Then iii: ~/Sy~ 6]j is the universal distal minimal 

extension of 6]j (the Py-analogue of 1.20.b). 

Observe that 

is just the set of all almost periodic points in Ry , and that JRy is invari

ant. Define NY to be the smallest invariant closed equivalence relation in 

Ry that contains JRr ([B75/79] 3.14.17.). Then ili:~/Ny~6]j is the 

universal proximal minimal extension of 6]j (see also III.1.13. ). 
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We shall end this section with a brief discussion of regularity (see [A 66], 
[Sh 74]). Often universal minimal extensions have a neat automorphism 
structure called regularity. A homomorphism cp: ~~ 611 of ttgs is called reg
ular if for every almost periodic point (x 1 , x 2) E R cp there is an equivariant 
endomorphism ~: ~~~ such that Hx 1) = x 2 • It follows that cp is regu
lar iff for every (x 1 ,x 2)E Rep there exists an (equivariant) endomorphism 
~: ~~~ such that (Hx1),x2)E P cp. 

Clearly, if cp is a regular homomorphism of minimal ttgs then the endomor
phisms ~ above are automorphisms. It is not difficult to show that a group 
extension of minimal ttgs is regular (see 2.17.) and, evidently, every proximal 
extension of minimal ttgs is regular. 

2.15. REMARK. Let cp: ~~611 be a regular homomorphism of minimal ttgs, 
u E J and x = ux E X . Then @(~, x) is a normal subgroup of 
@(611,cp(x)). D 

Let cp: ~~611 be a homomorphism of minimal ttgs. The regularizer Reg(cp) 
of cp is defined as follows: Let u E J and y = uy E Y ; and note that 
ucp ..... (y) = {x EX I ux = x, cp(x) = y} =I= 0 . Define a point 

z E IT{%. I~=~' AE ucp ..... (y)} = ?)C'c/>+-(y) by z = (x)xEucp+-(y)" 

Then, clearly, z = uz , so X': = Tz is a minimal subset of xucp<-(yl . Let 
0: '?X: ~ ~ be the projection and define 

Reg( cp) : '?X: ~ 611 by Reg( cp) = cp o 0. 

It is not difficult to show that Reg(cp) is a regular homomorphism of minimal 
ttgs, and that cp is regular iff cp and Reg(cp) are equal up to isomorphism 
(i.e., 0 is an isomorphism). 

2.16. REMARK. Let T be an abelian group. Then every minimal uniformly 
almost periodic ttg is regular. 

PROOF. Let ~ be a minimal uniformly almost periodic ttg. As T is 
abelian, every element of E (X) commutes with every element of T . By 
1.12., every element of E (X) is a homeomorphism of X , and so E (X) 
consists of equivariant endomorphisms. As E (X)x = X for every x E X , 
regularity follows. D 
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2.17. REMARK. let cp: 'X~ 61:1 be a group extension of minimal ttgs. Then cp 
is regular. 
In particular, the universal minimal almost periodic extension of 61:1 is 
regular. 

PROOF. Let K be a CT 2 topological group such that K acts on X con
tinuously and such that K and T commute and cp._cp(x) = Kx for every 
x E X . Then the elements of K are the equivariant endomorphisms that 

guarantee regularity. Let a6Y: «(61:1) ~ 61:1 be the universal minimal almost 
periodic extension of 61:1 . Then 0'.6Jl is a factor of a group extension. As a6Y 

is universal it is a group extension itself. D 

1.3. FIBERED PRODUCTS 

Let 'X and 61:1 be ttgs. Then the dynamical properties of the cartesian 
product 'X X 61:1 seem to reflect a certain correlation between the 
dynamical properties of 'X and 61:1 . For instance, if 'X and 61:1 are 
minimal, then minimality of 'X X 61:1 shows a kind of independency for 
'X and 61:1 ; in that case 'X and 61:1 are called disjoint. This section is 

meant to provide definitions and techniques necessary for the study of 
disjointness and weak disjointness ( 'X X 61:1 ergodic) in the chapters VI 
and VII. In many cases only a sketch of proof is given. 
The general setting is as follows: 
Let cp: <X~ 2'. and I/;: 61:1~2'. be surjective homomorphisms of ttgs. 
Define RH:= {(x ,y) EX X Y I cp(x) = t/;(y )} , the fibered product. 
Clearly, Rq,ijl is closed and invariant and Rq,q, = Rq,. This fibered 
product may be interpreted as the relative version of the cartesian pro
duct. 
We shall comment on RH throughout this section. 

Let cp: <X~ 2'. and I/;: 61:1~2'. be homomorphisms of minimal ttgs. Then cp 
and I/; are called disjoint if Rq,o/ is a minimal subset of X X Y ; nota
tion: cp J_ I/; . If 2'. is the trivial one point ttg ( { *} ), then instead of cp J_ I/; 
we write 'X J_ 61:1 ; we say that the minimal ttgs 'X and 61:1 are dis joint. If 

cp and I/; are not disjoint we write cp .f I/; . 
Clearly, cp J_ idz and cp .f I/; for every non trivial factor I/; of cp (compare 
Vl.1.1.). From 1.23.a,c it is easily deducible that a distal minimal ttg is 
disjoint from every proximal minimal ttg. 
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3.1. REMARK. Let cp: ~~ 2: be a homomorphism of minimal ttgs. 

a) Let 1/J: 6l:J ~ 2: be a homomorphism of minimal ttgs such that cp 1- 1/1. 
Then cp 1- 8 for every factor 8 of 1/1 . 

b) Let N!: 6l:Jp ~ 6l:Ja I a< /1< v} be an inverse system of homomor

phisms of minimal ttgs, with 6l:Jo = 2: and such that 1/1! 1- cp for 

every /1< v . Let 1/J = inv lim t¥!; then 1/J l_ cp . 

c) Let 1/J: 6l:J ~ 2: be a homomorphism of minimal ttgs with cp 1- 1/1 . 

PROOF. 

Then there is a homomorphism of minimal ttgs 8: 6Zll ~ 2: that fac

torizes over 1/J and which is maximally disjoint from cp . That is, 

cp 1- 8 and cp .f ~ for every proper minimal extension ~ of 0 . 

a) Obvious. 

b) This follows from 1.6. and from the easy observation that 

RH= invlim{RH! I /1< v} ; here the maps 

or RH!~ R t/»/18 are defined as of;= idx x iti! I R <P>i-{ 

c) Consider the collection A of homomorphisms ~: 'I: ~ 2: of minimal 

ttgs with ~ 1- cp , such that ~ factorizes over 1/J ; i.e., ~ = 1/JoA for some 

homomorphism A. Define an ordering on A by: ~< T/ iff T/ = ~oµ. for 

some homomorphism µ. ( ~,TJ E A ). By b, every chain in A has an upper 

bound in A . Hence, by Zorn's lemma, the assertion follows. D 

Clearly, RH is minimal iff RH has a unique minimal subset and RH 

has a dense subset of almost periodic points. 

In order to know whether R<f>o/ contains a unique minimal subset we have: 

3.2. THEOREM. Let cp: ~~2: and 1/J: 6l:J~2: be homomorphisms of minimal 

ttgs. Let uEJ, zoEuZ, xoEucp<-(zo) and y 0 Eui/i<-(z 0). Let 

H = @(~,xo), F = @(6l:J,yo) and K = @(2:,z 0) be the Ellis groups 

of ~, 6l:J and 2: with respect to x 0 , Yo and z 0 in G . Then 

RH has a unique minimal subset if! HF = K . 

PROOF. Suppose that R<f>o/ has a unique minimal subset. Let k EK ; and 

remark that (x 0 ,ky0) = u (x 0 ,ky0) is an almost periodic point in R<f>o/. As 

(x 0 ,y0) is an almost periodic point too, there is an a E G such that 

(x 0 ,ky0)=a(x0 ,y0). Clearly, aEH and a- 1kEF. So we have 

k =aa- 1kEHF, which implies that K<:;;_HF. As HUF<:;;_K, it fol-

lows that K =HF . 
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Conversely, let W ~ R.,."' be a minimal subset of R.,."' and assume that 

K =HF . Clearly, for some a E G the point (x0 ,ay0)E W. Hence 

a E K ; say a = hf for certain h E H and f E F . Then 

(x 0 ,ay0)=h(h- 1x 0 ,fy0), and as h- 1EH, fEF, we have 

(xo,ayo) = h (xo,yo). This shows that W n T(xo,yo) :;;b 0 . As 

T(x 0 ,y0) is minimal (2.5.), it follows that W = T(x 0 ,y0) • D 

3.3. COROLLARY. 

a) Let ~ and 61:1 be minimal ttgs. Then the following statements are 

equivalent: 
(i) X X Y has a unique minimal subset; 
(ii) @(~,x).@(61:1,y) = G for some x E uX and y E uY; 

(iii) @(~,x).@(61:1,y) = G for every x E uX and y E uY. 

b) Let H and F be subgroups of G that can occur as Ellis groups 

of certain minimal ttgs. Then HF= G if! HgF = G for some 

g E G if! HgF = G for every g E G . D 

3.4. REMARK. Let <[>: ~~~ be a homomorphism of minimal ttgs and let 

o/: 61:1 ~ ~ be a proximal extension of (not necessarily minimal) ttgs. 

Then R.,."' has a unique minimal subset. 

PROOF. Define 0: ~H ~ ~ as the projection. Then 0 is proximal. As ~ 

is minimal, the remark follows from 1.23.c. D 

Let <[>: ~~~ and o/: 61:1~~ be surjective homomorphisms of ttgs (not 

necessarily minimal). Then <f> and o/ are said to satisfy the generalized 

Bronstein condition (gBc) if JR.,."'= R.,."' ; i.e., if the almost periodic points 

are dense in R.,."'. If JR.,.= R.,. then <f> is said to satisfy the Bronstein 

condition (Be); we shall also say that <f> is a Be map or a Be extension . Be 

extensions tum out to behave nicely with respect to the regionally proximal 

relation and the interpolation of almost periodic factors, as will be made 

clear in 4.4. and 111.3 .. 
Note that if the pair (<f>,o/) satisfies gBc, then X and Y , being factors of 

R.,."', both have a dense subset of almost periodic points. 
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3.5. REMARK. 

a) Let <f>: ex~ 2'. be a homomorphism of minimal ttgs and let 
t/;: 6lJ ~ 2'. be a proximal extension. Then </> J_ t/; if! ( </>,t/;) satisfies 

gBc (cf. 3.4.). 
b) In particular, a proximal homomorphism of minimal ttgs is a Be 

extension if! it is an isomorphism. 
c) Let <f>: ex~ 2'. be a homomorphism of minimal ttgs. If JRcp is an 

equivalence relation, then </> = ~oT/ where T/ is a Be extension and 
~ is a proximal extension (cf. the discussion just below 2.14.). D 

In case 2'. is a minimal ttg, the fact that </> and t/; satisfy the generalized 
Bronstein condition implies semi-openness for the canonical map 
0: <ijl,cpif ~ 2'., defined by O(x ,y) = <f>(x) = t/;(y) for all (x ,y) E RH 

(1.4.b). 
Semi-openness has the following technical advantage: 

3.6. LEMMA. Let <f>: ex~ 2'. and t/;: 6lJ ~ 2'. be surjective homomorphisms of 
ttgs, such that the canonical map 0: <ijl,H ~ 2'. is semi-open. Then for 
every nonempty open W C R <Po/ there are nonempty open subsets U 
and V in X and Y such that 

</>[U]=t/;[V] and 0 ;:/= UX VnRHC W. 

PROOF. Let U' and V' be open subsets of X and Y such that 
0 ;:/= U'X V'nRcpifC W and let 

0: = int(O[ U' x V' n Rcpif]) = int(</>[ U'] n t/; [V']). 

Then U:= U'n<1>--[0] and V:= V'nt[;--[O] suffice. D 

3.7. COROLLARY. Let <1>:ex~2'. and t/;:61!~2'. besurjectivehomomorphisms 
of ttgs, and let W be an arbitrary open set in RH . In each of the fol
lowing cases we can find open sets U and V in X and Y such that 
</>[U] = t/;[V] and 0 ;:/= U X V n RcpifC W. 

(i) 2'. is minimal and </> and t/; satisfY gBc; 
(ii) </> is open and t/; is semi-open; 
(iii) ex is minimal and t/; is open; 
(iv) 2'. is minimal, </> is open and Y = JY . 

PROOF. 

(i) Follows from 3.6. and 1.4.b. 
(ii) It is easy to show that 0 is semi-open; hence 3.6. applies. 
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(iii) Follows from (ii) and 1.4.b (interchange </> and i/; ). 

(iv) Follows from {ii) and 1.4.b. 
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D 

If a pair in R.ptJ; can be approximated by almost periodic points in RH, 

then it can be approximated by almost periodic points with a first coordinate 

in Tx (for some fixed x E X ), provided that </> is a homomorphism of 

minimal ttgs. This is shown in the next lemma. 

3.8. LEMMA. Let </>: 'X-"> 5!: and i/;: 611-"> 5!: be surjective homomorphisms of 

ttgs with 'X minimal, and let x EX and u E Jx . Then 

JRH=T{x}Xui/;<-<f>(x) (={(tx,ty)ltET,yEui/;<-<f>(x)}). 

PROOF. As { x } X u i/;<-</> (x) c; J RH the inclusion c; holds. 

Conversely, let (x 1 ,y 1)E JRH and let U X V n RH be a basic open 

neighbourhood of (x 1 ,y 1) E RH ; i.e., U and V are open neighbour

hoods of x 1 and y 1 in X and Y. As UX VnJR.ptJ; =I= 0, there is a 

point (x 2,y 2)E UX VnJRH; say (x 2,y2) = v (x 2,y 2). By minimality of 

'X, there is an aEG with x 2 =vax. So (x2,y 2)=va(x,a- 1y 2), and 

clearly, (x,a- 1y 2)E{x}Xui/;<-<f>(x). Hence 

(x2 ,y2)E U X V n T ({x} Xu i/;._<f>(x)), 

and as U and V are arbitrary, (x 1 ,y 1)E T ({x} Xu i/;<-<f>(x)). D 

In the same spirit we have the following result, the easy proof of which is 

omitted. 

3.9. LEMMA. Let <f>: 'X-"> 5!: and i/;: 611-"> 5!: be surjective homomorphisms of 

ttgs, with i/; an open map. If x 0 E X is a transitive point and </> is 

semi-open, then R.ptJ;=T({x0}Xi/;<-<f>(x0)). In particular, if 'X is 

minimal, then RH = T ( { x } X i/;<-</> (x) ) for every x E X . D 

The results in 3.6. through 3.9. show that openness of maps as well as density 

of almost periodic points in RH provide a (technically) convenient descrip

tion of RH. Both aspects are almost "embodied" by the so called RIC 

extensions, which we shall define hereafter (see 111.1. for properties of those 

RIC extensions). 

A homomorphism </>: 'X-"> 5!: of minimal ttgs is called a RIC- extension 

(abbreviation for Relatively InContractible) if </> ..l i/; for every proximal 

homomorphism i/;: 611-"> 5!: of minimal ttgs. If 5!: is the trivial one point ttg, 

'X is called incontractible. 
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Note that q, is RIC iff q, _L K , where K: 2!(2) ~ '.£'. is the universal minimal 
proximal extension of '.£'.. In particular, it follows from 2.9. that every 
minimal ttg for an abelian group T is incontractible. 
If, for a certain topological group T , the universal minimal ttg '!PT is 
trivial, then every minimal ttg for T is incontractible; for, obviously, 
~ _L { *} . Such a topological group is called strongly amenable (the name 

will be clear from VII.1.11.). 

It turns out that RIC extensions are open (111.1.4.) and that RIC extensions 
satisfy the Bronstein condition in a strong way (Ill.1.9. and IIl.1.5.). 
It is still unsolved whether or not an open Be extension is a RIC extension. 
We shall provide two partial results with respect to that question in IIl.1.9. 
and V.3.7 .. 

Another concept in relating homomorphisms of ttgs (not necessarily minimal) 
is that of weak disjointness. Two surjective homomorphisms q,: ~~ '.£'. and 
if;: ~ ~ 5!: of ttgs are called weakly disjoint if RH is an ergodic subset of 
X X Y ; notation: q, _.:_if; . If '.£'. is the trivial one point ttg and q, _.:_if; , 

then we say ~ and ~ are weakly disjoint; notation: ~_.:_ ~ . 
In contrast to the situation for disjointness, it is possible that a homomor
phism of ttgs is weakly disjoint from itself. Such a homomorphism 
q,: ~~ '.£'. with q, _.:_ q, is called weakly mixing. If '.£'. is trivial then ~ is 

called a weakly mixing ttg. 
The following example of weakly disjoint ttgs and weakly mixing ttgs ori
ginates from s. GLASNER [G 75.1]. We shall defer the proof until VIl.2.14., 
where a relativized version is given. 

3.10. EXAMPLE. Let ~ be a proximal minimal ttg. Then ~ is weakly dis
joint from every minimal ttg. In particular, a proximal minimal ttg is 
weakly mixing ([G 76] 11.2.2.). D 

3.11. REMARK. A weakly mixing homomorphism of ttgs does not admit non
trivial almost periodic factors. 

PROOF. Let q,: ~~ ~ be a surjective weakly mixing homomorphism of ttgs. 
Then for every a.E62Lx we have TanRq,=Rq,. Hence Qq,=Rq,. so 
E .p = R .p and q, does not admit non trivial almost periodic factors. D 
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1.4. MISCELLANEA 

This section does not have a main theme. We intend to give some exam

ples and we shall comment on the relations P </> , Q </> and E </> for a 
homomorphism cp of minimal ttgs. 

31 

We shall need the following lemma ([AG 77] lemma II.2.; also compare 

VI.3.1. in here). 

4.1. LEMMA. Consider the next commutative diagram consisting of homomor

phisms of minimal ttgs. 

µ 
'X ~ 

A' 

l• ·l 
/ 

(} _.,.,., / 

/ 
/ 

/ 
/ 

6Y 67!) 
p 

Let cp be a proximal extension and let 1/1 be distal. Then there is a 

homomorphism (}: 6Y ~ ~ such that µ = (} o cp and P = i/Jo8. 0 

Let cp: 'X~61:1 be a homomorphism of minimal ttgs. Since P 9 <;: Q9 <;: E 9 , 

P 9 oQ9 U Q 9oP 9 <;: E 9 ; sometimes, however, we have £ 9 = Q 9oP </> (e.g. 

IIl.3.8. and VII.1.19., 1.20.). The following holds with respect to Q 9oP </> : 

4.2. REMARK. Let cp: 'X~61:1 be a homomorphism of minimal ttgs. Then 

Q90P9=P90Q9= 

{(x1 ,x2)E R 9 I v(x1 ,x2)E Q9 for some m.l.i. I in ST and some v E J(/)}. 

PROOF. Follows from 2.7. and the fact that Q9 is closed and invariant. 0 

Consider the next commutative diagram of homomorphisms of minimal ttgs. 
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The following describes how P cp and P 8 , Q cp and Q 8 and E cp and E 8 

are related. 

4.3. 1HEOREM. In the situation above, the following statements hold: 
a) o/ X o/ [P cp] = P 8 ; 

b) o/ x o/[Qcp] = Qo; 
c) o/Xo/[PcpoQcp]=PooQo; 
d) o/Xo/[Ecp]=Eo; 
e) for every x EX, o/[Ecp[x]] = Eo[o/(x)]. 

PROOF. 

a) This is a straightforward relativization of [E 69] 5.22.3 .. 

b) This is a straightforward relativization of [MW 80.2] 3.2 .. 

c) Follows easily from band 4.2 .. 
e) [MW 83] 2.3 .. 

d) Follows from e (but a direct proof is possible). D 

In the previous section we already mentioned the use of dense sets of almost 
periodic points. In chapter III we shall discuss a technique that is perfectly 
fit to attack the regionally proximal relation in the situation of a Be exten
sion. In fact, it attacks the regionally proximal relation as far as the set 
J R cp is concerned. 

To that end define for a homomorphism cp: 'X.~ 61:1 of minimal ttgs: 

Q; : = n {Tan J R cp I a E 6lLx } 

and note that Q; = n {TanJRcp I aE 6lLx} . In other words, 

(x 1 ,x2)E Q; iff there is a net {(x\ ,x~)}; in JRcp and there are t; ET 
such that 

(x;1 ,x~)~(x1 ,x2) and t;(x\ ,x~)~(x1 ,x1). 

Clearly, Q; is a closed, invariant, reflexive and symmetric relation in JRcp , 

and Q; C Qcp; if cp satisfies the Bronstein condition, then Q; = Qcp. 

4.4. LEMMA. Let cp: 'X.~61:1 be a homomorphism of minimal ttgs, and let 

(x 1>X2) be an almost periodic point in Q; ; say (x J,X 2) = u (x J,X 2) for 

some u EJ. Then there are nets {xD; in ucp<--cp(x 1) and s; and 

t; in T such that 

S;(X1,X~)~(XJ,X2) and t;(X1,x~)~(X1>X1) in JRcp 

while s; u ~ u and t; u ~ u in M . 
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PROOF. (See also [MW 74] 2.2.) By 3.8., JRcp = T({x i} X ucf><-cf>(x 1)) and so 

it follows easily that 

Q; = n {Tan T({x1}X ucf><-cf>(x1)) I aE 61.1,x}. 

This shows that we can find a net {z>-.}>. in ucf><-cf>(x 1) and s~ and t~ in 

T such that 

Let g>-. E G be such that z >-. = g>-.x 1 and note that g>-.cf> (x i) = cf> (x 1) . After 

passing to a suitable subnet we can find p 1 , p 2 , p 3 and p 4 in M such 

that 

note that p 1x 1 = p 3x 1 = p 4x 1 = x 1 and p2x 1 = x2. 

Choose nets {rµ}µ and {rJ }µ in T with rµ~u and rJ ~up 1up 3- 1 

Then there are nets {s,7 }, and {t,7 }, in T (subnets of the product nets 

(s 1,r), (t 1,r 1)) such that 

sJ (u ,g.)~ (up1, up2) and tJ (u ,g.)~ (up1, up1up3- 1p4), 

for suitable g, E {g>-. I "A} . By continuity of right multiplication with up 1- 1 

we have sJup 1- 1 ~up 1up 1- 1 = u and t,7up 1- 1 ~u ; hence 

s,7up1-I (u,up1g.)~(u,up2) and t,7up1- 1 (u,up 1g.)~(u,up 1up 3- 1p4). 

But then we can find (sub)nets {s;}; and {t; }; in T and g; E {g, Iv} 

such that 

Hence s;u~u and t;u~u in M; and up 1g;x 1Eucf><-cf>(x 1),while 

s; (x 1, up 1g;x 1)~(x 1, up2x 1) = (x 1,x2) and 

t; (x1, up1g;x1) ~(x1, up1up3- 1p4x 1) = (x1 ,x1). 
D 

We shall tum to some examples. Although they are completely standard they 

can serve as a link to reality. 

It is left as an exercise for the reader to check the properties of the ttgs men

tioned here. 
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4.5. (i) Let X be the circle, considered as the unit interval I with end 
points identified. Define cp: X ~ X by cp(x) = x +a (mod 1) for some 
irrational a E I , and let the action of '1L on X be defined by 
(n,x)1->cpn(x)=x+na (modi). Then~ is a ttg for 'lL. ~is 

minimal; and as cp is an isometry, ~ is uniformly almost periodic. 

(ii) Let Y = X X X be the torus and define a homeomorphism 
if;: Y ~ Y by tf;(x1 ,x2) = (x 1 + a,x2 + /3) for irrational a,/3E I such 

that a / f3 is irrational too. Again, let the action of '1L on Y be defined 
by the iterates of if; . Then 61:1 = ~ X 'Xp is the product of two uniformly 
almost periodic minimal ttgs, so 61:1 is uniformly almost periodic. As a//3 
is irrational, the point (0,0) has a dense orbit in Y , and it follows that 61:1 

is minimal. 
Note that this means that the uniformly almost periodic minimal ttgs ~ 
and 6Xp are disjoint iff a and f3 are independent over Cl! . 

(iii) Let Z = X X X be the torus and define a homeomorphism 
O:z~z by O(x 1,x 2)=(x 1+a,x 1+x 2) for a transcendental aEJ. 

Let the action of '1L on Z be defined by the iterates of () . 
Clearly, the projection 'IT: 2'.~ ~ is a homomorphism of ttgs; moreover, '1T 

is a group extension (every fiber is homeomorphic to the CT 2 group X ). 
Hence 2'. is an almost periodic extension of a uniformly almost periodic 
minimal ttg and so 2'. is distal. As {(na,0a(n 2-n)) In E Z} is dense in 
Z it follows that 2'. is minimal. This ttg 2'. is not uniformly almost 

periodic, however, [F 63]. 

4.6. (i) Consider the uniformly almost periodic minimal ttg ~ for T = '1L 

as in 4.5.(i) . Let x 0 EX and put E = '1Lx 0 , the orbit of x 0 . Clearly, E 

is a proper dense subset of X . Split every e E E into two distinct points 
e +, e - and define 

Y: = (X \ E) U { e + I e E E} U { e - I e E E} . 

Let cp: Y ~ X be the obvious identification map. Provide Y with a CT 2 

topology by defining a base 'ii'> as follows: 
Every full original (under cp ) of an open interval in X is an element of 'ii'> • 
For every e E E and every t: > 0 the sets ( e - t: , e) U { e +} and 
(e, e + t:) U { e -} are elements of 'ii'> • We can extend the action of '1L on 
X to an action of '1L on Y by defining 
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(n ,x)i-+x + na (mod 1) for every x EX \E ; 

(n,e+)i-+(e +na)+ (mod 1), (n,e-)i-+(e +na)- (mod 1) (eEE). 

Then ~ is a ttg for Z and as every orbit is dense, ~ is minimal. The 

map c[>: ~~~ is a homomorphism of minimal ttgs and cf> is one-to-one in 

the points outside E (i.e., cf> is almost one-to-one or almost automorphic). 

So cf> is point distal, and every x E X \ E is not just a cp-distal point but 

even a distal point for ~ , i.e., ~ is a point distal minimal ttg. 

Also cf> is proximal, for e + and e - are proximal ( e E E ) . Hence ~ 

is a proximal extension of a uniformly almost periodic ttg, a so called 

proximal-equicontinuous ttg. As cf> is proximal in a special way, ~ is even 

locally almost periodic (see VI.5.6.). 

(ii) A point distal ttg does not have to be locally almost periodic, since 

every minimal distal ttg is point distal; e.g. ~ in 4.5.(iii) is point distal. If 

~ were locally almost periodic, it would have been uniformly almost 

periodic by 1.18 .. 

4.7. (i) Let T:= T(a,b) be the free group on two generators (a and b), 

and let X be the circle. Define a: X ~x by a (x) = x +a (mod 1) for 

an irrational a E I and define b : X ~ X by b (x) = x 2 • Then a and 

b are homeomorphisms, and ~ is a ttg for T . By the action of a , ~ 

is minimal and by the action of b , ~ is proximal. 

(ii) Let Y be the circle and define c : Y ~ Y by c (y) = y + *a 

(same a as in (i)) and define d: Y ~ Y by d (y) = 2y2 for O.;;;;y.;;;;; * 
and d (y) = * + 2(y - *i for *.;;;;y < 1 . 
By the rotation c , ~ is a minimal ttg for T ( = T (c, d)). Define 

q,: Y ~x by c[>(y) = 2y (mod 1). Then cf> is a homomorphism of 

minimal ttgs. Moreover cf> is a group extension, the CT 2 group being the 

group consisting of two elements. 

Note that P"'J=YXY\ {(y,y+*)lyEY} and Q"'J=YXY, so 

Q61J=E61J=P61JoP61J. 
This map cf> as well as ~ is called the twofold covering of the minimal prox

imal rotation. Obviously, we can define threefold and fourfold coverings 

similarly. 

4.8. Let ~ = < X , o > be the shift transformation on two symbols, i.e., 

X = {O,l}z and o: X ~x is defined by o(x)i = xi + 1 for all i E Z. 

Define blocks Bk for k E N as follows: 



36 Topological Dynamix 

and let Y k X be defined by 

Y = {x EX I every finite segment of x is a segment of Bk for some k E ~} . 

Then Y is a closed shift invariant subset of X ; so 6ll is a ttg for 7L . It 
turns out that 6ll is a minimal weakly mixing ttg (cf. [J 82]). Moreover, 6ll is 
a prime ttg, i.e., 6ll does not have nontrivial factors. 
For more details on this so called Chacon transformation 6ll see [J 82]. 

4.9. Let Z be a compact, nonseparable, nonmetric topological space and 
define X = zz . Let a be the shift on X . Then ~ is a ttg for 7L . As 
X is not separable, X does not contain transitive points. But it is easy to 

see that ~ is ergodic. 

1.5. REMARKS 

In this section we shall briefly discuss some more or less isolated subjects, 
which are closely related to the material presented in the previous sec
tions of this chapter. 

5.1. In the literature one often encounters a function algebraic approach to 
topological dynamics, especially in the mathematical environment of R. ELLIS. 

It is just a matter of taste that we didn't adopt this approach. 
In short it comes down to the following (see [E 69] chapters 9 and 10). Let 
~ be a ttg and denote by e(X) the Banach algebra of all continuous com-

plex valued functions on X provided with the supremum norm. As a point 
transitive ttg ~ is a factor of ~ , we can consider e(X) as a subalgebra 
of e: = e(Sr) . In this way there is a one-to-one correspondence between 
the point transitive ttgs and the so called T -subalgebras of e . So the study 
of point transitive ttgs can be transformed into the study of certain subalge
bras of e . In this approach one rather studies point transitive ttgs with a 
fixed base point. 

5.2. Let T be an arbitrary topological group. If ~ is a ttg for Td , then 
~ is a ttg for T except the (joint) continuity of the action. in general, the 
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action will not be continuous; but under some conditions it is, as may be 

seen from the "theorem of Ellis" [E 57]. 

Let T be a locally compact T 2 topological group, and let < T d , X, 'TT > 
be a ttg for Td . If 'TT: T X X ~ X is separately continuous then 'TT is 

jointly continuous, (hence 'X is a ttg for T ). 

This nontrivial result plays a role in the proof of 1.20.. The theorem is not 

stated here in its fullest generality. For a short and transparent proof see 

[T 79]. In [Cr 81] a "game theoretic" proof is given. 

5.3. In section one we gave relative notions of distality, proximality and 

almost periodicity. We did not define relative local almost periodicity. This 

is studied in [MW 80.2]. There it turns out that a homomorphism cp: 'X~6ll 

of minimal ttgs is locally almost periodic if cp = tfio{} with (} highly proxi

mal (see IV) and tfi almost periodic (for the absolute case this was shown in 

[MW 72], cf. VI.5.6.). 

5.4. NOTE. Let cp: 'X~6ll be a homomorphism of ttgs with 6ll minimal. 

Suppose that x EX is a cp-distal point, i.e., X = T (x) and x is 

distal from every x' E X with cp (x) = cp (x ') . Then 'X is minimal. 

Let v Ely and note that cp(vx) = v cp(x) = vy = y = cp(x) . By assump

tion x and vx are distal. As vx = v.vx it follows from 2.7. that x and 

vx are proximal. Hence x = vx , and x is an almost periodic point 

(2.5.). So X = Tx is a minimal set. 

Note that 4.6.(i) shows that point distal is not necessarily distal. 

The corresponding notion of a point proximal homomorphism of minimal 

ttgs is not very useful, as is shown by the next observation: 

NOTE. Let cp: ix~ 6ll be a homomorphism of minimal ttgs and suppose 

that x E X is a proximal point for cp, i.e., (x, x ') E P ~ for every 

x' E X with (x, x ') E R .p . Then cp is proximal. 

Let (x 1 , x 2) E R .p , say x 1 = px and x 2 = qx for some p and q in 

M . Let u E J x ; then 

(x, up- 1qx) = up- 1 (x1 ,x2)E TR.p = R.p. 

By assumption, x and up- 1qx are proximal. By 2.8., x and up- 1qx 

are distal; hence x = up- 1qx . But then upx =up (up- 1qx) = uqx ; and 

so, by 2.7., px and qx are proximal. 



38 Topological Oynamix 

5.5. The notion of disjointness was introduced in [F 67] for not necessarily 
minimal ttgs. Two ttgs X and 6Y are called disjoint if for every ttg ~ and 
all surjective homomorphisms <P: ~-7 X and 1": ~-7 6Y the induced 
homomorphism (): ~-7 X X 6Y is surjective. Here () is such that <P = '7T1 o () 

and I/; = '7T2 o () , where '7T1 and '7T2 are the projections. 

x ----x x 6]J-------6Y 
'7T1 '77"2 

Clearly disjointness is preserved under factors. If X and 6Y are disjoint 
then one of them has to be minimal. Moreover, if both X and 6Y are 
minimal, then X and 6Y are disjoint iff X X 6Y is minimal. 
These facts are easy to verify, so their proofs are left for the reader. 

5.6. The notion of weak disjointness first occurs in [P 72], with the same 
definition as we gave. A slightly different definition can be found in [M 78], 
where two ttgs X and 6Y are called weakly disjoint if X X 6Y is a point 
transitive ttg. Clearly the notions coincide if both X and Y have a count
able pseudobase. 
Of course this yields different definitions for the notion of weak mixing. Let 
X be a minimal ttg. 

WMl A ttg X is weakly mixing if X X X is ergodic ([P 72]). 

WM2 A ttg X is weakly mixing if X X X is point transitive ([M 76.1 ]). 

Other definitions occurring in the literature are: 

WM3 A ttg X is weakly mixing if Q-x = X X X ([B 75179] 3.13.14.). 

WM4 Attg X is weakly mixing if E-x=XXX ([E81]0.10.). 

Clearly, WM2 ~ WMl ~ WM3 ~ WM4 and WM2 ~ WMl in case x has a 
countable pseudobase. If X is incontractible or if X admits an invariant 
measure, then WMl, WM3 and WM4 are equivalent (VII.3.11.). 
Our definition of weak mixing will always be WMl. 

5.7. In 4.5. through 4.9. we gave a few examples of ttgs and homomor
phisms of ttgs. They just serve as an illustration. In the literature many other 



Chapter I Basics, etc. 39 

(and more sophisticated) examples can be found; we shall name a few and 

give some references. 
(i) Many examples do exist based on shift systems e.g. 4.8.. In this area the 

intertwining of ergodic theory and topological dynamics is quite strong, 

[D 80], [Mt 71], [Mk 75]. 
(ii) Let Y and Z be CT2 spaces and let a: Z ~ Z be a homeomor

phism. Suppose h : Z ~ X( Y) is a continuous map from Z into the 

full homeomorphism group of Y (uniform topology). Define a 

homeomorphism cf> on X=ZXY by cf>(z,y)=(a(z),h(z)(y)). 

Then X is called a skew product of Z and Y . In fact in 4.5.(iii) Z 

is a skew product of X and X , where h: X ~ X(X) is defined by 

h(x)(x')=x +x'. 
Many examples are made using skew product constructions e.g. [GW 79], 

[G 80], [GW 81]. 
(iii) Our example 4.6.(i) can be generalized considerably (see for instance 

IV.1.4.). In [M 76.1] and [M 78] many examples are constructed with the 

method which is discussed in IV.1.4 .. 
(iv) In [B 75179] one can find a lot of examples corning from the qualitative 

theory of differential equations. 
(v) By way of anthology of other examples we shall just mention some 

papers in which interesting examples can be found. This list is not 

meant to be complete so a lot of other interesting examples may remain 

unmentioned: [E 65], [FKS 73], [G 74], [G 75.l], [M 76.2], [MW 72], 
[MW 76], [P 71], [S 70], [W 67]. 



II 

HYPER TRANSFORMATION GROUPS 

1. hyperspaces and ergodicity 

2. recursiveness 

3. quasifactors 

4. remarks 

In the structure theory of minimal ttgs it turns out to be useful to study the 

behavior of subsets of the phase space under the given action. One of the 

first (rudimentary) occurrences of the hyperspace in that respect was in 

[V 70], in which the study of the phenomenon of the shrinking of a fiber to a 

point was started (cf. IV.I.). 

In this chapter we shall briefly discuss the action of T on the hyperspace 

2x of the phase space X , which is induced by the action of T on X . 

The first section is just an introduction with some emphasis on ergodicity. 

Recursiveness, in particular almost periodicity, is discussed in the second sec

tion. In the third one the induced action of Sr on the hyperspace ("the cir

cle operation") is introduced, as are quasifactors. These notions will occur 

frequently in the sequel. 

II.1. HYPERSPACES AND ERGODICITY 

Many standard constructions do exist that build new ttgs out of old ones 

(cf. section 1.1.). In this section we introduce the hyper ttg 26X induced 

by the ttg '?X. . We also define the so called "circle-action" (or "circle

operation") of Sr on 26X. Both concepts play a major role in this 

booklet. We end this section with observations on ergodicity of 26X . 
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Let X be a topological space. The hyperspace 2x of X is defined to be 

the collection of all nonempty closed subsets of X . 

On 2x we can define the Vietoris topology as follows: 

For an open set U in X define 

and let 

<U>:={BE2xlBCU} and 

< u > • : = { B E 2x I B n u =F 0 } 

~: = { < U >I U open in X} U { < U > • I U open in X} . 

The Vietoris topology on 2x is the topology generated by the subbase ~ . 

Note that a base for the Vietoris topology is formed by the sets of the form 

n n 

< U 1> ••• , Un >: = < LJ U; > n n < U; > * 
i=I i=I 

Note that < U > * = < X , U > . 

1.1. THEOREM. Let X be a topological space. 
a) If X is a T 1-space, then X can be homeomorphically embedded in 

2x by the map x 1-+ { x } . 
b) X is metrizable if! 2x is metrizable. 

c) X is CT2 if! 2x is CT2 • 

PROOF. Cf. [Mi 51 ]. D 

1.2. Let X be a CT 2 space and let 6l.L be the unique uniform structure for 

X . Then the Vietoris topology is just the uniform topology on 2x induced 

by the unique uniform structure 6l.L* , which is generated by the collection 

{a* I aE 6l.L} ; here 

a• : = {(A , B) E 2x X 2x I A C a(B) and B C a(A )} . 

For a proof of this we refer to [Mi 51]. 

Let '[>: X --+ Y be a closed continuous surjection. Then '[> induces maps 

2"': 2x -+2Y and 'f>ad: 2Y -+2x 

defined by 2"'(A) ='[>[A] for all A E 2x and 'i>ad(B) = q><-[B] for all 
BE2y. 
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1.3. TIIEOREM. Let cp: X-+ Y be a continuous surjection of CT2 spaces. 

Then 
a) 2"' is continuous; 

b) <Padl y: Y-+ 2x is an upper semi continuous (u.s.c.) map; i.e., 

{y E YI <Pad(Y) = q,+-(Y)k U} is open in Y for open U in X; 

c) <Padl y is continuous in y E Y ifJ cp is open in every point of 

q,+-(y); 

d) <Pad is continuous ifJ <Pad I y is continuous ifJ cp is open; 

e) if X is metrizable then there is a dense Gil-set Y' in Y such that 

<Pad is continuous in every point of Y'. 

PROOF. For a, b and d see [Mi 51]; c is straightforward. A proof for e can 

be found in [Fo 51]. 0 

1.4. REMARK. Let X be a CT2 space. The map tn : xn -+ 2x defined by 

(x" ... , Xn )i-+ { x" ... , Xn} is continuous. Moreover, it is locally 

one-to-one in the points (x 1, ••• , Xn) with X; =I= Xj for all i =I= j . 

Also note that LJ {tn[Xn] In EN} is dense in 2x . 0 

The following remark on convergence in 2x seems useful, the easy proof is 

omitted. 

1.5. REMARK. Let {A;}; be a convergent net in 2x . Then A = limA; in 

2x ifJ the following conditions are satisfied: 

(i) A contains all convergence points of every net {a;}; with a; EA; ; 

(ii) for every x EA there is a net { aj }j with aj EA j (after passing 

to a suitable subnet {Aj }j of {A;}; ) such that x is a convergence 

point of {aj }j . 0 

Let ~ = < T , X , 7T > be a ttg (note that X is a CT i space unless stated 

otherwise). Then, clearly, < Td , 2X, 2'11 > is a ttg, where the map 

2'11: Td X 2x -+ 2x is defined by 

2'11(t,A):=7r[{t}XA] 

for all t ET and A E 2x (or, suppressing the action symbol, (t ,A )i-+ tA ). 

Indeed, every homeomorphism 7T 1 of X extends to a homeomorphism 

2<'11') = (2~' of 2x (by 1.3.a). 
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1.6. TIIEOREM. Let 'X = < T , X , 7T > be a ttg for an arbitrary topological 

group T . Then t'X: = < T, 2x, 2'11 > is a ttg and 'X can be equivari

antly embedded in 2~ . 

PROOF. By the above, we only have to prove the continuity of 

2'11: T X 2x ~ 2x . Let t E T and A E 2x and take a subbase neighbour

hood <U> of 2'11(t,A). Then 77[{t}XA]c:; U, so by continuity of 7T 

there are open neighbourhoods V and W of t and A in T and X , 

such that 7T[VX W]C U. Hence 2'11[VX <W>]C <U>. Next consider 

a subbase neighbourhood < U > • of r(t ,A) ; i.e., there is an a EA with 

7T (t, a) E 7T [ { t} X A ] n U . By continuity of 7T there are open neighbour

hoods V and W of t and a in T and X such that 7T[VX W]C U . 

Hence 2'11[V X < W > •] C < U > • . The second part of the statement is 

obvious. D 

1.7. Note that 2~ contains 'X as a closed invariant subset; thus 2~ is 

minimal iff 'X is trivial. Further on, however, we shall see that 2~ can 

very well be ergodic and nontrivial (1.11.). We omit the easy proof of the 

following theorem. 

1.8. TIIEOREM. Let </>: ix~ qi be a surjective homomorphism of ttgs. Then 

a) 2<1>: 2~ ~ 2611 is a homomorphism of ttgs; 

b) <Pad: 2611 ~ 2~ is an equivariant u.s. c. map; it is a homomorphism of 

ttgs i.ff </> is open; 

c) <l>ad and </>ad I y are embeddings i.ff </> is open. D 

From now on we shall (again) forget about the action symbol, i.e.: if 'X is a 

ttg then 2~ is a ttg and the action will be denoted by (t, A )1-+ tA . How

ever, this notation may cause some ambiguity with respect to the action of 

Sr on 'X and 2~. To circumvent misunderstanding, we shall denote the 

action of Sr on 2~ by the "circle operation". 

Let A E 2x and p E Sr , then 

pA : = {pa I a EA } and 

p oA: = limt;A in 2X for some net {t; }; in T with p = limt; 

= limt;A in 2x for every net {t; }; in T with p = limt; . 
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1.9. LEMMA. Let ?X, be a ttg, A E 2x, p,q EST and t ET. 
a) Let { t; }; be a net in T with p = lim t; . Then 

p oA = {x EX Ix = limt1a1 for a subnet {t1 }1 of {t; }; and for a1 EA}. 

b) pA C p o A and tA = t o A , 
c) p o (q o A) = pq o A . 

PROOF. 

a) Clear from the definition above and 1.5 .. 
b) Follows immediately from a. 
c) Follows from the fact that ST acts as a semigroup on 2x . D 

1.10. For nonempty subsets A of X which are not (necessarily) closed, we 
define p o A : = p o A . Clearly, (also if A is not closed) 

p oA = {x EX Ix = limt1a1 for a1 EA and t1 ~p} . 
Note that if A is finite we have pA = p oA for all p EST . As was men
tioned earlier, 2<x can never be minimal (in a nontrivial way). We shall see 
now that 2<x can be ergodic (cf. 1.15.). 

1.11. THEOREM. For all n E N let ?X,n be an ergodic ttg. Then (2'Xt is 

ergodic for all n EN. [Hence (22cx't is ergodic for all n EN and so 

on.J 

PROOF. Let W 1 and W2 be nonempty open sets in (2xt . We have to 
find a t ET with tW1 n W 2 =I= 0 . Let m EN and open sets U} and 
V} in X for i E {I, ... , n } and j E {I, ... , m } be such that 

0 =I= < u l ' ... ' u~ > x ... x < u7' ... ' u::, > c W 1 and 

0 =I= < v l , ... , v ~ > x · · · x < v7 , ... , v::, > c w2 • 

As ?X,mn is ergodic there is a t E T such that 

t(Ul x · · · x u::,) n (Vl x · · · x v::,) = L =1= 0 , 

say (x l , ... , x~, x t , ... , x::,) E L . Then clearly 

{xl, ... ,x~}X ··· X{x7, ... ,x::,}EtW1nW2 ; 

so tW1 n W 2 =fa 0 , which proves the theorem. D 
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1.12. REMARK. Let ~ be a ttg and n E N . If (2~)n is ergodic then ~n is 

ergodic. In particular, if 2~ is ergodic (weakly mixing) then ~ is 

ergodic (weakly mixing). 

PROOF. Let U 1X · · · X Un and V1X · · · X Vn be basic open (and 

nonempty) in xn . Then 

U:= <U1>X · · · X <Un> and V:= <V1>X · · · X <Vn> 

are open in (2x)n . So there is a t ET such that tU n V =I= 0 ; hence 

there are X; EU; with t{x;} = {tx;} E <V; >. But then 

t (x J, ... , Xn) E t ( U t X · · · X Un) n V t X · · · X Vn , 

and ~n is ergodic. D 

1.13. LEMMA. Let ~ be a ttg. If 2~ is ergodic then Q~ = X X X . 

PROOF. Choose a E 6l1 and U open in X such that U X U !:;;; a . Let 

(x 1 , x 2) E X X X and let V 1 and V 2 be open neighbourhoods of x 1 and 

x 2 in X . As the ttg 2~ is ergodic we can find a t E T such that 

t < U> n < V1 , V2> =I= 0 . In particular, there are points y 1 and y 2 in 

U with t(y 1 ,y 2)E V1X V2 • Hence 

0 =I= V1X V2nt(UX U)!:;;; V1X V2n Ta' 

So X X X !:;;; Ta for all a E 6ltx and, consequently, X X X = Qx . D 

For 1.14. and 1.15. we need some results from chapter VII. which do not 

depend on the results in this section. 

1.14. COROLLARY. Let ~ be minimal such that X X X has a dense subset of 

almost periodic points. If 2~ is ergodic then ~ is weakly mixing. 

PROOF. By 1.13., Qx = XX X; hence by VII.3.17. (absolute case), ~ is 

weakly mixing. D 

1.15. THEOREM. Let ~ be a minimal ttg. If ~ has an invariant measure, or 

if ~ is incontractible, then the following statements are equivalent: 

a) ~ is weakly mixing; 
b) ~n is ergodic for all n E N ; 
c) 2~ is ergodic; 
d) (2~)n is ergodic for all n E N . 
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PROOF. By VII.3.11., the statements a and b are equivalent to 
11 E 'X = X X X 11 • By 1.11., d follows from b; and, of course, c is implied by 
d. Assume c; then, by 1.13., it follows that Qrx = X X X . Hence 
XXX=QrxCErx,SO Erx=XXX. D 

1.16. In particular this means that the equivalence of a through d of l.15. 
holds for every minimal ttg 'X in the case of an amenable (e.g. abelian) 
phase group T (every minimal ttg for an amenable group has an invariant 
measure (cf. VII. I.I I.)). 

l.17. LEMMA. Let 'X be a ttg and let n E ~. If (2'Xt is ergodic then for 
any n open sets V 1, ••• , Vn in X there is a minimal left ideal I in 
Sr with p o V; = X for all p E I and all i E {I, ... , n } . 

PROOF. As the collection 

{p E Sr Ip o V; = X for i E {I, ... , n} } 

is closed and T-invariant in Sr , we only have to prove it is nonempty. 
For every y E 6llx choose a finite y-dense set {x l, ... , xnY } in X , i.e., 

y 

U {y(x?) Ii E {I, ... , ny} } = X. 

Then <V1>X ··· X<Vn> and (<y(xjY), ... ,y(xnY)>Y are open 
y 

sets in (2x t . So there is a t Y E T such that 

ty<V;>n<y(x(), ... ,y(xnY)>=I= 0 for iE{l, ... ,n}. 
y 

Note that this means that t Y V; n y (x/) =I= 0 for all i E {I, ... , n } and 
all JE {I, ... ,ny}. Let p =limtyESr (for a suitable subnet). Let 
x E X and let U be a neighbourhood of x in X ; choose a E 6llx with 
a (x) C U and f3 E 6llx with f3 = p- 1 and {33 C a . Then for all y E 6llx 

with yC/3 thereisan xyE{xf, ... ,xnY1 } with y(xy)Ca(x). Hence 

0 =I= tyV; n y(xy)C tyV; n a(x) 

for all y C f3 and all i E {I, ... , n } . But then p o V; n a (x) =I= 0 for all 
i E {I, ... , n } and so p o V; n U =I= 0 . As U was arbitrary, 
x E po V; =po V; for all i E {I, ... , n} . As x EX was arbitrary, 
p o V; = X for all i E {I, ... , n } . D 
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1.18. THEOREM. Let ~ be a ttg. Consider the following statements: 

a) ~n is ergodic for all n EN . 

b) (26X't is ergodic for all n E N . 
c) For every finite collection {V1, ... , Vn} of open subsets of X 

there is a minimal left ideal I in Sr such that p o Vi = X for all 

p E I and every i E { l, ... , n } . 

d) For every countable collection 'Y of open subsets of X there is a 

minimal left ideal I in Sr such that po V = X for all p EI 

and every V E 'Y. 
e) There is a minimal left ideal I in Sr such that po V = X for 

all p E I and every open set V in X . 

The statements a , b , c and d are equivalent and they are implied by e . 

If X has a countable pseudobase (e.g., X is metric) then all five state

ments are equivalent. 

PROOF. 

e ~ d ~ c Trivial. 

c ~ a Let U 1 X · · · X Un be a basic open set. By c there exists a 

p E Sr with p o U; = X for i E { l, ... , n } . But then 

xn =poU1X · · · XpoUn =po(U1X · · · X Un)CT(U1X · ·· X Un)· 

As n E N and U 1 X · · · X Un is arbitrary, ~n is ergodic for all n E N. 

a~ b Cf. 1.11.. 
b ~ c Follows from 1.17 .. 

c ~ d Let 'Y= {Vi I i EN} , then for all n EN we can find 

Pn E Sr such that Pn o Vi = X for lo;;;;; i.;;;;: n . Let p = limpn , for a suit

able subnet. Then clearly p o V = X for all V E 'Y. As 

{p E Sr Ip o V = X for all V E CV} is a nonempty closed T -invariant 

subset of Sr , it contains a minimal left ideal. 

d ~ e Let ~ be the countable pseudobase for X and let I be a 

minimal left ideal of Sr such that po B = X for all p EI and all 

B E ~ . Let V be an open set in X , then there is a B E ~ with 

B <;;;;, V . Hence X =po B c;;;;,p o V so po V = X . D 



48 Topological Oynamix 

11.2. RECURSIVENESS 

In order to illustrate to what extent properties of ttgs relate to properties 

of the induced hyper ttgs, we shall in this section remark on recursiveness 

in hyper ttgs (also see [Ko 75]). 

Fix a collection <£ of subsets of T , to be called the admissible sets, and 

recall the definitions of (uniform) (pointwise) (local) recursiveness (just after 

1.1.7.). 

2.1. 1HEOREM. Let 'X be a ttg. Then 
a) 2<x is uniformly recursive if! 'X is uniformly recursive; 

b) if 2rx is pointwise recursive then 'X is pointwise locally recursive. 

PROOF. 

a) Suppose 'X is uniformly recursive. Let a E 6h,x with a = a - I and 

remember that {/3* I /3=13- 1 E 6h,x} forms a base for 6h,* (1.2.). Let 

HE(£ be such that Hx C a(x) for all x EX and let A E 2x . Then 

hA C a(A) and by symmetry, A C a(hA) for all h EH , so hA Ea· (A) 

for all h EH ; hence 2<x is uniformly recursive. Obviously, if 2<x is uni

formly recursive then 'X as a subttg is uniformly recursive too. 

b) Let x E X and let U E 'Yx . If V E 'Yx with V C U , then 

VE 2x is a recursive point and < U > E 'Vv . So there is an H E <£ with 

HV C < U > , hence H. V C U , and x is a locally recursive point. D 

2.2. 1HEOREM. Let T be an abelian group. Then x EX is (locally) recur-

sive in 'X if! every finite subset of Tx is (locally) recursive in 2<x. 

PROOF. We shall prove the theorem for local recursiveness; modification for 

recursiveness is obvious. 

Suppose that x E X is a locally recursive point in 'X and let 

A = {t 1x, ... , tnx} E 2x . Let 0 be a neighbourhood of A in 2x and 

note that, without loss of generality, we may assume that 

0 = < U 1, ... , Un > such that t; x E U; for all i E {I, ... , n } and 

U; = u1 iff U; n u1 o:j= 0 (i.e., repetition in the U; 's is allowed!). 

Choose Vi E 'Yx with t; V; c U; and let v: = n { V; I i E { 1, ... ' n } } . 

As x is a locally recursive point, there is an H E <£ and a W E 'Yx with 

HWC V. Hence 

Ht; W = t; HW C t; V C t; V; C U; 
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and so 

H. <tiW, ... ,tn W>C <U1, ... , Un>. 

Clearly, <t 1 W, ... , tn W> is a neighbourhood of A . D 

2.3. COROLLARY. Let T be an abelian group and let ~ be the orbit closure 

of a (locally) recursive point. Then 2"X has a dense set of (locally) recur

sive points. 

PROOF. By 2.2., it is sufficient to prove that 

{A E 2x I A \:: Tx with IA I < ~o} 

is dense in 2x . But this follows immediately from the fact that Tx is dense 

in X , because for every basic open set < U 1, ••• , Un > in 2x we have 

Ui n Tx =I= 0 for i E { 1, ... , n } . D 

2.4. REMARK. 

a) If (x 1, ... , Xn) E xn is a (locally) recursive point in ~n then 

{x 1, ... , Xn } is a (locally) recursive point in 2<X . 
b) If ~n has a dense set of (locally) recursive points for all n E 11\J, 

then (2'Xt has a dense set of (locally) recursive points for all 

n El'\J. 

PROOF. Follows immediately from 1.4 .. D 

Let <:l be the collection of (left) syndetic subsets of T . Then the 

corresponding notion of recursiveness is called almost periodicity. 

2.5. REMARK. Let ~ be a ttg. Then (x j, ... ' Xn) E xn is an almost 

periodic point in ~n if! { x 1, ••• , Xn } is an almost periodic point in 
2<X. 

PROOF. Suppose A = { x 1, ... , Xn } is an almost periodic point in 2<X . 

Then there is a minimal left ideal K in Sr and an idempotent u E J (K) 

such that uoA =A. As A is finite, A =uoA =uA; so X; =ux; for 

all i E { 1, ... , n } . Hence, (x 1, .•• , Xn) = u (x 1, ... , Xn) and the point 

(x 1, ••• , Xn) is almost periodic in ~n • The other way around is contained 

~2~L D 
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2.6. THEOREM. 'X is a distal ttg if! every finite subset of X is an almost 
periodic point in 26X . 

PROOF. 

"If": Let x and y in X . Then { x ,y } is an almost periodic point 
in 2"X . Suppose x =I= y and let U and V be open neighbourhoods of 
x and y in X such that UX VnLix = 0 . As <U, V> is a neigh

bourhood of { x ,y } in 26X , we can find an H E « with 
H. {x,y}C <U, V>. But then H.(x,y)C UX VU VX U and so 
clxxx(H(x,y))C UX VU VX ff; hence, clxxx(H(x,y))nLix = 0. 

Let K be a compact subset of T with KH = T . Then 

K clxx x(H(x ,y)) = clxx x(KH(x ,y)) = T(x ,y) 

and clearly K clx x x(H (x ,y)) n Ax = 0 , so x and y are distal. 
"Only if": Suppose 'X is distal. Let A = { x 1, ••• , Xn } C X , 

then (x J, ... , Xn) E Xn . As 'Xn is distal, it is pointwise almost periodic 
(I.1.23.a). Hence (x), ... , Xn) is almost periodic in cxn and so by 2.4.a, 
A is an almost periodic point in 2-x . D 

2.7. THEOREM. Let 'X be a ttg. The following statements are equivalent: 
a) 'X is uniformly almost periodic; 
b) 26X is uniformly almost periodic; 
c) 26X is pointwise almost periodic. 

PROOF. (See also [Ko 75]) By 2.1.a, a and b are equivalent. 
from b, we only have to prove that c implies a: 
By 2.1.b, 'X is pointwise locally almost periodic, and by 2.6., 
So from I.1.18. it follows that 'X is uniformly almost periodic. 

As c follows 

'X is distal. 
D 

2.8. REMARK. Let 'X be a distal minimal ttg which is not almost periodic. 

Then for every x E X there is a neighbourhood U of x such that no 

closed neighbourhood V of x with V C U is an almost periodic point 
in 26X. 

PROOF. (WU) Suppose that there is a x E X such that for every neighbour
hood U of x there is a closed neighbourhood V of x with V C U 

which is an almost periodic point in 2-x . Then that x is a locally almost 
periodic point in 'X . For let U be an open neighbourhood of x and let 
V be a closed neighbourhood of x with V C U which is almost periodic 

in 2"X . Then V E < U > so there is a syndetic subset H of T such that 
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hVE <U> for all h EH. Hence HV 0 kHV =HVk U. As ~ is 

minimal and X contains a locally almost periodic point, ~ is pointwise 

locally almost periodic (I.1.11.a). But then, as ~ is distal, ~ must be uni

formly almost periodic (I.1.18.), which contradicts the assumption. D 

11.3. QUASIFACTORS 

Minimal subttgs of the hyper ttgs (quasifactors) are studied in this sec

tion. We state some easy facts and we introduce a kind of relativization 

of hyper ttgs (2f). Especially the relation between an almost periodic 

homomorphism cp and the minimal subttgs of 2{ will be considered. 

We end this section with some technicalities on the circle operation and 

an observation on the points of openness of a homomorphism of minimal 

ttgs. 

Let ~ be a ttg. A quasifactor of ~ is a minimal subttg of 2-x . There are 

several obvious quasifactors. For instance the trivial ttg is a quasifactor of 

every ttg, it is the quasifactor generated by the phase space of the ttg. Also 

the minimal subttgs of ~n (n E 1\1) are quasifactors of ~ (cf. 2.5.). 

Let !t be a quasifactor of ~ . Then Z is the orbit closure of some almost 

periodic point A E 2x ; i.e., !t = ~(A , ~: = < T, QF(A , ~.2" > , where 

QF(A,~:= {p oA IP EM} 

and we say that !t is generated by A . Note that we can choose A E Z 

arbitrarily. 
Remark that ~(A , ~ is well defined only if A E 2x is almost periodic; 

otherwise QF(A , ~ depends on the choice of M in Sr . 

3.1. EXAMPLE. Consider example I.4.7.((i) and (ii)), the twofold covering of 

the proximal circle. 
a) The quasifactors of (this specific) ~ are just ~(X, ~ ( ,..., { *}) 

and ~({x},~ (,..., ~. 

b) The quasifactors of ~ are {*}, ~. ~({0,0},"]j) (,..., ~ and 

~([0,0], "]j) (,..., ~. 
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PROOF. 

a) Let 2: be a nontrivial quasifactor of 'X (i.e., 
2: -=I= { *} and 2: -=I= 'X ). Then there is an A E Z and an £ with 
0<£<1 such that AC [0,£). Applying b ( x i--+x 2 ) infinitely many times 

shows that {O} ETA . Hence 2: = ~({x}, 'X). 
b) Clearly, the subttgs of 2"1J mentioned are quasifactors of 61! . To 

show that these are the only ones, the same argument as in a is used. D 

3.2. There can be many quasifactors of a ttg 'X. For instance, if 'X is 
uniformly almost periodic then every closed subset of X generates a quasi
factor (2.7.). If cx,n has a dense subset of almost periodic points for every 
n E 1\1 , then there is a dense set of points in 2x that generate quasifactors 

(1.4. and 2.5.). Note that this occurs if 'X is minimal and incontractible 
(IIl.1.9.). 

3.3. REMARK. Let <f>: 'X~61J be a homomorphism of ttgs. 
a) If 2:= ~(A, 'X) is a quasifactor of 'X, then 2<1>[2:] =~(</>[A], 61!) 

is a quasifactor of 61! . 2<1>[2:] is trivial if! </>[A ] = Y for some 
(hence all) A E Z . 

b) If 6ltf = ~(B, 61!) is a quasifactor of 61!, with BC </>[X] then there 
exists a quasifactor 6ltf' of 'X such that 2<1>[6ltf'] = 6ltf . 

c) If </> is open and surjective then every quasifactor of 61! is 
homeomorphic to a quasifactor of 'X . 

PROOF. 

a) Follows from the continuity of 2<1> . 
b) Define 6ltf': = ~(u o <f>._[B], 'X) , then 2<f>(u o <f>._[B]) = u o B hence 

2<1>[6ltf'] = 6ltf . 
c) If </> is open then <f>ad: 2"1J ~ 2<x is a topological embedding. D 

Let </>: ex~ 61! be a homomorphism of ttgs. Then define 

2$: = 2<1>._[Y], i.e., 2; ={A E 2x I </>[A]= y for some y E Y}. 

It is easy to check that 2; is closed and invariant (so 2J; is a ttg) and that 
'X is embedded in 2J; . 

The relative version of 1.4. would be: R; is embedded in 2; for every 
n E 1\1 ; where 
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It is readily shown that U { R; I n E 1\1} is densely embedded in 2; . 

The following theorem is a straightforward generalization (relativization) of 

1.11. and 2.5 .. We leave the proof (which is an obvious modification of that 

in the absolute case) for the reader. 

3.4. THEOREM. Let cp: ~~ 6?j be a homomorphism of ttgs, and let 

o/:=2'1>1ix:2f~"?j. Ifforal/ nEl\I, R; hasadensesubsetof .,, 
almost periodic points (is ergodic), then Ri has a dense subset of almost 

periodic points (is ergodic) for all n E 1\1 . 

Consequently, if for all n E 1\1 , R; has a dense subset of almost 

periodic points (is ergodic), then 2;, as a factor of Ri, has a dense sub

set of almost periodic points (is ergodic). D 

3.5. THEOREM. Let cp: ~~ 6?j be a surjective homomorphism of ttgs. Then 

the following statements are equivalent: 
a) cp: ~~"?j is almost periodic; 
b) 24>: 2J; ~ 6?j is almost periodic. 

If ~ is minimal then a and b are equivalent to 
c) 24>: 2J; ~ 6?j is distal; 
d) 2J; is pointwise almost periodic. 

PROOF. Equivalence of a and bis a straightforward generalization of 2.7 .. 

Suppose ~ is minimal, then the implications b ~ c and c ~ d are obvious. 

d ~ a ([Sh 76) 1.4.) If 2J; is pointwise almost periodic then, clearly, 

cp is distal. By 1.1.20.a, it is sufficient to prove that Qq. = !lx . So let 

(x1 ,x2)E Qq.C: Rq. and let u E lx 1( = lx2); then, by 1.1.23.b, we have 

(xi.x2) = u(x 1 ,x2)E uQ; . By 1.4.4., we can find nets {t; }; , and {s;}; 

in T and elements x~ E q,+-q,(x 1) = ucp+-cp(x 1) in such a way that 

t;u ~u, s;u ~u, t;(x 1 ,x~)~(x 1 ,x 2) and s;(x 1 ,x~)~(x 1 ,x 1). Let 

x3=limx~Ecp+-cp(x 1). Then, for each i0 , A;0 :={x~ li;;;;;.i0}U{x3} is 

closed and A;0 E 2;. As 2; is pointwise almost periodic, there is a v E J 

with v oA;0 = A;0 • But A;0 c; cp<-cp(x1) = ucp<-cp(x 1) (1.2.12.), so we have 

A;o = uA;o c; u(u oA;o) =UV (u oA;o) c; u(v 0 (u 0 A;o)) = u(v oA;o) = uA;o. 

As t;X~ ~X2 we have X2E u oA;o and similarly X] E u oA;o. By the 

choice of u , X1 = ux1, x2 = ux2 so {x1 ,x2} c; u(u oA;0) = A;0 • Hence 

D 
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3.6. THEOREM. Let </>: X~ 6Y be a homomorphism of ttgs with 6Y minimal. 

Then the following statements are equivalent: 
a) <f>: x~ 6Y is distal; 
b) every finite A E 2f is an almost periodic point in 2f ; 
c) X is pointwise almost periodic and 2<1>: 2:~ 6Y is distal for every 

quasifactor 2: of X with Z <;:;; 2f . 

PROOF. The equivalence of a and b is an obvious modification of 2.6 .. 

c ~ a Let (x 1 , x 2) E R </> • Suppose that x 1 and x 2 are proximal; 

then Tx 1 n Tx 2 =I= 0 . As X is pointwise almost periodic, Tx 1 and Tx 2 

are minimal. So Tx 1 = Tx 2 , and in particular x 2 E Tx 1 • Now observe 

that the minimal subttg < T , Tx 1 > of X can be considered as a quasi

factor of X, namely < T, Tx 1 > "' 2f( {x 1}, X) . By assumption, 

2<1>: 2f ( { x 1}, X) ~ 6Y is distal, so <PI tx= < T , Tx 1 > ~ 6Y is distal. Since 
I 

x 2 E Tx 1 and <f>(x 1) = <f>(x 2) it follows that x 1 and x 2 are distal. 

a~ c ([AG 77] lemma II.I.) Note that from the assumption it follows 

that X is pointwise almost periodic (I.1.23.a) and that for all y E Y , 

u Ely we have <P,,_(y) = u<f>,,_(y) (I.2.12.). Let A and B be almost 

periodic points in 2f and suppose that they form a proximal pair while 

2<i>(A) = 2<i>(B) = {y} so <P[A] = <P[B] = y . By I.2.7., there is a minimal 

left ideal I in Sr such that p oA =po B for all p EI . In addition, let 

u, v E J(/) be such that A = u oA and B = v o B ; and note that 

u, v Ely (I) . By the distality of <P we have A = vA so 

A = vA <;:;; v oA = v o B = B . 

Similarly B <;:;; A , hence A = B . D 

3.7. COROLLARY. Let X be a minimal ttg. Then X is uniformly almost 

periodic (distal) if! every quasifactor of X is uniformly almost periodic 

(distal). 

PROOF. Cf. 3.5. (3.6.). D 

3.8. REMARK. If 6Y is minimal and <f>: x~ 6Y is distal, then every orbit clo

sure in 2f contains a unique minimal subset. In particular, if 

if;: = 2<1> I 2 x then P >/I is an equivalence relation. 
<I> 

PROOF. Let A E 2f and let I and K be minimal left ideals in Sr . Let 

y = <P[A] and let u Ely (I) and v E J (K) with u "'v , hence 
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v E ly(K). As </> is a distal map, v<j> .... (y) = <f> .... (y) ; so vA =A and 

uoA =uovA t;;;;uvoA =voA (u "'v). 

Similarly, v o A t;;;; u o A and so v o A = u o A . Hence the minimal sets 

{p o A I p E I } and {p o A I p E K} are the same. Since every minimal 

subset of the orbit closure of A in 2{ is of the form {p oA IP E /'} for 

some minimal left ideal /' in Sr , this proves the first statement. 

Let ili:=2<1>1 2 x:2f~6Y and suppose (A,B)EP.p and (B,C)EP.p. Put 
</> 

y = iii (A ) = iii (B) = iii ( C) , and let I and K be the minimal left ideals in 

Sr such that p o A = p o B for all p EI and p o B = p o C for all 

p E K . Let u Ely(/) and v E ly (K) with u ,...., v . Then, by the argu

ment above, u o A = v o A , u o B = v o B and u o C = v o C so 

uoA =uoB =voB =voC =uoC. 
D 

Let <[>: ~~ 6Y be a distal homomorphism of ttgs and let 6Y be minimal. 

Let Reg(</>): 6X: ~ 6Y be the regularizer of </> (recall the definition just below 

1.2.15.); i.e., X' is the orbit closure of z = (x)xE<t>,_(y) in x 1<P,_(yll for 

some fixed y E Y . Then z is an almost periodic point (note that, by dis

tality of </>, u<j> .... (y) = <f> .... (y) for all u Ely ), so 6X: is minimal and 

Reg(</>) is defined by Reg(<[>)(pz) = py for all p EM . Note that if 

6Y = { *} , then 6X: = E ('X) . 

3.9. REMARK. With notation as above (so </> is distal!): 
a) Reg(</>) is (well defined and) distal. 
b) For a EM we have az = z if! ax = x for all x E <f> .... (y). 
c) Let A t;;;; <f> .... (y), u Ely and a E uM . Then az = z implies 

uoA =aoA. 

PROOF. a and b are obvious. 

c) Let At;;;; <f> .... (y) and az = z then ax = x for all x E <f> .... (y) so 

aA =A . Then A = aA t;;;; a o A , hence 

uoA t;;;;uo(aoA)=uaoA =aoA 

Also a- 1x = x for all x E <f> .... (y), so similarly u oA t;;;; a- 1oA and 

aoA =ao(uoA)t;;;;ao(a- 1oA)=aa- 1oA =uoA. 
D 
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3.10. THEOREM. Let <f>: <X~ 61:1 be a distal homomorphism of ttgs and let 61:1 

be minimal. Then for every quasifactor ~ of <X which is a subttg of 2J;' 
the map 2<1>: ~~61:1 is a factor of Reg(</>). I.e., there is a homomorphism 

0: '?X: ~~ with Reg(</>)= 2<1>00. 

In case 61:1 = { *} this means that every quasifactor of <X is a factor of 

E(<X). 

PROOF. Let y E Y and let z EX' be as in the discussion just before 3.9 .. 
Suppose that ~ is a quasifactor of <X with Z C 2f . Let A E Z with 
2<1>(A)=y and define O:'?X:~~ by O(pz)=poA for all pEM. It 

suffices to prove that 0 is well defined. Let p and q in M be such that 
pz = qz . Then upz = uqz and py = qy . By 3.9.c, it follows readily that 
up oA = uq oA ; hence p oA and q oA are proximal. As 

2<1>(p o A ) = py = qy = 2<1>( q o A ) , 

p oA and q oA are distal (3.6.c), hence p oA = q oA D 

The following facts concerning the "circle-arithmetics" are collected for the 
convenience of the reader and the author. 

3.11. REMARK. Let <X be a minimal ttg. Then 
a) u(uoA)=u(voA) for ACX andforevery u,vEJ; 
b) u o uA = u o vA for A C X and for every u, v E J ; 
c) p o A = w o pA for A C vX , v E J and w E JP . 

If <f>: <X~ 61:1 is a homomorphism of minimal ttgs, y E Y , p EM , 

w E JP and u, v E J then 
d) po v<f> .... (y) = w o u<f><-(py); 

e) p o<f><-(y) = w o<f><-(py). 

PROOF. 

a) As u = uv and v =vu (1.2.2.b), 

u (u o A) = uv (u o A) C u (v o (u o A)) = u (vu o A) = u (v o A) 

and also u (v o A) = uu (v o A) C u (u o (v o A)) = u (uv o A) = u (u o A) . 

b) As u = uv and v = vu we have 

u o uA = u o uvA C u o (u o vA) = u o vA 

and u o vA = u o vuA C u o v o uA = uv o uA = u o uA 

c) Since A C vX , it follows that A = vA . So 

p o A = p o vA = p o vp - 1pA C pvp - 1 o pA 
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and, as w E JP (which means that w E J with wp = p ), 
pvp - I = wpvp - 1 = wpwp - 1 = w ; hence p o A ('.;;;; w o pA . 

Conversely, w opA ('.;;;; w o (p oA) = wp oA = p oA . 
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d) Let cp, y , p , u, v and w be as in the assumption. Then by c, 

povcp ..... (y)=wopcp<--(y), and as pcp ..... (y)t:;;;wcp<--(py) it follows that 

p ovcp<--(y)t:;;; w owcp<--(py) = w oucp<--(py) (b). 

Conversely, u = upvp - I , so 

w o u q,<--(py) = w o upvp - lq,<--(py) ('.;;;; wup o vp- 1cp<--(py) ('.;;;; 

('.;;;; wp o vcp<--(y) =po vcp<--(y). 

e) Clearly, as p o q,<--(y) ('.;;;; q,<--(py) , we have 

p 0 q,<--(y) = w 0 p 0 q,<--(y) ('.;;;; w 0 q,<--(py) . 

Conversely, for u' Ely we have w o q,<--(py) = wpu 'p- 1 o q,<--(py) and 

u 'p- 1 o q,<--(py) ('.;;;; q,<--(y) . So wpu 'p- 1 o q,<--(py) ('.;;;; wp o q,<--(y) = p o q,<--(y) . D 

We end this section with some observations on the points of openness for a 

homomorphism cp: 'X~ ~ of minimal ttgs. 

3.12. 1HEOREM. Let cp: 'X~ ~ be a homomorphism of minimal ttgs and let 

y E y . Then { x E q,<--(y) I cp open in x} = n { u 0 q,<--(y) I u Ely} . 

PROOF. Note that cp is open in x itf for every net {y; }; in Ty converg

ing to y there is a net { x; }; in X converging to x with cp (x;) = y; 

( Ty is dense in Y !). Suppose cp is open in x E q,<--(y) and let u Ely . 

Let {t;}; be a net in T with t; ~u . Then t;y ~y . So by openness of 

cp in x , there are x; in X such that t; x; ~ x and cp (x;) = y . This 

shows that X = limt;X; E u ocp<--(y) (1.9.a). 

Conversely, let x E n { u 0 q,<--(y) I u Ely} . Let {t;y }; be a net in Ty 

converging to y and let u E ly . Then { t; u }; converges to p E M (for a 

suitable subnet). Let w E J be such that wp = p ; then w Ely , for 

wpy = py = limt;uy = limt;y = y . 

By assumption, x E w o q,<--(y) and, by 3.11.e, 

so x E wp o q,<--(y) = p o q,<--(y) . As the net { t; u }; converges to p , there 

are x; E q,<--(y) such that x = lim t; ux; . The arbitrary choice of the net 

{t;y }; shows that cp is open in x . D 
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3.13. COROLLARY. Let cp: ex.~ 6lJ be a homomorphism of minimal ttgs. 
a) If x is a cp-distal point in X then cp is open in x . 
b) If cp is distal then cp is open. 

PROOF. 

a) If x is a cp-distal point then Jx = J </>(x) (1.2.10.). So x = ux for 
every u E J </>(x) ; hence x E ucp .... cp(x }(;; u o cp .... cp(x) for every u E J </>(x) • 

But then, by 3.12., cp is open in x . 

b) If cp is distal then every x EX is a cp-distal point. By a , cp is 

open in every x E X ; so cp is open. D 

11.4. REMARKS 

4.1. The notion of hyper ttg occurs naturally in topological dynamics. One 
could imagine that the action of T on closed subsets of X yields some 
extra information about CX.. In 1970 W.A. VEECH used a special kind of 
quasifactor ([V 70]) and R. ELLIS ([E 73]) and D.C. MCMAHON and T.S. WU 

([MW 74]) mention the action of T on 2x more or less explicitly. In 

[G 75.l], [G 74] and [G 76] s. GLASNER studies this action in more detail. 

However, all occurrences of hyper ttgs deal with hyper ttgs for discrete topo

logical groups. s.c. KOO ([Ko 75]) was the first (and only one) to publish a 

proof of the fact that the topology of T didn't destroy the existence of 
hyper ttgs. His proof uses the uniform structure; we gave a proof (1.6.) using 

the Vietoris topology, which is "easier to handle". 
The remainder of section 11.1. is devoted to the question: what do we know if 
2~ is ergodic. As far as we know no related results were published until 

now. 

QUESTIONS 

a) If CX. is minimal and proximal then CX. is weakly mixing (cf. [G 76] 
11.2.2. and, in here: Vll.2.14.); what can be said about the ergodicity of 
cx,n for n ~ 3, and what about 2~ ? (Note that in general they are 

not ergodic!) 
Note that "with respect to" this question the notions of totally proximal 
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[ 2rx has exactly two quasifactors ] and extremally proximal [ 2rx has 

exactly two quasifactors of which { *} is isolated ] were introduced in 

[G 74]. 
b) Is it possible to extend theorem 1.18. to a collection of statements in 

which not just a particular minimal left ideal can be chosen, but in 

which any minimal left ideal suffices? 

4.2. In section II.2. we state some generalities on recursiveness in hyper ttgs. 

The main purpose was to give a hyperspace proof of 2.7. (see also 3.5.). 

Here we follow [Ko 75], but the proofs are shorter and easier (e.g., 2.5. and 

2.6. compared to [Ko 75] theorem 4.2. and corollary 4.1.; and note that 2.6. is 

almost evident if we use the idempotents in Sr ). Theorem 2.2. slightly gen

eralizes [Ko 75] theorem 2.2.. The result in 2.8. is due to T.S. wu (private 

communication). 

QUESTIONS 

a) Can we weaken the condition on T in 2.2. and 2.3.? 

b) By 1.4. and 2.5. we know that 2rx has a dense set of almost periodic 

points if ix,n has a dense subset of almost periodic points for all 

n EN . Under what extra conditions does the inverse implication hold? 

The following example shows that extra conditions in the question b above 

are needed. 

EXAMPLE: (S. GLASNER) 

Let X = {O,l}z with the usual product topology. Let a be the shift, i.e., 

(a(x))n=xn+I forall nEl.;anddefine t0 :x~x by t 0(x)[n]=x[n] 

for all n El.\ {l}, t0(x)[l] = x[l] if x[O] = 1, t0(x)[l] = 1 - x[l] if 

x[O]=O;anddefine t 1 :x~x by t 1(x)[n]=x[n] forall nEl.\{1}, 

t 1(x)[l] = x[l] if x[O] = 0, t 1(x)[l] = 1 - x[l] if x[O] = 1. 

Let T be the group generated by a, t 0 and t 1 • Then 'X = < T , X > is 

minimal and proximal, so ix,n does not have a dense subset of almost 

periodic points for all n E N with n ;;;;;. 2 . But 2rx has a dense subset of 

almost periodic points! For: 

Let n EN and fJE {0,1}2n+I. Define 

Ap:={xEXlx[m.1010n-n,m.101on+n]=fJ forall mEN}. 

Then one can show that A p is an almost periodic point in 2rx . Moreover, 

choose {J1, ••• ,fJ1 in {0,1}2n+I then LJ{Ap ljE{l, ... ,/}} is an 
J 
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almost periodic point in 2<X . But as 2<X has a dense set of points of this 

form, it follows that 2rx has a dense subset of almost periodic points. 

4.3. In section II.3. we describe some facts about quasifactors and relativ

ized hyperspaces. Remark 3.8. is based upon a note of T.S. WU (private com

munication) and it generalizes [G 79] 4.3.. Theorem 3.10. is a relativized ver

sion of [G 75.l] 2.5.; but the proof is different from the one there. 

QUESTIONS 

a) How do properties of <j> reflect in properties of 2<P ? In particular, what 

can be said about quasifactors of point distal or proximal ttgs? (cf. 3.7.). 

b) With respect to 3.8.: is Po/ closed? 

c) If every quasifactor of 'X is a factor of E ('X) , what does that imply 

for 'X? 



III 

~-TOPOLOGIES, A TOOL IN STRUCTURE THEORY 

I. RIC extensions 

2. i)-topologies 

3. the equicontinuous structure relation 

4. PI extensions 

5. remarks 

One of the most important issues in the structure theory of minimal ttgs is to 

determine the almost periodic factors of a given homomorphism c/> , i.e., to 

understand E </> • In general we do not know very much about E </> , but 

there are conditions to be laid upon cp that enable us to describe E.p pre

cisely. One of them is the existence of a relatively invariant measure, which 

is treated in chapter VII, the other is cp being a RIC extension (Bronstein 

condition already suffices). 

In 1973 I.U. BRONSTEIN proved that for an open Be extension c/> the region

ally proximal relation is an equivalence relation ([B 73], in Russian, and not 

really recognized at that time). The method was in a certain sense elemen

tary: he just uses properties of uniform structures and syndetic sets. 
In 1977 W.A. VEECH published a proof of that fact (without openness) heavily 

depending on the construction of weak topologies on u -invariant parts of 

fibers (which was initiated by H. FURSTENBERG in [F 63]). 

It turns out that these weak topologies (i)-topologies) are perfectly fit to 

describe the regionally proximal relation in JR.p . 

We shall deal with RIC extensions in section I., and among others we shall 

see that every map is a RIC extension up to proximality. In section 2. we 

describe the i)-topologies and we use them in section 3. to understand E </> 

for a Be extension cp . Section 4. deals with PI extensions; there we apply 

the foregoing to the structure theory. 
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In this chapter no substantially new results can be found. It is more or less a 
recollection of what is known in this part of the theory, arranged in a way 
suitable for our purposes in other chapters, and some times slightly general
ized (e.g. 3.10.a). 

111.1. RIC EXTENSIONS 

In the structure theory of minimal ttgs, RIC extensions play an impor
tant role. The reason will be clear in the sections 111.3. and Ill.4. (also 
see VIll.1.4.). In short it comes down to the following observations: 
Every map cp: ex~ 6lJ is RIC up to proximal extensions (1.11.), and 
RIC extensions behave nicely with respect to almost periodic factors 
(3.9.). 
In this section we shall have a close look at RIC extensions. 

Remember that an extension of minimal ttgs cp: ex~ 6lJ is called relatively 
incontractible (RIC) if cp J_ i/; for every proximal extension i/;: ~~ 6lJ of 
minimal ttgs (I. below 3.9.). For example a distal extension is RIC. 

1.1. The following observation with respect to Ellis groups is useful. 
Let 6lJ be a minimal ttg, u E J and y = uy E Y . Let F = @(61J ,y) be 
the Ellis group of 6lJ with respect to the point y (in G = uM ). Then 
u(u o F) = F . The proof is as follows: 

As Fy = y , and as Py : p 1-+ py : <?JR:,~ 6lJ is continuous, we have 

(u o F)y = (u o F)y = u o Fy = u o Fy = u o y = uy = y . 

So u(u o F)y = uy = y , which shows that u(u o F) CF . As, clearly, 
F = uF = uuF C u ( u o F) , it follows that u ( u o F) = F . 

1.2. LEMMA. Let 6lJ be a minimal ttg, u E J and y = uy . Let 
F = @(61J ,y) be the Ellis group of 6lJ with respect to y (in G ). Then 
@(~(uoF,<?Jll,),uoF)=F and ic:~(uoF,<?Jll,)~61J is a proximal 

homomorphism of minimal ttgs, where K is defined by K (p o F) = py for 
all pEM. 

PROOF. Cf. (G 76] IX.3.3.. 0 



Chapter Ill 3-topologies 63 

We shall give several descriptions of relative incontractibility in 1.3., 1.5. and 

1.9 .. In fact these are characterizations that can be used to define RIC exten

sions; indeed, 1.3.b and 1.3.c occur as such in the literature (cf. [G 76] and 

[V 77]). Our definition of RIC extensions, or better our choice of the 

equivalent statement to be definition is based on personal taste rather than 

theoretical considerations. 

1.3. 1HEOREM. Let <f>: 'X-7 61J be a homomorphism of minimal ttgs. Let 

xo EX, Yo= <f>(xo) and u E lx 0 ; let F = @(61J ,yo) be the Ellis 

group of 61J with respect to y 0 in G . Then the following statements 

are equivalent: 
a) <f> is a RIC extension; 
b) <f><-(pyo) =po Fx 0 for every p EM; 
c) <f><-(y) = v o v<[><-(y) for every y E Y and v Ely . 

PROOF. The equivalence of a and b may be deduced from [G 76] X.1.3 .. The 

equivalence of band c is an exercise for the reader (use II.3.11.). D 

1.4. COROLLARY. A RIC extension <f>: 'X-7 61J of minimal ttgs is open. 

PROOF. We shall show that <f>ad: Y-? 2x is a continuous map; hence, by 

II.1.3.d, <f> is an open map. As follows: 

By 1.3.b, for all p EM we have <f><-(py0) =po Fx 0 . Hence the mapping 

~: M -? 2x , defined by p ...... <f>ad(py 0) , is continuous. Since 

TJ: p 1-+py0 : M-? Y is a quotient map and ~ = <f>adoTJ, it follows that <f>ad is 

continuous. D 

In the literature the only proof of the next theorem is not quite correct so we 

provide the (easy) proof here. 

1.5. 1HEOREM. Let <[>: 'X-7 61J be a homomorphism of minimal ttgs. Then 

the following statements are equivalent: 
a) <f> is a RIC extension; 
b) for every homomorphism tfi: 2:-? 61J with Z = JZ we have that 

(<f>,i/J) satisfies the generalized Bronstein condition; 

c) for every homomorphism tfi: 2:-? 61J of minimal ttgs, we have that 

(<f>,i/J) satisfies the generalized Bronstein condition. 

PROOF. 

a~ b Let W be an open set in RH. As <f> is open and Z =JZ 

it follows from I.3.7.(iv) that there are open sets U and V in X and Z 
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such that 0 =I= U X V n RH<;;, W and <j>(U] = o/[V]. Let z E V be an 
almost periodic point and let v E Jz , then for y = o/(z) we have v E JY 
and, by 1.3., <j> ..... (y) = v ov<j> ..... (y). Let x EU be such that 
<j>(x)=o/(z)=y ,then xEvov<j><-(y). Let {t;}; beanetin T be such 

that v = lim t; and let X; E v <j> ..... (y) with x = lim t; X; • Then 
(x;,z)=v(x;,z) and (x;,z)ERH. As (x,z)=limt;(x;,z) and as 
W is a neighbourhood of (x, z) in R </>if , it follows that t; (x; , z) E W 

eventually, and so that W contains an almost periodic point. So RH has 
a dense subset of almost periodic points, hence (</>,o/) satisfies gBc. 

b =:> c Trivial. 
c =:> a Let 1ji: 5!:--'» ~ be a proximal homomorphism of minimal ttgs. 

Then, by I.3.4., RH has a unique minimal subttg. By assumption c, R <f>o/ 

has a dense subset of almost periodic points, hence R </>if is minimal and so 
</> ..l. o/. As iii was arbitrary, </> is a RIC extension. D 

1.6. COROLLARY. Let </>: 'X--'» 5!: be a RIC extension of minimal ttgs and let 
iii: ~ --"'» 5!: be a homomorphism of minimal ttgs. Let x o E X , u E J x 0 , 

y 0 = uy0 E o/ ..... <j>(x 0) and let H, F and K be the Ellis groups of 'X, 
~ and 5!: with respect to xo, Yo and <j>(xo) in G . Then </> ..l. o/ if! 
HF=K. 

PROOF. By 1.5.c, we know that RH has a dense subset of almost periodic 
points. Hence R <Pi/! is minimal iff it has a unique minimal subset. This is, 
by I.3.2., equivalent to HF = K . D 

We say that a homomorphism <j>: 'X--'» ~ satisfies the njold Bronstein condi
tion for certain n E 1\1 if 

has a dense subset of almost periodic points (notation: </> is n -Be). 

1.7. COROLLARY. If <j>: 'X--'» ~ is a RIC extension of minimal ttgs, then </> 
satisfies the njold Bronstein condition for every n E 1\1 . 

PROOF. For n = 2 the statement follows from 1.5.c. 
Suppose that the statement is true for some k E 1\1 with k ;;;a., 2 . So R~ 
has a dense subset of almost periodic points. Define iii: ~--"'» ~ by 
iii (x 1, •.. , xk) = </> (x 1) . Then, by 1.5.b, R </>if has a dense subset of almost 

periodic points. Clearly R </>if ,..._, R ~ + 1 so the statement is true for k + I , 
which proves the corollary. D 
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1.8. In particular, it follows from 1.5. and 1.4. that every RIC extension is 

an open Be extension. It is still an unsolved question whether or not an open 

Be extension is a RIC extension. Some partial answers can be given: 

(i) If cf> is a regular homomorphism of minimal ttgs which is open and 

which satisfies the Bronstein condition, then cf> is a RIC extension 

(V.3.7.). 
(ii) Theorem 1.9. below. 

1.9. THEOREM. Let cf>: 'X~6h be a homomorphism of minimal ttgs. Then 

cf> is a RIC extension if! cf> is an open map that satisfies n-Bc for every 

n EN. 

PROOF. By 1.4. and 1.7. we only have to prove the "if"-part. So suppose cf> 

is n-Bc for every n E 1\1 . First we show that for arbitrary y E Y and 

u El we have 

LJ {t {x1, ... , Xn} It ET, n E 1\1, X; E ucp<---(y)} is dense in 2/ ~ 

(for 2/ see the discussion just after II.3.3.). 
Let U be a basic open set in 2/; i.e., let m E 1\1 and let U1, ... , Um 

be open sets in X such that U:= <U1, ... , Um>n2f =F 0 (see ILL). 

Let A E U . Then A n U; =fa 0 for i E { 1, ... , m } ; say x '; E A n U; . 
Hence 

(x'1> ... ,x'm)E U1X · · · X Um nR:[: , 

so U 1 X · · · X Um n R:{: is a nonempty open set in R:{: . As cf> is m-Bc, 
there is an almost periodic point 

v (x1, ... ,Xm) = (x1, ... ,Xm)E U1X ... x Um nR:p ' 

(for some vEJ ). Let cf>(x 1)=y' and let pEvM with y'=py. Then 
up- 1x; E ucf><---(y) for every i E {l, ... , m} , and, clearly, we have 

(x1, ... ,xm) = vpup- 1(x1, ... ,Xm). 

Let {t; }; be a net in T with t; ~ vp then for some t;0 we have 

t;up- 1(x1, ... ,Xm)E U1X · · · X Um nR:{: 

for every i;;;. i0 • For those i , 

t; {up- 1x1, ... 'up- 1Xm} E <U1, ... ' Um> n 2;' 
and~ holds. 
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If y E Y , then <f>~(y) E 2/ ; so by ~, there is a net {t; }; in T and 

there are {x;1 , ••• ,x~; }E2/ with xkEu<f>~(y) for kE{l, ... ,n;} 

such that t; { x\ , ... , x~ } ~ <t>~(y) in 2/ . Let, for a suitable subnet, 
I 

p = limt;u , then 

<P~(y) = limt; {x\, ... ,x~ }C limt;u<f>~(y)C limt;u ou<f>~(y) = 
I 

As p E M , there is a v E J with vp = p . Then v E ly ; for 

so y = py and vy = vpy = py = y . By 11.3.l l.c, we know 

<t>~(y) Cp o u<f>~(y) = v o vp<P~(y) . 

As vp <P~(y) = v <P~(y) we have <t>~(y) C v o v <P~(y) . And so it follows that 

<f>~(y) = v o v <P~(y) ; for, obviously, v o v <P~(y) C <t>~(y) . 

We have shown that there exists a v Ely with <f>~(y) = v o v<f>~(y). In 

order to conclude that <f> is a RIC extension we have to know that 

<f>~(y) = w ow <P~(y) for every w Ely . As <f> is open, <Pact is continuous 

so <t>~(y) = w o <t>~(y) for every w Ely . Hence 

<f>~(y) = w o <f>~(y) = w o (v o v<f>~(y )) = wv o v<f>~(y) = w o v<f>~(y), 

and , by 11.3.11.b, it follows that <f>~(y) = w o v <P~(y) = w ow <P~(y) for 

every w E ly , which proves the theorem. D 

1.10. REMARK. 

a) A factor of a RIC extension is a RIC extension. 
b) The composition of two RIC extensions is a RIC extension. 

c) The inverse limit of RIC extensions is a RIC extension. 

PROOF. 

a) Immediate from the definition of RIC extensions and from 1.3.1.a. 

b) Let <f>:'X~6Y and l/;:6Y~'i:. be RIC extensions. For x 0 EX and 

u E lx 0 let Yo= <f>(xo), zo = l/;(yo) and let F and K be the Ellis 

groups of 6Y and £. with respect to y 0 and z 0 in G ( = uM). Then 

and as <f> is open, we have <t>~fp o Kyo] =po <P~[Ky 0), hence 
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(o/o<P)<--(pzo) =po q,<--[Kyo] =po [ LJ { k o Fxo I k EK}] . 

By 11.3.11.c k o Fx 0 = u o kFx 0 so 

LJ {k o Fx 0 I k EK} Cu o KFx 0 = u o Kx 0 , 

for by 1.2.11., F CK . But then 

(o/o<P)<--(pz 0)Cp o u o Kx 0 =po Kxo; 

clearly poKx0 C(o/o<P)<--(pz 0), so (o/o<P)<--(pz 0)=poKx0 and o/o<P is a 
RIC extension by 1.3 .. 

c) Follows immediately from b, 1.3.1.b and the definition of RIC exten-
~~ 0 

Note that the converse statement for b is not true. For, if T is abelian 
every minimal ttg for T is incontractible (note that T does not admit non
trivial proximal ttgs), but there do exist nontrivial proximal extensions 
between minimal ttgs. [E.g., by IV.2.8., f/ is a nontrivial (highly) proximal 
extension of & for every discrete topological group T with I bT I;;;;., ~o .] 

Now that we have some basical knowledge about RIC extensions, we shall 
discuss one of the phenomena that make them interesting, i.e., the fact that 
every homomorphism of minimal ttgs can be related to a RIC extension in a 
canonical way. 

Let q,: ex-'> 6Y be a homomorphism of minimal ttgs and fix u E J , 

x 0 = uxoE X and y 0 = <P(x 0). Let F = @(6Y,y 0) be the Ellis group of 
6Y with respect to y 0 in G . We define a (shadow) diagram EGS(<P) for <P 

as follows. 

a 
ex 

l• 
6Y' 

T 6Y 

Define a quasifactor 6Y' of ex by Y'={paFx 0 lpEM} and let 
X' = {(x,A) Ix EA E Y'} be a subset of XX Y'; 

<P': X'--'> Y' are the projections and r: Y'--'> Y 

r(p ° Fxo) = PYo · 

a: X' -'>X and 
is defined by 
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1.11. REMARK. 

a) Y'={vov<f><-(y)JyEY.vEJy} and T:61J'~61J is a proximal 
homomorphism of minimal ttgs. 

b) 6.X: is a minimal ttg and o: 6.X: ~ ~ is a proximal extension. 
c) <P' is a RIC extension. 

PROOF. 

a) [EGS 75] 5.2. (use 11.3.11. for the description of Y' ). 
b) [EGS 75] 5.6 .. 
c) [EGS 75] 5.9.1.. D 

So our shadow diagram EGS(<f>) is a commutative diagram consisting of 
homomorphisms of minimal ttgs. It shows that every homomorphism of 
minimal ttgs can be lifted to a RIC extension by means of proximal exten
sions. 

The diagram EGS( <f>) is minimal in the following sense 

A. 
~ 6.X:' 

~ 

•"l 
r---.. 6.X: 

t· <P'l 

~ - _,, 61!' ~ 61J" 61J µ 

Consider the diagram above with <P": 6.X:' ~ 61!" a RIC extension of minimal 
ttgs and µ: 61J" ~ 61J proximal. Then there are maps T/: 61J" ~ 61J' and 
~: 6.X:' ~ 6.X: such that <P' o ~ = T/ o <f>' . 

The proof of this fact is left as an exercise for the reader. 

Thus, indeed, EGS(<f>) is in a certain sense the minimal lifting of <f> to a RIC 
extension. Also we can construct a maximal lifting, but first we shall con
struct the universal proximal extension of a minimal ttg using an EGS sha
dow diagram (see also 1.2.14. and the remark just below that item). 

1.12. Let 61J be a minimal ttg and let y: ~~ 61J be a homomorphism of 
minimal ttgs, say y(u) = y 0 ; and let F be the Ellis group of 61J with 
respect to y 0 in G . Construct EGS(y). 
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~- ~ 
(J 

~ 

il ly 
2f (F) = 61J' 61J 

T 

Then Y'={poFu ipEM}=QF(uoF,~) (which will be denoted by 
2£ (F) ); and ~ "' ~, for ~ is the universal minimal ttg, so a is an 

isomorphism. If we identify ~ with ~ via a , then it is clear that 
y': ~~ 61J' is given by y' (p) = p o F . Nate that this implies that 
{p o F I p E M} is a partitioning of M . 

1.13. REMARK. 

a) Every homomorphism lfl: 2:~ 2f (F) is a RIC extension. 
b) T: 2f(F)~61J is the universal minimal proximal extension of 61J. In 

particular, 2f ( G) = '8'r . 

PROOF. 

a) Let y': ~~ 2f (F) be the map defined in 1.12., so y'(p) = p o F 
for p E M . Let lfl: 2:~ 2£ (F) be a homomorphism of minimal ttgs. Let 
z 0 =uz 0 EZ be such that lfl(z 0)=uoF and define 8:~~2: by 
fJ(p) = pz 0 for every p EM . Then y' = lfloO, so lfl is a factor of y'. 

Hence, by 1.10.a, lfl is a RIC extension. 
b) We know already that T is a proximal extension. Let <f>: ix~ 61J be 

a proximal homomorphism of minimal ttgs. Construct EGS( <f>) and consider 
the next diagram. 

~ 

-------------
f l --

-· GX: 

<f>'l 

1J -- ~ 61J' 

-------------2f (F) - ---
T 

Note that <f>' is RIC and proximal; hence <f>' is an isomorphism. By the 
discussion just above 1.12., it follows from the facts that ~ is RIC (1.13.a) 
and T is proximal that there is a homomorphism 11: 2f (F) ~ 61J' . But then 
T factorizes over <f>, which shows that T is universal. D 
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1.14. Let cp: ex~ 6?J be a homomorphism of minimal ttgs. Let u E J , 

xo = uxoE X, y 0 = cp(x0), H =@('X,x 0) and F = @(6?J,yo). Then the 

following shadow diagram m: (cf>) is the maximal lifting of cf> to a RIC 

extension. 

a 
12! (H) ------~ 

~l (F) -------~ 
T 

Note that m:(H)=~(uoH,'?Jfl,), a:m:(H)~'X is defined by 

a(poH)=px 0 and cpm:m:(H)~m:(F) is defined by cpm(poH)=poF. 

That cf>m is well defined follows from 1.1. and: 

1.15. REMARK. Let H and F be subgroups of G . Then H C u(u oF) if! 
the map p o H r> p o F : m: (H) ~ m: (F) is a well defined homomorphism 

(which is RIC). 

PROOF. Let p o H r> p o F define a homomorphism. As, by 11.3.11.c, 

h o H = u o H for every h E H , it follows that h o F = u o F and so 

h E u o F for every h EH ; hence H C u(u o F). Let H C u(u o F); 

then p oH Cp ou(u oF)Cp oF for every p EM. Suppose that 

p o H = q o H , then p E p o H = q o H C q o F . Choose a net { t; } i in 

T with t; ~ q and let f; E F be such that p = lim t;f; . Then 

p oF = (limt;f;)ou oF = limt;(u oF) = q oF 

(11.3.11.c). D 
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m.2. B-TOPOLOGIES 

The proof of the structure theorem for metric minimal distal ttgs as 
presented in [F 63] by H. FURSTENBERG had an enormous impact on the 

study of ttgs; may be it was even more important then the result itself. 

The big contribution to topological dynamics in that proof is the tech

nique of the jJ-topology, a weaker topology on the phase space X of a 
minimal distal ttg '?X. to make the elements of E ('?X.) homeomorphisms 

of X provided with the jJ-topology (compare 1.1.12.e). 
One can extend that technique to the construction of suitable (weak) 

topologies on the "maximal distal parts" of the phase space X of a 

minimal ttg '?X. : Let u E J , then one can construct an B ('?X., u) 
topology on uX which is weaker then the relative topology, but still 

has nice properties. 
In [E 67] R. ELLIS introduces a weakening of the topology on uX in a 

different way, the r-topology, which is beautifully characterized in 

[EGS 75] using the circle operation. Also it is shown in [EGS 75] that the 

two topologies introduced by H. FURSTENBERG and R. ELLIS are in fact 
identical. 
In this section we shall describe the jJ-topologies based on the r
topologies. We do not intend to give a complete exposition of the subject, 

so most of the proofs will be omitted. For more details we refer to 
[V 77], [G 76], [EGS 75] and [VW ?]. 

We shall use almost the same notation as in [V 77]. 

71 

Let T be an arbitrary topological group and fix a minimal left ideal I in 

ST . Fix u E J (I) and let V <;;: T be a set such that u E intsrclsr V . 

define the open subset V(u) of T by: 

V(u): = {t ET I tu E int1 ((clsr V)n /)}. 

2.1. REMARK. With notation as above the following statements hold: 

a) if u E intsrclsr V then V(u )(u) = V(u); 

b) a base for the neighbourhoods of u in I is formed by the collection 

{(clsr V)n I I V <;;: T, u E intsrclsr V, V(u) = V}; 

c) let x = ux be an almost periodic point in a ttg '?X. and let 

U E 'Yx , then there exists an open subset V of T such that 

u E intsrclsr V, V(u) = V and Vx CU. 

PROOF. For a and b see [V 77] page 811 or [VW ?]; c follows immediately 

from b. O 
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Let 'X be a minimal ttg and let x E uX . If V ~ T is an open set such 
that u E int8TclsT V and V(u) = V , and if U is a neighbourhood of x 

in X (provided with its original CT2 topology) then define 

[U, VJ:= v- 1u = {t- 1u It E V}. 

Denote by % : = '!JC; the following collection of subsets of uX : 

{ [U, V)n uX I U E 'Yx, V(u) = V open in T with u E int8Tcl8TV}. 

2.2. REMARK. The collection LJ {'!JC; I x E uX} of subsets of uX forms a 

base for a topology on uX , in which every '!JC; is a neighbourhood base 
for x . This topology will be called the is: ('X,u )-topology on uX . D 

The above description of the is: ('X, u )-topology is the one we shall use mostly 
(it is sometimes referred to as the T-topology ). Another description uses the 
circle operation. 
Let 'X be a minimal ttg. Then define a closure operator on uX as follows: 
For A~ uX let 

cll5'(A ): = u oA n uX = u(u oA) 

(note that u oA: = u oA ). Clearly, cll5' is a closure operator. 

2.3. REMARK. The topology on uX generated by the closure operator cli5' is 
just the is: ('X, u )-topology on uX . D 

The generalized Furstenberg method to introduce the is:-topologies on uX is 
as follows: 
Let 'X be a minimal ttg and let ~ be the set of continuous pseudometrics 
on X . For <J E ~ define a T-invariant upper semi continuous real valued 
map F": X X X ~ R by 

F a(x 1 , x 2) = inf { <J (tx 1 , tx 2) I t E T} 

Then for every x E X and f: > 0 the set 

U(x,<J,£):= {x'EX I Fa(x,x')<£} 

is an open set in X . 

2.4. REMARK. The collection {U(x,<I,f:)nuX lxEuX,<JE~,£>0} of 
subsets of uX forms a base for the is: ('X, u )-topology on uX . D 
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Almost everything studied in topological dynamics is essentially independent 

of the topology of the phase group T . Only the existence of ttgs, or better 

the joint continuity of actions does depend on it. So it will not be very 

surprising that the 3(~,u)-topology on uX does not depend on the topol

ogy of T ; as follows. 

2.5. REMARK. Let ~ be a minimal ttg for T and let I and K be 

minimal left ideals in ST and STd respectively ( Td denotes the topo

logical group T provided with the discrete topology). Then for every 

u E J (I) there is a v E J (K) such that 

(uX,iJ(~,u)) = (vX,3(~, v)). 

PROOF. First note that the sets U (x, a, t:) do not depend on the topology of 

T , nor on I , K or u E J(I), v E J(K). So the remark is proven if for 

every u EJ(I) we can find a v EJ(K) with vX = uX. 

Let u EJ(J). As < Td ,I> is a minimal ttg and as K is a minimal left 

ideal in STd there is, by 1.2.5.d, an idempotent v E Ju(K) ; i.e., vu = u . 

But then uX = vuX ~ vX . On the other hand, if x' E vX then 

ux' E uX ~ vX ; so, by 1.2.8., x' and ux' are distal under Td , hence 

under T (distality does not depend on the topology of T ). By 1.2.7., x' 

and ux' are proximal under T , so ux' = x' . This shows that every point 

in vX is u-invariant; i.e., vX ~ uX . D 

In 2.2., 2.3. and 2.4. we gave three descriptions of the iJ(~,u)-topology 

each of which has its own (dis)-advantages. The three together give a lot of 

nice properties. The easy proof of the following theorem is omitted. 

2.6. THEOREM. Let ~ be a minimal ttg and let u E J . Then 

a) (uX,iJ(~,u)) is a compact T 1-space; 
b) the map A0 :(uX,iJ(~,u))-+(uX,iJ(~,u)) is a homeomorphism 

for every a E G (recall that A0 (x): = ax for every x E uX ); 

c) the map Av :(uX,iJ(~,u))-+(vX,iJ(~,v)) is a homeomorphism 

for every v E J ; 
d) for every p E M and for w E J with wp = p the map 

Ap : (uX, & (~, u ))-+ (wX, & (~, w)) is a homeomorphism. D 

Note that if ~ is a minimal distal 

homeomorphism of (X,3(~,u)). 

a 1-+ Ao : uM -+ E (~ is a surjection, so 

homeomorphisms of (X, & (~, u)) . 

ttg then uX =X, so A0 is a 

As E (~ is a group, 

E (~ can be seen as a group of 



74 Topological Dynamix 

2.7. THEOREM. Let cp: ?X.~ 61J be a homomorphism of minimal ttgs and let 
u E J . Then for the surjective map cf>u = cf> I ux : uX ~ u Y we have 

a) cf>u is continuous with respect to the 'J-topologies; 
b) cf>u is closed with respect to the 'f5-topologies; 
c) cf>u is an 'J-homeomorphism if! cf> is proximal. 

PROOF. a and b are easy exercises for the reader (use the T-topology and the 
closure operator for a and b respectively). Statement c follows immediately 
from the observation that cf>u is one to one iff cp is proximal. D 

2.8. THEOREM. Let cf>: ?X.~ 61J be a homomorphism of minimal ttgs and let 
u E J . Then cf>u : (uX, 'f5 ('X., u )) ~ (u Y, 'f5 (61!, u )) is an open map. 

PROOF. Consider EGS(cp) restricted to the u-invariant parts. 

uX 

uY 

Then, by 2.7.c, it follows that au and Tu are 'J-homeomorphisms, so we 
may conclude that cf>u is an 'J-open map iff cf>~ is 'J-open. So it suffices to 
prove the theorem for the case that cf> is a RIC extension. 
Suppose that cf> is a RIC extension and let x = ux E X . Let U E 'Yx and 
let V be an open subset of T with u E intsrclsr V and V = V(u), then 

[U, V]n uX is a (basic) neighbourhood of x in (uX, 'J('X., u)). We shall 
prove that cf>u[[U,V]nuX]=[cf>[U],V]nuY. As cf> isanopenmap(l.4.) 
it follows that [cf>[U], V]nuY is an 'f5(61J,u)-neighbourhood of cf>u (x). 
Hence cf>u is an 'J-open map. 
First note that 

cf>u [[U, V]n uX]<;;;; cp[[U, V]]n cp[uX] = [cp[U], V]n uY. 

Let y =uyE[cp[U],V]nuY, then y =cf>(t- 1x') for some tEV and 
x'EU. As cf> is RIC we have z:=t- 1x'Ecp ..... (y)=uoucp ..... (y). Let 
{t; }; be a net in T with t; ~u and let x; E ucp ..... (y) be such that 
z = lim t; x; . Since left multiplication with t is a homeomorphism we 

have tt;x;~tz =x' and tt;~tu ,hence tt;u~tu. AstEV=V(u) we 
have tu E intM(clsr[V]nM), so tt;u E intM(clsr[V]nM) eventually, hence 



Chapter Ill 15-topologies 75 

tt; E V(u) = V eventually. Also tt;x; EU eventually, so we can find some 

i 0 such that tt; 0x;0 E U and tt;0 E V . This shows that 

so x;0 E[U,V]nucp,_(Y). Hence x; 0 E[U,V]nuX ,while cp(x;0)=y and 

so it follows that y E <Pu [[ U, V] n uX] , which implies 

<Pu [[U, V]nuX] = [cp[U], V]nuY 

in case cp is a RIC extension. D 

As every minimal ttg <X, is a factor of ~,it follows from 2.7. and 2.8. that 

(uX,~('X-,u)) is an open, closed and continuous image of (uM,~(~,u)). 

So (uM, ~ (~, u )) plays a central role in the observations about ~

topologies. 
We shall collect a few theoretical aspects of (uM, ~ (~, u )) . 

2.9. THEOREM. The group uM provided with the ~ (~, u )-topology is a 

CT1 space with continuous right and left translations and with a continu

ous inversion (these are even homeomorphisms) (cf. [V 77] 2.5.9.). D 

The next theorem characterizes the Ellis groups as the ~ (~, u) -closed sub

groups of uM . 

2.10. 1HEOREM. Let F be the Ellis group in uM of some minimal ttg 61:1 

with respect to a certain point y = 19' E Y . Then F is an ~ (~, u) -

closed subgroup of uM and so all left and right translations as well as 

the inversion are ~ (~, u) -homeomorphisms. 

Moreover, every ~(~,u)-closed subgroup K of uM is the Ellis group 

of the minimal ttg ~ (K): = ~( u o K, ~) (which is maximally proximal 

in the sense that it admits no nontrivial minimal proximal extensions). 

PROOF. The first part of the theorem is immediate from 2.9., 2.3. and 1.1.. 

Let K be an ~ (~, u )-closed subgroup of uM . Then one shows easily, 

using 11.3.11.c, that K=@(~(K),uoK) which by 1.13.b proves the 

theorem. D 

In the sequel we need the following technical lemma. For a proof see for 

instance [G 76] IX.1.10., 1.11.. Note that the techniques to be developed in 

section V. l. enable us to give an alternative (and easier) proof. 
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2.11. LEMMA. Let u E J and consider ( uM, ~ (<!JIL, u)) . 
a) If A and B are ~ (~, u) -closed subsets of uM then AB is an 

~ (<!JIL, u) -closed subset of uM . 
b) Let {A; I i E A} be a collection of ~ (<!JIL, u) -closed subsets of uM , 

which is directed by inclusion and let K be an ~ (<!JIL, u) -closed sub

set of uM. Then for A:= n {A; Ii EA} we have 

AK= n {A;K Ii EA} and KA = n {KA; Ii EA}. D 

The reason why this "~-stuff" was invented is (somewhat hidden in) the 
theorem to follow, compare 2.12.b with 1.1.12.e. 
First we need a definition: 
Let F be an ~ (<!JIL, u) -closed subgroup of uM , then define 

H(F): = n {cl)J(~.u)(F n U) I u E ~} ' 

where ~ is the ~ (<!JIL, u )-neighbourhood filter of u in uM . 

2.12. THEOREM. With notation as above: 
a) H(F) is an ~ (<!JIL, u) -closed normal subgroup of F ; 
b) F/H(F) provided with the quotient topology is a CT2 topological 

group; 
c) H(F) is the smallest ~ (<!JIL, u )-closed normal subgroup K of F , 

such that F/K is a CT2 topological group. 

PROOF. Cf. [G 76] IX.1.9 .. D 

Let F be an ~ (~, u) -closed subgroup of G = uM , then define for every 
ordinal a;;;. I an ~ (<!JIL, u )-closed normal subgroup Ha(F) of F as fol
lows: 

H1(F): = H(F); 

let Ha(F) be defined, then define 

Ha+ 1(F): = H(Ha(F)) ; 
let a be a limit ordinal and let Hp(F) be defined for all /3< a , then 
define 

Ha(F): = n {Hp(F) I /3< a} . 

As {Ha(F) I a} is a descending family of ~ (<!JIL, u )-closed subsets of uM , 
there is an ordinal P , for which H,(F) = H,+ 1(F) . Then Hy(F) = H,(F) 

for every y;;;;.v; this H,(F) will be denoted by F 00 • For normality of Ha(F) in 
F see [EGS 75] prop. 3.13 .. 
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2.13. LEMMA. Let A and B be ij(GJR,,u)-c/osed subgroups of G = uM. 

a) If AB is a group, then A. H(AB) =A. H(B) (and, also, 

H(AB ).B = H(A ).B ). 
b) If AB is a group, then AB00 =A. (AB)00 ; in particular, if 

AB = G then AB00 = AG00 • 

c) If ABH(G) = G, then ABG00 = G ( AB need not be a group!). 

PROOF. 

a) [EGS 75] 3.12 .. 

b) Straightforward corollary from a. 

c) [EGS 76] 2.3 .. D 

2.14. REMARK. Let F be an ij(GJR,,u)-c/osed subgroup of uM, and let 

vEJ.Then 
a) vF is an ij(GJR,, v )-closed subgroup of vM and H(vF) = v H(F), 

in particular (vF)00 = vF 00 ; 

b) for every pEM we have H(pFp- 1)=pH(F)p- 1 , where 

H(pFp- 1) is calculated in wM for w E JP . 

PROOF. Follows easily from 2.6.c and 2.9.. D 

After these observations about (uM,ij(GJR,,u)) (or (G,ij(GJR,,u))) we shall 

now return to the (more general) case of (uX,ij(~,u)) or rather to the u

invariant part of a fiber with the relative 3-topology (in the spirit of [V 77]). 

Let q,: ~~~ be a homomorphism of minimal ttgs. Let y E Y and 

u E J, , and let F = @(~ ,y) be the Ellis group of ~ with respect to y 

in G . Then uq, ..... (y) = uq,+-q,(x) = Fx for every x E q,+-(y). Define for 

every x E uX the set E(x):= E(x,q,,u)<;;;;, uq, ..... q,(x) by 

E(x): = n {cl11(~.u)(U n uq, ..... q,(x)) I u E ~}. 

Beware that E (x) depends on the choices of M and u E J . 

In the remark to follow we link the approaches as can be found in [V 77] and 

in [G 76] and [EGS 75]. 

2.15 .. REMARK. With notation as above: 
a) E(x) = H(F).x for x E uq, ..... (y); 
b) E(px)=pE(x) for all pEM; where E(px)=E(px,q,,v) and 

v EJ such that vp =p; 

c) {E(x') Ix' E uq, ..... q,(x )} is a partitioning of uq, ..... q,(x). 
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PROOF. 

a) Define the map y = Px: ~~~ by y(p) = px . Then y is a 
homomorphism of minimal ttgs. So by 2.7. and 2.8. the map 
Yu:(uM,iJ(~,u))~(uX,iJ(~,u)) is an open, closed and continuous sur

jection. As F = y:-[u<f>---<f>(x )] , the restriction 

is an open, closed and continuous surjection too. But then 

{V nu<[>---<f>(x) Iv E ~}={Yu [U nF) I u Emu}' 

and as the collection { cll)'(~,u)(U n F) I u Emu} is directed by inclusion 
and Yu is closed and continuous, it follows easily that E (x) = H(F)x . 

b) Let p E M and v E J with vp = p , and define y' = py . Then 
@("Y ,y ') = pFp - I is the Ellis group of 6Y with respect to y' in vM . 

Hence E (px) = H(pFp - 1 ).px and so by 2.14., 

E (px) = p H(F)p - 1px = p H(F)x 

which by a proves that E (px) = pE (x) . 
c) Let z E E(x'), then z E H(F)x', say z = fx' for f E H(F). 

But then 

E(z) = H(F)z = (H(F)f- 1)z = H(F)f- 1z = H(F)x' = E(x'). 
D 

Similar to the definition of the normal subgroups Ha(F) we can define sub
sets E a(x) = E a(x, <f>, u) for every ordinal a , as follows: 

E 1(x):=E(x); 

let E a(X) defined, then define 

Ea+1(x):= n{cll5'(~,u)(UnEa(x)jUE~}; 

let a be a limit ordinal and let for every /3< a the set E p(x) be defined, 
then define 

Ea(x):= n {Ep(x) I /J<a}. 

As { E a(x) I a} is a descending family of iY (~, u )-closed subsets of 
u<f><--<f>(x) there is an ordinal v, for which E,(x) = E,+ 1(x). For that 

ordinal v we define E 00(x): = E ,(x) . 

2.16. REMARK. With notation as above. 

For every ordinal a we have Ea(x) = Ha(F)x ( F = @("Y,<[>(x)) ). In 

particular, Eoo(X) = F ooX . 
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PROOF. We prove the theorem by transfinite induction. 

For a= 1 the statement is true by 2.15.a. 

Suppose a is a limit ordinal and let E p(x) = Hp(F)x for every {3< a . 

Then 

E,,(x) = n {Ep(x) IP< a}= n {Hp(F)x I {3< a}. 

As { Hp(F) I P < a} is a family of ~ (~, u) -closed subsets of F , linearly 

ordered by inclusion, while 'Yu: F ~ ucp ..... cp(x) is an ~-closed and ~

continuous map ( y as in the proof of 2.15.a) it follows that 

'Yu [H,,(F)] ='Yu[ n {Hp(F) I {3< a}]= n {Yu[Hp(F)] I {3< a}. 

Hence 

H,,(F)x = n {Hp(F)x I {3< a}= n {Ep(x) IP< a}= E,,(x). 

Let a;;;;i: 1 be an ordinal and let E .,(x) = H,,(F)x . Then it is easily checked 

that y,;--[H,,(F)x] = H,,(F).H , where H = @(~, x) , the Ellis group of ~ 

with respect to x in G . So 'Yu: H,,(F)H ~E,,(x) is an ~-open, ~-closed 

and ~-continuous surjection, which implies that 

'Yu[ n {cljj('!JR.,u)(U n H,,(F)H) I u E ~ }] = 

= n{cl~c~.ulVnE,,(x))IVE~}; 

hence H(H.,(F)H)x = E.,+ 1(x). Since x = Hx , it follows that 

E,,+ 1(x) = H(H,,(F)H)Hx and so, by 2.13.a, 

E,,+ 1(x) = H(H,,(F))Hx = H,,+ 1(F)x . 
D 

In order to shed some light on the foregoing ~-manipulations we just men

tion the following result (e.g. see [G 76] IX.2.1.4.): 

2.17. THEOREM. Let cp: ~~ 611 be a distal homomorphism of minimal ttgs. 

Then cp is almost periodic if! E (x) = { x } for some (hence all) 

xEX. D 

We shall end this section with a rather technical theorem, which is the final 

blow in understanding the equicontinuous structure relation as will be shown 

in section 111.3.. This result (2.20.) can be found in [V 77], hidden between 

other technicalities. The present form of 2.20. is due to T.S. wu. 
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Recall that <f>: 'X---') 6ll is a homomorphism of minimal ttgs, x EX , u E lx 

and that H = @('X, x) and F = @(61!, </> (x )) are the Ellis groups of 'X 

and 6ll with respect to x and </> (x) in uM . 

For x'E uX we denote the ~('X,u)-neighbourhood system of x' in uX 

by ~, and '!J(j, denotes the relative ~ ('X, u )-neighbourhood system of 

x' in u<f><-<f>(x). So if x'E u<f><-<f>(x) = Fx , then 

'!J(j, ={Un Fx I u E ~,}. 

The ~ (~, u )-neighbourhood system of u in uM is denoted by % . 

2.18. LEMMA. Let V C Fx be a nonempty ~ ('X, u) -open subset of Fx 

(relative topology). Then cliJ('X,u)H(F)V = cliJ('X,u)V . 

PROOF. Let x'E V ; then VE '!J(j,. By 2.15. and the fact that Fx' = Fx , 

we have 

H(F)x' = E(x') = n {cll)'('X,ulU nFx') I u E ~·} = 

= n { cli)'('X,, u )u I u E '!Jej.} . 

Hence H(F)x' = E(x')C cliJ('X,u)V . As x'E V was arbitrary, we have 

H(F)V C cliJ('X,u)V and so 

cli)'('X,,u)V c cli)'(6X,u)H(F)V c cli)'('X,u)V . 0 

2.19. LEMMA. There is an ~('X,u)-neighbourhood base at x in Fx consist

ing of" symmetric" sets; i.e.: for every V E '!J(j there is a V 0 E '!J(j with 

Vo C V and (Vo)- 1 : = {f - Ix I f x E Vo, f E F} = Vo . Note that 

cliJ('X,u)V is symmetric if V E '!J(j is symmetric (with respect to x ). 

PROOF. A neighbourhood base at x in Fx is formed by the sets of the 

form U(x,a ,£)n Fx with aE ~ and £>0. These sets U(x ,a ,f.)n Fx 

are symmetric. For let f E F be such that fx E U(x, a,£) n Fx . Then 

F(J(jx,x)<£ and so 

F(J(j- 1x,x) = F(J(j- 1(x,fx)) = F(J(x,fx)<£ 

hence f- 1x E U(x,a,£.)nFx. (The second equality follows from the 

definition of F (1 and from the almost periodicity of (x ,f x) in X X X .) 
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Let V E '!Jlt be a symmetric set with respect to x , then the set 

W: = {f E FI Ix E V} is symmetric with respect to u . As the map 
p ~ p - I : F ~ F is an iJ (~, u) -homeomorphism it follows easily that 

cll}('!lt,u)W is a symmetric set in F with respect to u . Since 

clm~.u)V = (clm'!lt,u)W).x we have that clm~.u)V is symmetric. D 

2.20. THEOREM. With notation as above. 

Let V E '!Jlt; then JH(F)x nu o Fx !:: u o V . 

PROOF. By 2.19. we may assume V to be symmetric. Define 

A :=int3(~,u)cll}(~.u)V in the relative iJ('X,u)-topology on Fx. We 
claim that 

{A} U {gV I g E F and gx ~ cll}(~.u)V} 

is an B ('X, u )-open covering of Fx . As follows: 
Let I E F be such that Ix ~A ; i.e., 

Ix E Fx \A = cl3(~.u)(Fx \ cl3(~.u)V). 

So we can find a net {f;x }; with l;x E Fx \ cl3(~.u)V such that 
l;x ~Ix in the iJ('X,u)-topology. Since 

'Ar1: (Fx, iJ('X,u))~(Fx, iJ('X, u)) 

is a homeomorphism, 1- 11;x ~x in the iJ(CX,u)-topology. As VE '!Jlt, 
there is an i 0 with l- 11;0x E V and by symmetry of V , l;~ 11x E V . 

Hence Ix El;0V , where 1;0 E F is such that l; 0x E Fx \ cl3 (~.u)V , 

which establishes our claim. 

By compactness, there are finitely many g; E F with g;x ~ cl3(~.u)V , say 
g1, ... ,gn , such that 

Fx !:: A U U {g; V I i E { 1, ... , n } }. 

As {A } U {g; V I i E { 1, ... , n } } is a finite collection it follows that 

u o Fx = u o (A U LJ {g; V I i E { 1, ... , n } }) = 

= u o A U U { u o g; V I i E { 1, ... , n } } . 

By 11.3.11.c we know that u o g; V = g; o V , so 
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u o Fx = u o A U LJ {g; o V I i E {I, ... , n } } . 

Now let x'EJH(F)xnuoFx, say x'=vpx for some vEJ and 

p E H(F). We shall prove that x' = vpx ~ g; o V for every 
i E { 1, ... , n } . It then follows that 

which proves the theorem. Suppose vpx E g; o V , then 

- I - '(g v) ( - I ) 1 - I v x = ux =up vpx E up ; o <;;; u u o up g; V = c 'i'i('X,u)up g; . 

As H(F) is a normal subgroup of F and g; E F we can find q E H(F) 
such that up - 1g; = g; q , so 

x E cl'i'i('X,u)g; qV = g; cl'i'i('X,u)qV <;;; g; cl'i'i('X,u)H(F)V. 

By 2.18. it follows that 

hence g;- 1x E cl'i'i('X,u)V . Since by 2.19. cl'i'i('X,u)V is symmetric we have 

g;x E cl'i'i('X,u)V , which contradicts the choice of g; . 

111.3. THE EQUICONTINUOUS STRUCTURE RELATION 

In this section we consider the equicontinuous structure relation for Be 
extensions and we give a foretaste of chapter VII in proving that the 
equicontinuous structure relation E cp is equal to the regionally proximal 
relation Q cp in case of a Be extension <P . This result is not new. In 
1973 1.u. BRONSTEIN proved this for open Be extensions [B 73], hence an 
EGS diagram and some easy observations as will be discussed in IV.4.3. 
finish the job. In 1977 another proof of this fact was given in [V 77], 
heavily depending on the techniques of ~-topologies, whereas Bronstein's 
proof is "elementary". We give a slightly different proof, but, as in 
[V 77], the key is 2.20 .. 

D 

Let <f>: ix~ 6Jj be a homomorphism of minimal ttgs, x EX , u E Jx and 
let F = @(Glj,<f>(x)) be the Ellis group of 6Jj with respect to <f>(x) in uM . 
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We shall relate the sets 

E(x) = E(x,<j>,u) and Qcp[x] = {x'E <f>._<f>(x) I (x,x')E Qcp}. 

with each other. 

For z EX and v EJ define the subset V[z] of <f>._<f>(uz) by 

V[z]:= n{voU I UE'?Jl!}' 

where '?J4t is the ~ (~, u )-neighbourhood system of uz in u<f> ..... <f>(z) . 

3.1. REMARK. E(x)=uLu[x]=uV[x] for every vEJ. 

PROOF. Clearly, E(x)CLu[x]; for cliY(~.u)U =u(uoU)CuoU for every 

U E '!1<,j • So we have E (x) = uE (x) C uL u [x] , and the equality 

uL u [x] = uV [x] follows from Il.3.11.a. 

Conversely, uLu[x]C u(u o U) for every U E '!1<,t, so uLu[x]C cliY(~.u)U 

for every U E '!1<,j ; hence uL u [x] C E (x) . D 

3.2. LEMMA. Let (x 1 , x 2) E R cp be an almost periodic point, and let U 1 and 

U 2 be open neighbourhoods of x 1 and x 2 in X . Then 

PROOF. Let vEJ besuchthat (x 1,x2)=(vx 1,vx 2). By2.l.c,wecanfind 

an open set Ve;; T such that v EintsrclsrV, V(v) = V and Vx2C U2. 

Define U1 E ~1 by 

Choose z E U1 , then z = t- 1z' for some t E V and z'E U1 , while 

<f>(z)=<f>(x 1). Hence (z,x 2)EJRcp and 

(z ,x2) = t- 1(z ', tx 2)E t- 1(U 1 X Vx 2)nJRcpC T(U 1 X U2)nJRcp, 

so 

If x'EU 1 , then x'=vx' and (x',x2)Et0(U1X U2 nJRcp) for some 

t0 E T. By 2.1.c, there is an open set V1C T such that v EintsrclsrV1 , 

V1 (v) = V1 and V1x'C toU1. 
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Define U2 E ~x2 by 

As above, it follows that 

As x' E U was arbitrary, we have 

and so 

Again by 2.6.c, uU1 E ~x 1 ; so L"[x1]C u o uU1; hence 

D 

Remember the definition of Q; = n {T(anlR9) I cxE 61Lx} , and note that 

Q9 = Q; if cp is a Be extension (see the discussion just before 1.4.4.). 

The following notation will be used: 

where A is a subset of a ttg. (For example: lx oucp--cp(x), lx oFx, or 

lx o u1/r(z) .) 
In chapter V. we present an extensive study of this "circle operation for sets". 

3.3. LEMMA. With notation as before, the following inclusions hold: 
a) V[x] Xv oV[x]C Q; C Q9 for every v El; 

b) u {Lw[x] I w Elx} c n {Jx 0 u I u E 'Jl.t} c Q;[x]C Q9[x]; 

c) E(x)C uQ;[x]C uQ 9[x]; 
d) J <t>(x)H(F)x C Q; oP 9[x] C E 9[x]. 
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PROOF. 

a) Note that the choice of u E J is not relevant in (the proof of) 3.2 .. 

Let v E J and a E 6lLx . As (x, x) E a it follows from 3.2. that 

V[x] Xv oV(x]C T(anJR.p). 

Since a E 6lLx was arbitrary, we have 

V[x)X v oV(x]C n {T(anJR.p) I aE 6lLx} = Q; c Q.p 

for every v E J . 

b) As Lw[x]C w o U for every U E '?Jet, we have 

for every U E '?Jet . 
Let aE 6lLx and let U E 'Yx be such that U XU Ca. Let V = V(u) be 

an open set in T with u E intsTclsT V such that Vx C U . Define 

V E'?Jlt by V :=(U, V]nucp .... cJ>(x). Then 

{ x } X V C T( U X U n J R .p) , 

so 

{x} X (Jx o V)C T(U X U nJR.p)C TanJR.p; 

hence 

As a was arbitrary it follows that 

and so 

u { L w [x 1 I w E Jx} c n {Jx 0 u I u E '?Jet} c Q; [x 1 c Q <P [x 1 . 

c) By 3.1., E(x) = uLu[x] so E(x)C uQ;[x]C uQ.p[x]. 

d) Let x' E J <P(x )H(F)x , say x' = vpx for certain v E J .p(x) and 

p E H(F) . Then 

px E H(F)x = E(x)C uQ;[x]C Q;[x], 

so (x,px)EQ; and (vx,x')=(vx,vpx)EQ;. As (x,vx)EP.p we have 

(x ,x')E Q; oP <P; hence J .p(x)H(F)x C Q; oP q,[x]. D 
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3.4. TIIEOREM. With notation as agreed upon earlier the following equations 
hold: E(x) = H(F)x = uQ;[x]. 
In particular, if cp satisfies the Bronstein condition then 
E(x) = uQ.p[x]. 

PROOF. By 3.3.c and 2.15. we know already that E (x) = H(F)x <.;;; uQ; [x] . 
Let x' E uQ; [x] , i.e., (x, x ') = u (x, x ') E Q; . Applying 1.4.4. there are 
nets {xi}; in ucp ..... cp(x') = ucp ..... cp(x) and {t;}; and {s;}; in T such 
that 

s;(x,xj)-;.(x,x'), t;(x,xi)-;.(x,x), s;u -;.u and t;u -;.u. 

Let U and V be iY(~,u)-neighbourhoods of x and x' in ucp ..... cp(x), 
say 

U = [U, V]n ucp ..... cp(x)E 'Jl,j and V = [U', V']n ucp ..... cp(x)E CJr,j,, 

where U E CV.x , U' E CV".x, and V = V(u) , V' = V'(u) are open sets in 
T with u E intsTclsT v n intsTclsT V' . As clsT v n M and clsT V' n M 

are neighbourhoods of u in M (2.1.b), we can find an io such that for 
every i ;;:;. i 0 we have 

so s; E V'(u) = V' and t; E V(u) = V, while s;(x,xj)E UX U' and 
t; (x, x j) E U X U . But then, for every i ;;:;. i 0 : 

so 

xj E s;- 1 U' <.;;; (V')- 1• U' = [U', V'] and 

xjEt;- 1U<.;;; v- 1.U =[U, VJ 

Consequently, it follows that x'E cli\'(6X,u)U for every U E 'Jl,j, hence 

x'E n {cli\'(6X,u)U I u E 'JC,j} = E(x). 
D 

In order to characterize Q; we need the following observations with respect 
to the almost periodic points in Rip (and Rq,.p ). 
Only for the following lemma (3.5.) and theorem (3.6.) we do not assume our 
choice (fixation) of cp and x . 
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3.5. LEMMA. Let <t>: ~~ ~ and iJ;: 61:1 ~ ~ be homomorphisms of ttgs with 

~ minimal and let u E J be arbitrary. Then (x ,y) E JR</>1¥ if! 
y E lx o uiJ;<--cp(x). 

PROOF. Let y E lx o uiJ;<--cp(x) , v E lx with y E v o uiJ;<--cp(x) , and let 

{ t; }; be a net in T with t; ~ v . Then there are y; E u i/J,__ <P (x) such that 

y =limt~As (ux,y;)EJRH and (x,y)=limt;(ux,y;), we have 

(x,y)E TJRrpi/J=JRrpi/J. 

Conversely, let (x,y)EJR<l>i/J and remember that by I.3.8. we have 

JRrpi/J = T({x} X viJ;<--cp(x )) for every v E lx . 

Let {t;}; in T andy;Evl/J<--<t>(x) besuchthat (x,y)=limt;(x,y;),and 

let p E M be the limit of { t; v }; for a suitable subnet. Then 

x = limt;x = limt;vx = (limt;v)x = px 

and 

y = lim t;y; = lim t; vy; E lim t;vvi/J<--cp(x) =po vi/J<--cp(x). 

Let w EJ be such that p = wp , then w Elx and 

p oviJ;<--cp(x) = wp ovi/J<--cp(x) = w o(up ovi/J<--cp(x)). 

By II.3.11.b, we have 

up o viJ;<--cp(x) =up o uiJ;<--cp(x) = u o upi/J<--cp(x). 

As px =x, upiJ;<--cp(x)=uiJ;<--cp(x); so upovi/J<--cp(x)=uoui/J<--cp(x) and 

y E po viJ;<--cp(x) = w o (up o viJ;<--<J>(x )) = w o (u o uiJ;<--cp(x )) = 

= w oui/J<--cp(x)CJx oui/J<--cp(x). 
D 

3.6. TIIEOREM. Let <t>: ~~ ~ and o/: 61:1 ~ ~ be homomorphisms of ttgs, let 

~ be minimal and u E J . Then <t> and iJ; satisfy the generalized 

Bronstein condition if! o/<--(z) = lx o uiJ;<--(z) for every z E Z and every 

x E cp<--(z) . In particular, <t> satisfies the Bronstein condition if! 
cp<--cp(x) = lx o ucp<--cp(x) for every x EX . 

PROOF. Follows immediately from 3.5 .. D 

The following theorem explicitely describes Q; , hence it describes Q"' m 

case </> satisfies Be. 
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3.7. THEOREM. With notation as agreed upon earlier: 

Q;[x] =J<J>(xjH(F)x nlx oFx = u {Lw[x] I w Elx} = 

= n {Jx 0 u I u E ~} . 

PROOF. Clearly, Q; C JR<J>; so by 3.5., 

Q;[x]Clxoucp<-cp(x)=lxoFx. 

By 3.4., Q; [x] CJ H(F)x , and so 

Q;[x]CJH(F)x ncp.-c/>(x) =J<J><x>H(F)x. 

Consequently, 

Next, observe that for w E lx , by 11.3.11.b, w o Fx = w o wFx and 

~x = {wU I u E ~} . So by 2.20., J <j>{x)H(F)x n w 0 Fx cw 0 wU for 

every U E ~ . And as w o wU = w o U (11.3.11.b), it follows that 

J <J>(xiH(F)x n w o Fx C Lw[x] ; hence 

J<J>(x)H(F)x nJx oFx c u {Lw[x] I w Elx}. 

The proof is finished by applying 3.3.b. D 

Define a subset S of R <J> by 

S : = { (x 1 , x 2) E R <J> I (ux 1 , ux 2) E Q; } . 

Then clearly Q; CS C Q; oP <PC E<J>. 

3.8. LEMMA. 

a) S is an equivalence relation and S[x] =J<J>(x)H(F)x. 
b) If JQ<J>C Q; then S = E<J> = Q; oP <J>. In particular, if c/> is a Be 

extension then Q<J>[x] = J <J>(x)H(F)x . 

PROOF. 

a) Clearly, x'E S[x] iff ux'E uQ;[x] = E(x) = H(F)x , and so we 

have S[x] =J<J>(x)H(F)x . 

Let (x 1 ,x 2) and (x 2 ,x 3)E S and let a E uM be such that ax 2 = x . 

Then (ax 1 ,x) = a(x 1 ,x 2)E Q; and (x,ax 3)E Q;, so ax 1 E E(x) and 

ax3E E(x). By 2.15.c, ax3E E(ax3) = E(ax1); so, applying 3.4. to ax1 

in stead of x, it follows that ax 3E uQ;[axi]. But then u(x 1,x 3)E Q; 

and so (x 1 ,x 3)ES. 
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b) If J Q <I> C Q; then Q <I> C S . By a, S is an equivalence relation, 

so 

Q<l>oQ<l>C S oS =SC Q; oP <j>k Q<l>oQ<I>. 

As Q<I> is closed and T-invariant, S = Q<l>oQ<I> is closed and T-invariant. 

Since Q<l>C SC E<I> it follows that S = E<I> = Q; oP <I>. D 

3.9. lHEOREM. If cp is a Be extension, then E<I> = Q<I>. 

PROOF. If cp is a Be extension, then Q <I> = Q; . By 3.8., we know 

E<1>[x]=S[x]=J<1>(x)H(F)x, but also E<l>[x]Ccp._cp(x)=JxoFx (3.6.). 

So E<1>[x]CJ<1>(x)H(F)x nJx oFx ; hence by 3.7., E<l>[x]C Q;[x] = Q<l>[x]. 

As the choice of x in the beginning of this section was arbitrary, it follows 

that E<I> = Q<I>. D 

3.10. REMARK. 

a) If cp is a Be extension, then E<l>[x]CJx•oU for every UE'?Jtt 

and every x'E q,<-cp(x). 

b) If cp is a RIC extension, then E <I> [x] C u o U for every U E <?Jet . 

PROOF. By 3.8., E<l>[x] =J</>(x)H(F)x. 

a) Since, by 3.6., q,<-q,(x) =Jx•oFx it follows that 

E<1>[x]CJ<1>(x)H(F)x nJx,oFx 

and so by 2.20., E <I> [x ] C J x' o U for every U E <?Jet (compare the proof of 

3.7.). 
b) If cp is a RIC extension, then q,<-cp(x) = u o Fx (cf. 1.3.); hence 

E<l>[x] CJ <l>(x)H(F)x nu o Fx 

and so by 2.20., E <I> [x] C u o U for every U E <?Jet . D 

3.11. Now that we exactly know what the equicontinuous structure relation 

looks like for Be extensions, it is not difficult to describe the maximal almost 

periodic factors of those extensions. 

So let cp: ex~ 611 be a Be extension and let K: ex~ ex; E </> be the quotient 

map, and 0: X/ E <I>~ 611 the extension of 611 defined by E <I> • Let 

H = @(ex,x0) and F =@(611,cp(x0)) be the Ellis groups of ex and 611 

with respect to x 0 = ux 0 and cp(x 0) in uM . Then 
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N01E. 

a) The Ellis group @(~/E.p,ic(xo)) of ~/E.p with respect to ic(xo) 
in uM is H(F)H ; 

b) M *o> = J <t><xo>H(F)H . 

PROOF. 

a) Let a E H(F)H , say a = fh for some f E H(F) , h E H . Then 

aic(x0) = ic(axo) = ic(jhxo) = ic(fxo). 

By 3.3.d, we have fx 0 E E.p[x0] so ic(jx0) = ic(x0), which shows that 
a E @(~/E.p,K(Xo)). 

Conversely, let a E @(~/E.p, ic(x0)) , so a ic(xo) = ic(xo) . Then by 3.9. and 
3.4., we have ax0 E E.p[x0] = Q;[x 0], hence by 3.4., axoE H(F)xo, say 
axo = fxo for f E H(F). Hence f- 1a EH and so a EfH c;;;,. H(F)H . 

b) As ():~/E.p-:,6JJ is almost periodic, it is distal and so ic(x0) is a 
8-distal point; hence by 1.2.10., J tc(xo> = J 8(tc(xo» = J .p(xo> • Clearly, 

0 

The easy proof of the following remark will be omitted (for "if" use 1.2.13.). 

3.12. REMARK. Let cp:~-:,6/j be a Be extension. Let x 0 EX, uEJx0 , 

y 0 = cp(x0) and let H = @(~,xo) and F = @(6JJ,yo) be the Ellis 
groups of ~ and 6JJ with respect to x 0 and y 0 in uM . Then 
E.p = R.p if! H(F)H = F . 0 

More details on the equicontinuous structure relation for Be extensions will 
be given in chapter VIII .. 

The final observation in this section concerns the Ellis group of the maximal 
almost periodic factor of a homomorphism cp: ~-:,6/j of minimal ttgs that 
does not necessarily satisfy the Bronstein condition. 

3.13. 1HEOREM. Let cp: ~-:,6/j be a homomorphism of minimal ttgs, x 0E X 
and let H and F be the Ellis groups of ~ and 6JJ with respect to 
x 0 and cp(x0). Then K: = @(~/E.p,E.p[x0]) =HA.,,, where A 611 is 

the Ellis group of the maximal almost periodic extension ~: lf.(6JJ)-" 6JJ 
with respect to some z E ai"(<P(x0)) • In particular, we have 
@(~/E~,E~[x0]) =HE, where E is the Ellis group of the universal 

uniformly almost periodic minimal ttg ~ . 
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PROOF. First observe that ~: (i(_"Jj) ~ 6Jj is a regular extension ( cf. 1.2.17. ). 

So A"' is a normal subgroup of F and HA"' is an iY (~, u )-closed sub

group of F . As the induced map (): 6X/ E 41 ~ 6Jj is a factor of both ~ and 

</> , it follows easily that HA '!I k K . If there exists an almost periodic exten-

sion 61Jf of 6Jj between 6X and 6Jj with Ellis group HA '!I , then the 

theorem will be proven. 
Consider the following diagram of homomorphisms of minimal ttgs: 

Here '11'1 and '11'2 are the universal proximal extensions of (i(_"Jj) and 

6X/E 41 , and a and /3 are the obvious RIC extensions (1.15.). Define 

~: = ~o'11'1 and P: = 80'11'20{3, and note that ~ = Poa. Clearly, 

E~ = R.,,1 = P~, so from 1.4.3. it follows that 

E,, = aX a[Ed = aX a[Pd = P,,. 

This shows that P = "Aoµ , where µ: 2l (HA '!I)~ 2l (HA '!I)/ E,, is proximal and 

">..: 2!(HA'!!)/E,,~G]j is almost periodic. From 1.4.1. and the following 

diagram it follows that </> factorizes over 2l (HA'!!)/ E,, , which proves the 

theorem (here y is the obvious RIC extension (1.15.)). 

\Jl(H) __ Y ___ \Jl(HA6li) 

W31 

D 
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III.4. PI EXTENSIONS 

One of the ways to tackle the problem of determining the structure of a 
minimal ttg is to build that ttg with elements we (pretend to) know. 
From this point of view H. FURSTENBERG and W.A. VEECH tried to under
stand distal and point distal ttgs respectively. Their method was general
ized in [EGS 75] to the theory of PI extensions as will briefly be exposed 
in this section. 

4.1. A homomorphism «f>: ~~~ of minimal ttgs is a strictly-PI extension if 
there is an ordinal v and a tower for «f> of height v , (i.e., an inverse sys
tem { «t>! I a~ ,8< v} of homomorphisms «t>!: 6Xp ~ ~ of minimal ttgs) 
such that: 

a) ~=~, C:X,.=~ and «t>=invlim{«t>!la~,B<v}; 
b) for every a< v the map «1>:+ 1 is either proximal or almost 

periodic. 

The homomorphism «f> is called a PI- extension if there is a strictly-PI exten
sion I/;: 2:~ ~ such that «f> is a factor of I/; ; i.e., I/;= «f>oO for some 
homomorphism (J: 2:~ ~ of minimal ttgs. 

4.2. EXAMPLE. Let A and F be 3 (~, u) -closed subgroups of G = uM 
with A <;;;, F . Then the homomorphism <I>: 2£ (F ooA) ~ 2£ (F) , defined by 
«t>(p o F00A) =po F (cf. 1.15.) is a strictly-PI extension. (Remember 

that 2£ (K): = ~(u o K .~) for every subgroup K of G .) 

PROOF. We shall prove that «l>a: 2£ (Ha(F)A ) ~ 2£ (F) is strictly-PI for every 
ordinal a;;;;. 0 , where lfo(F): = F . 
For a=O we have Ha(F)A =FA =F, and clearly f/1o:W(F)~W(F) is 
a strictly-PI extension. 
Suppose that «f>p: 2£ (Hp(F)A) ~ 2£ (F) is a strictly-PI extension. As F ooA 
is a group and FooA <;;;, Hp(F)A it follows from 1.15. and 1.13.a that the 
map I/;: 2£ (F ooA) ~ 2£ (Hp(F)A) is a well defined RIC extension. Let 
ic: W(FooA)~W(FooA)/E,,,, then by 3.11.: 

K: = @(W(FooA)/E,,,,ic(u 0F00A )) = H(Hp(F)A )FooA , 

and as FooA = AF00 it follows from 2.13.a that 

K = H(Hp(F)A)AF00 = H(Hp(F))AF00 = Hp+1(F)A . 
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By 1.13.b, ~(Hp+ 1(F)A )~ ~(F00A )/E,,, is a proximal extension, so the 

map fJ:~(Hp+ 1(F)A)~~(Hp(F)A) is strictly-PI. Hence c/>p+ 1 =cJ>pofJ is 

strictly-PI. 

As an inverse limit of strictly-PI extensions is strictly-PI, the example is pro

ven after the observation that cp = inv lim c/>p . D 

4.3. THEOREM. Let ~ be a minimal ttg and let Yo E Y , u E Iy 0 • Then 

the map cp: ~ (F 00) ~ ~ defined by cp (p o F 00) = py o is the universal PI 

extension of ~ ; i. e., if T/: ~~ ~ is a PI extension and x o E u T/ .... (y 0) 

then there is a homomorphism p; ~(F00)~~ with v(u oF00) = Xo and 

T/oP = cp. Here F = @(~,y0) is the Ellis group of ~ with respect to 

Yo in G. 

PROOF. By 4.2. with A = { u} , it follows that ~ (F 00) ~ ~ (F) is strictly-PI 

and as ~(F)~~ defined by poF1-+py0 is proximal by 1.13.b, it is clear 

that cp: ~ (F 00 ) ~ ~ defined by p o F 00 1-+ p o F 1-+ py o is strictly-PI. 

We shall show that every strictly-PI extension of ~ is a factor of cp (no 

matter what base points are chosen). Note that it suffices to prove that for 

an arbitrary factor fJ: 5?:~ ~ of cp the map fJ o g: 6lll' ~ ~ is a factor of cp 
for every proximal or almost periodic extension g : 6lll' ~ 5?: (proceed by 

induction). 

Consider the following diagram of homomorphisms of minimal ttgs: 

I 
I 

t 
6lll' 

Let zoEutJ<-(yo) and K:=@(5?:,z 0). For some aEF, K(aoF00)=z0 ; 

and so, by 1.2.11., @(~ (F 00) , a o F 00) {;;; K {;;; F . As F 00 is a normal sub

group of F, we have that F00 = @(~(F00),a 0F00). 

First suppose that g is proximal. Let w0 E u~(z0); then by I.2.13. 

K = @(6lll', w0). But then by 1.15. and 1.13.b, there is a map 

p 0F00(1-+p 0K)1-+pwo: ~(Foo)~6lll' 

and so fJ o g is a factor of cp . 
Suppose that g is almost periodic and let w0 E ~(z0), then w0 = uw0 • As 

g is RIC and 6lll'= 6lll'/E~ it follows from 3.11.a that H(K){;;;@(6lll',w0). 
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By 1.15., there is a homomorphism 2( (Foo)~ 2( (@(61Jf' Wo)) ; hence 
p a F 00 i-+ pw 0 is well defined and ()a~ is a factor of q, . 
This shows that every strictly-PI extension of 61:1 is a factor of q, . But then 
every PI extension of 61:1 is a factor of q, . D 

4.4. THEOREM. Let q,: ix~ 61:1 be a homomorphism of minimal ttgs. Let 
xoE X, u EJx0 and Yo= q,(xo)E Y and let H = @('X,xo) and 
F = @(61:1,y0) be the Ellis groups of 'X and 61:1 with respect to x 0 and 
Yo in G . Then the following statements are equivalent: 
a) q, is a factor of a strictly-PI extension under a proximal map; i.e., 

there is a strictly-PI extension tf; and a proximal extension () with 
tf;=<J>aO; 

b) q, is a PI extension; 
c) F 00 CH (equivalently: F 00 = H 00 or E 00(xo) = {xo} ). 

PROOF. 

a ~ b Trivial. 
b ~ c Let q, be a PI extension. Then by 4.3., 'X is a factor of 

2£ (F 00) , say ~: 2£ (F 00 ) ~ 'X, and Hu a F 00 ) = xo . By 1.2.11., it follows that 
F00 CH. 

The proof of the equivalence of F00 CH , F00 = H 00 and E 00(x 0) = {x0} is 
left as an exercise for the reader. 

c ~a If F00 CH , then F00H = H . Hence by 4.2., the map 

pa H .... pa F: 2£ (H) ~ 2£ (F) 

is a strictly-PI extension. As the homomorphism p a H ..... px0 : 2( (H) ~ 'X is 
proximal, the theorem is proven. D 

4.5. COROLLARY. Let q,: 'X~61:1 be a homomorphism of minimal ttgs. Then 
the property for q, of being a PI extension does not depend on the topol
ogy of T; i.e., q,: < Td ,X > ~ < Td, Y > is a PI extension if! 
q,: < T,X > ~ < T, Y > is a PI extension. 

PROOF. By 4.4. q, is a PI extension iff E 00(x 0) = x 0 • As E 00(x 0) is calcu
lated in (uX,iJ('X,u)) and as the iJ('X,u)-topology does not depend on the 
topology of T (2.5.) the corollary follows. D 
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We shall now describe the construction of the "canonical PI tower" for a 

homomorphism <P: ~__,.. 6Y of minimal ttgs. For full details and proofs see 

for example [G 76], [V 77] and [VW ?]. 

4.6. Let cp: ~_,..c;y be a homomorphism of minimal ttgs, let x 0 E X, 

u E Ix 0 and Yo= <P(xo) and let H = @(~,xo) and F = @(6Y ,yo). 

Define '?Xo: = ~ , 6Yo: = 6Y and <Po: = <P , and note that we have 

@(6Yo,yo) = Ho(F)H( = F). 

Let a be an ordinal and let <Pa: ~ __,.. 6Ya , x a E uX a , y a = <Pa (x a) and the 

homomorphisms a~: ~ __,.. ~ , T~: 6Ya __,.. 6Y be defined for a , such that a~ 

is proximal and a~(xa) = Xo, 'T~ is strictly-PI and T~(Ya) =Yo, while 

@(6Ya,Ya) = Ha(F)H . Construct EGS(<Pa), let y~: = u o ucp;-(Ya) and 

X ~: = (x a ,y ~) . 

i~" 

Let ~a+ 1 : 6.X:al E .P'a __,.. 6Y~ be the maximal almost periodic factor of the RI C 

extension <P~. Then define (~+1,Xa+1): = (6.X:a,x~), 6Ya+1: = 6.X:a/E.p'a 

and <Pa+ 1: ~+ 1 __,.. 6Ya+ 1 as the quotient map. Furthermore let 

Ya+1==<Pa+1(Xa+1), 0'~+1:=a~oO'a and 'T~+1:=T~O'TaO~a+I · Then 

a~+ 1 is proximal, Ta+ 1 is strictly-PI and, by 3.11., we have 

@(6Ya+l •Ya+1) = H(Ha(F)H)H ; hence by 2.13.a, 

@(6Ya+ I ,y a+ 1) = H(Ha(F))H = Ha+ 1(F)H . 

If a is a limit ordinal such that <Pp:~__,.. 6Yp is defined for every fJ< a as 

described above, then define x a: = (x p)JJ< a E II { X p I fJ < a} , X a: = T (x a) 

and Ya:=(Yp)JJ<aEII{Ypl/J<a}, Ya:=T(Ya). Then clearly~ and 

6Ya are minimal ttgs, and @(6Ya ,y a) = Ha(F)H . Define <Pa: ~ __,.. 6Ya as 

the induced ambit morphism, and let a~: = inv Jim { ap I fJ < a} and 

Ta: = inv lim { Tp I fJ < a} . Then a'a is proximal and 'T~ is strictly-PI. 

4.7. In this construction there are two possibilities 

A For some ordinal v: H.(F)H = H . 

Then <P. is proximal, the construction stops (the tower ends) at height v 
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and the map If;:= T~oq,, is a strictly-PI extension of which q, is a factor. 
This shows that q, is a PI extension. 
Note that if q, is a PI extension, F00 CH , so there does exist an ordinal v 
with H,(F)C H (and so H,(F)H = H ). 

B F00H =:/=H. 
Then the tower ends at height oo + 1 . For q,:X,: ~ ~ 611:X, does not admit a 
nontrivial almost periodic factor, which follows by 3.12. from the observation 
that ® (611:X, ,y :X,) = F 00H and that H(F 00H)H = H(F 00)H = F 00H . 
This leads to the situation depicted in the following diagram: 

a' 00 

6X: 00 
ex, 

·~1 l• 
611' 611 

00 'T' 
00 

where q,:X, is a RIC extension, but E<P'oo = R</>'00 , a' 00 is proximal and T' 00 is 

strictly-PI. 
One could paraphrase this as follows: Every homomorphism q, is a PI exten
sion modulo some junk in q,:X, . 

Much work is done in understanding the "junk" in q,:X, (e.g. [E 73], 
[EGS 75], [M 76.1] and [V 77]). For instance it turned out that q,:ic, is a 
weakly mixing extension (see VII.3.23.) and that q,:X, is an isomorphism in 
case P cp[x] is countable for some x EX ([G 76] for X is metric; [MN 80] 
in the general absolute case; open in the general relativized case). 

4.8. N01E. If q,: <X,~ 611 is a homomorphism of metric minimal ttgs then the 
height of the PI-tower for q, is countable. 

PROOF. By II.1.1.b, we know that every ttg in the PI-tower is metric. Con
sider 611 00 , then every map T~: 611 00 ~ 611a defines a closed equivalence rela
tion R ., on Y 00 • Clearly, the collection { R ., I a< oo} is a linearly 

7 00 1'00 

ordered (by inclusion) collection of closed subsets. It is not difficult to see 
that there can be at most c(Y 00 X Y 00 ) different subsets in that collection, 
where c ( Y 00 X Y 00 ) is the cellularity number of Y 00 X Y 00 • As c ( Y 00 X Y 00) 

is smaller than d(Y 00 X Y 00) , the density number of Y 00 X Y 00 , and as, by 
metrizability, d(Y 00 X Y 00 ).;;;;; M0 , the remark follows. D 



Chapter Ill f'j-topo/ogies 97 

We shall end this section with a remark (the proof of which is omitted cf. 

[VW ?]) that states that the canonical tower as presented here is just the 

tower presented in [V 77]. 

4.9. REMARK. With notation as in 4.6 .. For every a;;;;. 0 we have 

Ya"' QF(u oEa(xo),'X) and Xa"' {(x,y') Ix Ey'E Ya}, 

where Eo(x 0):=ucp<-(y0 ). Then o~:~~'X and cf>a=~~6Ya are 

the projections and 'T~ : 6Ya ~ 6Y is defined as ,,.~ : = 2<1> I y . D 
a 

111.5. REMARKS 

The notion of rue extension is introduced in [EGS 75] as an extension satis

fying the property 1.3.b. In that paper the EGS(cp) diagram for cp is studied 

in a way leading towards the canonical PI tower for cp (4.6. and 4.7.). A 

similar approach can be found in [MW 74]. 

The relation Q; occurs in [B 75179] and plays a major role in [B 75179] 

section 3.13.; note that the notation differs: our Q; is denoted there by 

Q(Rj.). 

With respect to the question whether or not the Bronstein condition implies 

relative incontractibility, the following observation can be made. 

5.1. REMARK. Let cp: 'X~6Y be a Be extension of minimal ttgs. 

If 'X "' 21: (F) for some is:(~, u) -closed subgroup F of G then cp 

is a rue extension. 

PROOF. Construct EGS(cp), then cpoo = Tocp' (notation as in the discussion 

just before 1.11.). As 'X does not admit nontrivial proximal extensions 

(l.13.b), o is an isomorphism and so cpoo is a Be extension. But then ,,. , 

as a factor of cpoo , is a Be extension; hence, by I.3.5.b, ,,. is an isomor

phism. This shows that cp is a rue extension. (Note, that cp is open and 

also that 6Y "' 21: (F') for some subgroup F' of G with F C F' .) D 

Some knowledge about Q; could be derived from the knowledge about 

rue extensions; as is shown by the next theorem. But first we need a lemma. 
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5.2. LEMMA. Let <f>: '?X..~ 6Y be a homomorphism of minimal ttgs and let 

</>': ~ ~ 6Y' be the "RIC lifting'' of </> in its EGS diagram. Then 

o X o[R.p'] = JR.p, where o: ~ ~ '?X.. is the proximal map in EGS(</>) 

(compare IV.4.5.). 

PROOF. As</>' is a RIC extension, R.p,=JR.p' and so oXo[R.p,]CJR.p. 

Let (x 1,x2)EJR.p, say (x 1,x2)=v(x 1,x 2) for some vEJ. For 

x'1 = vx'1 E o<-(x 1), x2 = vx'2E o<-(x 2) we have </>'(x'1) = v<f>'(x'1) and 

</>' (x 2) = v </>' (x 2) , so </>' (x '1) and </>' (x 2) are distal. On the other hand 

T</>'(x'1) = <f>o(x'1) = <f>(x1) = <f>(x2) = <f>o(x2) = T</>'(x2); 

so </>' (x '1) and </>' (x '2) are proximal. Hence (x '1, x 2) E R.p' , which implies 

that JR.pC o X o[R.p']. D 

5.3. THEOREM. Let </>, </>' and o be as in the lemma. Then 

o X o[Q.p'] = Q; . 
PROOF. From 5.2. it follows easily that o X o[Q<f>']C Q; . Let 

(x 1 ,x2)E Q; and let {(x\ ,x~)}; be a net in JR.p and {t; }; a net in 

T such that 

(x\ ,x~)~(x 1 ,x2) and t;(x\ ,x~)~(x 1 ,x 1). 

Let (x~ ,.X~)E R.p' be such that o X o(.X~ ,.X~) = (x\ ,x~). Then after 

passing to suitable subnets: 

(.X~ ,.X~)~(.X1,.X2) and t;(.X\ ,.X~)~(z1,z2). 

Clearly, 0Xo(.X1,.X2)=(x1,x2) and 0Xo(z1,z2)=(x1,x1),so z1 and 

z 2 are proximal. 

Let aE62Lx'; then (z 1,z2)ETanR.p' and so t;(x\,x~)ETanR<P' even

tually. Hence (x\ , .X~) E Tan R.p' eventually; consequently, 

(x 1 ,x2)E Tan R.p'. This holds for every aE 62ix', so (x1 ,.X2)E Q.p' and 

(x1 ,x2)E o X o[Q.p']. D 

In section 3. we have seen that one can understand a lot about the (relative) 

regionally proximal relation as far as enough almost periodicity is assumed. 

In particular, 3.7. shows that (with the usual notation): 

Q;[x] =J.p<x>J:l(F)x nJx oFx. 

For some points x EX we can be a little more specific as is shown in the 

next corollary (of 5.3.). 
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5.4. COROLLARY. Let q>: 'X~611 be a homomorphism of minimal ttgs, let 

xEX and uEJx. If xEn{vouq,--q,(x)lvEJ.p(x)} then 

Q;[x]=J.p(x)H(F)x, where F=@(611,q>(x)) istheE/lisgroupof 611 

with respect to q>(x) in G. 

PROOF. Construct EGS(q>) and let q>': 6.X: ~611' and a: 6.X: ~'X be as usual 

(e.g. see 1.11. and the discussion preceding it). By 5.3., it follows that 

Q;[x] =a[ LJ {Q.p'[x'] I x'E a<-(x)}] = 

=a[ LJ {Q.p,[(x, v o uq,--q,(x ))] Ix E v o uq,--q,(x), v E J .p(xJ}]. 

As q>' is a RIC extension (hence Be), we know from 3.8. and 3.9. that 

By assumption, x E v o uq,--q,(x) for every v E J .p(x) , so 

Q;[x] = O' [ u {J. oUcj>+--.p(x)H(F).(x' v 0 uq,--q,(x )) I v E J cj>(x)}] = 

= LJ {J. ou.p+--.p(x)H(F)x IV E J </>(x)} = J .p(x)H(F)x . 
D 

As we do have some knowledge about Q; without restrictions on 4> , one 

could ask whether that helps in determining E.p without restrictions on 4>. 
So we have the following (unsolved) question: 

5.5. QUESTION. Let q>: 'X~ 611 be a homomorphism of minimal ttgs. Does 

Q.p = Q; imply that Q.p is an equivalence relation? 

Related to 5.5. is the question whether Q; itself is an equivalence relation. 

some results concerning that question are gathered in 5.6 .. The (almost obvi

ous) proofs are omitted. 

5.6. REMARK. Let 4>: 'X~ 611 be a homomorphism of minimal ttgs. 

a) Consider the following three statements: 

(i) Q; is an equivalence relation; 

(ii) Q;oQ;c;;;;JR.p; 

(iii) {x}XJ.p(x)E(ux)<;;;;JR.p for every xEX (uEJ fixed). 

Then (i) and (ii) are equivalent and they are implied by (iii). 

b) If P.pc;;;;Q;, or equivalently P.p<;;;;JR.p, then 

(i) Q; 0 Q; = Q; o P .p and Q; o Q; is an equivalence relation; 
(ii) the three statements in a are equivalent. D 
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In [B 77] and [MN 80] characterizations are given for PI ttgs. The philoso
phy there is to give descriptions that do not depend on the rather "abstract" 
oo-construction. So they are presented as "internal" characterizations. 

5.7. In order to describe the characterization of LU. BRONSTEIN, define a C
extension to be a homomorphism cp: ~~ 6]j of minimal ttgs such that every 
point transitive subttg of ~ which has a dense subset of almost periodic 
points is minimal. 
In [B 77] the following theorem is proven: 

THEOREM. Let cp: ~~ 6]j be a homomorphism of minimal ttgs with X 
metric. Then <P is a PI-extension if! <P is a C-extension. D 

A slight generalization of this result will be given in the remarks on chapter 
VII. namely VII.4.6. through VII.4.8 .. 

5.8. Let ~ be a minimal ttg and let K C X be a subset of X conta1mng 
at least two points (we shall call such a K nontrivial). A point x EK is 
said to be strongly regionally proximal to y in K if y E K and if there are 
nets { k; }; in K and {t; }; in T such that 

(x ,k; )~(x ,y) and t;(x ,k; )~ (x ,x) 

(notation: x E SRP(K ,y) ). 
In [MN 80] the following theorem is proven: 

THEOREM. Let ~ be a minimal ttg. Then ~ is not a PI ttg if! for 
some w E J there is a closed nontrivial subset K of X such that 
K = wK and such that for some (each) x EK, x E SRP(K,y) for all 
yEK. D 

This result together with the techniques developed in [E 78] enabled 
D.C. MCMAHON and L.J. NACHMAN to generalize the knowledge about metric 
PI ttgs to the nonmetric case. For instance they show that every minimal ttg 
that has a point with countable proximal cell is a PI ttg. In particular it fol
lows that a point distal ttg is a PI ttg (Veech Structure Theorem). 



IV 

HIGH PROXIMALITY 

1. some history 

2. irreducibility 

3. highly proximal lifting 

4. lifting invariants 

5. HPI extensions 

6. remarks 

This chapter is devoted to the study of a special kind of proximal extensions, 

namely, highly proximal extensions. These are extensions for which the 

points in any fiber are "uniformly proximal"; i.e., the whole fiber shrinks to a 

point under the action of M on the hyperspace of the domain. 

In the first section we picture the historical perspective of this chapter by way 

of a short (hence incomplete) description of almost automorphic extensions 

and the Veech Structure Theorem (the point distal equivalent of FST ). 

Then, in section 2., a purely topological characterization of high proximality: 

irreducibility, is discussed. 

In the third section we relate highly proximal extensions to open extensions, 

via diagrams AG(</>) and *(</>), in a way similar to the relation between proxi

mal extensions and RIC extensions, via EGS(q,) and AG(q,), as discussed in 

section 111.1.. As a result of the comparison of AG(</>) and EGS(</>) it is 

shown that in the canonical PI tower for a point distal homomorphism of 

minimal ttgs the proximal extensions actually are highly proximal. 

The forth section starts with some general considerations with respect to lift

ing properties in EGS and AG type diagrams. Using these general results we 

show for instance that the property of the relative regionally proximal rela

tion being an equivalence relation is invariant under highly proximal lifting 

(by AG(</>) or *(</>) ). The irreducibility result in IV.4.14. enables us to show 
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that disjointness and (to some extent) weak mixing are highly proximal lifting 
invariants. The intuitive outcome of section 4. is that in many cases we may 
study properties of homomorphisms of minimal ttgs just by studying those 
properties for open homomorphisms. 
Section 5. deals with the highly proximal equivalent of PI extensions, namely 
HPI extensions. In section 6. we give information about what is (well) 
known and what is known by now. 

Many of the results in this chapter can be found in [AG 77] and [AW 81]. 

The study of high proximality will be continued in chapter V. in a somewhat 
different way. There the maximally highly proximal extensions are related to 
certain closed subsemigroups in M . 

IV.1. SOME HISTORY 

In the seventies one of the main issues in the structure theory of minimal 
ttgs was the Veech Structure Theorem. The objective was to find a struc
tural concept for point distal homomorphisms of minimal ttgs in the 
same spirit as FST (1.1.24. ). 
From this endeavour originated the study of almost automorphic exten
sions ([V 70]) and, in the generalization to nonmetric ttgs, the concept of 
high proximality ([E 73], [Sh 74,76], [AG 77], [AW 81]). Although the 
intention was different, this concept was in fact studied in [Ar 78] too. 
In this section we shall provide some background. Also two examples 
are given. 

Let <1>: ix~ 6Y be a surjective homomorphism of ttgs. We call </> an almost
automorphic (a -a) extension if there is a transitive point x E X such that 

</> is one to one in x , i.e. </><-</> (x) consists of a single point. 

I.I. REMARK. Let <1>: ix~ 6Y be a homomorphism of ttgs and let 6Y be 
minimal. 
a) If </> is an a-a extension, then ix is minimal. 
b) </> is an a-a extension if! </> is proximal and point distal. 
c) If </> is open and a-a then </> is an isomorphism. 
d) If X is metric and </> is a-a, then there is a dense Ga-set of points 

in which </> is one to one. 
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PROOF. 

a) Let x E X be a transitive point such that cp is one to one in x . 
As cp(x) is an almost periodic point, there is an almost periodic point 
x'EX with cp(x')=cp(x). Since cp is one to one in x, we have 
x = x' and so x is an almost periodic point with a dense orbit in X , so 
~ is minimal. 

b) If cp is proximal and point distal, then clearly cp is one to one in 
the cp-distal points. If cp is a-a then cp is point distal, for every one-to
one-point for cp is a cp-distal point. As ~ is minimal and as a one-to-one
point for cp is a cp-proximal point, it follows from the second part of I.5.4. 
that cp is proximal. 

c) Let x EX be a one-to-one-point for cp and let y E Y and 
p E M be such that py = cp (x) . By 11.1.3.d, <Pad: 6]j--? 2~ is continuous, 
so 

Then for v E JY : 

and cp is one to one in q,<-(y) . 
d) Let (X, d) be a metric space and let 

B(x,t:):= {x'E X I d(x,x')<t:}. 

Then for every x E X and every n E 1\1 the set 

is open by the upper semi continuity of <Pad . Hence 

An:= LJ {A(x,n) Ix EX} 

is open for all n E 1\1 . Clearly, A : = q,<- n {An In E 1\1} is the collection 

of points in which cp is one to one; since this set is invariant in X , it is 
dense. Moreover, 

Hence A is a dense G 11-set. 0 

In [V 70] W.A. VEECH proved that every metric point distal ttg with a residual 
set of distal points can be obtained as a factor under an a-a extension of a 
strictly-AI ttg (i.e., a strictly-PI ttg in whose tower the proximal extensions 
are even almost automorphic). R. ELLIS proved in [E 73] the analogue of this 
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for the relativized case without requiring the set of <j>-distal points to be resi

dual. He even generalized it by replacing the metrizability condition by a 

somewhat weaker countability assumption (strict-quasi separability). In 

doing so he implicitly gave the notion of high proximality. 

Let cf>: ex~ 61J be a homomorphism of minimal ttgs. Then cf> is called highly 

proximal (hp) if for some y E Y there is a net {t; }; in T such that the 

net {t; cf> <-(y)}; in 2x converges to a singleton. 

1.2. REMARK. Let cf>: ex~ 61J be a homomorphism of minimal ttgs and let X 

be metrizable. Then cf> is a-a if! cf> is hp. 

PROOF. Clearly an a-a extension is hp. For let x EX be a one-to-one-point 

for cf>, then tcf> .... cf>(x) = {tx} so the constant net {t; = t }; suffices. 

Conversely, let cf> be an hp extension and let X be metrizable. Let 

y • E Y be such that cf>ad is continuous in y • (II. 1.3.e) and let 

x • E cf> .... (y •) . By assumption, there is a y E Y and a net {t;}; in T 

such that { t; cf> .... (y) }; in 2x converges to a singleton, say { x} . As ~. is 

minimal there is a net {s1 }J in T with s1x ~x· . So there is a (diagonal) 

net {t~h in T with {t~cf>.,._(y)h converges to {x*}. Then 

lim t ~ = cf> (x *) = y • . Since cf>ad is continuous in y' we have 

hence x • is a one-to-one-point for cf> . D 

Note that there exists no absolute counterpart of high proximality; i.e., there 

is no such thing as a highly proximal ttg. For if t; X ~ { x } in 2x then we 

should have { x } = lim t; X = lim X = X ; i.e., X is trivial. 

The ultimate form of the Veech Structure Theorem would be 

1.3. VST. Let cf>: ex~ 61J be a point distal homomorphism of minimal ttgs. 

Then there are a minimal ttg ~ and homomorphisms a: ~~ex and 

T:~~6Jj such that T=cf>oa, a ishpand T isstrictly-HPI(i.e., T 

is strictly-PI and every proximal extension in the tower for T is hp). 

(J rx: -------ex 

~~/ 
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The theorem is known to be true for the absolute case ( 61:1 = { *} ) [MN 80], 
[MW 81] and for the case that ~ is strictly-quasi separable, [E 73] (hence in 
case T is locally compact and a-compact). 

1.4. EXAMPLE. 

Let T be a discrete topological group and let ~ be a minimal ttg for T . 
Let x0 E X . Then Tx 0 provided with the relative topology is a completely 
regular Hausdorff space. Let Y = fJ(Tx 0), the Cech-Stone compactification 
of the orbit of x 0 , and let cf>: Y ~ X be the canonical extension of the 
embedding i: Tx 0 ~ X . 

Since every continuous map f: Tx0 ~z , with Z a CT2 space, extends to 
fJ(Tx 0), T acts as a group of homeomorphisms on fJ(Tx 0). So 61:1 is a 

ttg and cf>: 61:1 ~ ~ is a homomorphism of ttgs. As the remainder of Y , i.e., 
fJ(Tx 0)\Tx0 , is mapped onto X\Tx 0 (cf. [GJ60] 6.11.) it follows that 

the map cf> is an almost automorphic extension. Hence, by I. I.a, 61:1 is 
minimal. 
Note that 61:1 is the maximal almost automorphic extension of ~ which is 
one to one in the fiber of x 0 • 

1.5. EXAMPLE. 

Let T: = Z , let Y be the circle (unit interval with end points identified) 
and let 61:1: = < T, Y, a > be the rotation over an irrational angle 
( ii(n ,x) = x +n a (mod 1), a irrational). Define X: = Y X {0,1} and 
provide X with a 0-dimensional CT2 topology as follows: 
A neighbourhood base at (x, 0) is formed by the sets of the form 

(x-£,x]X{O}U(x-£,x)X{l} (£>0), 

and a neighbourhood base at (x, 1 ) by the sets of the form 

(x,x+£)X{O}U[x,x+£)X{l} (£>0). 

Define an action a of Z on X by a(n,(x,k)) = (x +na,k) for 
k E {O, 1} . Then ~: = < T, X, a> is a minimal ttg (the Ellis minimal set 

[E 69] 5.29.). 

Let cf>: ~~61:1 be the projection; then cf> is a two to one homomorphism of 
minimal ttgs, which is not open. Moreover, cf> is proximal and, as every 
fiber is finite, cf> is even highly proximal. But cf> is not almost automorphic 
(from this it is clear that X is not metric!). 
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IV.2. IRREDUCIBD.XfY 

For homomorphisms of minimal ttgs, the notion of high proximality 
turns out to be equivalent to the notion of irreducibility for maps known 
from general topology. So if equivariance is assumed, high proximality 
can be deduced from the topological properties of the map alone. 
We shall construct the universal highly proximal extension of a ttg in a 
way similar (even equal) to the construction of projective covers (e.g., see 
[Wa 74)). This leads to the characterization of the Maximal Highly Prox
imal ttgs (MHP ttgs) as the Gleason spaces (in case T = Td ); and to 
the conclusion that a minimal distal ttg is never MHP (unless is it 
"trivial"). 

Let f: X ~ Y be a continuous surjection of CT2 spaces. Then f is called 
irreducible if the only closed subset A of X with f [A ] = Y is X itself. 

2.1. LEMMA. Let f : X ~ Y be an irreducible map of CT 2 spaces. Then 
for every nonempty open U in X there exists a nonempty open U' in - -

U such that U = U' and U' = r-f[U']; in particular, f[U'] is 
open. 

PROOF. Let U !:; X be open and nonempty and define 
U':=f .... [Y\f[X\U]]. Then clearly, U'=f .... f[U']!:U and U' is 

open and nonempty by irreducibility. Let x E U and VE crx ; then 
Un V =I= 0 and open, so V':= f- 1[Y\f[X\(Un V)]] is open and 

nonempty. Clearly, V' !: U' n Un V !:; U' n V ; hence U' n V =I= 0 . As 
V was arbitrary, x E U' . D 

2.2. LEMMA. Let cp: ~~~ be a surjective homomorphism of ttgs and sup
pose that cp: X ~ Y is irreducible. 
a) If ~ is minimal then ~ is minimal. 
b) If ~ is point transitive then ~ is point transitive. 
c) If ~ is ergodic then ~ is ergodic (cf. VIl.3.1.). 
d) If Y has a dense subset of almost periodic points then X has a 

dense subset of almost periodic points. 

PROOF. 

a) Let Z !:; X be a minimal subset. Then cp[Z] = Y , so Z = X by 
irreducibility. 

b) Let y E Y have a dense orbit and let x E q,+-(y). 
Then cp[Tx] =Ty = Y ; so by irreducibility, Tx = X. 
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c) Let U be a nonempty open subset of X . By 2.1., there is a 

nonempty open U' C U with q, [ U 'l is open in Y . As 6Y is ergodic, 

Tq,[U'l = Y , so 

Y = Tq,[U'l = c/>[TU'lC cj>[TUl. 

By irreducibility of cJ> , it follows that TU = X , so 'X is ergodic. 
d) Let X' r,: X and Y' r,: Y be the collections of almost periodic 

points in X and Y respectively. By 1.10.b, cJ>[X'l = Y' , so 
- - -

c/>[X'l = Y' = Y . Irreducibility of cJ> implies X = X' . D 

The following theorem shows the dynamical properties of irreducible maps, it 
also explains why we are interested in irreducibility. 

2.3. THEOREM. Let cj>: 'X~6!J be a homomorphism of minimal ttgs. The fol

lowing statements are equivalent: 

a) cJ> is highly proximal; 
b) cJ> is irreducible; 

c) 2"': 2J; ~ 6Y is proximal; 

d) 2'/f has a unique minimal subset; 
e) p o cp<-(y) = {px} for all y E Y , x E cj>+-(y) and p EM . 

PROOF. 

a => b Let y E Y , x E X and the net { t; }; in T be such that 

~xt;cp .... (y) = {x} . Let U be an arbitrary nonempty open set in X . 

Let t ET with tx EU ; then t- 1u E 'Vx . So for some io we have 
t; cp<-(y) C t - I U for all i;;;;.: i 0 • Hence U contains a fiber, so cJ> is irredu

cible. 
b => c Let A and B in 2/ be such that 2"'(A) = 2"'(B) = y E Y 

(i.e., A and B are closed subsets of cj> .... (y) ). Let x EX , and for every 

aE 6lLx let Ua be an open set in X with Ua = cp<-cp[UalC: a(x) (2.1.). 

As cJ> [ U al is open and nonempty there is a ta E T with t q)' E cJ> [ U al . So 

tacJ> .... (y)C: cp<-cp[Ual = UaC: a(x). 

Clearly, tac/> .... (y)~{x} in 2x, and so 

liII1:zxt ..A C lim2xt ac/>+-(y) = { x} . 

Similarly ~x t aB = { x } , so A and B are proximal. 

c => d Follows from I.1.23.c. 

d => e As X C 2/ , 'X has to be the unique minimal subttg of 2f" . 
Since for all y E Y and p EM the set po cj> .... (y) is an almost periodic 
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point in 2f , we have px E p o q,+-(y) EX for all x E cp ..... (y) ; hence 
po q,<-(y) = {px} . 

e ==? a Trivial. 0 

2.4. REMARK. 

a) Let cp: ~~ 61l be a homomorphism of minimal ttgs. Then cp is 
open and highly proximal if! cp is an isomorphism. 

b) Let cp: ~~ 61l and if;: 6Y ~ 2: be homomorphisms of minimal ttgs. 
Then if;ocp is highly proximal if! cp and if; are highly proximal. 

c) Let { cpff: X p ~ X a I a~ /3< P} be an inverse system (tower of 
height v ) consisting of homomorphisms of minimal ttgs. Then 

cp = inv fun cpf is highly proximal if! every cpf is highly proximal. 

PROOF. 

a) If cp is an open map, then cflad is continuous. So for all y E Y , 
x E q,+-(y) and u E JY we have q,+-(y) = u o q,+-(y) = { ux} (2.3.a), hence 
cp is one to one. 

band c Follow from the equivalence of a and bin 2.3.. 0 

2.5. TIIEOREM. For every minimal ttg 6Y there is a universal highly proximal 
extension which is unique up to isomorphism (i.e., there is an highly proxi
mal extension x: 61l 0 ~ 6Y such that for an arbitrary highly proximal 
extension cp: ~~61:1 there is a if;: 61:1* ~~ with x = cpoif; ). 

PROOF. As every minimal hp extension of 6Y is a factor of ~ , there is only 
a set of essentially different hp extensions of 6Y , say { cflA: ~ ~ 6Y I A E A} . 
Define 

<I>: II{XA I AE A} ~"YA by <I>((x;\);\EA) = (cflA(x;\)hEA. 

Let x: = <1><-[il~] and 4>: =<I> Ix: x ~ y ,....., a~ . Then 4> is a homomor
phism of ttgs, which is proximal by 1.1.21.b. Let 2: be the unique minimal 
subttg of ~ and cp: = 4' I z . Clearly every hp extension of 6Y is a factor of 
2: under projection (up to isomorphism). 

In 2.6. below it will be proven that cp is an hp extension. 
So cp: 2:~ 6Y is a universal minimal hp extension. We shall show that it is 
unique up to isomorphism. 
Suppose cp': '!: ~ 6Y is a universal minimal hp extension too. As cp' is an hp 
extension of 6Y , there is a ~: 2:~ '!: such that cp = cp' o ~ • As cp' is univer
sal and cp ishp,thereisa 11:'!:~2: with cp'=cflo'll so cp=cpo110~. 
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Let z E Z , then <f>(z) = <f>('IJoHz )) ; by proximality of <f>, the points z 
and 'IJoHz) are proximal in ~- As Jz <;;;;,J110 t(z) it follows that 
(z ,'IJoHz)) is an almost periodic point in ~X ~; so z = 'IJoHz). Hence 
.,, o g = idz and so ~ and '!: are isomorphic ttgs. D 

2.6. LEMMA. (With notation as above:) <f>: ~~ 611 is highly proximal. 

PROOF. We shall show that every open set in Z contains a fiber of <f>. Let 
U <;;;;, Z be basic open and nonempty; i.e., there are a1, ••• , an E A and 

open sets U; <;;;;, Xa; such that U = U'n Z =I= 0 , where 

n 
Note that ci>[U' n X] = n <Pa. [U;] =I= 0 . As U' n Z =I= 0 , U' contains 

I 
i=l 

an almost periodic point, and so W: = inty{ci>[ U' n Z]) =I= 0 (I.1.4.a). By 
2.1., there are open Vi <;;;;, X; such that 

0 =/= V 1 = <f>~ <f>a1 [Vi) <;;;;, U 1 n <f>~( W) 

and for i E {I, ... , n } 

0 =I= Vi= <t>:.-<f>a.[Vi]<;;;;, U; nq,;-q,a 1[Vi-i1 • 
I I I 1-

Define V: = V' n X with 

V':=V1X ··· XVnXIl{XalaEA\{a1, ... ,an}} 

Then V = ci><-ci>[V] is nonempty, hence V n Z =I= 0 and V n Z contains 
a fiber under <f> • D 

The universal (minimal) hp extension of a minimal ttg 611 will be denoted by 
x~: 611* ~ 611 • If x~ is an isomorphism 611 will be called a Maximally Highly 

Proximal ttg (MHP ttg ). 

In section IV.3. we characterize the MHP ttgs in terms of quasifactors of 
~. 
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In case T is provided with the discrete topology, we can give a topological 

characterization of MHP ttgs; as follows: 

2.7. THEOREM. Let T be a discrete topological group and let the ttg 

~: = < T, X > be minimal. Then ~ is an MHP ttg i.ff X is 

extremally disconnected (the closure .of every open set is open). 

In particular, the universal highly proximal extension of a minimal ttg is 

just its Gleason extension. 

PROOF. It is well known ([Wi 70] 14.2.5.) that an irreducible extension of an 

extremally disconnected CT 2 space is a homeomorphism. Since the universal 

hp extension is irreducible, a minimal ttg with extremally disconnected phase 

space is an MHP ttg. 

Conversely, let ~ be a minimal ttg. Let Xx: G(X)-+X be the Gleason 

extension of X (e.g. [Wi 70] 14.2.2.), then Xx is irreducible. As every 

homeomorphism on X extends uniquely to a homeomorphism on G(X) 

and as T is discrete it follows that G(~ = < T, G(X) > is a ttg and that 

Xx : G (~--+ ~ is an irreducible homomorphism of ttgs. By 2.2., G (~ is a 

minimal ttg, and G (X) is extremally disconnected. If ~ is an MHP ttg, 

the irreducible map G (~--+ ~ is an isomorphism, so X is extremally 

disconnected. D 

2.8. COROLLARY. Let T be a discrete topological group, and let 

~ = < T, X > be a minimal ttg. If ~ is a distal MHP ttg then X is 

finite. 

PROOF. Let ~ be distal and let 611 be the maximal almost periodic factor 

of ~. As ic: X--+ X/Ex ,..,, Y is open and X is extremally disconnected, 

Y is extremally disconnected too. However, Y ,..,, bT/H for some closed 

subgroup H of the Bohr-compactification bT of T (1.1.14.); so Y is 

homogeneous. By [Ak 78] III section 3, it follows that an extremally discon

nected homogeneous CT 2 space is finite. Hence Y is finite. Suppose 

ic: ~-+611 is nontrivial. Then ic is distal and, by FST (1.1.24.), it follows that 

fJ:X/Erc-+ Y is a nontrivial almost periodic extension. As Y is finite it 

follows from 1.1.22. that X/E" is almost periodic, which contradicts the 

assumption of 611 being the maximal almost periodic factor of ~ . D 
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IV.3. HIGHLY PROXIMAL LIFTING 

Similar to the construction of the EGS diagram we construct an AG 
diagram ([AG 77]). The objective is to show that every homomorphism of 
minimal ttgs is open up to high proximality. Using an AG diagram we 
characterize the MHP ttgs as quasifactors of ~ generated by the so
called MHP generators. Also we compare the EGS and AG diagrams 
and conclude that, in case </> is a point distal homomorphism of 
minimal ttgs, AG(</>) equals EGS(<j>). Hence it follows that a point distal 
map is PI iff it is HPI. 

111 

3.1. THEOREM. Let <j>: 'X~6Y be a homomorphism of minimal ttgs and let 

~ be a quasifactor of 6lJ • Then there is a quasifactor '£ of 'X such 

that 2<1>: '£ ~ ~ is highly proximal. 

PROOF. Let A = u o A be an almost periodic point in 2 Y such that 
~=~(A,61J) and define '£:=~(uo<j>._[A],'X). Then 2<1>:'£~~ is a 

homomorphism of minimal ttgs. Define 

e[A 1: = { B E z' 1 B c: </>._[A n . 
Then u o </>._[A] E e[A] , so e[A] is nonempty and clearly, e[A] is a 
closed subset of '£ . Let :JC be a chain in e[A] (ordered by inclusion). 
Then L = n { K I KE :JC} is a lower bound for :JC in e[A] ' for 

L -=f=. 0 and L = ~x:ICE c~xe[A] = e[A] . So, by Zorns lemma, there 

is a minimal element C E e[A]. Let p EM be such that C =po </>+-[A] . 

Denote the circle operation of M on 22x . by o . 

We claim that p o (2<1>)+-(A) = { C} ; note that 

(2<1>)+-(A) = {q o </>+-[A] I q oA =A} . 

Let BE p o (2<1>)+-(A) and let {t; }; be a net in T converging to p . Then, 
after passing to a suitable subnet, B = lim t; q; o </>._[A ] for certain q; E M 

with q; oA =A . As 

But C was minimal in e[A] so B = C , which proves the claim. 
This shows that 2<1>: '£ ~ ~ is highly proximal. D 
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3.2. Note that in the above ~ = {p o cf>._[B] Ip EM and B E ~} . For, let 

p E M and B E ~ then B = q o A for some q E M and also 

A = vq- 1oB for v EJq . Hence 

po cf>._[B] = pqvq- 1 o cf>._[B] <:pq o cf><-[vq- 1 o B] = pq o cf>._[A] C 

Cp o cf>._[q oA] =po cf>,_[B]. 

3.3. Remark that 6Y can be represented as a quasifactor 6Y' of ~ up to a 

highly proximal extension r by taking ~= 6Y (in 3.1.), as follows: 

Define Y'={pocf>._(y)lpEM,yEY} and r=2<l>IY':6Y'-?6Y. Note 

that r is one to one in p o cf>._(y) E Y' iff cf> is open in all points of 

cf><-(py) (use II.1.3.c resp. II.3.12., II.3.11.e to conclude that 

cf><-(py) = q o cf>._(y) for every q EM with py = qy ). In particular, r is 

a homeomorphism iff cf> is open. 

3.4. Let cf>: ~-? 6Y be a homomorphism of minimal ttgs. We shall con

struct a shadow diagram AG(cf>) for cf>, 

a 

'" 

consisting of homomorphisms of minimal ttgs, with the following properties: 
ag 1 a and r are highly proximal; 
ag2 cf>' is open. 
Moreover, the diagram is minimal under those properties. 

Define 6Y' as the quasifactor representation of 6Y in ~ , so 

Y':= {p ocf><-(y) IP EM, y E Y} = {p ocf><-(yo) IP EM} 

for some fixed y 0 E Y . Let X': = { (x, A ) E X X Y' I x E A } and define 

a: X'-? X and cf>': X' -? Y' as the projections, and let r: = 2<1> I Y' . 

3.5. LEMMA. Let ~ = ~(A , ~) be a quasifactor of ~ and let 

W C X X Z be defined by W: = { (x, B) I x E B E Z} . Then W is 

closed and T-invariant and the projection w: 6llS"-? ~ is an open 

homomorphism of ttgs. 
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PROOF. Let (x, B) ~ W , so x ~ B . Then there are open sets U and V 

in X such that U n V = 0 , x E U and B c V . Clearly, U X < V > 
is an open neighbourhood of the point (x, B) in X X Z and 
U x < V > n W = 0 , so W is closed. 

T -invariance is obvious. 
Let u I = u x < v J, ... ' Vn > n w be a basic open set in W and note 
that, without loss of generality, we may assume that 

Ut;;;;; LJ{V;liE{l, ... ,n}}. ltiseasytoverifythat 

'1T[U']=<V1>····Vn,U>nZ; 

so 'IT is open. D 

From 3.5. it follows that, in 3.4., 6X: = < T, X' > is a ttg and that q,' is an 
open homomorphism of ttgs, which shows ag2. As 'T is irreducible (3.1. and 
3.3.) a is irreducible too. 
For, let (U' = U X <V1, ••• , Vn > )n X' be basic open, nonempty, and 
(without loss of generality) let U C LJ { V; I i E { 1, ... , n } } . Then it is 

easily seen that q,'[ U '] = < V 1, ... , Vn , U > n Y' . So, by irreducibility of 
'T , there is a y E Y with T<-(y) C q,'[ U '] C < V 1, ••. , Vn > . Let u E JY ; 

then u of/l .... (y)E T<-(y), so u of/l .... (y)n U =/= 0 , say x E u of/l .... (y)n U. 

But then {x}XT .... (y)t;;;;;UX<V1, ••• ,Vn>. As 
a<-(x) = ( { x} X T .... (y )) n X' , it follows that U' contains a full a-fiber. 

Hence a is irreducible and, by 2.2.a, it follows that 6X: is minimal; so by 
2.3., a is highly proximal, which shows agl. 

3.6. The diagram AG(q,) for q, is minimal under the conditions agl and 
ag2. Consider the following commutative diagram consisting of homomor
phisms of minimal ttgs, with on the right hand side AG(q,). 

Let tf; be open and let ~ and 11 highly proximal. Then there are 
homomorphisms µ and P with aoµ = ~ and ToP = 11. As follows: 
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Let y 0 E Y, u Efy0 , z 0 = uz 0 E 71 ..... (y 0), w0 = uw0 E lf; ..... (zo) and let 

x 0 = Hw 0) . Define v: 2:~ 61J' by P (pzo) =po </> ..... (yo) , and µ: 6llf ~ 'X' by 

µ(pw 0) = (px 0 ,po q,<--(y 0)) • 

Note that in order to show minimality of AG(</>) it is sufficient to show that 

v is well defined. 

Suppose that pz 0 = qz 0 . As 71 is highly proximal, z o = u o 71 ..... (y o) . By 

continuity of o/ad (II.1.3.d), we have o/ ..... (z o) = u o lf; ..... 71 ..... (y o) = u o ~ ..... </> ..... (yo) ; 

hence ~ o/<--(z 0) = u o </> ..... (y 0) . Again, by continuity of o/ad , we have 

So 

p o o/<--(z o) = lf;<--(pz o) = o/<--(qz o) = q o o/<--(z o) . 

po </> ..... (y0) =po ~o/ ..... (z0) =~(po o/ ..... (zo)) = ~ (q o o/ ..... (zo)) = 

= q o~lf; ..... (zo) = q o<t> ..... (yo); 

and P is well defined. 

With the help of the AG diagrams we can characterize the universal highly 

proximal extensions as quasifactors of '!JR, . 

Let ~ be a minimal ttg, x 0 EX and u E Jx 0 • Define y: '!JR,~ ~ by 

y(p) = pxo. Consider AG(y): 

so 

and 

X' = {p oy<--(xo) IP EM}= {p oMx0 IP EM}= 

={po y<--(x) Ip EM, X EX}= {po Mx Ip EM, x EX} , 

M' = {(p,q oy<--(xo)) lp,q EM ,p E q oy<--(xo)} = 

= {(p,q oMx) lp,q EM ,p E q oMx}, 

while y' is open, 11 and r are highly proximal. 
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3.7. LEMMA. (Situation and notation as above.) 

a) {po y._(x) Ip EM, x EX} is a partitioning of M . 

b) The map y • : ~~ ~ defined by p 1-+ p o y._(x 0) is an open 

homomorphism of minimal ttgs. 

c) ~ is an MHP ttg. 

d) ~ is an MHP ttg iff ~ ,_, ~ . 

PROOF. 

a) As ~ is the universal minimal ttg, a is an isomorphism. Now 

suppose that for some p, q E M and some x, x 'E X we have 

p o y._(x) n q o y._(x ') =/= 0 , say r E p o y._(x) n q o y._(x ') =/= 0 . Hence 

(r ,p o y._(x )) and (r, q o y._(x ')) are elements of M' that are both 

mapped onto r by a ; but a is injective, so p o y._(x) = q o y._(x ') . 

b) Follows from the fact that a is an isomorphism. 

c) Suppose there is an hp extension if:~~~. For z = uz E Z with 

if (z) = u o y._(x0) let 8: ~~ ~ be defined by 8 (p) = pz . Then 

y 0 = 1/108 and, since y* is open, if is open. By 2.4.a, it follows that if is 

an isomorphism. 
d) If ~ is an MHP ttg, T: ~ ~ ~ is an isomorphism, so ~ ,_, ~ ; 

the other way around is c. D 

3.8. Let C ~ M be an almost periodic point in 2M . Then C is called a 

Maximally Highly Proximal generator (MHP generator) if C n J =/= 0 and 

{po C IP EM} is a partitioning of M . 

We shall study MHP generators in chapter V .. The terminology is justified 

by the equivalence of a and d in the following theorem. 

3.9. TIIEOREM. Let ~ be a minimal ttg. Then the following statements are 

equivalent: 
a) ~ is an MHP ttg ( ~ = ~· see the definition just before 2. 7.); 
b) every homomorphism q,: ~ ~ ~ of minimal ttgs is open; 

c) ~ is a factor of ~ under an open homomorphism; 

d) ~ ,_, ~( C, ~) for an MHP generator C . 

PROOF. 

a~ b Consider AG(q,). Then ~ ,_, ~, for ~ is an MHP ttg; so 

~ ,_, ~' , and q, = q,' is open. 
b ~ c Trivial. 
c ~ d Let y: ~~~ be open, say y is defined by y(p) = px0 for 

some x 0 E uX and all p EM . By 11.1.3.d, y._(px 0) = p oy._(x0), so 
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{p o y<-(x 0) I p E M} = { y<-(px 0) I p E M } 

which is a partitioning of M . As u E u o y<-(x 0) , u o y--(x 0) is an MHP 
generator. By 3.3., y': = 21 : 2.if(u o y<-(x 0), ~) ~ C:X, is hp. As y' is a factor 
of y , y' is open and so y' is an isomorphism. 

d ~ a Define y: ~~ X by y (p) = p o C . Then 

y<-(p 0 C) = { q EM I q 0 c = p 0 c} = p 0 c ' 
as follows: 
Let p o C = q o C . As C n J =I= 0 , u E u o C and so 

q =quEqouoC =quoC =qoC =poC. 

Conversely, let q E p o C . As q E q o C , q E p o C n q o C ; but C is an 
MHP generator, so p o C = q o C . 

This shows, with notation as in the discussion preceding 3.7., that X = X' 

and so by 3.7. that X is an MHP ttg. D 

3.10. Let cp: x~6ll be a homomorphism of minimal ttgs. We can construct 
a kind of maximal AG diagram for cp, which will be called *(cp), as follows: 

X'X 

Let u E J and choose x 0 = ux 0 E X, y 0 = cp(x0). Define y: ~~x by 
y(p) = pxo and 8: ~~ 6lJ by 8(p) = pyo. Then 8 = cpoy. Analogues to 

III.1.13.b, but using 3.6., one shows that 

xcx: c:x,* = 2.'f(u o y<-(xo), ~)~X and x~: 6ll* = 2.'f(u o 8<-(yo), ~)~6ll 

are the universal hp extensions of X and 6lJ • Define cp* : c:x,• ~ 6ll* by 
cp* (po y<-(x0)) =po 8<-(x0) for all p EM . Then cp* is well defined; for, 

let po y<-(x 0) = q o y<-(x 0) , then clearly 

p o y<-(x 0) = q o y<-(x 0) <;;;, p o 8.._(y 0) n q o 8.._(y 0) • 

As {po 8<-(y0) Ip EM} partitions M , we have po 8<-(y0) = q o 8<-(y 0) . 

Obviously cp • is open and the diagram commutes. 
Note that cp* is an isomorphism iff cp is hp (use 2.4.b). 
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In section IV.4. we shall search for properties on <f> that will be preserved 

under hp lifting; i.e., properties of <f> such that <1>* in *(<f>) and <f>' in 

AG(<f>) have (almost) the same property. 

3.11. If ~ is metric, then AG(<f>) consists entirely of homomorphisms of 

metric minimal ttgs (II.1.1.b); whereas, in general, *(<f>) does not (cf. 2.7.). 

The next theorem deals with the question whether or not AG(<f>) and EGS(<f>) 

coincide for a homomorphism <[>: ~~ 6]j of minimal ttgs. 

3.12. THEOREM. Let <[>: ~~U]j be a homomorphism of minimal ttgs. 

a) AG(<f>) and EGS(<f>) coincide i.ff for some y E Y and u E JY we 

have uo<f><-(y)=uou<f><-(y) (e.g. <f>' inAG(<f>)isRIC). 

b) If <f> is open, then AG(<f>) and EGS(<f>) coincide i.ff <f> is RIC. 

c) If ~ is metric, then AG(<f>) and EGS(<f>) coincide i.ff for some 

yEY: n{uou<f><-(y)iuEJy}=F 0. 

PROOF. 

a) If AG(<f>) and EGS(<f>) coincide, then u o <f><-(y) = u o u<f><-(y), for all 

yEY and uEJy. If uo<f><-(y)=uou<f><-(y) for some yEY and 

u EJy , then 

QF(u o <f><-(y), ~)n QF(u o u<f><-(y), ~) =F 0 , 

so they are equal and AG(<f>) equals EGS(<f>). 

b) Let <f> be open; then <f>' in AG(<f>) is just <f> . Clearly, AG(<f>) and 

EGS(<f>) coincide iff EGS(<f>) reduces to <f>, which is the case iff <f> is RIC. 

c) Let y be such that <f>ad: 6]j ~ 2cx is continuous in y (11.1.3.e). So 

for every u E Iy we have u o <f><-(y) = <f><-(y) . If AG(<f>) and EGS(<f>) coin

cide, then u o <f><-(y) = u o u<f><-(y) ; hence <f><-(y) = u o u<f><-(y) for every 

u EJy and so 

The other way around can be found in [V 77] 2.3.7 .. D 

3.13. THEOREM. Let <[>: ~~ 6]j be a point distal homomorphism of minimal 

ttgs. 
a) Let I/;: '!,~ 6]j be a homomorphism of minimal ttgs. If <f> or I/; is 

open then (<f>,l/J) satisfies the generalized Bronstein condition. 

b) If <f> is open then <f> is RIC. 



118 Topological Dynamix 

PROOF. 

a) Let U X V n Rcpi/J =I= 0 be a basic open set in Rcpi/J. By I.3.7.(iii), 
we may assume (without loss of generality) that cp[U] = o/[V]. Let x EU 
be a cp-distal point, then for z E V with cp(x) = o/(z) we have 
Jz<;;;,Ji/l(z)=J.p(x)=Jx (I.2.10.), so (x,z) is an almost periodic point in 
R.pi/J. 

b) Let o/: ~~ 6lJ be proximal. By a , R.pi/J has a dense subset of 
almost periodic points. Define (J: 'fil.t.1/1 ~ 'X as the projection. Then clearly 
() is proximal, so R 4>1/1 has a unique minimal subset. Hence 'fil.t.1/1 is 

minimal and c/> _l_ o/ . So, by definition, c/> is rue. D 

3.14. COROLLARY. Let c/>: 'X~ 6JJ be a point distal homomorphism of minimal 
ttgs. Then 
a) AG(c/>) and EGS(c/>) coincide; 
b) the canonical PI tower for cJ> is an HPI tower. 

PROOF. 

a) We show that the map c/>' in AG(c/>) is point distal. Then it follows 
from 3.13. that c/>' is rue and so that AG(c/>) and EGS(c/>) coincide (3.12.b). 
Let x EX be a cp-distal point, y = cJ>(x) and let u E Jx . Then 
(x, u o cp<-(y )) EX' (in AG(c/>)), and (x, u o cp<-(y )) is a </>'-distal point; as 

follows: 
Let (x ', u o cp<-(y )) E X' ; then by minimality of 6X: , there is a v E J with 
(x',uocp<-(y))=v(x',uocp<-(y)). So vEJx'<;;;,J.p(x')=Jy and as 
JY =Jx, vEJx. Hence (x,uocp<-(y))=v(x,uocp<-(y)), so 
(x, u o cp<-(y )) and (x ', u o cp<-(y )) are distal. 

b) Follows immediately from a. D 

3.15. REMARK. Let 'X be a point distal MHP ttg, then 'X is a strictly AI-ttg, 
(i.e., every proximal extension in the strictly-PI tower for 'X is a-a). 

PROOF. By 1.3. (VST in the absolute case) and the fact that 'X is MHP, it 
follows that there is a strictly-HP! tower for 'X. As 'X is point distal, every 
map in the tower has to be point distal, which is obvious for the almost 
periodic homomorphisms, but which can only occur for the highly proximal 
homomorphisms if they are almost automorphic (1.1.b). D 

We shall conclude this section with a characterization of open maps which 
resembles the definition of rue extensions Gust after I.3.9.). 
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3.16. 1HEOREM. Let <1>: ?X.~61:1 be a homomorphism of minimal ttgs. Then </> 

is open if! </> 1- 1" for every hp extension 1": 2:~ 61:1 of minimal ttgs. 

PROOF. 

"=9" Let </> be open and let 1" be hp. Define 0: ~.,,~?X. as the pro
jection. We shall prove that 0 is irreducible (and so, by 2.2.a, that </> 1- 1" ). 
Let U X V n R<f>.p be a nonempty basic open set in R<f>.p. By 1.3.7.(iii), we 

may assume that </>[U] = ifl[V] . By 2.1. and 2.3., there is a y E Y with 

ifl~(y)(;;;; V. For x EU with </>(x) = y we have 

~(x) = {x }X ifl~(y)<;;;;; u x VnRH. 

Hence 0 is irreducible. 
"«==" Note that it is sufficient to prove that </> is open if </> 1- x~ , 

where x~: 61:1* ~ 61:1 is the universal hp extension of 61:1 . For y E Y and 

u E JY , we shall prove that </>~(y) <;;;;; u o </>~(y) . Then, it follows that 

</>~(y) = u o </>~(y) and, as y and u E JY are arbitrary, </> is open 
(Il.3.12.). Define y: ~~ 61:1 by y (p) = py for all p EM . Then 

61:1* =~(uoy~(y),~) and x~(poy~(y))=py for all pEM. Let 

x E </>~(y) , then (x, u o y~(y )) E R<f>x'!! . So by minimality of ~x'!! , there is 

a v E J with x = vx and u o y~(y) = v o y~(y) . As v E v o y~(y) we 

have 

x = vx E (v oy~(y))x = v oy~(y).x = u oy~(y).x <_:;;;; u o</>~(y), 

for </>(y~(y).x) = y~(y).</>(x) = y~(y):)' = y . D 
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IV.4. LIFTING INVARIANTS 

In this section we deal with the problem: what is left of cp after lifting it 

using AG (or EGS) type diagrams. We start with general considerations 

concerning this problem (4.2. and 4.3.). Those results that are interesting 

in their own right, lead to to the conclusions in 4.8., telling us about 

E +· , Q +• and P +· in relation to E + , Q + and P + . After that 

we generalize the point of view to lifting a pair of homomorphisms, and 

we show that properties like " cp l.. lfl " are carried over to cp • and 1/1 * 

(4.16.). 

4.1. Consider the following commutative diagram consisting of homomor

phisms of minimal ttgs. 

(J 

Assume that a is proximal and that a X a[R.,..] = R+. 

4.2. 'IHEOREM. Under the circumstances of 4.1.: 

a) a X a[P +·1 = P +,even P +' = (o X a)<-[P +]nR+·; 

b) a X a[Q+•] = Q+; 

c) Q.,..oP cl>'= (a X a)""""[Q+oP +]n R+', so a X a[Q+•oP +•] = Q+oP +. 

PROOF. Note that in all cases the inclusion ~ is straightforward. 

b) Let (x 1 ,x2)E Q+ and let {(x\ ,x~)}; and {t;}; be nets in R+ 

and T , such that 

(x\ ,x~)~(x 1 ,xi) and t;(x\ ,x~)~(x1,x1). 

Then there are (.X~ ,.X~)E R.,.. with a X a(x~ ,x~) = (x\ ,x~). Let 

(X I , X 2) = lim (X~ , X~) and (z I , Z 2) = lim t; (X~ , X~) , after passing to suit

able subnets. Then a X a(x1 ,.X2) = (x 1 ,x2) and a X a(z 1 ,z2) = (x 1 ,x 1), 

so (z1>z 2)EP-.x:nR.,..=P+'· Let aE<t.Lx• be open. Then 

(z i.z2)E P .,..~Tan R+, so t;(x~ ,.X~)E Tan R+ for all i-;;:. ia. Hence 

(x~ ,.X~)E TanR+ for all ;;:.;a, and so it follows that 

(x1 ,.X2) = lim(.X~ ,.X~)E Tan R+. As a was arbitrary, (.X1 ,.X2)E Q+·, 

and (x1 ,x2) = o X o(x1 ,.X2)~ o X a[Q.,..]. 
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c) Let (x 1 ,x2)E Q</>oP </> and let (x'1 ,x'2)E R</>' be such that 
CJ X a(x'1,x'2) = (x 1 ,x2). We shall prove that (x'1,x2)E Q</>·oP </>'. Let 
z3E X be such that (x 1 ,z 3)E P </> and (z 3,x2)E Q</>. By I.2.7., there is a 

minimal left ideal I c; Sr with px 1 = pz 3 for every p E I . Let 

v E Jx·i<l) . Then, as Jx'z !: JXz ' 

(vz3,x2) = v(z3,x2)E TQ</> = Q</>. 

Let (z'3,z2)E Q</>' be such that a X a(z'3,z2) = (vz 3,x2) (by b !) and such 
that (z'3,z'2) = v(z'3,z2). Then 

so vx '1 and z 3 are proximal. As they are both v -invariant, they are distal 
too (I.2.8.), hence vx '1 = z '3 • Similarly, x 2 = z 2 . As 
</>'(vx'1)=<t>'(x'2)=<t>'(x'1), we have (x'1 ,vx'1)ER</>'nPis.x:=P<t>'· Since 
(vx'1,x'2) = (z'3,z2)E Q</>', it follows that (x'1,x2)E Q</>'oP </>'. 

a) The proof of this statement is a special case of the proof of c 
(replace z 3 by x 2 ). D 

4.3. THEOREM. Under the circumstances of 4.1.: 
a) P </> is a (closed) equivalence relation if! P </>' is. 
b) If Q<t>=ax then Q<t>·=P<t>'(=E<f>'). 

c) E<t> = Q<t>oP </> if! E</>' = Q</>'oP </>'. 
d) If E<t>' = Q</>' then E<t> = Q<t>. 
e) If E</> = Q</>oP </> then CJ X a[E<t>'l = E</>. 

PROOF. 

a) From 4.2.a it follows that if P </> is a (closed) equivalence relation 
then P </>' is a (closed) equivalence relation too. 
Suppose that P </>' is an equivalence relation. First note that this is 
equivalent to: 

(x'1,x2)E P </>' iff (x'1,x2)E R</>' and px'1 = px'2 for every p EM. ~ 

Clearly, if ~ holds then P </>' is an equivalence relation. 
Conversely, let P </>' be an equivalence relation. Obviously, the "if" -part of 

~is true. Let (x'1,x2)E P </>' and let u EJx'i. As (x2, ux2)E P </>' and as 

P </>' is an equivalence relation, (x '1 , ux 2) E P </>' ; so by I.2.8., x '1 = ux 2 . 
Hence for every p E M , px '1 = pux 2 = px 2 . This proves ~-
Let (x 1,x2) and (x 2,x3) beelementsof J'.<1>,andlet (xi,xi)ER</>' with 
aXa(xi,xi)=(x1,X3). By4.2.a,wecanfind (x'1,x2) and (.X2,x3) in 



122 Topological Dynamix 

pc// with (J x a(x'1,x2) = (x1 ,x2) and (J x a(x2 ,x3) = (x2,X3) . Let 

u E J • and v E J • ; then by proximality of a we have x i = ux '1 and 
XI X3 

x; = vx 3 . As P <I>' is an equivalence relation it follows from ~ that 

xi = ux'1 = ux2 and xi = vx3 = vx2. But then (ux2, vx2)E R.p'. Since 

a(ux2) = a(U.X2) = ux 2 , we have by proximality of a that ux2 = U.X2 ; 

hence (ux2, vx2)E P".X: and 

(xi ,xi) = (ux2, vx2)E R</>'n P".X: = P <I>'. 

Consequently 

(x1 ,x3) =a X a(xi ,xi)E a X a[P ¥1 = P .p. 

If P </>' is closed then, obviously, P + is closed. 
b) As Q<l>'k (a X aY-a X a[Q.p'] and as, by 4.2.b, a X a[Q<I>'] = Q.p, 

we have by 4.2.a, 

Q</>' k (a X a) .... [Llx] k (a X a) .... [P +1 n R<I>' = P +' ; 

andso Q.p,=P<l>'(=E+'). 
c) The "only if"-part follows from 4.2.c. 

Conversely, suppose that for qi we have E.p' = Q.p'oP +'. We shall prove 

that Q .po P + o Q + o P + k Q .po P .p . (Then, clearly, Q .po P .p is an equivalence 

relation and it is closed. Indeed, 

Q.po Q.pk Q.poP .po Q.poP .pk Q.poP cpk Q.po Q.p, 

so Q + o P + = Q + o Q + and, obviously, Q + o Q + is closed. Consequently, 

E.p = Q.poP .p .) As follows: 
Let (x 1,x2) and (x 2,x3) in Q.poP.p and let (xi ,xi)ER<I>' be such that 

aXa(xi ,xi)=(x1,x3). By 4.2.c, there are (x'1,x2) and (.X2,x'3) in 

Q<l>'oP</>' with aXa(x'i.x2)=(xi,x2) and aXa(x2,x3)=(x2,x3). 

Let u E J • and v E J • ; then, by 1.2.8. and by proximality of a , 
XI X3 

xi = ux'1 and xi = vx3. So 

(x i , ux 2) = u (x '1 , x 2) E 1'(Q +' o P </>') = TE</>' = E </>' 

and, similarly, (vx2,x3)E E<I>'. Clearly, (ux2, v.X2)E P".X:n R+' = P +'; 

hence (xi ,xi)E E.p,oP <l>'oE.p' = E.p'. Consequently, 

(x1 ,X3) =a X a(xi ,xi)E a X a[E<I>'] =a X a[Q.p'oP .p'] = Q.poP .p, 

which proves the "if" -part. 
d) Completely analoguous to the proof of c. 

e) Follows from c and 4.2.c. D 
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4.4. We shall now look for situations in which the conditions of 4.1. are 

satisfied. To that end consider the following commutative diagram of 

homomorphisms of minimal ttgs. 

4.5. LEMMA. Consider the diagram above. If T is proximal and if (f/>,t/I) 

satisfies the generalized Bronstein condition then o X t[R<l>'.V] = R"'"'. 

(compare 111.5.2.) 

PROOF. Clearly, 0 x t[R<l>'.v] k R"'"' . 
Conversely, let (x,z) be an almost periodic point in RH, say 

(x,z)=u(x,z) for some uEJ, and let (x',z')=u(x',z')EX'XZ' 

with o X nx',z') = (x,z). Then (q,'(x'),t/l'(z')) = u(q,'(x'),t/l'(z'))E R.,., 

for 

T(f/>' (x ')) = q,oo(x ') = q,(x) = t/l(z) = t/lonz ') = T(t/I' (z ')). 

As T is a proximal map, q,'(x')=t/l'(z'); so (x',z')ER<l>'.V. Therefore 

JR<J>i/Jk o X t[R<l>'.v]C R"'"'. Since the almost periodic points are dense in 

R"'"' and o X t[R<l>'.v1 is closed, the lemma follows. D 

4.6. LEMMA. Let q,: ~--+ '!j and "1: '!j--+ '1: be homomorphisms of minimal 

ttgs with q, open and "1 hp. Let z E Z, y E "1~(z) and p EM. 

Then q,~(py) = p o q,~t/l~(z) . 

PROOF. As .Pad is continuous, p o f/>~t/l~(z) = q,~(p o t/l~(z )) . But "1 is hp 

so p o t/l~(z) = {py } . D 

4. 7. LEMMA. Consider the diagram in 4.4.. Let T be hp, and let q,' and "1' 

be open. If q, or "1 is open then o X t[R<l>'.v1 = R"'"'. 

PROOF. Assume q, to be open, let y E Y , y' E T~(y) , and observe that 

R<l>'.v = u {cp'~(py')X "1'~(py') IP EM}. 
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By 4.6., it follows that 

So 

(J X t[Rq,'>j!) = LJ {CJ(p o(J<--c[><--ry))X f(p of<--iJi<--ry)) IP EM}= 

u {p 0 cf> <--ry) x p 0 "' .... °") I p E M} = 
LJ {cf><--(py)Xp oiJi<--ry) IP EM} 

by openness of cf> . Since iJi .... (py) = LJ { q o i/i<--ry) I q E M with qy = py } it 

follows that 

c[><--(py)Xi/i .... (py)= LJ{c/> .... (qy)Xqoi/i .... (J-')lqEM withqy =py}, 

hence that CJ X t[Rq,'>j!] = LJ {c[> .... (py)X i/i .... (py) IP EM}= Rq,1". D 

From 4.5. and 4.7. it follows that the conditions in 4.1. are satisfied in the fol
lowing situations (notations as in 4.1.): 

a) CJ, r proximal and cf> satisfying the Bronstein condition. For 
instance: EGS(c[>), ~(cf>), AG(cf>) and *(cf>) with cf> a Be extension. 

b) CJ proximal, r hp, c[>' and cf> open. For instance: *(cf>) with cf> 
open. 

4.8. COROLLARY. Let cf>: ix~ 6lJ be a homomorphism of minimal ttgs and let 
cf>* : ix• ~ 61J* be the induced map between the universal highly proximal 

extensions of ix and 6lJ (as in *(cf>), see 3.10.). Let cf> be open or let 
cf> satisfY the Bronstein condition then 

a) P cp is a (closed) equivalence relation if! P cp* is; 

b) if Qcp=6.x then Qq,• =Pcp·(=Ecp·); 

c) Ecp = Qq,oP cp if! Ecp. = Qcp• oP .p*; 

d) if Ecp· = Qq,• then Eq,= Q.p; 
e) if cf> is almost periodic (distal) then cf>• = Ooic, where K is hp and 

() is almost periodic (distal). 
(compare VIII.2.1.). 
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PROOF. 

a, b, c and d are immediate from 4.3. and the discussion above. 

e) Suppose q, is distal. Then P <P is a closed equivalence relation, so 

P .p• is a closed equivalence relation by a, and q,* = OoK with " the proxi

mal quotient map defined by P .p* and 0 distal. If q, is almost periodic, 

then Q.p = !l.x , so Q.p• = P .p* and 0 is even almost periodic. So we only 

have to prove that " is hp. As follows: 
Let Z =X*/P<P. and define if;:':l~'X by if;(K(x))=a(x). 

a 

T 

Observe that if; and " are hp if if; is well defined (2.4.b). 
Suppose that K(x)=K(x') then (x,x')ER<P., so (a(x),a(x'))ER.p. As 

q, is distal (almost periodic), a (x) and a (x ') are distal. As " is proxi-

mal, (x,x')EP<P., so (a(x),a(x'))EP.p; hence a(x)=a(x') and so 

if;(K(x))=if;(K(x')); i.e., if; is well defined. D 

4.9. Consider the next commutative diagram of homomorphisms of minimal 

ttgs, considered on the phase spaces. 

a 
X' x 

~ / 
•'l ~~£. X/E, 1 • 

~ 
Y' y 

T 

Let a be proximal. Note that ~:X/E.p·~X/E.p always exists as a 

homomorphism of minimal ttgs, because a X a [ E .p•] C E <P . 
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4.10. LEMMA. Consider the diagram of 4.9 .. 
a) If a X a[Ecf>'] = Ecf> then ~ is proximal. 
b) If~ is proximal and a X a[Rcf>'] =Ref> then a X a[Ecf>'] = Ecf>. 

PROOF. 

a) Suppose HK'(x'1)) = HK'(x2)). We shall show that K'(x'1) and 
K'(x2) are proximal. As ~oK' = Koa, we have (a(x'1),a(x2))E Ecf>. By 

assumption, we can find (z 1 ,z2) EE-¥ with a X a(z 1, z2) =a X a(x '1,x2) . 
Then, by proximality of a X a , it follows that (z 1 , z 2) and (x '1 , x 2) are 

proximal in X'X X'; hence (K'(z 1),K'(z 2)) and K'(x'1),K'(x'2)) are proxi

mal in X'jEcf>'X X'/Ecf>'. But as (z 1 ,z 2)E Ecf>', K'(z 1) = K'(z 2), so 
(K' (x '1), K' (x '2)) is proximal to a point in the diagonal; i.e., K' (x '1) and 
K' (x 2) are proximal. 

b) Let (x 1 ,x2)E Ecf> and let (x'1,x2)E Ref>' be such that 
aXa(x'1,x2)=(x 1,x2). Then 

so K' (x '1) and K' (x 2) are proximal. As ()' is almost periodic and 

(K'(x'1),K'(x'2)) = K' X K'(x'1,x2)E K' X K'[Rcf>'] =Ro· 

it follows that K' (x '1) = K' (x '2) and so that (x '1 , x '2) E E cf>' . D 

4.11. In particular, 4.10 applies to AG(cp), EGS(cp) and 2!(!/>) in case ip 

satisfies the Bronstein condition (compare 4.5. and III.5.2., 5.3.) and to *(!/>)in 
case cp is open or cp is a Be extension. 

4.12. THEOREM. Let cp: 'X--"> 61J be a homomorphism of minimal ttgs. Con

sider *(</>) and let the map ~:X*/Ecf> • ....,.X/Ecf> be as in 4.9 .. If 

a X a [ E cf> • l = E cf> then ~ is highly proximal. In particular, ~ is highly 

proximal in each of the following cases: 
a) cp is a Be extension; 
b) cp is open and Ecf> = Qcf>oP cf>. 

PROOF. First note that, by 4.5., 4.7., 4.3.e and III.3.9., both cases (a and b) 

implythat aXa[Rcf>·]=Rcf> and aXa[Ecf>·]=Ecf>. 

As 8: X/Ecf>__,. Y is almost periodic (notation as in 4.9.), it follows from 
4.8.e, that ()* : (X/Ecf>)* __,. y* can be written as ()* = voµ, where 

µ: (X/ E cf>)* ....,. Z is hp and P: Z ....,. y• is almost periodic. Clearly, Z is a 
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factor of x* , and as O': x*/E .,,. --+ y* is the maximal almost periodic 

extension of y* between x* and y* ' there is a map .,, : x* I E.,,. --+ z 
with fJ' = po71. By 1.1.21.a, 71 is almost periodic and so by 4.8.e, the map 

.,,·: (X*/E.,,.)* --+Z* can be written as .,,· = ao{l, where fl is hp and a 

is almost periodic. Note that by high proximality of µ., z* = (X/E.,,)* , so 

11 * = f . However, by the assumption, it follows from 4.10. that ~ is proxi

mal; hence f is proximal. But then 11* is proximal and, by 1.1.21.a, a is 

proximal, so a is an isomorphism and 11 * = fl is highly proximal. As 11 • 

is open, .,, * is an isomorphism, so ~ is highly proximal (for r = .,, • is an 

isomorphism). D 

4.13. THEOREM. Consider the next commutative diagram consisting of 

homomorphisms of minimal ttgs. Let (J and r be highly proximal. 

If ql or 1fl is open, or if (cf>',1[/) satisfies gBc, then the map 

a x r: R.,,·1/1--+ a x nR.,,.1/11 

is irreducible. 

PROOF. If cf>' or If/ is open, or if ( cf>' ,1[1) satisfies gBc then for every open 

W !: R<l>'i/I there are nonempty open U and V in X' and Z' such that 

cf>'[U] = 1[/[V], while UX VnR.,,.1/1!: W (by 1.3.7.). 

Let W be open in R 4>' 1/1 and let U and V be as above. By 2.1., there is 

a nonempty open U' = o<-o[U']!: U . As 0 =#= (c/>'[U'])0 !: lf/[V] there is 

a nonempty open V'=r+-t[V'] with V'!: Vn1[/ ..... [(cf>'[U'])0 ]. Clearly, 

U'X V' = (o X r)<-(o X r)[U'X V'], hence U'X V'nR.,,.1/1 contains a full 

fiber under oXt:R.,,.1/1--+oXnR.,,.1/I]. Since U'XV'nR.,,.1/l!:W this 

shows that o X t: R .,,, 1/1--+ o X r[R <I>' 1/1] is irreducible. D 



128 Topological Dynamix 

4.14. There are two "standard" diagrams of the type as exposed in 4.13 .. 

A The one obtained by the *-construction. 

Let <1>: ~~ 6Y and lfl: ~~ 611 be homomorphisms of minimal ttgs. Then we 
can construct *(</>,lf!) as follows (note that <1>* and lfl* are open): 

B The one obtained by a double diagram construction. 

Let y 0 E Y and u E J, 0 • Define 

Then, clearly, 6Y' is minimal and T: 611' ~ 611 is hp, where T is defined by 
T(p o </><-(y 0) ,po lfl<-(y 0)) = P.Yo for all p EM . For let 

Tx: ~(u o </><-(y 0), ~) ~ 611 and Tz: ~(u o lf;<-(yo), ~) ~ 6Y 

be the maps in AG(</>) and AG(lf;). Then T ..... (y0H;;; Tx(y0)X Tz(yo) ; hence 

U oT<-(yo)~ U o(Tx(yo)X Tz(yo)) = 
= u o Tx(y0)X u o Tz(yo) = (u o </> ..... (y0), u o lfl ..... (y0)), 

and T is highly proximal. Define X' and Z' by 

X': = {(x ,(A ,B)) I (A ,B)E Y' and x EA} 

Z': = {(z ,(A ,B)) I (A ,B)E Y' and z E B}. 

Let </>' : 6X: ~ 6Y' , u : 6X: ~ ~ , lfl' : '£ ~ 611' and t : '!: ~ ~ be the projections. 
Using our knowledge about AG(</>) and AG(lf;) it is straightforward to show 

that </>' and "" are open and that <1 and r are irreducible; hence that 
6X: and '£ are minimal, and so that <1 and r are hp. 

This diagram will be called AG(</>,lf;). Note that AG(</>,lf!) reduces to (</>,lf!) if 
</> and lfl are open, and that*(</>,</>) and AG(</>,</>) are just two times*(</>) and 

AG(</>) respectively. 
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4.15. Consider *(cf>,o/) and AG(cp,I[;), with notation as in 4.13 .. 

If (cf>,o/) satisfies gBc or if cf> or If; is open then a X f[Rcf>'f] = R<t>l/J, so 

a X t: R cf>' >V ~ R cf>l/J is irreducible. 
In particular, if cf> is open or if cf> is a Be extension, then a X a : R <t>' ~ R <I> 

is irreducible (in case cf> is open this is only meaningful in the * version). 

4.16. THEOREM. Let cf>: i:x,~G]j and If;: '.l~G]j be homomorphisms of minimal 

ttgs. Let• refer to *(cf>,o/) and' to AG(cp,1[;). 

a) If (cf>,o/) satisfies gBc then (cf>* ,I[;*) and (cf>',o/') do. 

If cf> ..L If; then cp* ..L If;* and cf>' ..L If;'. 
b) Let cf> or If; be open. Then (cf>,o/) satisfies gBc if! (cf>* ,I[;*) satisfies 

gBc if! (cf>',o/') satisfies gBc. 
c) Let cf> or If; be open or let (cf>,o/) satisfy gBc. Then 

cf> ..L If; if! cp* ..L If;* if! cf>' ..L If;', and 

cf> ....:.... If; if! cf> • ....:.... f if! cf>' ....:.... If;' . 

PROOF. Notation as in 4.14 .. 

In all cases a X f[Rcf>'f] =RH (4.5. and 4.7.), so a X t: Rct>'>V~R<t>l/J is 

irreducible by 4.13.. The theorem now follows from 2.2.. D 

4.17. THEOREM. Let cf>: i:x,~ 6]j be a homomorphism of minimal ttgs. Let • 

refer to *(cf>) and' to AG(cp). 

a) If cf> is a Be extension then cp* and cf>' are Be extensions. 

If cf> is open then cf> is a Be extension if! cp* is a Be extension. 

b) If cf> is open or if cf> is a Be extension then cf> is weakly mixing if! 
cp* is weakly mixing if! cf>' is weakly mixing. 

c) If cf> is open then cf> is a RIC extension if! cp* is a RIC extension. 

PROOF. 

a and b Follow immediately from 4.16 .. 

c) Let cf> be open. Suppose that cf> is a RIC extension and let 

IC: 9:r (G]j* ) ~ G]j* be the universal minimal proximal extension of G]j* . Then 

'To IC: 9:r (G]j°) ~ 6]j is proximal, so cf> ..L 'To IC • Clearly, ('To 1C)° = IC , so by 

4.16.a, it follows that cp* ..L IC; hence, by definition, cf> is a RIC extension. 

Conversely, suppose that cf> • is a RIC extension and let 1C1 : 9:r (G]j) ~ 6]j be 

the universal minimal proximal extension of 6]j • Then there is a map 

11: 9!(6lj)~G]j· with 'To'll =IC'. As cp* is a RIC extension, cp* ..L11, and by 

openness of cf>, it follows from 4.16.c and the fact that 11 = (1C1)* that 

cf> ..L 1C1 • Consequently, cf> is a RIC extension. D 
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4.18. Note that, by 4.16.c with 61.1 = { *} , it follows that ~ ...L !i: iff 6.X: ...L 'I: 

whenever ~ and 6.X: as well as !i: and 'I: are hp equivalent (two minimal 

ttgs are called hp equivalent if they have isomorphic MHP extensions). For, 

clearly, every map ~~ { *} is open. 

IV.5. HPI EXTENSIONS 

We shall briefly discuss HPI extensions. Among others we show for a 

homomorphism cp = 0 o o/ of minimal ttgs that cp is an HPI extension 

iff 0 and o/ are HPI extensions. 

5.1. In 1.3. we already mentioned the concept of an HPI extension. For 

completeness we shall define it again: 

An extension cp: ~~ 61J of minimal ttgs is called a strictry-HPI extension if 

there is an ordinal v and a tower { cpf: 6Xp ~ ~ I a:s;;;; /3~ v} consisting of 

homomorphisms of minimal ttgs with ~ = 61.1 and '?)(,. = ~ such that for 

every ordinal a< v the extension cp;+t: ~+ 1 ~~ is either almost 

periodic or highly proximal. 

An extension cp: ~ ~ 61J of minimal ttgs is called an HPI extension if there is 

a minimal ttg 6.X: and homomorphisms 0: 6.X: ~ ~ and o/: 6.X: ~ 61.1 such 

that o/ = cpoO , 0 is highly proximal and o/ is strictly-HP! (compare 

III.4.1.). 

5.2. LEMMA. Let cp: ~~ 61J be an HPI extension of minimal ttgs. Then 

cp* : ~· ~ 61.1* is a strictry-HPI extension. 

PROOF. Let 6.X: be a minimal ttg such that there is an hp extension 

· 0: 6.X: ~ ~ and a strictly-HP! extension o/: 6.X: ~ 61.1 • As 6.X:* = ~· it is 

sufficient to prove that o/*: 6.X:* ~GJJ· is strictly-HP! (for, clearly, f = cp* ). 
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Let N!: exp~~ I a.;;; po;;; v} be the HPI tower for if; , so 'X,, = ~ , 
'?Xo = 6Y. Then (i/;;+ 1)* is either trivial (if i/;;+ 1 is hp) or, by 4.8.e, 

(i/;;+ 1)* = ~011 with 11 hp and ~ almost periodic (if i[;;+ 1 is almost 

periodic). Hence {(i/;;+ 1)*: ~+ 1 ~~I a< v} is an HPI tower for f 
and so if;* is strictly-HP!. D 

5.3. THEOREM. Let cp: 6X,~ 6Y be an open HPI extension, then cp is a RIC 

extension. 

PROOF. As is shown in 5.2., cp* has a tower consisting of extensions 

(i/;;+ 1)* = ~011: ~+ 1 ~~ with ~ almost periodic and 11 hp, coming from 

almost periodic extensions if;;+ 1: ~+ 1 ~ ~ • By 4.17.c, it follows that 

(i/;;+ 1)* is a RIC extension for every a< v. As cp* is the inverse limit of 

RIC extensions, cp* itself is a RIC extension (III.1.10.c); hence, again by 

4.17.c, cp is a RIC extension. D 

For the following it would have been more elegant if we would have used 

pointed ttgs, especially to see that the diagrams involved are commutative. 

In spite of that, we don't, and leave the checking of the commutativity of the 

diagrams as exercises for the reader. 

5.4. THEOREM. Let cp: 6X,* ~ 6Y be an HPI extension of minimal ttgs. Sup

pose that cp = () o if; , 

cp 
6X,* -------

then if; is strictly HPI. 

PROOF. We shall prove that f is strictly-HP!. As if;= Xf.of , where 

Xf.: <£ ~ ~ is the canonical maximal hp extension of ~, it follows that if; 

is stri1.;tiy-HPI too. 
First note that, by 5.2., cp* is a strictly-HP! extension. So let 

{(cpf)* : 'XP ~ ~ I a.;;; po;;; v} , with ~ = 6X,* and ~ = i;y• 

be a strictly-HP! tower for cp* (as in the proof of 5.2.). 
* ~ * * Let 2°() = ~ : = :z and define i/;0: 'X ~ ~ by 
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Oo = o;: % ~ ~ = 6M* by Oo: = o• . Note that (</>Of = Oool/lo . 
Suppose that ~ , 1{1;: 6X* ~ ~ and Oa: ~ ~ ~ are defined for all ordi
nals a< {3 in such a way that (cp;)* = Oaol/I; . 
If f3 is a limit ordinal define ~ , o/p and Op by taking inverse limits. 
Suppose that f3 is a nonlimit ordinal, then ~-I , o/p-i and Op- 1 are 
defined such that (c/>p- 1)* = Op-101/Jp-1. 

Clearly Q.,.. C Q(.... >* , hence E ... • C E(.... >* . 
Yp-1 "'P-1 YP-1 "'P-1 

Define 

~:=6X*/E .•. • . Then there is a map t=~~6X*/E("'" >*;hence there is 
YP-1 "'P-1 

a map T/: ~ ~ 6Xp ( 6Xp ~ 'XP- i almost periodic in the tower for cp • ). Let 
Op:=T/· and o/iJ- 1:6X* ~~ by o/p- 1 =ic', where 
ic: 6X* ~ 6X*/E.,.• = ~ is the quotient map. It is readily seen that 

"'P-1 
(cpp)* = Opoo/iJ. Observe that ~~~-I is almost periodic (by definition of 
~ ) and so that ~~~-I is strictly-RPI. 

By transfinite induction ~ , o/: and o. are defined such that 
(cp:)* = O.oo/: . As (<P:>* = id"X. , it follows that o/: is an isomorphism; 

hence 6X* "" ~ and ~ is a strictly-HPI extension of er (by construc
tion), which proves the theorem after observing that ~~er is just o/* . D 

5.5. TIIEOREM. Let cp: 6X~ 6M be a homomorphism of minimal ttgs and sup

pose that cp = Ool{I. If cp is an HPI extension then so is o/. 

PROOF. As cp* = 0* of and as, by 5.2., cp* is (strictly) HPI, it follows 
from 5.4. that o/* is strictly-RPI. Let 1{1: 6X~ ~, then 1{I is a factor of 
Xxoo/* under an hp map (see the construction of the * diagram). As 
Xxoo/* is strictly-RPI, o/ is RPI. D 

5.6. Note that for an HPI extension cp: 6X~6M the diagrams AG(cp) and 
EGS(cp) coincide. For, cp* is strictly-RPI and open, so cp* is a RIC exten
sion. Hence, cp' in AG(cp) is a RIC extension (4.17.). So, by 3.12.a, AG(cp) 
and EGS( cp) coincide. 
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5.7. TIIEOREM. Let <f>: 6X* ~ 61J be a PI extension of minimal ttgs. Then </> 

is an HPI extension if! every open if; such that </> = 8 o if; (for some 8 ) 

is a RIC extension. 

PROOF. Suppose that </> is an HPI extension. Then, by 5.5., a map if; as in 
the theorem is an HPI extension. Hence, as such a if; is (assumed to be) 

open, it is a RIC extension by 5.3 .. 
Now suppose </> is a PI extension such that every open if; with </> = 8otf; 

for some 8 is a RIC extension. In particular, <1>* : rx• ~ c;y• is a RIC exten

sion, for </> = X"l!o<f>· and <1>* is open. Let 61J1 = <x*/E.p • . Then the map 

</>1 : 6X* ~ 61J1 has the property that its EGS diagram coincides with its AG 

diagram. For, clearly, the following diagram is the AG(</>1 ) diagram. 

As, by assumption, <f>i° is a RIC extension it follows that this is also the 
EGS(</>1) diagram. Iterating this procedure we construct the canonical PI 
tower for </> , and it consists entirely of highly proximal and almost periodic 
extensions. As </> is a PI extension, it follows that rx:, = 61J 00 ; but also, as 
all the proximal maps in the tower are hp, rx:, = <x* . So <x* = 61J00 ~ 61J is 
a strictly-PI extension, which consists of hp and almost periodic extensions, 
hence <x* ~ 61J is strictly-HP!. 0 

5.8. Note that from 5.7. it follows that if <f>: 6X~ 61J is HPI then 
</> • : rx· ~ c;y• can be constructed by taking maximal almost periodic exten

sions under rx• and maximal highly proximal extensions successively. 

5.9. TIIEOREM. Let <f>: 6X~ 61J be an HPI extension of minimal ttgs. Let 8 

and if; be homomorphisms such that </> = 8 o if; . Then 8 is an HPI 

extension. (In other words: a factor of an HPI extension is an HPI 
extension.) 

PROOF. Let if;: 'X~~ and 8: ~~c;y. Define ~ = <f>oxcx: <x* ~c;y. We 
shall prove that 8oX!£: CX ~ 61J is an HPI extension. Hence, by 5.2., 8oX!£ is 
strictly-HP! and, by definition, 8 is an HPI extension. 
As ~ is a PI extension, 8 o X!£ (as a factor of ~ ) is a PI extension. Let ~ 
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and .,, be homomorphisms such that 8oX!: = 110E and let E be open. 

q, 

6.X* 6.X q, 
x~ 6Y 

~·fl ~ ')(j; ~ /e 
1 .......-~- <r ~ 

6!tf 
.,, 

Then Eo1{/ : 6.X* ~ 61lf is open; hence, as ;;, is HPI, it follows from 5.7. that 

Eof is a RIC extension. Consequently, E is a RIC extension (III.1.10.a). 

By 5.7., it follows that 8o')(j; is HPI. D 

5.10. COROLLARY. Let q,, if; and 8 be homomorphisms of minimal ttgs such 

that q, = 8oif;. Then q, is an HPI extension if! 8 and if; are HPI 

extensions. 

PROOF. The "only if"-part follows from 5.5. and 5.9.; for the "if"-part use 

5.2.. D 

5.11. TIIEOREM. Let q,: 6.X.~ 6Y be an HPI extension of minimal ttgs. Then 

the canonical PI tower for q, is an HPI tower. 

PROOF. Construct AG(q,): 

(] 

6.X: 6.X. 

~1 l• 
6Y' T 

6Y 

As a is hp, f/>oa is an HPI extension. By 5.10., q,' is an HPI extension and 

as it is open, it is a RIC extension by 5.3.. So AG(q,) and EGS(q,) coincide. 

Define 6.X.1 : = 6.X: , 6Y1 = 6X:/ E 4>' and q,1 : 6.X1 ~ 6Y1 as the quotient map. 

Then, by 5.10., q,1 is an HPI extension. 

Iterating this procedure we construct the canonical PI tower for q, , which is 

build up by AG diagrams; i.e., the PI tower is an HPI tower. D 
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For the next theorem, which characterizes HPI extensions of metric minimal 

ttgs, we need the following lemma. 

5.12. LEMMA. Let q,: ~-+'!I be a surjective homomorphism ofttgs and let X 

have a dense subset of almost periodic points. If Yo C Y is a residual 

set then q,<-[Y0] is residual in X. 

PROOF. Let {An In EN} be a collection of closed nowhere dense subsets of 

Y such that 

Y\Yo= LJ(An In EN}. 

Then clearly X \ q,<-(Yo] = LJ q,<-(An]. So it is sufficient to prove that the 

full original of a nowhere dense closed subset in Y is nowhere dense in X . 

Let A =AC Y be nowhere dense. Suppose that UC q,<-(A] for some 

nonempty open U in X, then '/>[U]C '1>'1> .... [A] =A . As X has a dense 

subset of almost periodic points, '1> is semi-open so '1> [ U] has a nonempty 

interior in Y (1.1.4.b), which contradicts the nowhere density of A . D 

5.13. nIEOREM. Let q,: ~-+'!I be a homomorphism of metric minimal ttgs. 

Then '1> is an HPI extension if! '1> is point distal. 

PROOF. If '1> is point distal then, by 1.3. in the metric case, '1> is an HPI 

extension. 
Conversely, suppose that '1> is an HPI extension. Then, by 5.11., the PI 

tower for '1> is an HPI tower. As X is metric, the height of the tower is 

countable (111.4.8.), and all ttgs in it are metric. Hence there is a metric 

minimal ttg '?X: and a map o: '?X:-+ ~ , which is highly proximal and for all 

n E N there are metric minimal ttgs '?X:n and ~ such that T n : '?X:n -+ ~ 

is hp and ~n : ~ -+ '?X:n -1 is almost periodic, with '!I = ~ and 

'?X: = inv lim '?X:n • 
We shall prove that '1>': = q,oo: '?X:-+ '!I is point distal; hence that '1> is point 

distal. As all minimal ttgs are metric, the maps '?X:n -+ ~ are almost auto

morphic. Let Wn C X~ be the collection of automorphic points. Then, by 

1.1.d, Wn is residual in X~ • Let '1>n: '?X:-+'?X:n ; then, by 5.12., q,,;-(WnJ 

is residual. Hence 

is a residual subset of in X' . Let x' E W and define for every n E N the 

points x~:='i>n(x') and Xn:=-rn(x~). Then, in particular, 
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<P'(x') = r0 o<f>o(x') = x 0 • As x'E W, r0 is one to one in x 0 , hence 
JXo = Jx'o. By distality of ~I 'it follows that Jxl = Jx'o' so Jxl = Jxo. 

Countable induction shows that Jx, = Jx0 ; hence x' is a </>'-distal point 

(I.2.10.). D 

5.14. Let 61J be a minimal ttg. Then there exists a universal HPI extension of 
61J as follows: 

First take 61J* and let ex1 be the maximal almost periodic extension of 61J 0 

(under 0R, ). Suppose '?Xir is constructed, then construct '?Xir+ 1 as the maxi
mal almost periodic extension of ~ . If a is a limit ordinal and if 'Xp is 
constructed for all /3 < a , then define '?Xir : = inv lim { 'Xp I f3 < a} . For some 
ordinal v , ~+ 1 ,..._, ?X,; (for there is just a set of essentially different 
minimal ttgs). Clearly, ?X,; is an HPI extension of 61J • 

That this is a universal HPI extension of 61J follows from the next observa
tion: Let if;: 61.tf ~ 2: be a homomorphism of minimal ttgs. Let Ko111-: 61.tf' ~ 61.tf 
and K~: '!: ~ 2: be the maximal almost periodic extensions of 61.tf and 2: 
respectively. Then there is a 0: 61.tf' ~ '!: such that K~o (} = if; o K"llf . For let 
'Y6llf:0lt,~6l.tf and y~:0R,~2: be such that if;oy"llf=n. Then Qy'llfCQ'Y'.f:' 

hence E 'Y'llf C E 'Y'.E • As 61.tf = ~/ E 'Y'llf and 2: = '~ll/ E 'Y'.E , this shows that 
thereisamap 0:61.tf'~'!: with K~oO=if;oK"llf. 

Obviously the universal HPI extension is unique up to isomorphism (note 
5.5.). Let <P>,: ex;~ 61J be an HPI extension (;\.EA ). Using 2.6. and the 
corresponding property for almost periodic extensions it is routine to check 
that for every minimal 

the map 2:~ 61J is HPI. 

So we showed the following: 

5.15. COROLLARY. Let 61J be a minimal ttg. Then there is a universal minimal 
HPI extension <f>: ex~ 61J, which is unique up to isomorphism, and <f> is 
regular. In particular, there exists a universal minimal HPI ttg, which is 
unique up to isomorphism and which is regular (see V.4. for an other con
struction). D 
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IV.6. REMARKS 

6.1. Section 1. contains some generalities on almost automorphic extensions 

and highly proximal extensions, which can be found for instance in [V 70] 

and [Sh 76]. The main purpose was to give a glimpse at the historical context 

of the rest of this chapter. 

The example in 1.4. is the basis for many examples in topological dynamics 

(e.g. see [Mk 72] and [M 76.1,78]). Note that for an arbitrary topological 

group T , f3(Tx 0) does not have to be a ttg; i.e., the action is in general 

not jointly continuous. However, there is a maximal compactification-flow 

PT (Tx0) for Tx 0 in which Tx 0 is isomorphically embedded (see the 

beginning of section 1.2.). Then f3T (Tx0) is the maximal a-a extension of 

'X- which is one to one in the fiber of x 0 . 

QUESTION 

Does every nontrivial highly proximal extension admit a nontrivial a-a fac

tor? I.e., let cp: 'X-~ 6h be hp and nontrivial. Do there exist a non trivial a-a 

extension i/;: ~~"h and a homomorphism (}: 'X,~~ with cp = iJ;o(}? 

6.2. In section 2. we study hp extensions with emphasis on the topology. 

For that reason we gave a proof of 2.5. and 2.6. without using the action of 

ST (compare [Sh 76] and [AG 77]). 

The results except for 2.7. and 2.8. are standard; 2.7. is basically contained 

in [Ar 78] and 2.8. appeared in [AW 81]. With respect to 2.8. we remark that 

it was already known that a distal minimal ttg for l. with a 0-dimensional 

phase space is equicontinuous ([E 58]). In a stronger version: 

THEOREM. [MW 76] If T is the direct product of a compactly generated 

separable group with a compact group and if 'X, is a minimal distal ttg 

with 0-dimensional phase space, then 'X, is equicontinuous. 

For more details on distality and homogeneity see [B 75179] 2.11.7.-21.. 

QUESTIONS 

a) Can 2.8. be proven without using the heavy tools (i.e., FST and the 

theorem that states that every homogeneous extremally disconnected CT2 

space is finite)? 



138 Topological Dynamix 

b) Can we give a topological characterization of MHP ttgs in case T does 
not have the discrete topology? 
Note that if the answer to the question in 6.1. is affirmative, we have: 

~ is MHP iff X ,..,_, /3r(Tx 0) for every x 0 E X. 

c) Do there exist nontrivial MHP ttgs which are point distal? 

6.3. The main part of section 3. is devoted to the construction of "hp" sha
dow diagrams. The idea of constructing shadow diagrams stems from [V 70). 
The intention is to change the homomorphism slightly, but in a canonical 
way, such that it has nicer properties and still reflects much of the original 
homomorphism. 
Although those shadow diagrams can be found in [Sh 76), [AG 77] and [V 77] 
we also introduce them here. The proofs are somewhat shorter and the set
up is chosen similar to the one in [V 77] (especially see 3.6. and [V 77] page 
819). Running through the section the following remarks occur: 
(i) Theorem 3.1. slightly generalizes [Sh 76) 2.9. and [AG 77] lemma 1.1. 

(and the note before lemma 1.2.). 
(ii) 3.8. and 3.9. can be found in [AG 77). They form the basis for the study 

presented in chapter V .. 
(iii) In [V 77] 2.3.5. it is stated that (our) 3.12.c is true for strictly-quasi 

separable minimal ttgs (so not necessarily metric). However, this is not 
correct as the following example shows (T.S. wu) 
Consider example 1.5 .. As cp is highly proximal, clearly, its AG and 
EGS diagrams coincide. But for every y E Y , u E JY we have 
u 0 ucp<-(y) = u 0 cp<-(y) = ucp<-(y) ' hence n { u 0 ucp<-(y) I u E Jy} = 0 

As T = Z , ~ is strictly-quasi separable (I.1.7.). 
(iv) Theorem 3.13. slightly generalizes [E 73) 6.4.; this generalization makes 

3.14. easily accessible. 
(v) It seems no proof of 3.16. has been published until now. 

QUESTION 

Can we give an internal characterization of ttgs for which the AG and EGS 
diagrams coincide? Note that together with an internal characterization of 
PI ttgs (III.5.7., 5.8.) this could give an internal characterization of HPI ttgs. 
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6.4. The forth section is meant to give some justification for the construc

tion of hp shadow diagrams. We show that the hp lifting has much in com

mon with the original homomorphism of minimal ttgs. Some of the 

preserved properties are preserved under more general circumstances, as is 

shown in· 4.2. and 4.3.. In those theorems we extend [M 78] 2.1 .. In the case 

of hp lifting much more can be done as a result of the irreducibility. So for 

instance in 4.16. we gave relativized versions of [Ar 78] prop 7., [AG 77] 

lemma 1.3., theorem 1.2. under fairly general conditions. 

The results in this section are published in [AW 81], except for 4.2., 4.3., 4.8. 

through 4.12. which are not in the literature. 

Note that in 4.17. openness is necessary: 

Let cp be hp and nontrivial then q,* is an isomorphism and so it is RIC 

and Be, but clearly cp is neither RIC nor Be. 

Also there are examples of homomorphisms cp which are not weakly mixing, 

while q,* is RIC and weakly mixing (cf. [M 78]). 

QUESTION 

a) What about the converse of 4.3.d ? 

b) Characterize the homomorphisms cp: '?X~6Y with a X o[R.P.] = R.p. 

6.5. The material in section 5. is the relativized version of a part of [AG 77]. 

It is contained in here for the sake of completeness and to facilitate the study 

in section V.4 .. 
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MAXIMALLY HIGHLY PROXIMAL GENERATORS 

1. the circle operation extended 

2. generators and quasifactors 

3. some dynamical properties 

4. the universal HPI ttg 

5. remarks 

This chapter is devoted to the study of a special kind of quasifactors of ~, 

namely the quasifactors that represent the MHP ttgs. 

The techniques originate from the idea of J. AUSLANDER to extend the action 

of ST on a ttg ~ to an action of 2sT on 26.X. . 

The first two sections are mainly spent on investigations of the techniques 

themselves. In section 1. we define the action of 2sT on 2x (more or less) 

as an extension of the circle operation (II.3.), which results in a semigroup 

structure on 2M . The idempotents in (2M, o) are the subsets of M that 

generate the MHP ttgs as quasif actors of '!JR. • 

In section 2. we study those MHP generators of '!JR. and the quasifactors 

thereof. 

Several dynamical properties can be characterized in terms of the idempo

tents in (2M, o) ; in section 3. we do this, for example, for regularity and the 

Bronstein condition. In particular, we give a partial answer to the question 

whether or not an open Be extension is a RIC extension. We show that this 

is the case if the map is regular. 

In the forth section we construct the universal minimal HPI ttg for T . In 

doing so we construct idempotent sets in 2M that generate interesting incon

tractible ttgs, that will be useful in chapter VI .. 

Almost all results of the sections 1., 2. and 3. appeared in [AW 81] as a result 

of the cooperative research with (and initiated by) J. AUSLANDER. 
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V.1. THE CIRCLE OPERATION EXTENDED 

We introduce a semigroup structure on 28T and for every ttg 'X a 

semigroup action of 28T on 2x , which in a certain sense extends the 
circle operation (as discussed in 11.3.). Anticipating on that we shall 

denote the operation under which 28T is a semigroup as well as the 

semigroup action of 28T on 2x with "o ". 

Special attention will be given to (the internal form of) the idempotents 

in the subsemigroup (2M, o) of (28T, o) . For instance we show that 
an idempotent C in (2M, o ) is fully determined by two components, 
an idempotent part C n J and a group part C n uM for some 
(every) u EC nJ . 
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Let 'X be a ttg. Remember that the circle operation is defined as the exten

sion to ST of the action of T on 2x . In that respect it may be useful to 

memorize that for every A \;;;; X the map 

PA: ST ~2x defined by p "r-+P oA (p EST) 

is continuous; i.e., if {p;}; is a net in Sr converging to p and if A c X 

then {p; oA }; converges to p oA in 2X (NB: p oA : = p oA ). 

Now let R \;;;;Sr and A\;;;; X, then define a subset R oA of X by 

RoA:= LJ{roA lrER}. 

1.1. THEOREM. Let 'X be a ttg, A \;;;; X nonempty and R \;;;; Sr . 

a) I[ R E 28 T then R 0 A E 2x . 

b) R oA = R oA . 

c) The map PA : 28T ~ 2x , defined by S "r-+ So A for every S E 28T , 

is continuous. 

PROOF. 

a) Let {x;}; be a convergent net in R oA and let x = limx; be its 

limit in X . Let r; ER be such that x; Er; oA for all i . As Sr is 

comp~ct, there is a subnet {rj }j such that rj ~ r for some r E Sr . Then 

r E R = R and so r o A \;;;; R o A . But 

and by continuity of PA we have 
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Hence x Er oA CR oA and R oA is closed. 

b) As R oA c R oA and R oA is closed (by a), it follows that 

Let x ER oA , say x Er oA for some r ER . Then there exists a con

vergent net {r; }; in R with r = limr; . Hence, by continuity of PA , 

r oA = ~xr; oA . Let U be an open neighbourhood of x in X, then 

<X, U >( = < U > •) is an open neighbourhood of r o A in 2x . So 

r; o A E <X, U > for some i , hence r; o A n U =f=. 0 and, consequently, 

R o A n U =f=. 0 . As U was chosen arbitrarily, this implies that 

x ER oA ; hence R oA CR oA . 

c) Let ACX, RE 28T and let <U1, ••• , Un> be a neighbour

hood of R o A in 2x . We shall construct a neighbourhood V of R in 

28 T such that 

SoAE<Ui. ... , Un> for all SEV. 

As R o A n U; =f=. 0 for i E { 1, ... , n } , we can find r; E R such that 

r; oA n U; =f=. 0 for every i E {1, ... , n}. As PA: Sr ~1x is continu-

ous, there is a neighbourhood V; of r; in Sr such that v o A n U; =f=. 0 

for all v E Vi (for <X, U; > is a neighbourhood of r; o A in 2x ). Let 

U = LJ { U; I i E { 1, ... , n } } . 

Then R o A C U ; so, by continuity of PA and by compactness of R, there 

is an open W in Sr with R CW and WoA CU. Define 

V:= <W, V1n W, ... , Vn n W>. 

Then V is a neighbourhood of R in Sr and S oA E <U1, ••. , Un> 

for every SEV. D 

1.2. LEMMA. Let ~ be a ttg, ACX and let R and S be subsets of Sr. 

Then So(RoA)=(SoR)oA. 

PROOF. First suppose that R E 28 T • 

It is clear, that for each t E T we have 

(toR)oA =tRoA =t(RoA)=to(RoA). 

As the mapping p 1-+ p o R is continuous, it follows from 1.1.c that the map

ping p 1-+ (p o R) o A is continuous. Also the mapping p 1-+ p o (R o A ) is 

continuous. Since T is dense in Sr and as the mappings p 1-+ (p o R) o A 

and p 1-+ p o (R o A ) coincide on the dense subset T , we have 
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po(RoA)=(poR)oA forevery pESr .But then 

(SoR)oA = LJ{(soR)oA JsES}= LJ{so(RoA)JsES}= 

= S o(R oA). 

Now suppose that R c; Sr is not necessarily closed. 

143 

As, by definition (Il.3.), p o R = p o R for every p E Sr , we have 

S oR = S oR and similarly S o(R oA) = S o(R oA). So by 1.1.b, 

s 0 (R oA) = s 0 (R oA) = s 0 (R oA). 

As RE 25T , it follows that 

So(RoA)=(SoR)oA =(SoR)oA 

hence S o (R o A) = (S o R) o A , which proves the lemma. D 

1.3. THEOREM. With respect to the circle operation 28 T is a CT1 semigroup 

with continuous right translations, in which 2M is a closed subsemigroup. 

PROOF. The statement for 28T follows immediately from 1.1. and 1.2 .. 

For 2M note that if R c; M and S c; M then S o R c; M . D 

1.4. It is obvious that 2M contains idempotents under the circle operation 

( (2M ,o) is a CT2 semigroup!). We shall call them idempotent sets in 

(2M, o ) • A subset C of M will be called an idempotent subset of M if 

C o C = C . Some examples are: 

(i) Every idempotent in M , considered as a singleton set, is an idempotent 

set in (2M , o ) • 

(ii) The set M is an idempotent set in (2M, o ) . 

An interesting collection of idempotent sets is formed as follows: 

(iii) Let '?X. be a minimal ttg and let x E X . 

Then M x : = {p E M I px = x } is an idempotent subset in (2M, o ) • 

For 

= Mx o {x} = Mx .X = X , 

and so Mx o Mx C {p EM Jpx = X} = Mx . 

Let v EJx ; then 
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hence Mx o Mx = Mx and Mx is an idempotent set in (2M, o) . 
It is an open question, whether every idempotent subset in (2M ,o) can 
be obtained in this way (for almost periodic idempotents see 2.1.). 

Idempotent sets in (2M ,o) give rise to interesting quasifactors of ~ (see 
section 2. below). Therefore we shall study them now more closely. 

1.5. REMARK. Let C be a nonempty subset of M . 
a) If Co CCC, then C nJ =I= 0 and Co C = C, i.e., C is an 

idempotent subset of M . 
b) Let u E J . If C is an idempotent subset of M , then C and 

u o C are idempotent sets in (2M, o ) . 

c) Let Ba be an idempotent subset of M for all aE I . If 
B : = n {Ba I £\'. E I } =I= 0 , then B is an idempotent subset of 
M. 

PROOF. 

a) For every c EC we have 

( c 0 c ).( c 0 c) c ( c 0 c) 0 ( c 0 c) c ( c 0 c) 0 ( c 0 c) c ( c 0 c) 0 c , 
so by 1.2., 

(coC).(coC)C(coC)oC =co(CoC)=coC. 

Then c o C is a subsemigroup of M and clearly it is closed. Hence, by 
I.2.2.a, it follows that c o C n J =I= 0 . Since c o C C C o C = C , we have 
C nJ =I= 0 , say v EC nJ . By I.2.2.b, Cv = C , so 

C =Cv =Co{v}CCoCCC, 

and so C is an idempotent subset of M . 
b) By definition, Co C =Co C , and by I.Lb, Co C =Co C . If C 

is an idempotent subset of M we have 

CoC=CoC=CoC=C' 

so C is an idempotent set in (2M, o ) • 

Let uEJ, then by 1.2., we have (uoC)o(uoC)=uo((Cou)oC). As 
Co u =Cu = C , it follows that (u o C)o (u o C) = u o (Co C). So if C is 

an idempotent subset of M we have 

(u o C)o (u o C) = u o (Co C) = u o C , 

and u o C turns out to be an idempotent set in (2M, o) . 
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c) Let B: = n {Ba I a:E I} =I= 0 , then for every a:E I we have 

Hence B 0 B <;;;; n {Ba I a:E I}= B and by a, it follows that B is an 

idempotent subset of M . D 

1.6. LEMMA. Let C and D be subsets of M and let u E J . 

a) If C = u o C then uC = C n uM and uC is ~ (<?Jll,, u) -closed. 

b) u(u o C oD) = u(u o C).u(u oD) = ((u o C)n uM).((u o D)n uM). 

c) If C is an idempotent subset of M and u EC nJ, then 

uC = C n uM = C n uM = uC = u(u o C) 

and uC is an ~ (<?Jll,, u) -closed subgroup of uM (which is con

tained in C ). 
d) Let K<;;;;J, then u(uoC)=u(KoC). 

PROOF. 

a) As uC <;;;; u o C = C , we have uC <;;;; C n uM . On the other hand 

C n uM = u(C n uM), so C n uM <;;;; uC . Hence C n uM = uC . 

To show that uC is ~(~,u)-closed, we have to prove that 

uC = u(u o uC), which follows from the following sequence of equations 

and inclusions: 

so 

u(u o uC) = u(u o (C n uM))C u(u o C) = uC = uuuC <;;;; u(u o uC). 

b)By a, ((uoC)nuM)=u(uoC) and ((uoD)nuM)=u(uoD), 

((u o C)n uM).((u o D)n uM) = u(u o C).u(u o D) <;;;; 

<;;;; u (u o C o u o D) = u (u o C o D) . 

Conversely, let p E u(u o C oD). Then p =up and p E c oD for some 

c =ucEuoC. For, there is an rEuoC with pEu(roD)<;;;;uroD, 

and, clearly, ur E u(u o C). Then it follows that 

(uc)- 1p = u(uc- 1)p E uc- 1oc oD = u oD , 

which implies that (uc)- 1p E u(u oD) and 

p = uc.u(u oD)C u(u o C).u(u oD). 
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Hence u(uoCoD)<;;;,u(uoC).u(uoD) andso 

u(u o C oD) = u(u o C).u(u oD). 

c) Clearly, 

uC <;;;, CoC nuM = C nuM <;;;, C nuM = u(CnuM)C uC 

and uC = u.uC <;;;, u(u o C) = u(u o C)C u(C o C) = uC , which shows that 
the desired equalities hold. 
As u o C = u o (u o C), it follows from a and from IIl.2.3. that u(u o C) is 
& (~, u )-closed in uM . But uC = u(u o C) , so uC is & (~, u )-closed in 
uM. 

From bit follows that 

u(u o C) = u(u o Co C) = u(u o C).u(u o C). 

Hence uC = uC.uC and so uC is an & (~, u )-closed subsemigroup of 
uM . By I.2.6., uC is a subgroup of uM . 

d) By Il.3.11.a, we have u(v o C) = u(u o C) for every v E J . But 
then 

u(KoC)= LJ{u(voC)lvEK}=u(uoC). 
D 

1. 7. 1HEOREM. Let C be an idempotent subset of M . Let K = C n J , 
u E J and A = uC . Then C =KA = K oA . In other words: C 

can be written as the product of its "idempotent part" and its "group part", 
and for a fixed u , this decomposition is unique. 

PROOF. Let v E K ( K is nonempty by 1.5.a); then by II.3.11.b, we have 
v o vC = v o A . Hence 

KA C Ko A = LJ { v o A I v E K} = LJ { v o vC I v E K} . 

But for every v E K 

v ovC <;;;, K oKC <;;;,Co Co C = C, 

so KA <;;;,KoA <;;;,C. 
Conversely, if c EC and w EJ with we= c , then w = c(uc)- 1 • By 
1.6.c, vC is a & (~, v )-closed subgroup of vM for every v E K ; so 
A = uvC is a & (~, u )-closed subgroup of uM . As uc E uC = A , 
(uc)- 1EA and sow =c(uc)- 1ECA. But 

CA = Cuc c c 0 u 0 c = c 0 c = c , 
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so w E C , hence w E C n J = K and c = wuc E KA . Consequently, 

C C KA and C =KA =Ko A . 
It is obvious that the way in which C can be written as the product of sub

sets of J and uM is unique. D 

1.8. REMARK. Let u E J and F a subgroup of uM . Then cll)'('?Jl!,,u)F is 

an ~ (~, u) -closed subgroup of uM and u o F is an idempotent set in 

(2M ,o). 

PROOF. We shall prove that u o F is an idempotent set in (2M, o) . Hence, 

by 1.6.c, it follows that u ( u o F) is an ~ (~, u) -closed subgroup of uM . 

As by III.2.3., cllJ'('?Jl!,,u)F = u(u oF), this proves the corollary. 

By Il.3.11.c and by the assumption of F being a subgroup of uM , we have 

f o F = u of F = u o F for every f E F ; so 

F 0 F = u {f 0 FI f E F} = u 0 F. 

But then it follows that 

uoFouoF =uoFoF =uouoF =uoF 

or, in other words, u o F is an idempotent set in (2M ,o). D 

In theorem I. 7. a structure is given for the idempotent subsets of M ( com

pare this with the structure of M itself given in 1.2.2.e). It is not yet known 

whether or not every subset of M which has that structure is an idempotent 

subset; i.e., necessity of that structure for idempotent subsets of M is 

shown, but sufficiency is still an open question. 

The remainder of this section will be devoted to this sufficiency problem. 

1.9. LEMMA. Let KC J , u E J and let C be an idempotent subset of 

M. 
a) KoC =K'A =K'oA for A =uC and K'=(KoC)nJ. 
b) If u(uoK)CC then uoKoC =K'A =K'oA for A =uC 

and K'=(uoKoC)nJ. 

In particular, this applies to the idempotent subset u o A of M , for an 

~ (~, u) -closed subgroup A of uM . 
a') KoA =K'A =K'oA for K'=(KoA)nJ. 
b') If u(uoK)CA then for K'=(uoKoA)nJ we have 

uoKoA =K'A =K'oA. 
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PROOF. 

a) Clearly, 

K'A C K' o A = K' o uC C Ko C o uC C Ko C o u o C = Ko C , 

so we only have to show that Ko CC K'A . Let p EK o C and v E J 
with vp = p . As, by 1.6.c and 1.6.d, 

up E u(K o C) = u(u o C) = u o C =A , 

it follows by 1.6.c that up - I EA . So 

v =p(up- 1}E(KoC)A CKoCouCCKoC, 

which implies that v EK' and p = vup E K'A . 
b) Clearly, 

K 'A C K' o A = K' o uC C u o K o C o uC C u o K o C o u o C = u o K o C , 

so we only have to show that u o Ko CC K'A . Note that, by 1.6.b, 

u(u oK o C) = u(u oK).u(u o C). 

By 1.6.c and by the assumption, we have 

u(u o Ko C) = u(u o K).u(u o C)C uC.uC =A.A =A 

From this the statement follows in a way similar to the proof of a. D 

1.10. REMARK. Let u E J and let A be an 'i)(~, u) -closed subgroup of 
uM , such that u ( u o J) C A . Then J o A and u o J o A are idempo

tent subsets of M . 
In particular, if A contains the Ellis group of the universal minimal point 
distal ttg with respect to a distal point, then J o A and u o J o A are 
idempotent subsets of M . 

PROOF. By 1.6.d, u(J oA oJ oA} = u(u oA oJ oA}, and by 1.6.b, 

u(u oA oJ oA) = u(u oA ).u(u oJ).u(u oA); 

so by assumption, it follows that 

u(J oA oJ oA) = u(u oA }.u(u oJ).u(u oA )CA.A.A =A 

But then 

J oA oJ oA CJ.u(J oA oJ oA)CJ.A CJ oA 
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hence J o A is an idempotent subset of M . By 1.5.b, it follows that 

u o J o A is an idempotent subset too. 

Let B = @('X, x0) , where 'X is the universal minimal point distal ttg for 

T and x 0 is a distal point in X . Then Jx0 = x 0 and so 

u(u oJ)xo = u(u oJXo) = UXo = Xo, 

which implies that u(u oJ)<;;, B . If A is an iJ(~,u)-closed subgroup of 

uM such that B<;;,A then u(uoJ)<;;,A. Hence, by the above, JoA 

and u o J o A are idempotent subsets of M . 0 

1.11. THEOREM. Let e be an almost periodic point in 2M and let e have 

the form e = K o A for some K <;;, J and some iJ (~, u) -closed sub

group A of uM . Then e is an idempotent set in (2M, o ) ijJ 

enJ=eoenJ. 

PROOF. If e is an idempotent subset of M , then clearly, 

eoenJ =enJ. 

Conversely, suppose that e o e n J = e n J ; we have to show that 

e o e = e . Let w EJc ; then woe o e = e o e , and by 1.6.b, 

w(w o e o e) = w(w o e).w(w o e) =we.we . 

As e = K oA , it follows from 1.9.a' that e = K'A for K' = e nJ . So 

we =wA and 

w(woeoe)=wA.wA =wA. 

Let p E e o e ; then for v E J with vp = p we have 

v =p(wp)- 1EeoeowA. 

But from 11.3.11.b it follows readily that e o wA = e o A , so 

e o wA = e o A = Ko A o A = Ko (A o A) = Kou o A = Ko A = e . 

Hence v E e o e o wA = e o e , and by assumption, it follows that 

vEeoenJ =enJ; so 

p = v.wp E (e nJ).wA = K'.wA = K'A = e . 

Consequently, e o e <;;, e and e is an idempotent subset of M . 0 
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1.12. THEOREM. Let C be an idempotent subset of M, u E J, K <;;;; J 

and K' = Ko C n J . Then the following statements are equivalent: 
a) Ko C is an idempotent subset of M; 
b) v o C o KUK o K <;;;; Ko C for some v E K ; 
c) v o C oKUK oK <;;;; K'M and u(u oK)<;;;; uC for some v EK. 

PROOF. 

a ~ b By assumption, Ko C o Ko C <;;;; Ko C . Let v E K and 

w EC nJ ; then 

voCoK=voCoKow<;;;;KoCoKoC<;;;;KoC 

and Ko K = Ko w o Ko w <;;;; Ko C o Ko C <;;;; Ko C . 

b ~ c By 1.9.a, Ko C = K'A for A = uC ; so 

voCoKUKoK<;;;;KoC =K'A <;;;;K'M. 

By 1.6.d, u(u o K) = u(K o K) ; so 

u(u oK)<;;;; u(K o C) = u(K'A) = uA =A = uC. 

c ~ a We shall prove that v o C o K <;;;; K o C and K o K <;;;; K o C . It 

then follows that 

KoCoKoC =Ko(voCoK)oC<;;;;Ko(KoC)oC =KoKoCoC' 

and so that 

KoCoKoC<;;;;(KoK)oC<;;;;(KoC)oC =KoC. 

Hence K o C is an idempotent subset of M . 

As, by 1.6.d, u(K o K) = u(u o K), we have u(K o K) <;;;; uC . So 

KoK<;;;;K'M nJuC = K'uC 

and, by 1.9.a, Ko K <;;;;Ko C . 

By 1.6.b, 

u(u o C oK) = u(u o C).u(u oK)<;;;; u(u o C).uC <;;;; 

<;;;; u(u o Co u o C) = u(u o C). 

Let w EC nJ then u(u o C) = uw(w o C); so by 1.6.c, it follows that 

u(u o C) = uw(w o C) = uwC = uC . 

As, by II.3.11.a, u(v o Co K) = u(u o Co K), we have 

u(voCoK)=u(uoCoK)<;;;;u(uoC)=uC, 
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so v o C oK CJuC. But then 

voCoKCK'MnJuC =K'uC =KoC; 

which proves the implication. 0 

The proof of the following remark is left as an easy exercise for the reader. 

1.13. REMARK. Let u E J , K CJ and let A be an 'iH~. u) -closed sub

group of uM . Define C : = u o Ko A and K' = C n J . Consider the 

following statements: 
a) C is an idempotent set in (2M, o) ; 

b) uoAoKUuoKoKCC; 

c) u(uoK)CA and uoKoA oKCK'M. 

Then a and b are equivalent and c implies a and b . 

If A = uC then a, band care equivalent. 

V.2. GENERATORS AND QUASIFACTORS 

In IV.3.8. we introduced the notion of MHP generator, which was 

defined to be an almost periodic point C in 2M with C n J =/= 0 

and such that the collection {p o C Ip E M} forms a partition of 

M , and which is characterized by the property that ~( C, ~) is an 

MHP ttg. We shall characterize the MHP generators as the almost 
periodic idempotent sets in (2M, o ) • We shall study the quasifactors of 

~ generated by MHP generators and the quasifactors of MHP ttgs 
from that point of view. For instance we give a necessary and sufficient 

condition (in terms of idempotent subsets of M ) for an MHP quasifac
tor of an MHP ttg to be a factor of that MHP ttg. 

0 

2.1. THEOREM. Let C be an almost periodic point in 2M , say C = u o C . 

Then C is an MHP generator if! C is an idempotent set in (2M, o) . 

PROOF. Suppose that C is an MHP generator. As C nJ =I= 0 , say 

v E C n J , it follows that for every c E C we have c = cv E cC C c o C . 

Hence C n c o C =I= 0 , and as {p o C Ip E M} is a partition of M , 

C = c o C for every c E C . But then Co C = LJ { c o C I c E C} = C 
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and C is an idempotent set in (2M, o ) . 

Conversely, let C be an idempotent set in (2M, o) . Then by 1.5.a, 

C n J =I= 0 . Define ~: = { c o C I c E C } ; then ~ is partially ordered by 

inclusion. It is not difficult to show that, for every chain (under inclusion) 

{ C; 0 c }; EI in ~' the set n { C; 0 c I i E I} is of the form c 0 c ' with 

c a cluster point of { c; }; in M (so, certainly, c E C ). By Zorn's 

lemma, the family ~ contains a minimal member (under inclusion), say 

C' = c' o C for some c' E C . As C is an almost periodic element in 

2M , it follows that the orbit closures of C and C' coincide, i.e., 

{p 0 c IP EM}= {p 0 C' IP EM}. 

So it is sufficient to show that {po C' IP EM} forms a partition of M . As 

follows: 
First note that 

C'oC'=c'oCoc'oC<:;;;;,c'oCoCoC =c'oC =C', 

so C' is an idempotent subset of M and C' = c' o C <:;;;;,Co C = C . Let 

p E C' then p o C' =pc' o C and pc' E C 'C <:;;;;, C o C = C , so p o C' E ~. 

As C' is minimal in ~,from the fact that po C' <:;;;;, C' o C' = C' it follows 

that p o C' = C' . 

Next, consider p and q in M such that po C' n q o C' =I= 0 , say 

r E p o C' n q o C' . Then for a net t; ~ p and for p; E C' we have 

r = lim t;p; and so 

r o C' = (lim t;p; )o C' = IiIDixt;p; o C' = Iim2xt;(p; o C'). 

As p;EC', p;oC'=C' and so roC'=~xt;C'=poC'. Similarly, 

r o C' = q o C' and so p o C' = q o C' . Hence {p o C' I p E M} is a parti

tion of M if {p o C' Ip E M} is a covering. But that is evident by the 

fact that C' n J =I= 0 (1.5.a). D 

2.2. COROLLARY. The MHP ttgs are just the quasifactors of M generated by 

the almost periodic idempotent subsets of M . 

PROOF. Cf. IV.3.9 .. D 

So the MHP ttgs are fully determined by the idempotent subsets of M . 

This is similar to the characterization of the universal proximal extensions by 

the Ellis groups (III.2.10.). More of this similarity may be seen in V.3.9. in 

relation to III.1.6 .. 
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2.3. REMARK. Let C be an almost periodic idempotent set in (2M, o) . Then 

p E q o C if! p o C = q o C and p E C if! p o C = C . 

In particular, for u EC nJ, the Ellis group of ~(C, ~) with respect 

to C in uM is equal to uC . 

PROOF. As C is an almost periodic idempotent set in (2M, o ) it follows 

that C nJ -=I= 0 (1.5.a). So for every p EM, p EpC <;.po C . Hence 

the first two statements follow from the fact that {p o C Ip E M} is a parti

tion of M . Let u EC nJ and a E uM . Then u o C = C and, clearly, 

aoC=uoC iff aEuoC ,so 

@(~( C, ~), C) = u o C n uM = uC . 
D 

Let C <;. M be an almost periodic element of 2M . Then we shall denote 

the ttg ~( C, ~) by e . If no base point is specified, then we shall consider 

C to be the base point. A homomorphism </>: e~ 6j) must be understood 

as an ambit morphism 

<f>: (~(C,~),C)~(~(D,~),D) 

(unless stated otherwise). 

2.4. THEOREM. Let u E J and let C and D be MHP generators with 

uECnD. 
a) The set po C(up)- 1 is an MHP generator for all p EM. 

b) There is a homomorphism <f>: e~6D if! C <;. D . 

c) The ttgs (not ambits!) e and 6j) are isomorphic if! C = a o Da - 1 

for some a E uM . 
d) Let <f>: e~ 6j) be an ambit morphism, then </> is regular if! 

PROOF. 

C = d o Cd- 1 for all d E uD . In particular e is regular if! 
a o Ca - l = C for all a E uM . 

a) Let pEM and note that poC(up)- 1 =(poC).(up)- 1 • As the 

map p(up)-1: M ~ M is an isomorphism (1.2.3.c), the collection 

{qopoC(up)- 1 jqEM} partitions M. Let vEJ with vp=p .Then 

v = p. (up )- 1 E po C(up )- 1 ; so po C(up )- 1 nJ -=I= 0 and po C(up )- 1 is 

an MHP generator. 

b) Suppose that C <;. D , then </>: p o C ..... p o D : e~ 6j) is well defined. 

For, let po C = q o C . Then po C <;.po D and po C = q o C <;. q o D , so 

p o D n q o D -=j= 0 ; hence p o D = q o D . 
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Conversely, let cp: e~6D be well defined. Let c EC , then C =co C 

(2.3.) and so D = cp(C) = cp(c o C) =co D . Hence, by 2.3., c ED ; conse
quently, C C D . 

c) Suppose there is an isomorphism between e and 6D, say cp: e~ 6D 
with cp(C) =a o D for some a E uM . As p0 _ 1 : ~~ ~, defined by 

p -I ~ ~ 
pa -I (p) =pa - I , is an isomorphism Of ttgs, it follOWS that 2 a : 2 ~ 2 

is an isomorphism of ttgs. Hence 

p -I I I 
2° :(6D,aoD)~(~(aoDa- .~),aoDa-) 

is an ambit isomorphism. But then 2P0 -
1 o cp: (e, C) ~ ('ff,F) is an ambit 

isomorphism, where F =a o Da - I . As F is an MHP generator (a) it fol
lows from b, that C = F . 

Conversely, let C = a o Da - I for some a E uM . Then the map 

2Pa: (e, C) ~ (6D, a o D) is an isomorphism of ambits. For i 0 : 2~ ~ 2~ is 

an isomorphism and 2P0 (C) =Ca= (a oDa- 1).a =a oD . 

d) Suppose that cp is a regular map and let d E uD . Then, as 
dEuDCDDCD, we have cp(doC)=doDCDoD =D =cp(C); so 
(C,doC)EJRq,. Hence there is an isomorphism O:(e,c)~(e,doC) 

(see the discussion just before 1.2.15. ). As 

is an isomorphism, 

is an isomorphism. Since by a, do Cd- 1 is an MHP generator, it follows 
from b that C = d o Cd- I . 

Conversely, assume that C = do Cd- 1 for every d E uD . Let po C and 
qoC in e with (poC,qoC)EJRq,,say (poC,qoC)=(vpoC,vqoC) 

for some v E J . Then 

(u o C,up- 1q o C) = up- 1(p o C,q o C)E Rq,, 

so for d = up- 1q we have 

do D = cp(d o C) = cp(u o C) = u o D = D 

and d ED n uM = uD . By assumption, it follows that do Cd- 1 = C . But 
then 

2Pd: (e, C)~(~(C, ~),do C) 
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is an ambit isomorphism, and 

2Pd(vpoC)=vpoCd =vpo(doCd-1)d =vpdoC =vpup- 1qoC =vqoC. 

This ShOWS that there exists a map 2Pd : e-.+ e , SUCh that p o C is mapped 

onto q o C ; hence it follows that q, is regular. D 

In the remainder of this section we shall study quasifactors of MHP ttgs. 

For that we need some notation. 

As we use the circle operation with respect to quasifactors of M as well as 

to quasifactors of quasifactors of ~ it seems convenient to distinguish 

between them by denoting the action of ST on 22M by o . So if 

S !:;;;; 2M is a closed set in 2M (with respect to the Vietoris topology) then 

p o S = lim t; S in 22M for some (every) net t; --+ p . 

A source of ambiguity is the fact that we shall consider a closed subset C of 

M both as a closed subset of M and as an element of 2M . Let D !:;;;; ST 

and let C be a closed subset of M . Then define 

D © C : = { d o C I d E D } !:;;;; 2M ; compare this with: 

DoC = LJ{doC ldED}!:;;;M and 

DC = u {de I d ED ' c E c} !:;;;; M . 

If we consider C as an element of 2M , then we can define a map 

Pc : ST --+ 2M by p ..... p o C ; i.e., Pc is the right multiplication with C of 

elements of ST ( the evaluation mapping in C , induced by the action of 

ST on 2M ). Then D ©C = pc[D]. 

2.5. LEMMA. Let C be an almost periodic element of 2M and let D !:;;;; ST 

be a closed set. 
a) D © C is a closed subset of 2M , hence of 21( C, ~) . 

b) p o(D ©C) = (p oD)©C for every p EST. 
c) The almost periodic elements of 22J(C,~) are just the subsets of 

QF ( C, ~) of the form B © C , where B is an almost periodic 

element of 2M . 

PROOF. 

Hence the quasifactors of 21(C, ~) are just the ttgs of the form 

21(B ©C ,2J(C, ~)) for BE 2M almost periodic. 

a) As Pc : ST --+ 2M is continuous, it is a closed map. Hence it follows 

that D ©C =Pc [D] is a closed subset of 2M, hence of QF(C,~). 

b) As Pc : ST --+ 2M is a homomorphism, also 2Pc : 28T --+ 22M is a 

homomorphism; so Pc [p o D] = p o Pc [D] and 

(p oD)©C =Pc [p oD] =p opc [D] =p o(D ©C). 
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c) Let B be an almost element of , say B = v o for 
some v E J . Then b, 

B©C=(vo )@C=vo C); 

hence B «;) C is an almost element of 
let A be an almost periodic element of 

A == w ci A for some w E J . Let B ' = {p E M j p o C E .A } ; 
is an almost periodic element of 2M , we have A = B' © C . 
follows that 

A = w o A = w o (B' © C) = o B ') © C 

clearly, w o B' is an almost periodic element of 

2.6. IBEOUM. Let C be an MHP generator~ e = 

uEJ. 

,""') J"- , say 

c 
b, it 

D 

and let 

a) Let D be an almost element of . Then © C, 

is homeomorphic to 'fl:?i(D o C, 1?)]L) by the map µ, defined by 
µ,(po (D © C)) =pa Do C for every p EM . 

b) The quasifactors of e are just the quasifactors of '!J1L of the form 
'fl:?i(D o C, 1?)]L) for D = u o D E 2M (up to the isomorphism men

tioned in a). 

PROOF. 

a) Note that it is sufficient to prove that for every p and q m M 
we have po(D©C)=qo(D©C) iff poDoC =qoDoC. 

Suppose that po (D © C) = q o (D © C). Then by 2.5.b, we have 
(p o D ) © C = ( q o D) © C . Let r E p o D o C ; then r E s o C for some 
sEpoD. As soCE(poD)©C ,also soCE(qoD)©C; sothereisan 
s' E q o D with s o C = s' o C . But then 

rEsoC =s'oCr:;;,qoDoC, 

and so p o D o C C q o D o C . Similarly, q o D o C C p o D o C ; hence 
poDoC =qoDoC. 

On the other hand, suppose that p o D o C = q o D o C , and let r E p o D . 
Then 

roCCpoDoC =qoDoC, 

so r o C n s o C =j= 0 for some s E q o D . As C is an MHP generator it 
follows that roC=soC ,whichshowsthat roC=soCE(qoD)©C. 
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So (poD)©CC(qoD)©C and similarly (qoD)©CC(poD)©C ,hence 

p D (D © C) = (p 0 D) © c = (q 0 D) © c = q D (D © C) . 

b) From 2.5.c and 2.6.a it follows immediat~ly that the quasifactors of 

e are just the quasifactors of '!JlL of the form 2ff(D I 0 c' ~) for 

D 'E 2M almost periodic (up to isomorphism). Clearly, the ttgs 

2ff(D'oC,~) and 2ff(uoD'oC,~) are equal, and D:=uoD' is such 

that D = u oD . D 

As every extension of an MHP ttg is open, it follows from IV.3.3. that every 

MHP factor of a minimal ttg '?X, is an MHP quasifactor of '?X, • 

We shall now be concerned with the converse in the case of '?X, being an 

MHP ttg. 

2.7. THEOREM. Let C be a regular MHP generator (i.e., e is regular). 

Let 6M be a quasifactor of e, say 6M = 2ff(D © C, e) with 

D = u o D E 2M and suppose that D can be chosen to be an MHP 

generator. Then 6M is a factor of e if! D o C is an MHP generator. 

PROOF. If Do C is an MHP generator, then by 2.4.b, there is an ambit 

morphism 

<j>: ce, u 0 C)--')(2ff(D 0 C, ~),D 0 C). 

For u o CC u o Do C =Do C ( D nJ =!= 0 ) and u o C is an MHP gen

erator (see 1.5.b and 2.1.). By 2.6.a, 6M is isomorphic to 2ff(D o C, '!JIL) ; so 

6M is a factor of e . 
Conversely, suppose that 6M is a factor e , so there is a homomorphism 

iti:e--')6M such that o/(uoC)=ao(D©C) for some aEuM. As uoC 

is an MHP generator we have (u o C)©(u o C) = {u o C}, hence (identifying 

6M with 2ff(D o C, ~) by the homomorphism indicated in 2.6.a): 

a o Do C = o/(u o C) = o/[(u o C)©(u o C)] = (u o C)©(a o Do C). 

But then for every c E u o C we have a o D o C = c o a o D o C and so 

a o D o C = C o a o D o C ; hence 

As C is regular, a- 10 Ca= C ; so 

DoC =a-1oCoaoDoC =CoDoC. 
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This implies that 

DoCoDoC =Do(CoDoC)=DoDoC =DoC. 

in other words, Do C is an MHP generator. 0 

2.8. THEOREM. Let ?X, be an MHP ttg, say ?X,,..,., ~(C, ~), where C is 
an MHP generator with C = u o C for some u E J . Let 61:1 be an 
MHP ttg which is a quasifactor of ?X- . Then 61:1 is a factor of ?X- if! 61:1 
is homeomorphic to ~(D, ~) for some MHP generator D with 
D =uoD and CCD. 

PROOF. The "if" -part follows immediately from 2.4.b. 
Conversely, let 61:1 ,..,., ~(D o C, '!Jll,) for some D with D = u o D E 2M 
(2.6.b) and let cp: ?X-~61:1 be a homomorphism of minimal ttgs. Let 
a E uM be such that cp(C) =a o Do C and define 

D'=uo{pEM jpaoDoC =aoDoC} =uoMaoDoC. 

Then by 1.4.(iii) and 2.1., D' is an MHP generator and as C © C = { C} , 
we have 

a o Do C = cp(C) = q>[C ©CJ= Co a o Do C , 

so CC D' . But, 61:1* = ~(D ', '!Jll,) , and so by the assumptions of 61:1 being 
an MHP ttg, it follows that 61:1 ,..,., ~(D ', ~) . 0 
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V.3. SOME DYNAMICAL PROPERTIES 

In this section we consider dynamical properties in relation to the theory 

developed in the previous sections. In particular, for two homomor

phisms <f>: 'X~ 6Y and 1[1: 5::~ 6Y of minimal ttgs we give a criterion 

in terms of MHP generators that guarant~s </> and 1/1 to satisfy the 

generalized Bronstein condition. As a result we prove that, in case the 

homomorphism under consideration is regular, an affirmative answer can 

be given to the question whether or not an open Be extension is a RIC 

extension. Also we shall discuss disjointness from the point of view of 

MHP generators. 

3.1. The situation we shall study comes down to the following: 

159 

Let <f>:'?X.~6Y and 1[1:5::~6Y be homomorphisms of minimal ttgs and let 

<1>* : 'X• ~ i;y• and 1[1* : <£ ~ i;y• be the MHP liftings of </> and 1/1 (see 

IV.3.10.). To be more precise, fix u EJ, y 0 E uY, x 0 E u<f><-(y 0) and 

z 0 Euo/<-(y 0). Define the sets C:=uoMx0 =uo{pEMlpxo=xo}, 

D :=uoMy0 and F:=uoMz 0 • Then C, D and F are MHP genera

tors, '?X,* = e, i;y• = 6j) , <£ = ~ and </>. : e~ 6j) and o/* : ~~ 6j) are the 

MHP liftings of </> and 1[I (note that C U F C D !). 

3.2. THEOREM. Let </> and o/ be homomorphisms as in 3.1.. Then with nota

tion as in 3.1. we have: 
a) the maps <1>* and 1[1* satisfy the generalized Bronstein condition ijJ 

D =CouDoF ijJ D =FouDoC; 

b) <1>* satisfies the Bronstein condition ijJ D = Co uD o C . 

PROOF. Obviously, b follows from a; so we only have to prove a. 

_Suppose that <1>* and f satisfy gBc. Then by I.3.8., 

R.p •• f = T({C}X uf<-</>*(C)). 
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As uf <--<1>* (C) ={a o FI a o D = u o D and a E uM} it follows that 

u1// <--</>* ( C) = {a o F I a E (u o D n uM) = uD} = uD © F , 

and so 

Rtl>.,f = T({C}X uD ©F). 

Let dED. Then (C,doF)ER<1>.,f, for <j>*(C)=D =doD =f(doF). 

So there is a net { t; }; in T and there are d; E uD such that 

t;(C,d;oF)~(C,doF) in Rt/>.,f. 

Let p = lim t; u E M (after passing to a suitable subnet). Then 

C = limt; o C = limt;(u o C) = limt;u o C = (limt;u)o C =po C , 

and as u EC it follows that p EC . 

As d; = ud; , we have that lim t; d; = lim t; ud; E p o uD ; so it follows that 

d oF = limt;(d; oF) = (limt;d;)oF E (p ouD)©F. 

Hence d o F <: p o uD o F and so 

d Ed o F <:po uD o F <: Co uD o F . 

As d E D was arbitrary it follows that D <: C o uD o F . Clearly, 

C o uD o F <: D which implies D = C o uD o F . 

Conversely, suppose D = Co uD o F and let (p o C, q o F) ER <1>* ,f , so 

p o D = q o D . Then, as u E C o uD o F , we have 

q =quEqoCouDoF=qoD =poD = 

=poCouDoF =(poCouD)oF, 

say qEroF for some rEpoCouD =(poC)ouD. 

Note that q Ero F n q o F so r o F = q o F . 

Let s E p o C such that r E s o uD ; then s E s o C n p o C so 

so C =po C . Let {ti }i be a net in T with ti ~s and let di E uD be 

such that ti di ~ r . Then ( C, di o F) = u ( C, di o F) is almost periodic in 

Rtl>.•f and 

limti(C,di oF) = (limtiC,limtidi oF) =(so C,r oF) =(po C,q oF); 

hence (poC,qoF) isthelimitofanetin JR<l>.•f. As (poC,qoF) was 

arbitrary in Rtl>. ,f it follows that Rt/>. 1"* has a dense subset of almost 
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periodic points; i.e., cf; and t[I • satisfy gBc. 

So we proved that c/> • and f satisfy gBc iff D = C o uD o F . Inter
changing the roles of C and F completes the proof. D 

3.3. THEOREM. Let c/> and t[I be homomorphisms of minimal ttgs, and let 
c/> be open. Then with notation as in 3.1. we have 

a) the maps c/> and t[I satisfy the generalized Bronstein condition if! 
Dx0 =FouDx0 ; 

b) c/> isaBcextensioniff Dxo=CouDxo=Jx0 ouDxo. 

PROOF. 
a) By IV.4.16.b, (c/>,t/I) satisfies gBc iff (c/>* ,t[I*) satisfies gBc. So by 

3.2.a, c/> and t[I satisfy gBc iff D = F o uD o C . As C = u o Mx 0 C Mx 0 

we have Cx 0 = x 0 ; hence 

Dx 0 = F o uD o Cx 0 = F o uDx0 . 

Conversely, suppose that Dx 0 = F o uDx0 • Since c/> is open, it follows from 
I.3.9. that Rq,tf! = T(c/>.,....(yo)X {z 0}). So, in order to prove that {c/>,t/I) 
satisfies gBc, it is enough to show that 

First note that 

and as c/> is open this implies that c/>.,_(y 0) = u o c/>.,_(y 0) = Dx0 • 

Let x'Ec/> ..... (y 0), then x'Ecp ..... (y 0)=Dx0 =FouDx0 , say x'EfouDx0 

for a certain f E F . Let { t;}; be a net in T with f = lim t; and let 
d; E uD be such that x' = limt;d;x 0 • As f E F we have fz 0 = z 0 and 

(x',zo) = (x',fzo) = limt;(d;xo,zo). 

Clearly, (d;x 0,z0)EJRq,tf! and so t;(d;x 0,z0)EJRq,tf! for every i, hence 
(x',z 0)EJRH. ~ x'Ec/> ..... (yo) was arbitrary it follows that 
c/> ..... (y 0)X {z 0 } C JRH, and so Rq,tf! = JRq,tf!. 

b) By a and the proof of a, Dx0 =Co uDx 0 = c/> ..... (y 0), and obviously, 

Jxoo uDxoC c/> ..... (yo) = Dxo. 

Let K=CnJ; then K=(uoMx0)nJCMx0 nJ=Jx0 • By 1.7., 

C = Ko uC ; and, as uC C uD , it follows that 
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C o uD = Ko uC o uD = Ko uD C lx o uD . - 0 

D 

By HI.1.5. it follows that the characterization of gBc in terms of MHP gen
erators gives rise to a characterization of RIC extensions in terms of MHP 
generators, as follows. 

3.4. THEOREM. Let cf> be a homomorphism of minimal ttgs. Then, with nota
tion as in 3.1., .p* is a RIC extension iff D =Co uD . 

PROOF. By IH.1.5., cp* is a RIC extension iff (q,* ,0) satisfies gBc for every 
homomorphism 0: 61U'--l> 6.!t . Suppose q,• is a RIC extension. Define 
B ~ M by B: = u o uD . Then B is an MHP generator, and by 2.4.b, 

there is an ambit morphism fJ: ~--l>6j). As (cp* ,0) satisfies gBc it follows 
from 3.2. that 

D =CouDoB =CouDououD 

hence D = C o uD o uD = C o uD . 
If, conversely, D = C o uD , then for every MHP generator F with 
F = u o F ~ D we have D ~ D o F = C o uD o F , so C o uD o F = D . 

As F ~ D , there is an ambit morphism 0: 'ff--? 6j) (2.4.b), and so by 3.2., 
q,* and 0 = o• satisfy gBc. Let if;: ~--l> 6JJ* be a homomorphism of 

minimal ttgs and let z0 E uZ be such that tf;(z 0) = D . Define 
F = u o Mz 0 • Then F is an MHP generator with F ~ D , and the ambit 

morphism 0: 'ff--? 6j) is the MHP lifting of if; (i.e., if;" = 0 ). By the above 
q,* and if;* satisfy gBc. As q,• is open, it follows from IV.4.16.b, that cp* 

and if; satisfy gBc. As if; was arbitrary, it follows from III.1.5. that q,• is 
a RIC extension. D 

3.5. THEOREM. Let C = u o C and D = u o D be MHP generators such 
that C ~ D and the map q,* : e--l> 6j) is regular. Then 
a) Co uD is an MHP generator; 
b) q,* =ft otf;" , where if;* is a RIC extension and o• is proximal; 
c) q,* is a RIC extension iff q,* satisfies the Bronstein condition. 

PROOF. 

a) By 2.4.d, we have do Cd- 1 = C for all d E uD . So 

uD o C = LJ {do C I d E uD } = LJ { Cd I d E uD } = C. uD ~ C o uD , 
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which implies that 

CouDoCouD =Co(uDoC)ouDCCo(CouD)ouD =CouD, 

so it follows that Co uD is an MHP generator. 

163 

b) Define F = C o uD , then F = u o F and F is an MHP generator 

(a). By 1.6.b, it follows that uF=u(uoC).u(uouD)=uC.uD, and as 

uC C uD we even have uF = uCuD = uD . As uF = @('ff, F) and 

uD = @(6j), D) it follows from 1.2.13. that the ambit morphism o• : <ff~ 6j) 

is proximal. (Note that F = Co uD CD o uD = D , so o• exists by 2.4.b.) 

Since C C F and C o uF = C o uD = F , it follows from 2.4.b that the map 

1/1* : e~ 'ff exists; and by 3.4., it follows that f is a RIC extension. 

c) If cf> * is a RI C extension, then cf> • is a Be extension by III. I. 9 .. 

Suppose that cp' is a Be extension. Then, with notation as in b, o• as a 

factor of cp* is a Be extension. Hence, as o• is proximal, o• is an isomor

phism and F = D , so cp* = 1/J* . But then cp* is a RIC extension. D 

3.6. LEMMA. Let cp: '?X.~ 6Y be a homomorphism of minimal ttgs and let 

c/> • : e~ 6j) be the MHP lifting of c/> as in 3.1.. 
a) If c/> is regular then cp* is regular. 

b) If c/> is distal then cf> is regular if! cp* is regular. 

PROOF. 

a) Suppose cf> is regular. We shall prove that do Cd- 1 CC for every 

d E uD . As uD is a group, it follows that do Cd- 1 = C for every 

d E uD and so, by 2.4.d, that cp* is regular. 

Let d E uD . As uD = u(u oMy0)C uMy 0 , it is clear that (x 0 ,dxo)EJR<P. 

Regularity of cf> implies the existence of an isomorphism 0: '?X.~ '?X. such 

that O(x0) = dx 0 • Define C':= u 0Mt1.x 0 ; then o•: e~e is the MHP 

lifting of 0 and so o• is an isomorphism too. By 2.4.b, it follows that 

C = C'. As 

(do Cd- 1)dxo =do Cxo = dxo, 

we have that do Cd- 1 C Mt1.x 0 and so that 

do cd- 1 = u o do cd- 1 c u o Mt1.x = c' = c . 
- 0 

b) Suppose that cf> is a distal map and let cp* be regular. Let 

(x 1 ,x2)ER<P=JR<P (c/> is distal!), say (x 1,x2)=v(x 1,x2) for vEJ 

and let y 1 : = cp(x 1) = cf>(x 2) • Then there is an a E vM such that 
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x 1 = axo and so y 1 = ayo . Let b E vM be such that bxo = x2 and note 
that Y1 = byo, so ua- 1byo =Yo, and ua- 1b E uD ; hence ub- 1a E uD 
and, by regularity, of q,* ub- 1a o ea- 1b = e . Define 0: X -">X by 
(} (px 0) =pa - I bx 0 for every p E M . If (} is well defined then (} is a 

homomorphism of minimal ttgs such that 

O(x 1) = O(ax0) = aa- 1bx0 = vbxo = bxo = x2; 

hence cp is regular. 

Let p and q in M be such that pxo = qxo, so PYo = qyo. Then 
up- 1qxo = Xo, so up- 1q Ee . As e = ub- 1a 0 ea- 1b it follows that 
ub- 1ap- 1qa- 1b Ee and so upa- 1bx 0 = uqa- 1bx0 , which implies that 

pa- 1bx 0 and qa- 1bx0 are proximal. On the other hand, we have that 

cp (pa - I bx o) =pa - I by o = PYo = qy o = qa - I by o = cp ( qa - 1 bx o) ; 

so by distality of cp, pa- 1bx0 and qa- 1bx0 are distal. But then 
pa - I bx 0 = qa - 1bx0 ; hence it follows that (} is well defined, which com
pletes the proof. D 

By now we can give a partial answer to the question whether or not an open 
Be extension is a RIC extension (see 111.1.8.), which says that this indeed is 
the case if we put on the map the additional condition of being regular. 

3.7. THEOREM. Let cp: ex-"> GM be a regular homomorphism of minimal ttgs. 

Then cp is open and satisfies the Bronstein condition if! cp is a RIC 
extension. 

PROOF. If cp is a RIC extension then we already know that cp is an open 
Be extension (III.1.9.). 
Suppose that cp is open and that cp is a Be extension. Let cp * : ex• -">GM* be 
the MHP lifting of cp. Then by 3.6., q,* is regular and, by IV.4.17.a, q,* is 
a Be extension. Hence by 3.5.c, q,* is a RIC extension. As cp is open it fol
lows from IV.4.17.c that cp is a RIC extension. D 

3.8. REMARK. Let e = u o e and D = u o D be MHP generators with 

e ~ D . From 3.5.a we know that e o uD is an MHP generator if 
cp: e-"> 6D is regular. The converse of this statement is in general not true. 

PROOF. Let ex be a minimal distal ttg which is not regular (note that such a 
ttg exists [PW 70]). Then by 3.6.b, the MHP extension ex• of ex is not reg
ular. Let x E uX and define F: = u o Mx . Then ex• = 'lf' and the map 
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If;: 'X* ~ { *} is not regular. In terms of MHP generators we can write if; 

as the ambit morphism 

t[;: ('flff(F, ~),F)~(~(M, ~),M). 

As 'X is distal, x is a distal point and J <;;;; Mx . Hence F = u o J o A , for 

A= uMx. So 

FouM =uoJoAouM =uoJouM =uoM =M. 

So F o uM = M while if; is not regular! D 

We shall now turn to a description of disjointness in terms of MHP genera

tors. To that end consider the situation as sketched in 3.1. and, in particular, 

the upper half of the diagram. So let C = u o C , D = u o D and 

F = u o F be MHP generators with C U F <;;;; D and let cp* : e~ 6j) and 

f : 6J~ 6D be the canonical homomorphisms. 

3.9. THEOREM. With notation as above, the following statements are 

equivalent: 
a) cp*l_tf;*; 

b) R<J>. ,f has a unique minimal subset and (cp* ,f) satisfies the gen

eralized Bronstein condition; 

c) C o F = D (and also F o C = D ); 

d) (p o C) n (q o F) =fa 0 for all elements p and q of M with 

poD =qoD. 

PROOF. 

a =? b Trivial. 

b ~ c By 3.2.a, we know that D = Co uD o F ( = F o uD o C) . By 

I.3.2., R<J>. >1i* has a unique minimal subset iff @(6D,D) = @(e, C).@('F,F). 

Hence 2.3. implies that uD = uC.uF ( = uF.uC), and so we have 

D =CouDoF=Co(uCuF)oF<;;;;(CouC)o(uFoF)= 

=CoF<;;;;DoD =D. 

Similarly one proves that D = F o C , so D = C o F = F o C . 

c ~ d Suppose C o F = D and let p and q in M be such that 

p o D = q o D . Then p o C o F = q o C o F , so q E p o C o F and there is 

an r E p o C with q E r o F . As C and F are MHP generators it fol

lows that r o C = p o C and q o F = r o F ; hence 

r E (r o C)n (r o F) =(po C)n (q o F), 



166 Topological Dynamix 

so (poC)n(qoF)=I= 0. 
d==>aLet (poC,qoF)ER 9.>J!.; i.e., let p and q in M be such 

that poD =qoD. Then there is an rE(poC)n(qoF). As C and 
F are MHP generators it follows that r o C = p o C and r o F = q o F , so 

(p o C, q o F) = (r o C, r o F) = r ( C, F) . 

But this shows that R 9• >/!* is the orbit closure of the almost periodic point 

(C,F)ER 9.>J!.; hence R 9.>J!. is minimal and q,* 1-f. D 

3.10. COROLLARY. Let 'X and 611 be minimal ttgs and let x 0 E uX and 
JoE uY . Then 'Xl_ 611 if! Mx 0 o My 0 = M . 

PROOF. Suppose 'X1- 611; then (x 0 ,y0) is an almost periodic point in 
X X Y . Let v E J be such that vx0 = x 0 and vy0 = y 0 . By 3.9., it fol

lows that v o Mx 0 o v o My 0 = M . As 

we have M <;:;:; Mx 0 o My 0 ; hence M = Mx 0 o My 0 • 

Suppose Mx 0 o My 0 = M and remark that for every u E J the sets u o Mx 0 

and u o My 0 are MHP generators. Let (px 0 , qy 0) E X X Y and note that 

q Ep oM = M. So q Ep oMx0 oMy0 say q Er oMy0 for certain 

r E po Mx 0 • Then q o My 0 = r o My 0 and r o Mx 0 = p o Mx 0 ; hence 

which implies that XX Y is the orbit closure of (ux 0 ,uy0), and so that 
'X X 611 is minimal. D 

3.11. REMARK. Let cp: 'X"°'611 be an open homomorphism of minimal ttgs, and 
let tJ;: ~"°' 611 be a homomorphism of minimal ttgs with cp l_ 1f,- • Then 
there is an MHP generator B = u o B and a homomorphism ~: ~ "°' ~ 
such that o/o~ is maximally disjoint from cp; i.e., if cpl_ t/;0~071 then 

11 = id'i (see also 1.3. l.c). 

PROOF. Let YoE y' u EJYo and XoE ucp<--(yo), zoE utJ;<--(yo). Define 

C:=uoMx0 , D:=uoMy0 and F:=uoMz 0 ; then q,*:e"°'6D and 

f: '?f"°'6j) are the MHP liftings of cp and o/'. Hence by IV.4.16.c, 
q,* l_ o/* , and so by 3.9., Co F = D . 
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Let 

!3: = (A I A = u o A <;;;, M , A =A o A <;;;, F and C o A = D } 

be the collection of all MHP generators A such that (): <:e ~ '?f exists and 

c/>* ..l if o(). Clearly g =F 0 and !3 is inductively ordered. So by Zom's 

lemma, there is a minimal element B E g . Then the ambit morphism 

~: (Ii\, B) ~ (5!:, z 0) is well defined and the MHP lifting of ~ is just 

f : Ii\~ '?f, while ( iJ; o ~) * = f o ( • By construction, c/> • ..l f o ~· , hence by 

IV.4.16.c, c/> ..l tJ;o~ . 

Suppose cf>..lt/;0~071, then c/>• ..lf 0Co11·. Let B' be the MHP generator 

such that the map 11 * is defined as the ambit morphism 11 • : Ii\'~ Ii\ . Then 

B'<;;;,B (2.4.b), so B'<;;;,F and as c/>• ..lfoC011· it follows from 3.9. that 

C o B' = D . Hence, by minimality of B , it follows that B' = B and so 

11 * turns out to be an isomorphism; hence 11 is an hp extension. As the 

codomain of 11 is an MHP ttg, it follows that 11 is an isomorphism, which 

proves that tJ;o~ is maximally disjoint from c/>. D 

3.12. REMARK. Let C = u o C , D = u o D , F = u o F and H = u o H 

be MHP generators such that C U D U F <;;;, H . Then the following 

statements are equivalent: 
a) uo(CnD)oF =H and CoD =H; 

b) u o (F n C)o D = H and F o C = H; 

c) u o (D n F)o C = H and Do F = H . 

PROOF. Consider the ambit morphisms cp:e~x, tJ;:6D~X and 

8: 'F~X. We shall prove that 

R <f>>/dJ = { (p o C, q o D , r o F) I p o H = q o H = r o H} 

is minimal iff u o (C n D)o F = H and Co D = H . As this statement is 

symmetric in cf> , iJ; and () the remark follows. 

Suppose that Rq,>1dJ is minimal. Then, clearly, RH is minimal and by 3.9., 

C o D = H . Define ~: liJl,<1>"1 ~ X by ~ (p o C, q o D) = p o H ( = q o F) and 

let the MHP generator B = u o B be defined as B : = u o ( C n D) . Then 

B = u 0 {p E M I p ( c' D) = ( c' D)} and the MHP lifting r of ~ is just 

the ambit morphism (: 'i\~X. As RHo,....., R1;0 it follows from the 

minimality of RH 8 that ~ ..l () . Hence, as () = ()* , it follows that ~· ..l () 

andso,by3.9.,that BoF=H ;i.e., uo(CnD)oF=H. 

Conversely, let CoD =H and uo(CnD)oF =H. Then, by 3.9., 

c/> ..l iJ; • As above, define the homomorphism ~: liJl,H ~ X of minimal ttgs. 
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Then, for B : = u o ( C n D) , we have ( : <ii\~ X is the MHP lifting of ~ . 

So by 3.9. and the assumption, it follows that ( ..L 0 . Since 0 is open it 

follows from IV.4.16.c that ~ ..L 0; hence Rto is minimal and clearly 

R~8 ,...,., RH8 • This proves the remark. D 

3.13. NOTE. Let cf>: ~~ 6.ll and 1/1: ~~· 6.ll be homomorphisms of minimal ttgs 

such that 1/1 is maximally disjoint from cf> • Let ~: ~<l>>f ~ 6.ll be the 

induced homomorphism of minimal ttgs. If for some homomorphism 

e: 6llf ~ 6.ll of minimal ttgs ~ ..L e , then e is an isomorphism. 

PROOF. Let Rq,>fO: = {(x,z, w)E XX Z X WI cf>(x) = 1/l(z) = O(w)}. 

Clearly, RHo ,..._, Rto and Rq,>fO,...,., Rq, 11 , where 11: Rot~ Y is induced by 

0 and 1/1. Hence, if 0..L11, then Rq,>fO is minimal, so Rq, 11 is minimal 
and cf> ..L 1/ • Since 1/ = 1/lo'IT2 and 1/1 is maximally disjoint from cf>, it fol

lows that 'IT2 is an isomorphism. But then 0 is an isomorphism. D 

3.14. COROLLARY. Let ~, 6.ll and ~ be minimal ttgs. Let 6.ll be maxi-

mally disjoint from ~, then ~ ..L (~ X 6.ll) if! ~ = { *} . 

PROOF. Clearly, ~..L (~ x 6.ll) if ~ = { *} . 
Suppose that ~ ..L (~ X 6.ll) , then by 3.13., the map 0: ~~ { *} is an iso
morphism. D 
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V.4. THE UNIVERSAL HPI TIG 

In this section we shall construct the universal minimal HPI ttg for T . 

In fact, we construct the MHP generator by which it is generated as a 

quasifactor of ~ . The construction uses transfinite induction except for 

the case of T being locally compact CJ-compact, where the smallest 

MHP generator that contains u o J o G 00 is the one that generates the 

universal minimal HPI ttg (4.9.b). 
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In order to facilitate reading and writing we shall fix u E J and denote the 

set uM by G (as many times before). In this section only, we shall under

stand an MHP generator C to be an idempotent subset of M such that 

u o C = C , hence u E C . 

Most of the techniques which we shall use were developed in section 1. and 

they are stated there more or less explicitly, in this respect we mention 1.1., 

1.5., 1.6. and 1.7 .. A lemma which is used frequently in the sequel is 

Il.3.11.c; we shall repeat it here. 

4.1. LEMMA. Let H be an arbitrary subset of G and let g E G ; then 

go H = u o gH . In particular, let A and B be subsets of G ; then 

uoAoB=uoAB. 

PROOF. The first statement is II.3.11.c. 

Let A and B be subsets of G ; then 

A o B = LJ {a o B I a EA } = LJ { u o aB I a EA } C u o AB , 

so u o A o B C u o u o AB = u o AB C u o A o B and u o A o B = u o AB . D 

We shall now define some" incontractible MHP generators": 

Define a family X' of subsets of J as follows 

For every KE X' define aK to be the smallest idempotent set in (2M ,o) 

that contains u o K . Note that by 1.5.c, aK exists. Also we know that 

aK = u 0 aK . For, clearly, u E u 0 K ' so 

By 1.5.b, u o aK is a closed idempotent subset of M , and as 

u o K = u o (u o K) , we have u o KC u o aK . So, by minimality of aK , it 
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follows that u o GK = aK . By 2.1., aK is an MHP generator. 
We call aK an incontractible MHP generator, because the quasifactor fl,K 
of ~ generated by the MHP generator aK is an incontractible ttg. For, as 
M = u o Ko G C aK o G we have that aK o (u o G) = M , hence by 3.9., 

q}J!f(aK, ~) J_ q}J!j(u o G, ~){ = 'ffr). 

Define AK to be the smallest &{~,u)-closed subgroup of G that con
tains u(u o K) . 

Note that AK c;; uaK . For by 1.6.c, uaK is an B (~, u )-closed subgroup of 
G and, clearly u (u o K) c;; uaK ; so, by minimality of AK , we have 
AKcuaK. 

It is not yet clear whether or not AK = uaK for every KE X . However, 
for some specific kind of K E X this indeed is the case, as is shown in the 
following remark. (Note that this definition differs from the one just before 
4.3. and Vl.2.12., which avoids the problems in 4.2 .. ) 

4.2. REMARK. Let K E X . A~ aK is an MHP generator, it follows from 

1.7. that aK =K'.uaK =K'ouaK =uoK'ouaK for K'=aKnJ. 
Then 

a) K'E x and aK'k aK; 

b) aK' = u oK'oAK' and AK'= uaK'; 
c) uaK is the & {~, u )-closed subgroup of G generated by 

AKUAK'. 

PROOF. 

a) As aK = u 0 K' 0 uaK we have by 4.1., 

aK 0 G = u 0 K' 0 uaK 0 G = u 0 K' 0 G . 

Hence M =uoKoGCGKoG =uoK'oG and so M =uoK'oG; i.e., 
K'E x . Clearly, u oK'C aK 'so aK'k aK. 

b) Obviously, u o K'oAK'k aK' and u o K'C u oK' oAK'. We shall 
prove that u oK'oAK' is an idempotent subset of M ; then it follows that 
GK'= u oK'oAK'. 

First note that 

On the other hand, by 1.6.b, 
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u (u o K' o AK' o u o K' o AK') = u (u o K').u (u o AK').u (u o K').u (u o AK') , 

hence 

But then 

u 0 K' 0 AK' 0 u 0 K' 0 AK' c K'.uM n J.AK' = K'.AK' ' 

hence 

u oK'.AK'C u oK'oAK'C u oK'oAK'o u oK'oAK'C u oK'.AK'' 

and so 

u oK'AK' = u oK'oAK' = u oK'oAK'o u 0 K'oAK'. 
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This shows that u o K' o AK' is an MHP generator and that 

aK' = u 0 K' oAK' . Also it is evident that 

c)As aK,uAKc;aK, it follows that AK'UAKc;uaK and so 

[AK'UAK]C uaK, where [AK'UAK] denotes the ~(~,u)-closed subgroup 
of G generated by AK' U AK . We shall prove that 

it then follows that 

As u o K' U [AK' U AK] C aK it follows that 

Since u o KC aK C K'.uM and u o KC J.u (u o K) CJ.AK it follows that 

u o KC K'.uM n J.AK = K'.AK ; 

hence 

If u o K' o [AK' U AK] is an MHP generator, it follows from the minimality of 

aK that aK =uoK'o[AK'UAK]. As uoK'o[AK'UAK]CaK, it follows 
that 
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C K'.uM n J. (AK' u AK] = K'.[AK' u AK] . 

Hence 

U o K' o (AK'UAK]o U o K' o (AK,LJAK]C U o K' o (AK'UAK], 

which shows that u o K' o [AK' U AK] is an MHP generator and so that 

D 

a 
Let KE :JC . For every ordinal a define the sets aK and Ail inductively 
as follows (note the difference between this definition and the one just before 
4.2.): 

0 
aK:= aK and Ai:= uaK. 
p p 

If aK and Af are defined, then we set L : = aK n J ; in 4.3. below we 
show that LE :JC . Define 

P+I 
aK : = aL ' the smallest MHP generator that contains u 0 L ( aL 

exists by 2.1., 1.5.c and the almost periodicity of u o L ); and 
Af+ 1:=AL, the smallest iJ(~,u)-closed subgroup of G that con

tains u(u o L) . 

If y is a limit ordinal and if a: and Af are defined for all /3< y , then 
define 

y p 
aK:=uo n{aK l/3<y} and A_l:= n{Afl/3<y}. 

4.3. THEOREM. Let KE :JC . Then 
a) Ai= [AtUAK], the iJ(~,u)-closed subgroup of G generated by 

AtUAK; 
a 

b) for every a;;;. 0 we have aK n J E :JC ; 
a 

c) for every ordinal a we have Ail= uaK; 
p'f I P 

d) for some nonlimit ordinal v, aK = aK and AK+ 1 =AK . 
00 p 

(notation: aK : = aK and AK00 : =AK .) 

PROOF. 

a) This is just 4.2.c, since it is clear that Ai =AK' . 
b) We shall prove this by transfinite induction. 

For a= 0 the statement is proven in 4.2.a. 
a 

Suppose the statement is true for every ordinal {3~ a. Let L: = aK nJ ; 
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a+I 

then, by assumption, LEX and by definition, aK = aL . Set 
a+l 

LI:= aL n J ; then by 4.2.a, L' E x ' so we have aK n J E x 
Let a be a limit ordinal and suppose the statement is true for every ordinal 

fJ {J+l 

{:J<a. Then uo(aKnJ)oG =M and so aK oG =M for every 

{:J< a . As {a: I {:J< a} is a collection of closed sets in M , linearly 

ordered by inclusion, it follows that 

n {a: I {:J< a}= liIILiM{a: I {:J< a}. 

By 1.1.c, we have 

<n{a:lfJ<a})oG=~M{a:oG lfJ<a}=M, 

so 

a fJ 
aKo G = u 0 n {aK I {:J< a}o G = u oM = M. 

a 
Since, by 1.5.c and 1.5.b, aK is an MHP generator it follows from 1.7. that 

a a a 
QK = (QK nJ)o uQK, which implies that 

a a a a a 

uo(aKnJ)oG =uo(aKnJ)ouQKoG =uoQKoG =QKoG =M. 

Consequently, it follows that a; n J E X ; so b is proven. 
0 

c) If a = 0 , then A~ = uaK by definition. 
a 

Let a be an ordinal, then aK = L.Aft is an MHP generator, where 
a 

L: = aK n J . So, as in 4.2.b, it follows that aL = u 0 L 0 AL and so that 
+I a+! 

AL = uaL ' hence Aft = uaK 
a 

If a is a limit ordinal, then it is an easy exercise to show that Ai= uaK . 
a 

d) Note that the family {u o(aKnJ) I a;;.. l} is linearly ordered by 
a 

inclusion. As u o ( aK n J) C u o J , there can be at most I u o J I different 
a 

elements in the family { u o (aK n J) I a;.. 1} . But this means that 
a a+I a+I a+2 

u o (aK n J) = u o (aK n J) for some ordinal a , hence aK = aK 

and Aft+ 1 = Aft+2 • By construction, 

A/= Ai+ 1 for every {:J;;.. a+ 1 . 

fJ a+I 
it follows that QK = QK and 

D 

In 4.3.d, we have seen that for every K E X we can construct a kind of 
00 00 

minimal incontractible MHP generator aK . Let K 00 = aK n J . Then 
00 

aK is the MHP generator generated by the set u o K 00 and, clearly, 
a oo oo 

QKoo = QKoo = QK for every Ordinal a ; SO in this respect QK is minimal. 
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Let 

be the family of subsets of J that generate the minimal incontractible MHP 

generators. 

4.4. THEOREM. Let 'X be a minimal ttg. Then 'X is incontractible if! 'X is 

a factor of tlK: = 'Jl!f(aK, ~) for some KE ':JC. 

PROOF. As discussed before 4.2., f!.K is incontractible and so every factor of 

tlK is incontractible for every K E ':JC . 
Conversely, let 'X be incontractible. By IV .4.17 .c, 'X* is incontractible. Let 

C = u o C be an MHP generator such that ex• ~ e . As e is incontracti

ble, it follows that Co G = M . Let K = C n J ; then, by 1.7., we have 

C = u o K o uC , hence 

M = C o G = u o Ko uC o G = u o Ko uCG = u o Ko G and K E X . 

00 00 

Construct the minimal MHP generator aK and let L : = aK n J . Then, 

clearly, L E ':JC and aL c aK c c . So, by 2.4.b, e is a factor of f!,L . D 

We shall now discuss the construction in the special situation of K = J . 

Note that JEX ,for M=uoM=uoJGc;uoJoGc;M. Afterashort 

discussion we shall formulate a lemma and a theorem for this situation, but 

those statements can easily be reformulated for the general case of K E X . 
This is a kind of lazyness intended to serve the clarity of the story. 

a 
Let a be an ordinal, then we denote a1 and Af by aa and Aa. So 

a 0 is the smallest MHP generator that contains u o J and A 0 = ua0 • 
00 

The sets a, and A100 will be denoted by a and A respectively. Note 

that in this case A 0 =Ai° equals A1 , the smallest ~ (~, u )-closed sub

group of G that contains u(u oJ), which is clear from the observation that 

Go = a, = u o J o A1 . 

(By 1.10., u oJ oA1 is an idempotent set in (2M ,o). As u oJ UA1 C a 1 , 

u oJ oA1 C a 1 o a, =a, . So by minimality of a 1 , u oJ oA1 = a 1 . 

Clearly, ua1 = A1 .A1 = A1 .) 

Define a - I : = M and A - I : = G . Then a - I and A - I behave in accor

dance with the construction. For J = M nJ =a _ 1 nJ and so a 0 is the 

smallest MHP generator that contains u o (a_ 1 n J) = u o J ; moreover, 
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A - I = ua - I = uM = G , and A 0 is the smallest iY (~, u )-closed sub

group of G that contains u(u oJ) . 

(In the sequel we consider -1 to be an ordinal preceding 0 .) 

As in the preceding sections we shall denote the pointed ttgs 

(~(aa.~),aa) by te.,, so the map lta-'>ftp will be the canonical 

homomorphism from ~(aa,~) to ~(ap,~) that carries aa over in 

ap (a";;;1:13). Notethat «-1 isthetrivialambit ({*},*). 

4.5. LEMMA. 

a) For all a";;;!: -1 the map te..+ 1 -'> «a is a RIC extension. 

b) For every a";;;!: 13 the map «a-'> ftp is a RIC extension, hence 

aaoAp = ap. In particular, a oAp = ap for every 13-;;;.: -1. 

PROOF. 

a) By 3.4., we have to prove that aa+I oAa = aa. 

As, by 1.7., aa = (aa n J)o A a ' it follows from u 0 (aa n J) c aa+ I that 

aa = u o aa = u o (aanJ)oAaC aa+I oAaC aao aa = aa; 

so,indeed, aa+ 1oAa=aa and te..+ 1-'>te., isaRICextension. 

b) As the composition as well as the inverse limit of RIC extensions is 

again a RIC extension (III.1.10.), it follows from a that «a-'> ftp is a RIC 

extension ( a";;;!: 13 ). From 3.4., it follows that aa o A p = a p if 13~ a . So, 

in particular, a o A fJ = a fJ for every ordinal 13 . D 

4.6. THEOREM. For every ordinal a";;;!: -1 , a o H(A a) is an MHP genera

tor and the MHP extension of the maximal almost periodic extension of 

«a is ~(a o H(A a),~); and for every ordinal 13-;;;.: a the following 

equations hold: 

In particular, &* =~(aoH(G),~)=~(QaoH(G),~) for every 

a";;;!:O. 

PROOF. Let ('?X,, x) be the ambit with x = ux , such that 0: ('?X,, x)-'> te., is 

the maximal almost periodic extension of te.,. Then Mx = lx.@('?X,,x) and 

'?X,* = ~(C, ~), where C = u o Mx . As 0 is an almost periodic map, 
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x is a 8-distal point. Hence 

so uo(OanJ)=uoJx<;;;,uoMx =C, which shows that Oa+1C,C. 

Hence (~,x) is a factor of l!ta+ 1 ; moreover, (~.x) is a factor of ftp for 

every ordinal P with /J~ a+ 1 . 

Consider the next diagram with /J~ a+ 1 . 

Note that '[>: ftp~l!ta is a RIC extension (4.5.a) and that Ap and Aa are 

the Ellis groups of the ambits ftp and l!ta . By 111.3.13., it follows that 

@(~,x)=ApH(Aa). As this is true for every /J~a+l, it follows that 

ApH(Aa) =A H(Aa) for every /J~ a+ 1 . 

We may now conclude that C = Oa+I o H(Aa). For 

and so 

But, on the other hand, a a+ I <;;;, c and u 0 H(A a)<;;;, c ' so 

By 4.5.b, we know that Oa+I =a oAa+I . Hence (using 4.1.) it follows that 

By the above, A a+ 1H(A a) =A H(A a) =A pH(A a) for every ordinal 

/J~ a+ 1 , hence 

C =a 0Aa+1H(Aa) =a oA H(Aa) =a oApH(Aa) (ft~ a+ 1). 

But this shows, by 4.5.b, that C =a o H(Aa) = Opo H(Aa) for every 

/J~a+l. Hence ~· -2.f(OoH(Aa),~), OoH(Aa) is an MHP gen

erator and the equations in the theorem hold. 
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In particular, this holds for a = - 1 , and as cL 1 is the trivial ambit it fol

lows that the maximal almost periodic extension of EL 1 is just ~ ; hence 

D 

4.7. THEOREM. For every ordinal a~ -1, the maximal HPI extension of 

~ between ~+ 1 and €!., is 

and a.,+ 1 o (A.,)00 =a oA.,+ 1(A.,)00 • 

As a result in between, we have that a a+ 1 o Hp(A .,) is an MHP genera

tor for every ordinal f3 ~ 1 . 

In particular, aoo G00 is an MHP generator, a 0 o G00 =a oA 0G00 and 

~(aoo G00 , ~) is an HPI ttg. 

PROOF. First we prove the following claim: 

CLAIM: 

a) Let F be an iY(~,u)-closed subgroup of G such that 

A a+ I<;;;; F <;;;;A a . Then a .. + I 0 F is an MHP generator. 

b) Let C be an MHP generator with a.,+ 1 <;;;; C <;;;;a.,. Then 

c = a.,+ 1 0 uC ; and, consequently, the map «a+ I~ e is a RIC 

extension. 

PROOF (CLAIM): 

a) By 1.6.b and the assumption, we have u (a.,+ 1oFoa.,+ 1 o F) <;;;; F ; 

and as a.,+ 1oFoa.,+ 1oF<;;;; a., it follows that 

a.,+ 1oFoa.,+ 1oF =uoa.,+ 1oFoa.,+ 1oF<;;;; 

and a.,+ I 0 F turns out to be an MHP generator. 

b) Clearly, a.,+ 1ouC <;;;;Co C =C. 

By 1.7., we know that C = u o(C nJ)ouC. As C nJ <;;;; a.,nJ and 

u o(a.,nJ)<;;;; a .. +1 we have 
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C =uo(CnJ)ouC(;;uo(aanl)ouCcaa+iouC. 

So C = aa+ 1 o uC ; and by 3.4., the map ~+ 1 ~ e is RIC. 0 (CLAIM) 

For every ordinal f3, Hp(Aa) is a normal subgroup of Aa; so 

Aa+iHp(Aa) is an iJ(~,u)-closed subgroup of G between Aa+I and 

Aa. By 4.1. and claim a, aa+I o Hp(Aa) ( = aa+I 0Aa+1Hp(Aa)) is an 

MHP generator. 

In particular, aa+ 1o(Aa)oo is an MHP generator (for example a0 0G00 

(a= -1) ). Let 

(~,z) = (2.f(aa+I 0 (Aa)oo, ~),aa+I 0 (Aa)oo) ; 

then @(~,z) =Aa+1(Aa)oo · 

By 111.4.4.c, the map </>: (2;, z) ~ ll.a is a PI extension. We shall prove that 

every open map iJ!: (~,z)~('X,x) for which </> = OoiJ!, is a RIC extension. 

By IV.5.7., it then follows that </> is an HPI extension. 

As such a I/I is open, 'X is an MHP ttg (IV.3.9.). So there is an MHP gen-

erator c with ('X,x),....., e and aa+I cc c aa. By claim b, the map 

~: ~+ 1 ~ e is a RIC extension; hence I/I as a factor of ~ is a RIC exten

sion. 
It is an easy exercise to show that </> is the maximal PI extension of ll.a 

between ~+ 1 and ~ ; so, certainly, </> is the maximal HPI extension of 

ll.a under ~+ 1 . 0 

At the moment we know that 2.f(a0 o G00 , ~) is an HPI ttg. However, in a 

special situation we may conclude that 2.f(a0 o G00 , ~) is the universal 

minimal HPI ttg for T ; as follows: 

4.8. LEMMA. If 'X is a metric minimal HPI ttg then 'X is a factor of 

2.f(aoo G00 , ~). 

PROOF. By IV.5.13., we know that a metric minimal HPI ttg is point distal. 

So let x EX be a distal point. Then lx = J , hence u of Cu o Mx . As 

u o Mx is an MHP generator it follows that a0 C u o Mx . As 'X is a PI 

ttg it follows from 111.4.4.c that G00 (;;@('X,x). Hence G00 (;; u oMx and 

By 2.4.b, ix• ( = 2.f(u o Mx, ~)) is a factor of 2.f(a0 o G00 , ~), so 'X is 

0 
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4.9. 1HEOREM. 

a) If ~ is a strictly-quasi separable minimal HPI ttg then ~ is a fac-

tor of ~(Goo G00 , ~). 

b) If T is a locally compact, a-compact topological group then 

~(Goo G00 , ~) is the universal minimal HPI ttgfor T. 

PROOF. 

a) If ~ is strictly-quasi separable then ~ is the inverse limit of 

metric minimal ttgs; say ~ = inv lim ~ , where ~ is a minimal metric ttg. 

As ~ is a factor of ~ for every a it follows from IV.5.9. that every ~ 

is an HPI ttg. So by 4.8., every ~ is a factor of ~(G0 o G00 , ~). But 

then ~ is a factor of ~(aoo G00 , ~). 

b) If T is locally compact, a-compact, we know from 1.1.7. that every 

minimal ttg is strictly-quasi separable. Hence every minimal HPI ttg for T 

is a factor of ~(Goo G00 , '!>It). As by 4.7., ~(Goo G00 , ~) is an HPI ttg 

itself, it follows that ~(Goo G00 , ~) is the universal minimal HPI ttg for 

T. D 

Among others, the following remark is made in order to facilitate things to 

be done in chapter VI.. 

4.10. REMARK. For every KE X we have 

a) GK C Go and AK CAo; 
00 

b) GK C G and AK00 CA , hence for every KE% it follows that 

GK c G and AK CA ; 

c) AH(G)=A 0H(G)=AKH(G) istheEllisgroupof & andsoitisa 

normal subgroup of G . 

PROOF. 

a)As Ks;J; uoKCuoJ ,so, clearly, GKCGo and 

b) Since GK C G 0 it follows that for every ordinal a;:;a. 0 we have 
a oo oo 

GK c Ga. Hence GK c Goo= G and AK00 = uGK c uG =A (4.3.c). If 
00 

KE% then GK = GK , so GK c G and AK c A . 

c) As & is a factor of ~, it is a factor of <:eK for every KE X (by 

a and 2.4.b). So & is the maximal almost periodic extension of { *} under 

<:eK for every KE X . As <:eK is an incontractible ttg it follows from 

111.3.11. that the Ellis group of & equals AKH(G) for every KE X . 
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This shows that AKH(G) = A0H(G) for every KE X . In particular, for 

L =a nJ we have A H(G) =ALH(G) = A0H(G) (LE 9C !). As © is a 

regular ttg (1.2.17.), it follows from 1.2.15. that A H(G) is a normal sub

group of G. 
D 

In 4.9. we have seen that 2f(Q0o G00 , ~) is the universal minimal HPI ttg 

in case T is locally compact, a-compact. It is unlikely that this is true 

without the restriction on the phase group. But we can construct the univer

sal minimal HPI ttg in general, in a way similar to the construction of the 

~·s. 

Define 

Co:= ao and Co= uCo =Ao. 

Let a be an ordinal and suppose that Ca and Ca are defined. Then 

define 

Ca+ 1 to be the smallest MHP generator that contains the set 

u o ((Cao Goci)nJ) and let Ca+!:= uCa+l . 

If fJ is a limit ordinal and if Ca and Ca are defined for all a< f:J , then 

define 

Cp:=uo n{Cala</:J} and Cp=uCp. 

As the collection {Ca I a~ 0} is a descending family of subsets of M , there 

is an ordinal v such that Cv = Cv+I = Cy for every y~ v. We shall 

denote this "smallest" C p by C and C p by C . 

4.11. REMARK. For every ordinal a~ 0 we have 

a) aac;: Ca and Aac;: Ca; in particular, a c;: C and Ac;: C; 

b) CaH(G) =AaH(G) =AoH(G) = CoH(G) = CH(G) =A H(G); 

c) Cao G00 is an MHP generator and u(Cao G00) = CaGoo. In partic

ular, Co G00 is an MHP generator and CG00 is the Ellis group of 

2f(C o G00 , ~) with respect to Co G00 • 

PROOF. 

a) Obvious. 

b) For every ordinal a~O we have Aac;: Cac;: Co =Ao, so 

AaH(G)c;: CaH(G) = CoH(G) = AoH(G) 

and, by 4.10., it follows that 

A H(G) = AaH(G) = CaH(G) = CoH(G) = AoH(G), 
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while 

A H( G) ~ CH( G) ~ C 0H( G) =A H( G) . 

c) We shall prove this by transfinite induction. 

As Co= a0 and so C0 o G00 = a0 o G00 , it follows by 4.7. that Coo G00 is 
an MHP generator. 

Let a be an ordinal and suppose that Cao G00 is an MHP generator. Then, 

by 1.7., Cao G00 = L.CaGoo for L =(Cao G00)nJ . So 

and, by 1.6.b and by the normality of G00 , 

So it follows that 

Hence 

and as u o LU Ca+!~ Ca+! , it follows that 

This implies that Ca+! o G00 is an idempotent subset of M , hence an MHP 
generator. 

Let a be a limit ordinal and suppose that Cpo G00 is an MHP generator 
for every /3< a. Then by 1.5.c, 1.5.b and 2.1., 

is an MHP generator. By 1.1.c, "right circling" with u o G00 is continuous, so 

hence 

which implies that Cao G00 is an MHP generator. 
The additional statements are obvious. 0 
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4.12. THEOREM. 

a) ~(C.,o G00 , ~) is an HPI ttgfor every ordinal a;.. 0; 

b) ~(Co G00 , ~) is the universal minimal HPI ttgfor T. 

PROOF. First we shall prove that if D is an MHP generator such that 

Ca+! o G00 <:;;, D <:;;, C.,o G00 then D =Ca+! o G00 o uD , and so, by 3.4., that 

the ambit morphism 

is a RIC extension. As follows: 

Obviously, C.,+ 10G00 ouD<:;;,DoD =D (note that G00 <:;;,uD ). 

Conversely, D <:;;,JuD and D <:;;, C.,o G00 <;;;, (C.,o G00 nJ).G ; hence 

Hence D = C.,+ 10G00 ouD ; and by 3.4., 1/ is a RIC extension. 

a) Since (C.,G00 ) 00 = G00 <;;;, C.,+1G00 , it follows that the map 

is a PI extension. Using the above (which is analogues to claim bin the proof 

of 4.7.) it follows, as in the proof of 4.7., that every open if;, with cf> = Ootf; , 

is a RIC extension. So by IV.5.7., cf> is an HPI extension. 

As C0 o G00 = a0 o G00 , the ttg ~(Coo G00 , ~) is an HPI ttg (4.7.). So 

every ~(C.,o G00 , ~) is an HPI ttg. 

b) In particular, ~(Co G00 , ~) is an HPI ttg. Let 

g: ('X,x)~(~(C o G00 , ~),Co G00 ) 

be an almost periodic extension. Then 'X is a PI ttg and Jx =(Co G00)nJ , 

so 

As C was "minimal" it follows that u o Mx =Co G00 , and so that ( is 

an isomorphism. Hence g is an hp extension, so by almost periodicity of g , 
g is an isomorphism. This and the fact that ~(Co G00 , ~) is an MHP ttg 

and the existence of a universal HPI ttg (IV.5.14.) show that ~(Co G00 , ~) 

is the universal minimal HPI ttg. D 
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4.13. REMARK. For all ordinals a and /3 with a;;;. 13;;;;. 0 we have 

Cpo G00 =Cao CpG00 ; in particular, Cao G00 =Co CaGoo. 

PROOF. By the proof of 4.12. the map 

cp: 2if(Cao G00 , ~) ~ 2if(Cpo G00 , ~) 

is a RIC extension. By 3.4., it follows that 

D 

4.14. REMARK. For every ordinal a;;;. 0 we have 

Co H(G) =Cao H(G) = aoo H(G) =a o H(G). 

In particular, F;,* =~(a o H(G), ~)=~(Co H(G), ~). 

PROOF. First note that a CCC CaC Co= ao, so 

a o H(G)C Co H(G)C Cao H(G)C aoo H(G). 

As, by 4.5., a0 = a o A 0 and by 4.10., A H( G) =A 0H( G) , the following 

inclusions hold: 

a0H(G) =a oA 0 oH(G) =a oAoH(G) =a oAH(G)C 

c a 0 A 0 H( G) = a 0 H( G) . 

But then a o H(G) =Co H(G) =Cao H(G) = a 0 o H(G). 

V.5. REMARKS 

D 

5.1. In theorem 1.7. we have seen that an idempotent subset C of M can 

be written as C = KA = Ko A where A = uC = u o C n uM and 

K = C n J . So C is the product of its idempotent part and its group 

part. The subsets of uM that can occur as group parts of idempotent sets 

in (2M, o) are already described as all ~ (~, u )-closed subgroups of uM 
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(1.6.c and 1.8.). But at the moment there is not a theory available that deals 

with possible structures on J . So we do not know what kind of subsets of 

J can occur as the idempotent parts of the idempotent sets in (2M, o ) . 

QUESTIONS 

a) Which subsets of J can occur as idempotent parts of idempotent sets 

in M . In particular (motivated by 1.8.), if F is an iJ (~, u )-closed 

subgroup, what are the sets ( v o F) n J for v E J ? 

b) Let K ~ J . What do the sets u o K and u(u o K) look like? (see 

also section V.4. and 5.4.a). 

5.2. In the sections 2. and 3. one of the problems (under the surface) is the 

question whether or not the "circling" of two MHP generators is again an 

MHP generator. One could extend that question to a : 

QUESTIONS 

a) Let C = u o C and D = u o D be MHP generators. What is the 

smallest MHP generator F = u o F that contains C and D . In 

what situation do we have F = ( C o D t for some n E N . (i.e., 

F =(CoD)o · · · o(CoD) (n-times)). 

b) Another, more elementary, question which is already stated in [AG 77] 

is whether or nor every quasifactor of ~ is an MHP ttg. 

5.3. We investigated a limited amount of dynamical properties in relation to 

MHP generators in section 3 .. A lot of other problems could be stated in that 

respect, some of which are: 

QUESTIONS 

a) How do we characterize minimal weakly mixing ttgs in terms of MHP 

generators, and is there a relation of the sets «.. to weak mixing? 

b) How do we characterize MHP generators that generate MHP ttgs 

which are prime up to high proximality? In other words: for what kind 

of MHP generator C = u o C do we have [ C U {p } ] = M for every 

p E M , where [ C U {p } ] denotes the smallest MHP generator that 

contains CU {p} (i.e., what kind of MHP generator is "maximal"). 
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c) Which minimal ttgs 'X satisfy the following property: if 'XJ_ 2:, then 

5.4. 

2: = { *} . In other words: for what kind of ttg 'X is { *} maximal 

disjoint from 'X (see also 3.14.). 

QUESTIONS 

a) Let K be an arbitrary subset of J , what do aK and AK look like, 
00 

andwhenis aK=uoKoAK (seealso5.l.b)? Is aK regular? 

b) Under what conditions is aao G00 an MHP generator for every ordinal 

a ? When is a o G00 = Co G00 ? 
c) In several studies a specific kind of incontractible ttg is given much 

attention to, namely the kind of ttg 'X for which uX = TuX (for 

instance, see [E 69], [EK 71], [EGS 76]). Note that if T is abelian then 

TuX = uTX = uX for every minimal ttg 'X . How are those ttgs 

related to our ttgs (f,K for K E X , or better: what kind of MHP gen

erators generate MHP extensions of those ttgs? 



VI 

DISJOINTNESS 

1. disjointness and quasifactors 

2. disjointness classes 

3. classes and extensions 

4. disjointness and relative primeness 

5. remarks 

In structure theory it is not only important to know how minimal ttgs are 

built up, but also how they are related to each other. A typical example of 

non-relation is disjointness. In this chapter we try to figure out (in rough 

lines) to what extent minimal ttgs are "classwise" non-related. 

In section 1. we pay attention to the role quasifactors can play in this prob

lem. 

In the second section we change our point of view to classes of minimal ttgs 

that are in a certain sense consistent in their behavior towards disjointness; 

and we describe some of them with their relation to others. For instance in 

2.13.a we show that P .l n PI~ D .l .l , in words: every minimal incontracti

ble PI ttg is disjoint from every minimal ttg without nontrivial uniformly 

almost periodic factors (compare [G 76) X.4.4.). 

Section 3. deals with the question how those classes behave with respect to 

extensions, and we end the section with a picture of how the disjointness 

classes under view are related. In section 4. we apply some of the previous 

results to the problem to what extent disjointness is implied by the fact that 

the ttgs in question are relatively prime (i.e., do not admit a nontrivial com

mon factor). 

Most of the material in this chapter can be found in [Wo 79.1) and [Wo 79.2), 

but some results here are stronger by application of the results in chapter V. 
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VI.1. DISJOINTNESS AND QUASIFACTORS 

In this section we establish some disjointness relations between factors 

and quasifactors of a minimal ttg. 

1.1. THEOREM. Let </>: ix~ 61:1 be a homomorphism of minimal ttgs. 

a) Let 2: be a nontrivial quasifactor of 61:1 • Then 2: f ix. 
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b) Let 2: be a non trivial quasifactor of ix . If 2<1> [2:] =:/= { *} then 

2:.f 61:1. 
In particular, it follows that a minimal ttg ix is not disjoint from its non

trivial quasifactors. 

PROOF. 

a) Define W: = {(x,A )EX X Z I <[>(x)E A} . Then, clearly, W is a 

nonempty closed invariant subset of X X Z and as 2: is nontrivial 

W =t= X X Z ; hence ix X 2: is not minimal. 

b) Define W : = { (y, A ) E Y X Z I y E </>[A ]} . Then W is a 

nonempty closed invariant subset of Y X Z . As 2<1> [2:] =t= { *} , there is an 

A E Z with </>[A] =t= Y (so, as is easily seen, </>[A] =t= Y for every 

A E Z ). Hence W =t= Y X Z and 61:1 X 2: is not minimal. D 

The conclusion of statement 1.1.b cannot hold for all nontrivial quasifactors 

of ix without any further condition. For let ix ..L 61:1 and let <[>:ix X 61:1~61:1 

be the projection. As the projection tJ;: ix X 61:1 ~ ix is open, ix is a quasi

factor of ix X 61:1 (II.3.3.c) and by assumption ix ..L 61:1 • 

We shall now look for situations in which 2:.f 61:1 for certain (respectively 

all) nontrivial quasifactors of ix . 

1.2. REMARK. If <[>: ix~61:1 is a highly proximal extension of minimal ttgs 

then 2:.f 61:1 for all nontrivial quasifactors 2: of ix. 

PROOF. By IV.4.18., 2:..L 61:1 iff 2:..L ix; but by 1.1., 2:.f ix. D 

1.3. THEOREM. Let <[>:ix~ 61:1 be an open homomorphism of minimal ttgs. 

Let 2: be a nontrivial quasifactor of ix such that </>[X \A]=:/= Y for 

some A E Z . Then 2: f 61:1 • 

PROOF. Define W:={(y,B)EYXZl<t> ..... (y)CB}. As </>[X\A]=f=Y 

there is a yoE Y with <[> ..... (yo)CA ; hence W =:/= 0. Also W =:/= YX Z; 

for, equality would imply that <[> ..... (y)C B for all y E Y , so X CB and 
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£ would be trivial. Clearly, W is invariant, and by openness of <J> (i.e., 

continuity of <f>ad: Y ~ 2x ), it follows that W is closed. So, 6Jj X £ is not 

minimal. 0 

1.4. 1HEOREM. Let <J>: ~~G]j be a proximal homomorphism of minimal ttgs. 

Let 5:: be a nontrivial quasifactor of ~. 
a) If £...L 6Jj then u o uX k A for every u E J and A E uZ (i.e., 

for every A = u o A E Z ). 
b) If either ~ or £ is incontractible then £ .f 6Jj . 

PROOF. 

a) Suppose 5:: ...L 6Jj . Then <J> X idz : ~ X £~ 6Jj X £ is a proximal 

extension of a minimal ttg; so by 1.1.23.c, ~ X £ has a unique minimal sub

set L . Define W = { (x, B) E X X Z I x E B} . Then W is a nonempty 

closed and invariant subset of X X Z , so L k W . Let A = u o A E Z 

and let x EX. Then (x,A)E XX Z, hence 

u(x,A)=(ux,uoA)ELkW so uxEuoA. 

As xEX was arbitrary we have uXkuoA and so 

uouXkuouoA =uoA. 

b) If ~ or £ is incontractible, it follows from 111.1.5.c that X X Z 

has a dense subset of almost periodic points. If £ ...L 6Jj , then ~ X £ has a 

unique minimal subset and ~ X £ is minimal; which contradicts 1.1.. So, if 

~ or 5:: is incontractible, £ .f 6Jj . 0 

1.5. LEMMA. Let <J>: ~~G]j be a homomorphism of minimal ttgs. Let £ be 

a nontrivial quasifactor of ~ such that £...L 6Jj. If (A ,B) is a proxi

mal pair in 5:: with A =I= B then there is a proximal pair 

(x 1 ,x2)E R.,.nA X B with x 1 =I= x 2 • 

PROOF. Let I be a minimal left ideal in Sr such that p o A = p o B for 

all p EI (1.2.7.c). Without loss of generality suppose there is an 

x 1EA \B. Then (<J>(x 1),B)EYXZ and, as 6JjX£ is minimal, there is 

an idempotent w EI such that w(<J>(x 1),B) = (<J>(x 1),B). Then we have 

<J>(wx 1)=we<J>(x 1)=<J>(x 1); so (xi.wx 1)ER.,. and 

WX1EwA kWoA =woB =B. 

Hence (x 1 , wx 1)E R.,.nA X B . Clearly (x 1 , wx 1) is a proximal pair, and 

x 1 ~ B while wx 1 E B , so x 1 =I= wx 1 • 0 



Chapter VI Disjointness 189 

1.6. THEOREM. Let cp: '?](,~ 6Y be a distal homomorphism of minimal ttgs. 

Let ~ be a nontrivial quasifactor of '?](, . 

a) If ~J_ 6Y then ~ is distal. 
b) If '?](, is disjoint from every minimal distal ttg ( '?J(E D_t_ ) then 

~.f 6Y. 

PROOF. 

a) By 1.5., there can be no proximal pairs in ~, so ~ is distal. 

b) Suppose ~J_ 6Y. Then ~ is distal (a). As '?X,E D_t_ we have 

'X J_ ~ , which contradicts 1.1.. 0 

In section 3. w shall see other results with the flavor of 1.4. and 1.6. (cf. 3.7.). 

The following characterization of disjointness in terms of quasifactors will be 

needed in the sequel (see also [AG 77] lemma 11.4.). 

1.7. THEOREM. Let '?](, and 6Y be minimal ttgs. Then '?X,.f 6Y if! there is a 

nontrivial quasifactor ~ of 6Y which is a factor of '?](,* (the MHP exten

sion of '?X,). 

PROOF. Suppose there is a nontrivial quasifactor ~ of 6Y and a surjective 

homomorphism cp: '?](,* ~ ~ . Then cp X idy : '?](,* X 6Y ~ ~ X 6Y is a surjective 

homomorphism. As, by 1.1., ~ X 6Y is not minimal, '?](,* X 6Y cannot be 

minimal. Hence '?](,*.f. 6Y and, by IV.4.18., '?X,.f 6Y. 

Conversely, suppose that '?X,.f 6Y ; then, by IV.4.18., '?](,*.f. 6Y* . Let C and 

D be MHP generators with C = u o C and D = u o D such that 

'?](,* = e and 6Y* = 6D . Then, by V.3.9., we have that Co D =I= M . Hence, 

by V.2.6.b, ~(Co D, ~)is a quasifactor of 6Y* which (clearly) is non-

trivial. Let x~: 6Y* ~ 6Y be the canonical MHP extension. Then, by irredu

cibility of x~ , we have that ~: = iXGJJ [~( C o D, ~ )] is a non trivial quasi

factor of 6Y. Obviously, \[;: '?](,* ~~ defined by \f;(p o C) = 2x'Y(p o C oD) 

is a homomorphism of ttgs. 0 
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VI.2. DISJOINTNESS CLASSES 

In this section we study "disjointness classes" of minimal ttgs and we 

characterize them via quasifactors (2.3. through 2.7.). We also give some 

relations between those disjointness classes (e.g., P J_ n PI<;;;; DJ_ J_ and 

DJ_ n PI<;;;; P J_ J_ (2.13.)). 

Let K be a set of minimal ttgs. Then K J_ denotes the set of minimal ttgs 

X such that X ...1.. 6Y for every 6Y E K . 

2.1. REMARK. Let K, K1 and K2 be sets of minimal ttgs. 
a) K _l_ is closed under factors, highly proximal extensions and inverse 

limits. 
b) If K1 <;;;; K2 then Kl<;;;; K1J_ . 
c) K <;;;; K J_ J_ and K J_ = K J_ J_ J_ . 

PROOF. For a cf. I.3.1.a, band IV.4.18., band care obvious. D 

Let K be a set of minimal ttgs. Define 

[K) = { X I X is a minimal ttg and for some 61J E K, X is a factor of <>y* } • 

Evidently, K <;;;; [K] = [[K]] and [K] is closed under factors and hp exten

sions. Moreover, [K] is the smallest collection of minimal ttgs under these 

conditions. 

2.2. EXAMPLES. 

a) Let K be a set of minimal ttgs with a universal element, i.e., there is a 

XE K such that X-? 2: for every 2:E K . Then 

[K] = {X I X is a factor of X } . 

To name a few: 
(i) Let E be the collection of minimal uniformly almost periodic ttgs. 

Then [E) = {X IX is a factor of &; } . 
(ii) Let D be the collection of minimal distal ttgs. Then 

[DJ = {X I X is a factor of 6j);} . 
(iii) Let P , PI , HPI be the collections of minimal proximal ttgs, 

minimal PI ttgs and minimal HPI ttgs respectively. Then 

[P] = P , [PI] = PI and [HPI] = HPI . 
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(iv) Let F be an ~ (~, u )-closed subgroup of G and let M(F) be 

the collection of minimal ttgs such that there is an x EX with 

F <;;;;, @(~, ux) . Then [M(F)] = M(F) ( cf. I.2.11. and I.2.13.b ). 

b) Let WM be the collection of minimal weakly mixing ttgs. Then 

[WM] = WM , for ~ is weakly mixing iff ~· is weakly mixing 

(N.4.17.) and every factor of a weakly mixing minimal ttg is weakly 

mixing. 

c) Let K be a set of minimal ttgs. Then [Kl.] = Kl. ( cf. 2.1. ). 

2.3. THEOREM. Let K be a set of minimal ttgs. For a minimal ttg ~ the 

following statements are equivalent: 
a) ~E Kl.; 

b) ~E [K]l.; 

c) ~~ [K] for every nontrivial quasifactor ~ of ~. 

PROOF. 

b ~a Clear, as Kc;;, [K]. 

a ~ c Let ~E Kl. and suppose that ~E [K] for some quasifactor 

~ of ~ . Then there is a 6Y E K such that ~ is a factor of 6Y* . As 

~E Kl. , ~ 1- 6ll ; hence ~ 1- 6Y* and so ~ 1- ~ . But then ~ has to be 

trivial by 1.1.. 
c ~ b Suppose ~~ [K] l. , then there is a 6ll E [K] with ~ f- 6ll . By 

1.7., there is a nontrivial quasifactor ~ of ~ which is a factor of 6Y* . As 

6Y* E [K] , also ~E [K] . D 

2.4. REMARK. Let K be a set of minimal ttgs containing a universal element 

X . Let C be an MHP generator such that C = u o C and %' = e . 
For a minimal ttg ~ the following statements are equivalent: 

a) ~E Kl.; 

b) ~1- X; 
c) No nontrivial quasifactor ~ of ~ is a factor of %' ; 
d) Cx = X for every x E X ; 

e) Cx = X for some x E X . 

PROOF. The equivalence of b and c follows from 1.7., and clearly, a and b 

are equivalent. 
b ~ d Let x E X and define y: = Px : ~~ ~ . Let F = u o y<-(x) , 

then ~· = '?i". As ~ ..L X, also ~· 1- %' (IV.4.18.); hence, by V.3.9.c, 

C o F = M . But then Cx = C o Fx = Mx = X . 
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d ~ e Trivial. 
e ~ b Suppose Cx = X for some specific x E X . Then we have 

p o Cx = p o X = X for all p E M . We shall prove ex l_ X , from which 

it follows that ex l_ % (IV.4.18.). Let (q o C, x ') E X X ex. As 

X = q o Cx = q o Cux , we have x' E q o Cux ; so there is a net {t; }; in 

T and there are c; E C such that t; ~ q and t; c; ux ~ x' . As 

C = c; o C for every i we have 

q o C = limt; C = limt;C; o C = limt;c;(u o C); 

so (qoC,x')=limt;c;(C,ux). Hence Xxexc;:T(C,ux), and as 

( C, ux) is an almost periodic point, it follows that X X ex is minimal. D 

2.5. EXAMPLES Let ex be a minimal ttg. 
a) exE pl. iff ex does not have nontrivial proximal quasifactors iff 

u o Gx = X for some ( all ) x E X . 

b) exE (H)PI ..1. iff ex does not have nontrivial (H)PI quasifactors iff 

u o G00x = X (Co G00x = X) for some (all) x EX . 

c) exE WM iff ex does not have nontrivial weakly mixing quasifac

tors. 
d) Let K = [K] (e.g. K is P or (H)PI ), then exE K ..1. ..1. iff every 

nontrivial quasifactor of ex has a nontrivial quasifactor in K . 
e) In particular, we have (because of 2.1.c) that exE K ..1. iff every non

trivial quasifactor of ex has a nontrivial quasifactor in K ..1. • 

2.6. 1HEOREM. Let K be D or E and let % be the universal element in 

K . For a minimal ttg ex the following statements are equivalent: 
a) exE Kl.; 

b) ex1- %; 
c) ex has no nontrivial quasifactors in [K]; 
d) ex has no nontrivial factors in K . 

PROOF. The equivalence of a , b and c is just 2.4. (see also 2.2.a (i),(ii) ). 

c ~ d Let ~ be a nontrivial factor of ex in K . Then by IV.3.1., 

there is a quasifactor of ex in [K] which obviously is nontrivial. 

d ~ b Suppose that exf. % . Then, by 1.7. and II.3.7., ex• has a fac-

tor in K . Hence, by I.4.1., ex has a factor in K . D 
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2.7. COROLLARY. Let C:X. be a minimal ttg. 
a) C:X.E E ..L ..L (D ..L ..L) if! every non trivial quasifactor of C:X. has a non

trivial uniformly almost periodic (distal) factor. 
b) D ..L ..L = E ..L ..L , hence D ..L = E ..L . 

PROOF. 

a) Follows immediately from 2.3. and 2.6 .. 

b) Follows from a and I.1.25 .. D 

2.8. THEOREM. Let <f>: c:x.~61J be a distal homomorphism of minimal ttgs. If 

6lJ ED ..L ..L then C:X.E D ..L ..L . In other words: D ..L ..L is closed under 

distal extensions, hence it is closed under HPI extensions. 

PROOF. Suppose that C:X.~ D ..L ..L then there is a nontrivial quasifactor ~ of 

C:X. with ~E D ..L . As 6lJ E D ..L ..L it follows that ~ ...L 6lJ • Hence by 1.6.a, 

~ is distal, but this contradicts the assumption ~E D ..L . So C:X.E D ..L ..L . 

As D ..L ..L is closed under hp extensions and factors (2.1.), it follows that 

D ..L ..L is even closed under HPI extensions. D 

2.9. COROLLARY. HPl..L..L = D..L..L = E..L..L and HPl..L = D..L = E..L. 

PROOF. As { *} E D ..L ..L it follows from 2.8. that HPI C D ..L ..L and so that 

HPI ..L ..L c D ..L ..L . On the other hand, by FST, we know that DC HPI , so 

D ..L ..L C HPI ..L ..L ; hence HPI ..L ..L = D ..L ..L = E ..L ..L . Consequently, 

HPI ..L = HPI ..L ..L ..L = D ..L ..L ..L = D ..L = E ..L . 
D 

Let us first describe some fundamental relations between (disjointness) classes 

of minimal ttgs. For some of these, we need results which will be proved in 

chapter VII .. 

2.10. THEOREM. 

a) PcWMcWM..L..LCD..L; 

b) EcncHP1cn..L..Lcp..L; 
c) PI..L c p..L nn..L = p..L nwM = p..L nwM..L..L; 

d) PC P ..L ..L C D ..L n PI ..L ..L C D ..L ; 
e) n..L..LcWM..L cP..L np1..L..L. 

PROOF. 

a) By I.3.10., every proximal minimal ttg is a weakly mixing ttg; i.e., 

PC WM • As a distal ergodic ttg is minimal (I.1.17. ), a weakly mixing ttg 
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does not admit nontrivial distal factors. (Otherwise, if 6Y were such a factor, 
6Y X 6Y would be distal and ergodic, hence minimal.) Hence, WM C D ..L 

and so WM<;:WM..L..LCD..L..L..L =D..L. 

b) We know that EC D and DC HPI (FST). By 2.8., HPI<;: D..L ..L . 
In a we have seen that PC o..L ; so by 2.1.b, o..L ..L <;;;;: p..L . 

c)As PUD<;:PI (FST), it follows from 2.1.b that PI..L<::p..Lno..L 

By VII.3.11. and VI.2.6., we have P ..L n E ..L <;;;;: WM . Hence, by 2.7 .b, 

p..L no..L cWM<;:WM..L..Lco..L, 

so p _[_ n D _[_ = p _[_ n WM = p _[_ n WM_[__[_ . 

d) Trivial from the fact that P <;;;;: D ..L n PI . 

e) As, by a, PC WM<;: D..L it follows from 2.1.b that 
o..L..L<;:WM..L <;:P..L Bye, PI..L <;:WM; so WM..L <;:PI..L..L. D 

2.11. EXAMPLE. In general, D ..L =I= WM . 

Consider the fourfold covering of the proximal circle, as presented in 
VIII.1.5. (also see I.4.7.). Then 6Y does not admit nontrivial uniformly 
almost periodic factors; so 6Y E E ..L = D ..L . But Q 611 =I= E 611 , whereas, if 6Y 
were weakly mixing, we should have 

Q 611 = n {Ta I a E 6ll.y} = y x y ' so Q 611 = E 611 = y x y . 

In section V.3. we have seen that we can decide about disjointness by consid
ering MHP generators. And from 111.1.6. it follows that in case one of the 
ttgs involved is incontractible, we only need to consider the Ellis groups. So 
(111.1.6. in the absolute case): 

NOTE. Let ~ and 6Y be minimal ttgs with Ellis groups H and F in 
G with respect to some x E uX and y E u Y . If ~E P ..L then 
~...L6Y if! HF= G. 

For the following remember from V.4. (slightly changed): 

a 0 is the MHP generator generated by u o J and A 0 = ua0 . 

aK is the MHP generator generated by u 0 K and AK = uaK , for 

every KE 'JC (i.e., the aK's are the incontractible MHP generators). 

For KE~, aK is a minimal incontractible MHP generator and AK 

is the i)(~,u)-closed subgroup of G generated by u(u oK). 
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Remember that ~E P J_ iff ~ is a factor of «.K for some K E 9C 

(V.4.4.). 

2.12. THEOREM. Let ~ be a minimal ttg with Ellis group B. 

a) The following statements are equivalent: 
(i) ~E DJ_; 

(ii) BAoH(G) = G; 
(iii) BAKH(G) = G for every KE 9C ; 
(iv) BAK Goo= G for every KE 9C°; 
(v) BAK Goo = G for some KE 9C' . 

b) ~EPJ_J_ iff BAK=G forevery KE9C. 

PROOF. 

a) The equivalence of (iii) and (iv) follows from 111.2.13.c and, obvi

ously, (v) follows from (iv). As AK!:;;; A 0 and G00 !:;;; H(G), (v) implies (ii). 

By V.4.10., (iii) follows from (ii). 

From 2.7.b and 2.6. we know that ~E DJ_ iff ~..Lt!;. Hence, by 111.1.6. 

and V.4.10., we have ~E DJ_ iff BA 0H(G) = G . 

b) As every incontractible minimal ttg is a factor of some «.K , it fol

lows that ~E PJ_ J_ iff ~..L ~ for every KE 9C. But «.KE PJ_ , so 

~.L '1,K itf BAK = G . So ~E p_l_ J_ iff BAK = G for every KE 9C. 0 

2.13. THEOREM. 
a) PJ_ n PI!: DJ_ J_, hence DJ_ = (PJ_ n PI)J_ . 
b) DJ_ n PI!:; PJ_ J_, hence PJ_ =(DJ_ n PI)J_ . 

PROOF. 

a) Let ~E PJ_ n PI and let 6YE DJ_ . We shall prove that ~..L 6Y. 

Let B and F be the Ellis groups of ~ and 6Y respectively. As 

~E PJ_ it follows from V.4.4. that there is a KE 9C such that ~ is a fac

tor of «.K , and so that AK !:;;; B • As ~ is a PI ttg it follows from 111.4.4. 

that G00 !:;;; B ; hence AK Goo!:;;; B . By 2.12.a, we know that FAKGoo = G . 

So G = FAKGooC FB, which shows that G = FB . Hence, by 111.l.6., 

~ .L 6Y , and consequently P J_ n PI!:;;; DJ_ J_ . 

Therefore, by 2.1., DJ_ !: (P J_ n PI) J_ . On the other hand, D !: P J_ n PI ; 

so (P J_ n PI) J_ !:;;; DJ_ , which proves statement a. 

b) Let ~E DJ_ n PI and let B be the Ellis group of ~ . Then by 

111.4.4., G00 !:;;; B . Let KE 9C. As ~E DJ_ , it follows from 2.12.a that 

BAK Goo = G . Since G00 is a normal subgroup, G = BGooAK , and as 

G00 !:;;; B , we have G =BAK . But then, by the incontractibility of «.K , it 
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follows from 111.1.6. that 'X l_ {:i,K • As K was arbitrary, 'XE P 1- 1- and 
consequently, D 1- n PI C P 1- 1- . 

Therefore, by 2.1., P 1- C (D 1- n PI) 1- • On the other hand, PC D 1- n PI ; 
so (D1- n PI)1- C p1- . D 

In case the Ellis group is a normal subgroup, or (stronger) if one of the ttgs is 
regular, we can generalize 2.13. slightly. For that purpose let A be the col-

lection of factors of lfo = 2ff(a0 , ~) and note that DC AC P 1- • 

2.14. REMARK. Let 'X be a minimal ttg with Ellis group H . 
a) If HA 0 is a group then 'XE D 1- n PI 1- 1- implies 'XE A 1- . 

b) If H is a normal subgroup in G then 'XE An PI 1- 1- implies 
'XE D1- 1-. 

c) If 'X is a factor of a regular incontractible minimal ttg <x: then 
'XE PI 1- 1- ( n P 1-) implies 'XE D 1- 1- . 

d) If 'XE D 1- n PI 1- 1- and 61:1 E P 1- with 61:1 regular, then 'X l_ 61:1 . 

PROOF. 

a) First note that the fact that HA 0 is a group implies that a0 o H is 

an MHP generator and a0 oH = u oJ oHA 0 (apply V.1.10.). 

As 'XE D1- we know, by 2.12.a, that HA 0G00 = G . So 

a 0 o H o u o G 00 = u o J o HA 0G 00 = u a J o G = u o M = M . 

Hence, by V.3.9., 

2ff(a 0 o H, ~) l_ 2ff(u o G00 , ~) ; 

i.e., 2ff(a 0 oH,~)EPI1-. As 'XEPI1-1-, 'Xl_2ff(a0 oH,~). So, by 

111.1.6. and the incontractibility of 2ff( a0 o H, ~) , we have H.HA 0 = G ; 

hence HA 0 = G . The incontractibility of lfo and 111.1.6. imply that 
'X l_ lfo ; i.e., 'XE A 1- • 

b) Let 61:1E D1- and let F be the Ellis group of 61:1. Let [FA 0] be 
the ~ (~. u) -closed subgroup of G generated by FA 0 . Note that 

aoo [FA 0] is an MHP generator (V.1.10.). 

As 61:1E D1- , we know, by 2.12.a, that FA 0G00 = G ; so [FA 0]G00 = G . 

Hence 

a 0 o [FA 0)o u o G00 = a 0 o [FA 0)G00 = a 0 o G = M . 

This shows that 2ff(a 0 a[FA 0),~)EPI1-. As 'XEPI1-1- it follows that 
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'X1- 2!f(a0 o [FA 0], ~) and so, by III.1.6. and the incontractibility of 

2!f(a0 o [FA 0], ~),we have H. [FA 0] = G . But H is a normal subgroup, 

so (using III.2.11.) 

G =H. [FA 0] = [HFA 0] = [FHA 0]. 

As 'XE A, A 0 c; H ; hence G = [FH] = FH ( H is a normal subgroup). 

By III.1.6. and the fact that 'XE AC P J_ it follows that 'X 1- 6Y . 

c) Let 6.X: be a regular incontractible minimal ttg such that 'X is a 

factor of 6.X: • By V.3.6.a and IV.4.18., we may assume 6.X: to be an MHP 

ttg; say generated by an MHP generator C such that C = u o C and 

uC C H . As 6.X: is incontractible, we can find a K E % such that 

KC CnJ. Then aKc c and AKCH. Let 6YEDJ_ and let F be 

the Ellis group of 6Y. Then by 2.12.a, FAKGoo = G . As 

FAKGoo = GooAKF = AKGooF = AKFG00 = G , 

we have 

so M =Co F o G00 • As 6.X: is regular, Co F is an MHP generator 

(V.2.4.d, and compare it with the proof of V.3.5.). Hence, by V.3.9., it follows 

that 2fff ( C o F, ~) E PI J_ . By assumption, 'XE PI J_ J_ , so 

'X1-'il2f(CoF,~). After noting that 'il2f(CoF,~)EPJ_ and that 

2!f( C o F, ~) has Ellis group uCF , it follows from III.1.6. that 

H.uCF = G . But uC CH , so HF= G . As 'XE PJ_ it follows that 

'X1-6Y. 
d) Without loss of generality 6Y is an MHP ttg, say generated by an 

MHP generator D with D = u o D and a o D = Da for every a E G . 

As 'XE DJ_ , we have AKHG00 = G = HAKGoo for every KE%. Hence 

D o Ho G00 = M ; and as D o H is an MHP generator, we have 

2!f(D o H, ~) E PI J_ . By assumption, 'X 1- 2!f(D o H, ~) . As 6Y E P J_ , 

'il2f(D o H, ~) E P J_ ; so by III.1.6. and by the fact that uDH is the Ellis 

group of 'il2f(D o H, ~) , it follows that uDH.H = G , so uDH = G . 

Hence D o H = M and by V.3.9., 6Y is disjoint from the maximal proximal 

extension of 'X ; so 6Y J_ 'X . 0 

Another consequence of 2.12.a is the following: 
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2.15. REMARK. PI l. = Pl. n D l. . 

PROOF. We already know that PI l. C Pl. n D l. (2.10.c ). 
Conversely, let ~E Pl. n D l. ; then also ~· E Pl. n D l. . Let C be an 

MHP generator with C = u o C and ~· = e , say C = KH with KC J 

and H = uC . As ~· E Pl. , C o G = u o Ko G = M ; and as ~· E D l. , 

HAKGoo = G . But AK CH , so HG00 = G and consequently, 
M = Co G = Co Ho G00 = Co G00 , i.e., ~· E PI l. . D 

VI.3. CLASSES AND EXTENSIONS 

We continue the study of the relations between disjointness classes. But 
now we take a slightly different point of view. Let <j>: ~~ 61:1 be a 
homomorphism of minimal ttgs, when is every minimal ttg which is dis
joint from 61:1 disjoint from ~ too? 

The following is a variation on I.4.1. (for a stronger version see VII.4.9.). 

3.1. LEMMA. Consider the next commutative diagram of homomorphisms of 

minimal ttgs. 

I/; 
~ 2'. 

·1 
..--"' 

1" 
..--

() ,..,.... ..--
;..--...--...--...--...--

61:1 
~ 

6lil 

Let 11 be distal and </> weakly mixing. If ~ is metric or if 6lil = { *} 
then there is a homomorphism (): 61:1 ~ ~ such that the diagram commutes. 

PROOF. As R.p is ergodic, l[; X l[;[R.p] is ergodic and, clearly, 

l[; X l[;[R.p]C R 11 • 

If 6llf = {*}, R 11 = Z X Z and l[; X l[;[R.p] is distal. Hence, by 1.1.17., 

o/ X o/ [ R .p] is minimal. 
If ~ is metric, l[; X l[;[R.p] is metric, hence point transitive (I.1.2.b). As R.,, 
is pointwise almost periodic, l[; X l[;[R.p] is pointwise almost periodic, hence 

minimal. 
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Clearly, tl.z = o/ X o/[tl.x]C o/ X o/[Rq.], so (in both cases) tl.z = o/ X o/[Rq.] 

and Rq.C (o/ X o/)~[tl.z] = R"'. But then there is a homomorphism 

fJ: 6JJ"" ~/Rq.~~"" ~/Rif. D 

3.2. COROLLARY. Let q,: ~~6JJ be a weakly mixing homomorphism of 

minimal ttgs. Then 6JJ E D .L if! ~E D .L . 

PROOF. If ~E D .L then clearly, 6JJ E D .L . 

Conversely, suppose that 6JJ E D .L and let ~ be a distal factor of ~. Then 

by 3.1., ~ is a factor of 6JJ • Hence, by 2.6. and the fact that 6JJ E D .L , it 

follows that ~ is trivial. So by 2.6., ~E D .L . D 

For a minimal ttg ~ we shall denote {~} .L by ~ .L . 

3.3. THEOREM. Let q,: ~~ 6JJ be a distal extension of minimal ttgs. 
a) If ~E D.L then ~.L = 6JJ.L • 
b) n.L n ~.L = n.L n 6/J.L . 

PROOF. In both cases the inclusion " c; " is obvious. 
Let ~ be a minimal ttg with ~E 6JJ .L and suppose that ~~ ~ .L . Without 

loss of generality we may assume that ~ is an MHP ttg (IV.4.18.). By 1.7., 

there is a nontrivial quasifactor 6!Jf of ~ which is a factor of ~ . As 

~E 6JJ .L , also 6!Jf E 6JJ .L . Hence, by 1.6.a, 6!Jf is distal. 

a) If ~E n.L then ~J_ 6llf, which contradicts 1.1.. 

b) If ~E D .L then 6llf E D .L , contradicting the distallity of 6!Jf • D 

3.4. COROLLARY. Let q,: ~~6JJ be an HP! extension of minimal ttgs. 
a) If ~E D.L then ~.L = 6JJ.L • 
b) n.Ln~.L =D.Ln6JJ.L. 

PROOF. Without loss of generality we assume that ~ and 6JJ are MHP ttgs 

(IV.4.18., IV.5.1.). By IV.5.2., q, is strictly-RPI. Applying 3.3. to the almost 

periodic steps in the strictly-RPI tower for q,, IV.4.18. to the hp steps and 

1.3.1.b to the inverse limits, the corollary follows. D 

3.5. THEOREM. Let q,: ~~ 6JJ be a proximal extension of minimal ttgs. 
a) If ~E p.L then ~.L = 6JJ.L • 
b) p.L n ~.L = p.L n 6JJ.L • 
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PROOF. Clearly, 'X.L c 6]j.L . Let ~ be a minimal ttg with ~J_ 6]j such that 

~ -f 'X and without los of generality we may assume that ~ = ~ . Then, 

by 1. 7 ., there exists a nontrivial quasifactor 6llf of 'X which is a factor of 

~ . As ~ J_ 6]j also 6llf J_ 6]j . 

a) If 'XE p.L then by 1.4.b, 6llf -f 6]j which is a contradiction. 

b) If ~E p.L then 6llfE p.L ; hence, again by 1.4.b, 6llf -f 6]j. D 

The proof of the next theorem is not similar to the proof of 3.4., although 

such seems to be logical at first sight. The reason is that we do not know 

whether for an incontractible ttg 'X and a PI extension cf>: 'X-+ 6]j there is a 

strictly-PI tower in P .L that factorizes over cf> , which is necessary for appli

cation of 1.4 .. 

3.6. THEOREM. Let cf>: 'X-+"]j be a PI extension of minimal ttgs. 

a) If 'XE Pl.L then 'X.L = "]j.L . 
b) p1.L nix.L = Pl.L n"]j.L. 

PROOF. Let H and F be the Ellis groups of 'X and 6]j with respect to 

some x 0 E uX and cf>(yo}E uY respectively. Remember that cf> is a PI 

extension iff F00 !: H (111.4.4.); and note that always 'X.L !: "]j.L . 

a) Let ~E 6]j .L , and let L be the Ellis group of ~ . As 'XE PI .L , 

clearly, "]jE Pl.L C p.L . Hence, by III.1.6., LF = G ; so, by 111.2.13.b, 

LF00 = LG00 • As F00 !: H we have LG00 = LF00 !: LH and so 

LH = LuH !: LG00H !: LHH = LH; i.e., LH = LG00H. 

Since 'XE Pl.L, also 'XEP.L and 'X_l_2:f(u 0G00 ,~); hence, by 111.1.6., 

HG00 = G00H = G . But then LH = LG00H =LG = G . By 111.1.6. and 

the incontractibility of 'X , it follows that 'X J_ ~ . 

b) Let ~ be a minimal ttg with Ellis group L such that ~E PI .L 

and ~J_ 6]j. Then LF = G and so LF00 = LG00 • As ~E Pl.L , we have 

LG00 = G so G = LG00 = LF00 C LH . Since ~E p.L it follows that 

~_l_'X. D 

The next corollary is in the same spirit as 1.4. and 1.6 .. 

3.7. COROLLARY. Let cf>: 'X-+"]j be a homomorphism of minimal ttgs and let 

~ be a nontrivial quasifactor of 'X . 

a) If 'XE D.L and if cf> is an HPI extension then ~f 6]j. 

b) If 'XE PI .L ·and if cf> is a PI extension then ~ -f 6]j . 

PROOF. Follows immediately from 3.4.a, 3.6.a and 1.1.. D 
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We shall now give a variation on 3.4. through 3.6., dealing with classes rather 
then with ttgs. 

3.8. THEOREM. Let K be a set of minimal ttgs. 
a) If KC D _i_ then K _i_ is closed under HPI extensions. 
b) If KC P _i_ then K _i_ is closed under proximal extensions. 
c) If KC PI _i_ then K _i_ is closed under PI extensions. 

PROOF. 

a) Let 6l:IE K_i_ and let <f>: cx~61:1 be a HPI extension of minimal ttgs. 
Then KC 61:1 _i_ n D _i_ and by 3.4.b, 

Kccx_i_no_i_ =6l:IJ_no_i_, 

hence 'XE K _i_ . So K _i_ is closed under HPI extensions. 
b and c are proven similarly using 3.5.b and 3.6.b instead of 3.4.b. D 

3.9. EXAMPLES. 

a) P _i_ , WM _i_ and D _i_ _i_ are closed under HPI extensions. 
b) D _i_ , WM _i_ _i_ and P _i_ _i_ are closed under proximal extensions. 
c) PI _i_ _i_ is closed under PI extensions. 

3.10. THEOREM. Let K be a set of minimal ttgs. 
a) K _i_ is closed under HPI extensions within D _i_ . (i.e., suppose that 

61:1 E K _i_ , let </>: ex~ 61:1 be an HPI extension of minimal ttgs and 
let 'XE D _i_ then 'XE K _i_ ). 

b) K _i_ is closed under proximal extensions within P _i_ . 
c) K _i_ is closed under PI extensions within PI _i_ . 

PROOF. 

a) Let 6l:IE K_i_ and let <f>: cx~61:1 be an HPI extension of minimal 
ttgs. If 'XE D _i_ then by 3.4.a, 'X _i_ = 61:1 _i_ . As 61:1 E K _i_ , we have 
KC 6l:l_i_ = 'X_i_ and so 'XE K _i_ . 

band care proven similarly. D 

3.11. EXAMPLES. 

a) P _i_ _i_ and WM _i_ _i_ are closed under HPI extensions within D _i_ ; 

hence, by 3.9.b, they are closed under PI extensions within D _i_ . 
b) D _i_ _i_ and WM _i_ are closed under proximal extensions within 

P_i_ ; so, by 3.9.a, they are closed under PI extensions within P_i_. 
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3.12. COROLLARY. 

a) D _l n PI = p _l _l n PI = WM _l _l n PI . 

b) p _l n PI = D _l _l n PI = WM _l n PI . 

PROOF. Follows from 2.10. and 3.11. (and also from 2.10. and 2.13.). 0 

3.13. REMARK. In case T does not admit nontrivial proximal minimal ttgs 

( T strongly amenable) the following relations hold: 
a) D -1 = PI -1 = WM = WM -1 -1 ; 

b) PI C D -1 -1 = PI -1 -1 = WM -1 . 

PROOF. As T is strongly amenable, every T -minimal ttg is in P .l . So, by 

2.10. and 2.13.a, 

WM= WMn p-1 = p-1 n D_l = D_l = PI_l , 

hence D -1 = WM C WM -1 -1 C D -1 . But then WM -1 = D -1 -1 = PI -1 -1 • 

The inclusion PI C PI .l .l = D .l .l is trivial. 0 

Note that D .l .l -=!= PI (see [G 80]). 

In the following pictures we recapitulate the results of section 2. and 3. in the 

absolute case. First the case that T is strongly amenable: 
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T arbitrary: 
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VI.4. DISJOINTNESS AND RELATIVE PRIMENESS 

It is well known and easy to see that two disjoint ttgs are relatively prime 
(i.e., do not admit nontrivial common factors). In [F 67) the question is 
raised whether or not relative primeness is sufficient to imply disjointness. 
It turns out that even in the case that T is abelian the answer has to be 
in the negative [GW ?]. 
In this section we shall deal with the problem to what extent disjointness 
is implied by not having a common distal factor. 

As we did in section 3., we shall use the notions introduced in V.4. without 
further notice. 
If in the sequel we attach an Ellis group H to a minimal ttg ~ , then we 
mean that there exists an x E uX such that H = uMx = @(~. x) . 
Let E be the Ellis group of 6; , the universal minimal uniformly almost 
periodic ttg for T (cf V.4.10.). 
First we shall pay attention to the property of having a common distal factor. 

4.1. THEOREM. Let ~ and 6Y be minimal ttgs with Ellis groups H and 
F. Suppose that HFE is a group. Then the following statements are 

equivalent: 
a) ~ and 6Y have a nontrivial common distal factor; 
b) HFE =I= G; 
c) HFA 0H(G) =I= G; 
d) [HFJA0G00 =I= G; 
e) [HFJAKGoo =I= G for every KE X. 
Here [HF] denotes the 'iH~.u)-closed subgroup of G generated by 
HF. 

PROOF. First note that, by V.4.10., E = A 0H( G) = AK H( G) for every 
K E X . This shows the equivalence of b and c. 

As HFE is a group, HFE = [HF]E ; so 

HFE =[HF]Aoff(G)=[HFJAKH(G) for every KEX. 

Hence, by 111.2.13.c, 

HFE =I= G iff [HFJA0G00 =I= G iff [HFJAKGoo =I= G for every KE X. 

This reduces the proof of the theorem to showing the equivalence of a and b. 
b ~ a Let L : = HFE . As L is a group, L is the Ellis group of 

2l(L). By 111.1.15., 2l(L) is a factor of 2£(£). As E~<E> = P~(E) it 
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follows from 1.4.3. that EIJ!(L) = PIJ!(L); so 2l(L) has a uniformly almost 

periodic factor ~ with Ellis group L . By the assumption of L =I=- G , ~ 

is nontrivial. As 2l (L) is a factor of both 2l (H) and 2l (F) (Ill.1.15.), it 

follows from 1.4.1. that ~ is a common factor of 'X and 611 • 

a==> b If 'X and 611 have a nontrivial common distal factor, it follows 

from 1.1.25. that 'X and 611 have a nontrivial common uniformly almost 

periodic factor ~ . Let N be the Ellis group of ~ such that F c;; N . As 

~ is a factor of f9 , also E c;; N . Since ~ is a factor of 'X , there is a 

g E G such that gHg- 1 C N . Hence gHg- 1FE C N . 

Suppose HFE = G . As FE is a group (1.2.17. and 1.2.15.), it follows from 

1.3.3.b that Hg- 1FE = G . But then gHg- 1FE = G and N = G , which 

contradicts the nontriviality of ~ . D 

4.2. THEOREM. Let 'X and 611 be minimal ttgs with Ellis groups H and 

F and suppose that HFE is a group. If 'X or 611 is incontractible 

then the following statements are equivalent: 

a) 'X and 611 have a nontrivial common distal factor; 

b) HFH(G) =t=- G ; 
c) HFG00 =I=- G . 

PROOF. The equivalence of b and c is just III.2.13.c. 

By the equivalence of 4.1.a and 4.1.b it is sufficient to prove that 

HFE = HFH(G) . As follows: 

Without loss of generality let 'XE p.L . Then, for some KE 9C, AK c;; H ; 

and so H = HAK . By V.4.10., we have 

HH(G) = HAKH(G) =HE . 

Hence, by normality of E and H(G), 

HFH(G) = HH(G)F = HEF = HFE . 
D 

4.3. REMARK. Let 'X and 611 be minimal ttgs with Ellis groups H and F . 

In each of the following cases HFE is a group: 

a) HF is a group; 
b) 'X or 611 has a regular maximal uniformly almost periodic factor; 

c) 'X/E~..L 611/E<fl. 

PROOF. 

a) If HF is a group it follows from the normality of E that HFE 

is a group. 
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b) By 111.3.13. and I.2.15., we have that HE or FE is a normal sub

group, hence HFE ( = HEP) is a group. 

c) As 'X/E-x,E pl.. it follows from III.1.6. and III.3.13. that 

HEFE = G, so HFE = G and HFE is a group. 0 

4.4. COROLLARY. Let T be an abelian group. Let 'X and 6Y be minimal 

ttgs for T with Ellis groups H and F . Then the following statements 

are equivalent: 
a) 'X and 6Y have a nontrivial common distal factor; 

b) HFH(G) =I= G ; 
c) HFG00 =I= G . 

PROOF. Follows from 4.2., 4.3.b and 1.2.16 .. 0 

Now we turn to the problem to what extent disjointness is implied by relative 

primeness. 

4.5. 1HEOREM. Let 'X and 6Y be minimal ttgs with Ellis groups H and 

F such that HF is a group and suppose that 'XE D l.. l.. • Then 

'X .l 6Y if! 'X and 6Y are relatively prime. 

PROOF. Clearly, the "only if"-part is true. 

Suppose that 'X and 6Y are relatively prime. Then 'X and 6Y do not have 

a nontrivial common distal factor. So, by 4.3.a and 4.1., it follows that 

HFE = G . As ©E pl.. and as HF is the Ellis group of SJJ.(HF) it fol

lows from IIl.1.6. that SJl (HF) .l © ; in other words, SJl (HF) E D l.. = El.. . 

As 'XE D l.. l.. , 'X .l SJl (HF) . Hence, by IIl.1.6. and the incontractibility of 

'X (Dl..l..!;;;pl..) we have H.HF=G. So HF=G; and again by 

III.1.6. and the incontractibility of 'X , it follows that 'X .l 6Y • 0 

The next theorem slightly generalizes [EGS 76) 4.3 .. 

4.6. TIIEOREM. Let 'X and 6Y be minimal ttgs with Ellis groups H and 

F. Let 'XE pl.. and assume that HFE is a group (e.g. T abelian). 

If G00 !;;; HF, then 'X-1611 if! 'X and 6Y are relatively prime. 

PROOF. Clearly the "only if" -part is true. 

Suppose that 'X and 6Y are relatively prime. Then 'X and 6Y do not have 

a nontrivial common distal factor. As 'XE Pl.. it follows from 4.2. that 

HFG00 = G . Since G00 is normal in G , G = HFG00 = HG00F . But 

G«J!;;; HF; so 
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G = HG00F ~ H.HF.F = HF . 

Hence, by III.1.6., ex J_ 611 . D 

4.7. REMARK. Let H and F be 'i5(~,u)-closed subgroups of G such 

that G00 ~HF . Assume that H is the Ellis group of some incontracti

ble minimal ttg and assume that IJ! (H) or IJ! (F) has a regular maximal 

uniformly almost periodic factor (those assumptions are satisfied if T is 

abelian). Then [HF] = G implies HF = G , where [HF] is the 

'i5 (~, u) -closed subgroup of G generated by HF (compare [E 81] 

1.1.1.). 

PROOF. If [HF]= G then [HF]E = G . As by the assumption (and by 

4.3.) it follows that HFE is a group, we have HFE = G . As H is the 

Ellis group of an incontractible minimal ttg, HFE = HFH(G). So, by 

III.2.13.c, HFG00 = G . By normality of G00 , HFG00 = HG00F = G . Since 

G00 ~HF, G =HFG00 =HG00F~HHFF =HF. D 

4.8. THEOREM. Let ex and 611 be minimal ttgs with Ellis groups H and 

F . Assume ex to be incontractible and regular. If ex or 611 is in 

PI 1- 1- , then ex J_ 611 if! ex and 611 are relatively prime. 

PROOF. Clearly the "only if" -part is true. 

Suppose that ex and 611 are relatively prime, then they do not have a non

trivial common distal factor. So by 4.2., HFG00 = G . 

Let C be an MHP generator with C = u o C and uC ~ H , such that 

ex• = e. By V.3.6.a, ex• is regular; so Co F is an MHP generator. By 

IV .4.17 ., ex* is incontractible; so 2S( C o F, ~) as a factor of ex* is 

incontractible. Note that HF= u(C o F) is the Ellis group of the ttg 

2S(CoF,~). 

By III.1.6., it follows from HFG00 = G that 

2S(C oF,~) J_ 2S(u o G00 ,~). 

As 2S(u o G00 , ~) is the universal PI ttg, we have 2S( Co F, ~) E PI 1- • 

By assumption, ex or 611 is in PI 1- 1- , so 2S( C o F, ~) is disjoint from 

ex or 611 . By III.1.6. and the incontractibility of 2S( C o F, ~) it follows 

that H.HF = G or F.HF = G . In both cases, HF= G ; hence exJ_ 6110 
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VI.5. REMARKS 

5.1. The role of quasifactors in disjointness problems is slightly touched at 
in [G 75] and more in [AG 77] (e.g. Theorem 11.2. which was in fact the start
ing point for the study presented in this chapter). But there does not seem to 
be a detailed study in the literature except for [Wo 79.1]. In that paper a 
proof of 1.6.a is given, which is striking because of its length rather than its 
cleverness; so we replaced it by the proof J. AUSLANDER gave by proving 1.5 .. 

QUESTIONS 

a) (See 1.4. and 1.6.) Let cp: cx.~6Y be a proximal extension of minimal 
ttgs and let 2: be a nontrivial quasifactor of CX., such that 2:..l 6Y • Is 
2: proximal? is 2:E P 1- 1- ? 

b) Suppose cp: cx.~6Y is weakly mixing. Can we formulate a theorem in 
the spirit of 1.6.? 

c) Let 2: be a nontrivial quasifactor of CX.. When is 2:E ex,1- 1- ? 
Note that the following statements are equivalent: 
(i) CX. 1- ~ 2: 1- for every quasifactor 2: of CX. ; 
(ii) 2:E CX. 1- 1- for every quasifactor 2: of CX. ; 
(iii) CX. .f 6Y for every quasifactor 6Y of any quasifactor 2: of CX. . 

5 .2. Disjointness classes (as studied in VI.2.) like D 1- , WM 1- , E 1- and 
PI 1- are treated in former papers [K 71], [Pe 73] and [S 71]. In those 

papers there are many restrictions on the ttgs. For instance [K 71] deals with 
strictly-quasi separable minimal ttgs for an abelian group T . In [Pe 70] it is 
proved that D1- =WM for an abelian group T (cf. 3.13.); and [S 71] 
deals mainly with metric minimal ttgs. 
However, since the deep results in [E 78] and [V 77] many of those restric
tions became superfluous. Hence many results in VI.2. (and VI.3.) are gen
eralizations of known results for special cases. Note that VI.2.8. was already 
in [AG 77]. 
In 5.5. and 5.6. below we shall look at some questions that could arise with 
respect to section llI.2., namely the characterization of elements of [E] and 
the characterization of ttgs without proximal factors. 
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QUESTIONS 

Are the following equations true? 
a) WMJ_J_ =DJ_; 
b) PI J_ J_ n D J_ = P J_ J_ ; 
c) PI J_ J_ n DJ_ = DJ_ J_ . 

5.3. Questions about extensions and disjointness were formerly studied in 

[S 71], [W 74] and [AG 77], but none of the results mentioned in VI.3. seems 

to be in the literature (at least in the generality we give). 

QUESTION 

Let <f>: ?X.-7 61:1 be weakly mixing. Do the following statements hold true? 

(compare 5.1.b, 3.4., 3.5. and 3.6.) 
a) If ?X.E WM J_ then ?X.J_ = 61:1J_ 
b) WMJ_ nxj_ = WMJ_ n61:1J_. 

5.4. In the literature several times the question is considered whether or not 

relative primeness implies disjointness, and partial results are obtained 

([K 71], [E 69], [P 72], [K 72], [EGS 76]). An example by A.W. KNAPP [Kn 68] 

shows that for uniformly almost periodic minimal ttgs one can construct 

counter examples (see [E 69] 18.11.); more counterexamples (even for Z) can 

be found in [GW ?]. For a compilation of the known results see [B 75179] 

section 3.19.. Many of the partial results obtained in the papers mentioned 

above are special cases of the results in our section 4.. The one that comes 

close to our result 4.6. is [EGS 76] 4.2., where minimal ttgs are considered 

such that the u -invariant part is T-invariant ( TuX = uX for some idempo

tent u E J ). 

Note that the problem whether or not disjointness is implied by relative 

primeness can be restated for MHP ttgs as follows: 

Let C and D be MHP generators with C = u o C and D = u o D . 

Under what condition does [ C U D] = M imply Co D = M , where 

[ C U D ] is the smallest MHP generator that contains both C and D 

A question we ran into implicitly in sections 2. and 4. is the following: 

Let L be an Ellis group and let ax be an MHP generator as in V.4. and 

let [ ax u u o L] be the smallest MHP generator that contains ax and 

uoL. Then AxL<;;;u[axUuoL]; but when is [AxL]=u[axUuoL]? 
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5.5. In VI.2.6. we characterized the minimal ttgs in DJ_ as the minimal 
ttgs without distal factors. Does a similar result hold for P J_ ? 

REMARK. Let ~ be a regular minimal ttg. Then ~E P J_ if! ~· does 
not have nontrivial proximal factors. 

PROOF. The "only if"-part is trivial (1.1.) 

Suppose ~· does not admit nontrivial proximal factors. Let C = u o C be 
an MHP generator such that ~· =e. Then, as ~· is regular (V.3.6.), 

C o G is an MHP generator. As !2!f( C o G , ~) is a factor of ~· and as 

~( C o G, ~) is proximal, it follows from the assumption that 
~(Co G, ~) is trivial; hence Co G = M . But then, by V.3.9., 
~(u o G, ~) l_ ~· , so ~· E PJ_ ; hence ~E PJ_ D 

The following theorem gives a necessary and sufficient condition for a 
minimal ttg to have a nontrivial proximal factor (T.S. wu, private communi
cation). 

THEOREM. A minimal ttg ~ has a nontrivial proximal factor if! there is 
a nontrivial u.s.c. equivariant map <J>: ~---? 2-x, with 
(i) </>(x)n<J>(x')=F 0 implies <J>(x)=<J>(x'); 
(ii) <J>[X] ~ 2x has a nontrivial proximal subttg. 

PROOF. 

"~" Let If;:~---? 6Y be a homomorphism and let 6Y be proximal. 
Define <J>: ~--?2<X. by <J>(x) = lf;<-lf;(x). Then, by 11.1.3.b, </> is u.s.c .. 

Clearly </> is nontrivial and it satisfies (i). Also </> satisfies (ii), for the 
representation 61:1' of 6Y in ~ is proximal and clearly Y' ~ <J>[X] (see 
IV.3.3.). 

"~"Since </> is u.s.c., for every A E </>[X] we can find an x EX 
with A ~ </>(x) . Define a relation R on </>[X] by (A ,A') ER iff 
A U A'~ </>(x) for some x E X . Then R is a T-invariant equivalence 

relation ((i)) which is closed (u.s.c.). Define Y = <J>[X)/R then 6Y is a ttg. 

Define If;:~---? 6Y by lf;(x): = R [</>(x )] . Then If; is a homomorphism, for 
equivariance is obvious. Let { x; }; be a net converging to x E X . Then 

lim lf;(x;) = limR [</>(X; )) = R [lim<J>(x;)) . 

By upper semi continuity, lim<J>(x;)~<J>(x); so R[</>(x)]=R[lim<J>(x;)]. 
But then 

lim lf;(x;) = R [lim</>(X; )] = R [</>(x )] = lf;(x) , 
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and t[l is continuous. Clearly t[l is a surjection and, as cp is nontrivial, ~ 
is nontrivial. As ~ is minimal, ~ is the image of the nontrivial proximal 
subttg in cp[X], so ~ itself is proximal. D 

5.6. The elements of [E] can be characterized as the locally almost periodic 
minimal ttgs, as follows: 
In [MW 72] it is shown that a minimal ttg ~ is locally almost periodic iff 
~ is proximal equicontinuous such that for every open U in X there is 

an xEX with P-x[x]={x'EXl{x,x')EP-x}CU. So a minimal ttg 
~ is locally almost periodic iff ~ is an hp extension of an uniformly 

almost periodic minimal ttg. 
(For let ~ be locally almost periodic. Then there is an uniformly almost 
periodic ttg ~ and a proximal map cp: ~~ ~ . Let UC X be open and 
let x EX be such that P-x[x]C U, then cp<--cp(x)C P-x[x]C U ; so cp is 
irreducible, hence highly proximal. Conversely, suppose that ~ is an hp 
extension of a uniformly almost periodic minimal ttg; say cp: ~~ ~ , where 

cp is hp, and with ~ E E . Clearly, ~ is proximally equicontinuous. Let 
U C X be open and let y E Y with q,<--(y) C U . Let x E q,<--(y) ; then 
P-x[x] = cp._(y)C U. Hence ~ is locally almost periodic.) 

So clearly, [E] contains all locally almost periodic minimal ttgs. Conversely, 
note that, by the above, &* is locally almost periodic, and that local almost 
periodicity is preserved under factors (use the characterization above and 
apply I.4.3.a,b and e). It follows that every element of [E] is locally almost 
periodic. Hence &* is the universal minimal locally almost periodic ttg, and 
every element of [E] is an hp extension of a uniformly almost periodic ttg. 
For a discussion of the relativized concept see [MW 80.l]. 

QUESTION 

Does there exist a similar characterization for the elements of [D] ? 

5.7. The material in chapter VI. could have been treated in a (more) relativ
ized version, in the following way: 
Let ~ be a minimal ttg and consider all extensions of ~.Then prove simi
lar results as in this chapter, where ~ plays the role of the trivial ttg. For 
convenience it will be desirable to take for ~ an MHP ttg, as openness of 
maps will turn out to be needed many times. For example see [B 75179] sec
tion 3.19. 



VII 

WEAK DISJOINTNESS 

1. relatively invariant measures 

2. ergodic points 

3. weak disjointness and maximally almost periodic factors 

4. remarks 

This chapter is almost entirely devoted to weak disjointness in relation to 
almost periodic factors, or rather to the equicontinuous structure relation. In 
doing so we profit from a decent additional measure structure on the fibers of 
a certain kind of homomorphism, which is, in fact, a relativization of the 
concept of invariant measure. 
Therefore, the first section deals with the notion of Relatively Invariant 
Measure (RIM). Homomorphisms that admit such a RIM (RIM extensions) 
turn out to behave nicely with respect to the equicontinuous structure rela
tion and weak mixing. As we are more interested in the properties of RIM 
extensions and their uses than in the technical background, we shall refrain 
from selfcontainedness and we shall refer to the literature for a few (techni
cal) proofs. Most of the results in section 1. are well known and can be 
found for instance in [G 75.2], [M 78] or [VW ?], but we end the section with 
some new (although artificial) thoughts on a condition which is weaker than 
having a RIM. 
In the second section we study the ergodic behavior inside the neighbourhood 
of a point (in its fiber with respect to a homomorphism). The main result is a 
generalization of [G 75.l] 1.1.; we prove that an open proximal homomor
phism of minimal ttgs is weakly disjoint from every homomorphism of 
minimal ttgs with the same codomain. 
As it turns out to be unsatisfactory to be stuck to choices of points and their 
fibers, we take a more global view in the third section. There the approach 
gives more results and we are able to generalize known results on weak 
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disjointness to situations without countability assumptions. For instance, we 

show that two homomorphisms cp and if; of minimal ttgs are weakly dis

joint if and only if their almost periodic factors are disjoint, provided that cp 
is an open RIM extension (compare [M 78) 1.9. and [P 72) ll.). Also, in 3.14. 

we generalize the far reaching result of W.A. VEECH in [V 77] 2.6.3., where he 

shows that under some conditions the product of an ergodic and a minimal 

ttg is again ergodic. 

Most of the results in section 3. are already in [AMWW ?], they are obtained 

in cooperation with J. AUSLANDER, D.C. MCMAHON and T.S. WU. 

In the forth section we generalize 1.u. BRONSTEIN's characterization of PI 

extensions [B 77) (cf 111.5.7.). 

VH.1. RELATIVELY INVARIANT MEASURES 

In this section we briefly discuss the notion of relatively invariant meas
ure. We only treat this material for the sake of definition and notation. 

So no new results are to be expected, just a glimpse at this part of the 

subject. 
For a more explicit treatment see [FG 78], [G 75.l], [G 75.2], [M 78], 
[MW 83] and [VW ?]. 

Let X be a CT2 space and let 9JC (X) be the collection of regular Borel 

probability measures on X provided with the weak star topology; i.e., a net 

{µ;}; in 9JC(X) converges to µE 9JC(X) iff J f dµ; converges to J f dµ 

for all real valued continuous functions f on X . Then 9JC(X) is a CT2 

space in which X is embedded by the mapping x i--+ Bx , where Bx is the 

Dirac measure at x . Moreover, 9JC (X) is a convex space in which X is 

just the collection of extremal points, so by the Krein-Milman theorem 

9JC (X) = coX . Here coX denotes the convex hull of X as a subset of 

WC(X). 

Let cp: ?X:.~ 6)j be a continuous map between CT2 spaces. Then cp induces a 

continuous map 9JC(cp): 9JC(X)~ 9JC(Y) which extends cp. Note, that 

9JC (cp) is surjective (injective) (homeomorphic) iff cp is. 

1.1. If X is a metrizable CT 2 space, so is 9JC (X) . For the space of real 

valued continuous functions on X endowed with the topology of uniform 
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convergence is separable. Hence, 9R (X) is first countable. As X is separ

able 9R(X) = coX is separable. So 9R(X) is CT2 first countable and separ

able, hence metrizable. 

Let ~ be a ttg for T. For t ET and µE ffn(X) define tµE 9R(X) by 

tµ.(A)=µ.(t- 1A); or, what amounts to the same, ffd(tµ.)= fftdµ., 

where ft : X ~ ~ is defined by ft (x) = f ( tx) . Also one could say 

t µ.: = 9R ( w1 )(µ) , where w1 : = x 1-+ tx : X ~ X . 

One can show (e.g. [VW ?]) that (t ,µ)i-+ t µ: T X UR(X) ~ 9R(X) is continu

ous. So 9R (ex) is a ttg for T . 
If <[>: ~~ 6]j is a homomorphism of ttgs, then 9R ( <[>): 9R (ex)~ 9R (6lj) is a 

homomorphism of ttgs. 

By definition, ~ has an invariant measure whenever 9R (~) has a fixed 

point; i.e., there is a µE UR(X) with µ.(tA) =µ.(A) for all t ET and 

every Borel set A in X . 

1.2. A surjective homomorphism <[>: ~~ 6]j of ttgs is said to have a rela

tively invariant measure ( <[> has a RIM, <[> is a RIM extension) if there exists 

a continuous homomorphism A: 6]j ~ 9R (ex) of ttgs such that 

9R ( <[>) o A: 6]j ~ 9R (6lj) is just the (Dirac) embedding. In other words: <[> is a 

RIM extension iff for every y E Y there is a Ay E ffn(X) with 

supp Ay c; <f> ...... (Y) and the map y 1-+ Ay : 6]j ~ 9R (ex) is a homomorphism of 

ttgs; this map A is called a section for <[> • 

In particular, <[>: ~~ { *} has a RIM iff ~ has an invariant measure iff 

9R (ex) has a fixed point under the action of T . 

RIM extensions of minimal ttgs tum out to behave nicely with respect to the 

interpolation of maximal almost periodic factors, as we shall see in 3.22 .. 

We shall collect some information on RIM extensions. For the proof of 1.3. 

see [G 75.2]. 

1.3. REMARK. Let <[>: ~~ 6]j and lf;: 6]j ~ 2: be homomorphisms of minimal 

ttgs. 
a) If lf;o<f> is a RIM extension then lf; is a RIM extension. 
b) If <[> and lf; are RIM extensions then lf;o<f> is a RIM extension. 
c) If <[> is an almost periodic extension then <[> has a unique section, 

say A, and suppAy = <[> ...... (Y) for all y E Y . 

d) If <[> is a distal extension then <[> has a RIM, which is not neces-

~ ~~ D 
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1.4. LEMMA. Let X be a CT2 space. The map supp: 9R(X)---'?2x defined 

by µ .... supp µ (support of µ) is lower semi continuous; i.e., if µ; ---'? µ in 

9R (X) then supp µ C S for an arbitrary limit point S of the net 

{suppµ; }; in 2x. 

PROOF. Let x E supp µ and suppose x ~ S . Let U and V be open sets 

in X with x E U , S c V and ff n V = 0 . Let f : X ---'? [O, 1] be a 

continuous map with f[U] = {l} and f[V] = {O}. As x E suppµ it fol

lows that µ[U]>O and so ff dµ;;. µ[U]>O. 

As, for a suitable subnet, S = lim2xsupp µj , supp µj C V eventually; hence 

ff dµ; = 0 eventually. But ff dµ;---'? ff dµ, so ff dµ = 0, which is in 

contradiction with the above. D 

1.5. REMARK. Let <[>:ex--'?~ be a surjective RIM extension of ttgs with sec

tion A. Then <f> is open in all points x EX with x E supp~(x). In 

particular, if ex is minimal then supp Ay c n { u 0 <f><--(y) I u Ely } for 

allyEY. 

PROOF. Suppose x E suppAq,(x) and let U E 'Vx . By lower semi continuity 

of the map supp: 9R (X)---'? 2x , the set {µ E 9R (X) I U n supp µ =I=- 0 } is 

an open neighbourhood of ~(x) in 9R(X). As A is continuous, there is a 

VE '\14.(x) such that A(V)C {µE 9R(X) I Un suppµ =I=- 0}, so 

U n supp Ay =I=- 0 for every y E V . As supp Ay C <f>._(y) , this implies 

that <f>(x)E V C <f>[U]. So <f>[U] is a neighbourhood of <f>(x); hence <f> is 

open in x . 
The second statement follows immediately from 11.3.12 .. D 

1.6. 1HEOREM. Let <f>: ex--'?~ be a RIM extension of minimal ttgs with sec

tion A . Then, for y 0 E Y , the following statements are equivalent: 

a) suppAy0 = <f>._(y 0); 

b) the map y .... supp Ay : Y ---'? 2X is continuous in y 0 . 

In particular it follows that if X is metric then there is a residual subset 

Y'c;; Y with suppAy = <f>._(y) for ally E Y'. 

PROOF. (See also [G 75.2) 3.3 .. ) 

a~ b Let {y;}; be a net in Y with y; --'?Jo. Let p; EM be such 

that y; = p;y0 and, after passing to a suitable subnet, let q =limp; EM . 

Then qy0 = y 0 and so, by continuity and equivariance of A, 

q Ay 0 = Aqy 0 = Ay 0 • By 1.4., and after passing to a suitable subnet, 
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As 

it follows that suppA.y 0 = liIDixsuppA.y; . Hence y i-+suppA.y is continuous 

in y 0 • 

b ~a Let x E c/> ..... (y0) and let x 0 E suppA.y0 • As X is minimal 

there is a net {t; }; in T with t;x 0 __:;.x . As t;x 0 E suppA.1;Yo and 

t;y 0 ____,. y 0 , it follows by the continuity assumption that 

x E lim2xsuppA.1;Yo = suppAy 0 • 

If X is metric, then the lower semi continuous map y i-+ supp Ay has a resi

dual set of continuity points in Y ([Fo 51), compare II.1.3.e). D 

1. 7. TIIEOREM. Let cp: ~ ____,. 6Y be a RIM extension of minimal ttgs. Then 
c/>': 'X ____,. 6Y' (in AG(cp)) is an open RIM extension, and q,*: ~· ____,. 6Y* 

(in *(c/>)) can be written as ifloO with 0 highly proximal and ifl a RIM 

extension. 

PROOF. Let A be a section for cp . Then by 1.5., 

suppA.yC n{vocp ..... (y)ivEJy} for every yEY. 

First consider AG(cp), which is the right hand part of 

a' a 
~· 'X 

··1 ~!!.,-~ l $' 

~ 
6]j* 6Y' 

T' 7' 

By IV.3.4., Y' = {po q,+-(y) Ip EM, y E Y} , and so by 11.3.11.e, 

Y' = { v 0 q,+-(y) I y E y, v E Jy} , 

whereas X' = {(x,y') Ix Ey'E Y'}, so 

X' = {(x, V ocp ..... (y)) IY E Y, V EJy, X E V ocp ..... (y)}. 

The map cp' is defined as the projection, so 

~ 

l· 
6Y 



Chapter VII Weak disjointness 217 

For every y'E Y' define Ay': = A.,.(y')X By', or rather, for every y E Y and 

v EJy let A: 0 <1> .... (y):= Ay X Bv 0 <1> .... (y). Clearly, A: 0 <1> .... (y)E W(X') and 

suppA: 
0

<1> .... (y) = suppAy x { v o q,<-(y)} ~ q,' .... (v o q,<-(y )) . 

As ((AoT)XB:)voq, .... (y)~Nv 0 <1> .... (y) is continuous and T-invariant, it fol

lows that A' is a section for q,' , so q,' is an open RIM extension. 

Consider the left hand part of the diagram above. As q,' is open, T 1 ..l q,' 

(IV.3.16.). So '!lt.p'.,.' is minimal and there is a homomorphism 0: ex• ~'!lt<P''T' 

which is hp, for a= ~oO is hp. Let y* E y* and T'(y*) = y'E Y', then 

iJ;<-(y*)=q,' .... (y')X {y*}CR.p''T'. Define A;.:=A:'(y")XBY. and note that 

A• is a section for i/;. So i/; is a RIM extension and q,* = iJ;oO. D 

1.8. In [G 75.2) s. GLASNER has shown that every homomorphism 

q,: ex~ 6M is a RIM extension up to proximality; i.e., he constructed a 

diagram similar to the EGS and AG diagrams, which we shall call a G' 

diagram, as follows 

C1 

6iJ is a certain minimal subttg of [)( (X) , T: 6iJ ~ 6M is a proximal extension 

(even a strongly proximal extension, which we shall define below), and <X is 

the unique minimal subttg of '!lt.p.,. . The projections are called a and ;j, . 
It turns out that a is (strongly) proximal and that ;j, is a RIM extension. 

As the precise construction is not relevant for our purposes we shall not go 

into details on that. The interested reader may find it in [G 75.2) and 

[VW ?]. 

Let q,: ex~ 6M be a homomorphism of ttgs. Then q, is called strongly proxi

mal if for every µE W(X), with W(q,)(µ) =By for some y E Y , there is a 

net {t; }; in T such that t;µ~Bx for some x EX . 

In particular, a strongly proximal homomorphism is proximal. For let 

X1,x2E4' .... (y), then µ:=(Bx 1 +Bx 2)/2EW(X) and W(q,)(µ)=By. So 

there is a net {I; } ; in T and there is an x E X such that t; µ~Bx . 
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Let p = limt; E Sr ; then t;p.~(Spx 1 +Spx1)/2. So (Spx 1 +Spx2)/2 = Sx 

and px 1 = px2 = x , which implies that x 1 and x 2 are proximal. 

1.9. REMARK. 

a) Let <1>: ex~ 611 and if;: 611 ~ ~ be homomorphisms of minimal ttgs. 

Then iflo<I> is strongly proximal if! <I> and if; are strongly proximal. 

b) A highly proximal extension <1>: ex~ 611 of minimal ttgs is strongly 

proximal. 
c) A RIM extension of minimal ttgs is strongly proximal if! it is an iso

morphism. 

PROOF. 

a) Straightforward. 

b) Let y E Y and µE 9R(X) be such that 9R(<1>)(µ) =Sy . Then 

suppµC <1> ..... (y). Let u EJy and x = ux E <1> ..... (y). Then, by high proxi

mality of </>, {x} =uo</> ..... (y); while, by 1.4., suppuµCuo</> ..... (y)= {x}. 

Hence u µ = Sx , and <I> is strongly proximal. 

c) Let <1>: ex~ 611 be a RIM extension of minimal ttgs with section A. 

Then for every y E Y , Ay is a minimal measure ( A,, E 9R (X) is an almost 

periodic point), and 9R(</>)(Ay) =Sy . If <I> is strongly proximal, there is a 

Sx' in the orbit closure of Ay , so X = TA.y ; hence Ay = Sx for some 

x E <1> ..... (y) . As A is a homomorphism and 611 is minimal, A maps 611 

onto exc 9R(CX). But then l<i> ..... (y)I = 1 for every y E Y . D 

Now we can extend the G' diagram for <I> to a diagram in which the associ

ated RIM extension is even open. We shall refer to that diagram as a G 

diagram. 

1.10. 1HEOREM. Let <1>:ex~611 be a homomorphism of minimal ttgs. 

C1 

ex# ex 

··1 l• 
611# 611 

7' 

Then there is an open RIM extension </># : ex# ~ 611# of minimal ttgs, 

and there are strongly proximal extensions C1: ex# ~ex and 7': 611# ~ 611 

such that </>oa =To</># . 

If ex is metric then ex# and 611# can be chosen to be metric. 
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PROOF. Consider the next diagram: 

a' a 
'X# : = 'i' ~ 'X 

;»: ~ $' 1 $1 l· 
6?:1# := c\Y' 6Y 6?:I 

T' T 

By 1.8., we can construct the right hand part of the diagram such that c/> is a 

RIM extension, and such that a and T are strongly proximal. 

The left hand part is AG(~), so a' and T' are hp. Hence by 1.9., aoa' 

and ToT' are strongly proximal homomorphisms of minimal ttgs. By 1.7., 

~' is an open RIM extension and clearly, cpoaoa' = ToT' o~'. 
If X is metric, IDC (X) is metric (by 1.1.). Hence, Y is metric and X as a 

subset of X X Y is metric. But then Y' and X' are metric by IV.3.11.. D 

Let 6?:I be a minimal ttg. Completely analogues to the construction of the 
universal minimal (highly) proximal extension of 6?:I (e.g. III.1.13.b) one can 

construct the universal minimal strongly proximal extension of 61,J (which 

will be denoted by ~s ("l,J) ), as follows: 
Let y: ~~61,J be a homomorphism and construct the G(y) diagram. Then 
T: 61,J# ~61,J is strongly proximal and y#: ~# = ~~61,J# is a RIM exten

sion. As every extension iJ; of 61,J# is a factor of y# , it follows by 1.3.a 

that iJ; is a RIM extension. In particular, every strongly proximal extension 

of 61,J# is trivial (1.9.c). 

If cp: ex~ 61,J is a strongly proximal extension of minimal ttgs then it is easily 

checked that 

0: (x ,z )i-+cp(x) = T(Z ): C!ltc/>T ~ 61,J 

is strongly proximal. As 0 factorizes over T , the unique minimal subttg of 

C!ltc/>T is a strongly proximal extension of 61,J# , so it is isomorphic to 61,J# . 

This shows that 61,J# is the universal minimal strongly proximal extension of 
61,J. 

The ttg ~s ( { *}) is the universal minimal strongly proximal ttg for T . 

For the following theorem we refer to [G 76] or [VW ?]. 
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1.11. THEOREM. Let T be a topological group. Then the following statements 

are equivalent: 
a) T is an amenable group; 

b) Every minimal ttg for T has an invariant measure; 

c) The minimal ttg ~s ( { *}) for T is trivial; i.e., T does not admit 

nontrivial strongly proximal minimal ttgs. 0 

Clearly, a strongly amenable group T is amenable, but there are examples 

of amenable groups that are not strongly amenable [G 76) HI.7 .. 

Note that this shows that there do exist nontrivial proximal minimal ttgs that 

admit an invariant measure. So, in particular, an open RIM extension is in 

general not a rue extension. 

Also a RIC extension does not have to be a RIM extension, for [M 76.1) 2.2. 

provides an example of a minimal ttg that does not admit an invariant meas

ure but which is incontractible. From this it follows that the notion of a 

RIM extension is not related to strong proximality in the same way as a RIC 

extension is to proximality and an open extension to high proximality; i.e.: 

One cannot characterize the RIM extensions as those homomorphisms that 

are disjoint from all strongly proximal extensions of its codomain. 

We shall go into that in the following. 

1.12. THEOREM. Let cf>: ~~c;y and l[l: ~~c;y be homomorphisms of minimal 

ttgs such that one of them is open. Let lf! be strongly proximal and let 

cf> be such that there is a minimal measure µ,E Wl(X) and a y E Y 

with 
either supp µ, = cf> .... (y) 

or suppµc; cf> .... (y) and n {supppµ IP E My} =I= 0 . 

Then cf> -1.. lf!. 

PROOF. Let W be a minimal subset of RH and define the homomor

phisms 'ITJ : 6!Jf ~ ~ and 'IT2 : 6!Jf ~ ~ as (restrictions of) the projections. Let 

µ, E Wl (X) and y E Y be as in the assumption. As µ, is an almost periodic 

point in Wl(X), we can find an almost periodic measure vE Wl(W) with 

Wl('IT1)(v) = µ,. Clearly, 

By strong proximality of lf!, there is a Dirac measure 8z in the orbit clo

sure of Wl('1T2)(v). As vE Wl(W) is almost periodic, Wl('1T2)(v) is almost 

periodic, hence Wl('1T2)(v) is a Dirac measure, say Wl('1T2)(v) = 8z 0 • Obvi-

ously, 
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and for every p EM we have 'iJR(.,,.2)(pv) = 8Pzo. But then 

supppv = supp9R('T1'1)(pv) X supp'iJR(.,,.2)(pv) = supppµ X {pzo} 

for all p E M . As p v E 'iJR ( W) it follows that supp p PC W ; hence 
suppp µ X {pz 0} C W . 

First suppose that supp µ = q,<-<y) and let q EM be such that q µ = µ . 
Then by the above 

c/> .... (y) X {qz 0} = suppµ X {qz 0} = suppqµ X {qzo} CW. 

As W is minimal, T(c/> .... (y)X {qz 0 }) = W. By 1.3.9. and the assumption 
that at least one of the maps cJ> and o/ is open, it follows that 

R.p>J!= T(cJ> .... (y)X {qz 0})C W. Hence R.p>J! is minimal and cJ>-1..1/J. 

On the other hand, suppose that the second option is valid, say 
x E n { supp p µ I p E My } . Then for all p E My we may conclude that 

(x,pz 0)EsupppµX {pz 0}C W. Hence {x}Xo/ .... (Y)C W and similar to 
the above it follows that RH= T( { x} X l[l .... (y )) C W , which implies that 
R <Po/ is minimal and cJ> -1.. o/ . D 

1.13. COROLLARY. If cJ>: ~~"h is an open RIM extension of minimal ttgs, 
then <P -1.. o/ for every strongly proximal homomorphism o/: 5::~ 6h of 
minimal ttgs. 

PROOF. Let ;\ be a section for cJ> and let y E Y . Then for all p E My we 

have p Ay = Apy = Ay ' so supp Ay = n { supp p Ay Ip E My } . Hence by 
1.12. with the second option, the corollary follows. D 

1.14. THEOREM. Let <f>: ~~ 6h be a homomorphism of minimal ttgs and let 
X be metrizable. Then cJ> is disjoint from every strongly proximal 

homomorphism o/: 5::~ 6h of minimal ttgs if and only if c/> is open and a 
minimal measure µ E 'iJR (X) exists with supp µ = q,<-<y) for some 
yE y. 

PROOF. If cJ> is open and if some minimal measure µE 'iJR(X) exists with 
supp µ = q, <-<y) for some y E Y , then by 1.12., cJ> -1.. o/ for every strongly 

proximal extension o/: 5::~ 6h of minimal ttgs. 
Conversely, suppose that cJ> is disjoint from every strongly proximal 
homomorphism l[I: 5::~6h of minimal ttgs. Then by 1.9.b, cJ> is disjoint from 
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every hp extension of 6?J ; hence by IV.3.16., </> is open. Construct G(<j>): 

(J 

p-r~~'~ ~lcp 
A 

~# ~ 
T 

As </> is a homomorphism of metric minimal ttgs, </># : 'X# ~ ~# is a RIM 

extension of metric minimal ttgs. As </> is disjoint from every strongly proxi

mal extension of ~, <j>-1. T and R.p., is minimal. Hence there is a map 

(): 'X# ~ '3t.p., such that ?TJ o () = a and ?T2 o () = </> # , where 7i1 and ?T2 are 

the projections, and so the diagram commutes. As </># is a RIM extension 

of metric minimal ttgs, it follows by 1.3.a that ?T2 : '3t.p., ~ "?J# is a RIM 

extension of metric minimal ttgs, say with section A. . By 1.6., we can find a 

y# E y# such that suppA. # = ?T2(y#). Note that 
y 

?T2(y#) = </>._(y)X {y#}, 

where y:=T(y#). Define µ:=WC(?T 1)(A.y#)EW1(X). Then µ. is a 

minimal measure (homomorphic image of the almost periodic point y # ) 

and obviously, supp µ. = '17"1 (supp A.Y #) , hence supp µ. = </>._(y) . o 

1.15. Let </>: ix~ ~ be a homomorphism of minimal ttgs. Consider the 

diagram AG(</>). 
(J 

We shall call </> an RMM extension if a X a [R .p'] = R .p and </>' is disjoint 

from every strongly proximal extension o/: !!~ "?J' of minimal ttgs. 

Note that by IV.4.16. it follows that </> is an RMM extension iff <1>* (in 

*(</>)) is disjoint from every strongly proximal extension 8: 6ltf ~"?J· of 

minimal ttgs and a X a[R.p·l = R.p (in*(</>)). 
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Moreover, an RMM extension c/> is open iff c/> is disjoint from every 

strongly proximal extension. In particular, RIC extensions and open RIM 

extensions are RMM. Also a Be extension which is RIM or which has a 

minimal measure supported in a full fiber is an RMM extension. 

1.16. Actually, in the proof of 1.14. we showed that for an RMM extension 

c/>: 'X--,) 6]j we can construct a b diagram of homomorphisms of minimal ttgs, 

ab 
'X,b 

~ ~ 
'X 

•'l 
~ l· t </>' 

~ 6]j' ~ 
6Jjb 

'Tb 
6]j 

such that c/>b is an open RIM extension and abx ab[R.pb1 = R.p. As follows: 

Construct AG(</>). As c/> is RMM, </>' is disjoint from every strongly proxi

mal extension of 6Jj' and a X a[R.p'] = R.p. Then, as in the proof of 1.14., 

we take 6Jjb: = 6]j'# (in G(c/>')) and ~: = lfll,7,.P,, which is minimal as 

T' 1- </>' • As c/>b is a factor of </># (in G(c/>')), c/>b is open and RIM. More

over, a'X a'[R.pb1 = R.p', hence 

In particular, we can apply IV.4.3. to this b diagram, so to some extent we 

can transfer properties of open RIM extensions to RMM extensions (e.g. see 

1.20.,3.16.,3.17. and 3.20. below). 

In [M 78) D.C. MCMAHON developed a technique to investigate the equicon

tinuous structure relation in the case of RIM extensions. The most important 

results are 1.17. below ([M 78) corollary 1.4.) and its consequences (here) 

1.18. and 1.19 .. We shall merely state 1.17., as the techniques that lead to 

that result are not important for our purposes. 

1.17. THEOREM. Let c/>: 'X--,) 6]j be a homomorphism of minimal ttgs, and let 

I[;:~--.,) 6]j be a RIM extension with section ;\ ( ~ not necessarily 

minimal). Let x E X and let U be an open set in Z . Then 



224 Topological Oynamix 

1.18. THEOREM. Let <f>: '?X,~ DY be a RIM extension of minimal ttgs with sec

tion A. Then for every x EX with x E supp;\,p(x) we have the equal

ity E </> [ x] = Q </> [ x] . In particular, if a minimal ttg '?X- has an invariant 

measure then E ~ = Q ~ . 

PROOF. Let x EX be such that x E supp;\,p(x). Let aE 61.Lx be an index 

and let U be an open neighbourhood of x with UC a(x). Now we 

apply 1.17. to <f> and </> , so 

E<l>[x] X (Un suppA<t>(x))C T({x }X U nR<t>)C Tan R<I>. 

As x E Unsupp;\,p(x) it follows that E</>[x] X {x}C TanR</>. Since 

aE 61.Lx was arbitrary, E</>[x] X {x} C Q</> and so E</>[x]C Q</>[x], hence 

E</>[x] = Q</>[x]. 
Now suppose that '?X- is a minimal ttg which has an invariant measure µ, . 

Then suppµ, = X . (For let UC X be open; then by minimality, X C FU 

for some finite set F C T . As µ,[fU] = µ,[U] for all f E F , it follows that 

µ, [ U] =I= 0 .) So for every x EX , x E supp µ, and by the above, 

E~[x]=Q~[x].Butthen E~=Q~. D 

1.19. COROLLARY. Let <f>: '?X-~DY be a RIM extension of minimal ttgs. Then 

E</> = Q</>oP</> = P</>oQ</> = {(x1 ,x2)E R</> I (ux1 ,ux2)E Q</> for some u EJ}. 

PROOF. Denote {(x 1,x2)ER<1>i(ux 1,ux2)EQ</>forsomeuEJ} by S. 

First note that by I.4.2., SC Q</>oP </> = P </>o Q</>. 

Conversely, let x EX be such that x E supp~(x). Then by 1.18., we have 

E</>[x]=Q</>[x]. Let (x 1,x2)EE</>, and let pEM be such that 

px 1=x. Then (x,px2)=(px 1,px2)EE</>; hence (x,px2)EQ</>. Let 

v EJx 1 ; then 

(x1, vx2) = vp- 1(x ,px2)E TQ</> = Q</>. 

So (x1 ,x2)E S , which shows that 

D 
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1.20. Let c/>: ex~ 61J be an RMM extension of minimal ttgs and consider the 

b diagram of c/> . 

a 
cxb 

~ ~ ~·1 'XJ/E~ 
61Jb/ 

T 

Then by 1.16., 1.19. and IV.4.3.c, it follows that E</> = Q</>aP </>. Hence by 

IV.4.3.e, we have a X a[E</>b] = E</> and so, by IV.4.10., we know that the 

map ~: W/E</>b~'X/E</> is proximal. In 3.22. we shall even show more, 

namely, E</> = Q</> for RMM extensions. 

VII.2. ERGODIC POINTS 

In this section we consider the ergodic behavior inside the neighbourhood 

of a point. We use it to prove some results concerning the question 

whether or not the regionally proximal relation is an equivalence relation. 

In this context, we also discuss weak disjointness. In particular, we gen

eralize a result of s. GLASNER [G 75.1) by proving that an open proximal 

homomorphism of minimal ttgs is weakly mixing (cf. 2.14. below). We 

also show that a RIM extension of metric minimal ttgs without nontrivial 

almost periodic factors is weakly disjoint from every homomorphism of 

minimal ttgs with the same codomain (2.13.). 

2.1. Let c/>: 'X ~ 61J be a homomorphism of minimal ttgs and let n E N 

with n ;;;;. 2 . A point x E X is called a cf>-n - locally ergodic point if for 

every open W ~ X there exists a set U , open in c/>+-c/>(x), such that 

(i) E</>[x]~ U; 
(ii) T ( V 1 X · · · X Vn) n Wn =fa 0 for every choice of sets Vi ~ U open 

in c/>+-c/>(x). 
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If for every W we can take U to be <f><--<f>(x) , then we call x a <J>-n -

ergodic point. 

If x is a <J>-n-(locally) ergodic point for all n E N with n ;;;;;. 2 , then x is 

called a </>-(locally) ergodic point. 

If <f>: ~~ { *} then we skip the prefix </> in the definitions above. 

2.2. REMARK. Let <f>: ~~ 6Y be a homomorphism of minimal ttgs. 

a) If x EX is a <f>-n -(locally) ergodic point, then tx is a <f>-n -(locally) 

ergodic point for every t E T . 
b) If x EX is a <f>-n -ergodic point, then every x' E <f><--<f>(x) is a <f>

n -ergodic point. 

c) If x EX is a <f>-n -ergodic point, then it is a <f>-n -locally ergodic 

point. 

d) If E <f> = R <f> then x E X is <f>-n -ergodic if! it is <f>-n -locally ergodic. 

PROOF. Straightforward. D 

2.3. EXAMPLE. 

a) If </>: ~~ 6Y is a proximal extension of minimal ttgs then every 

x E X is a </>-ergodic point. 

b) If <f>: ~~ 6Y is such that K: ~~ ~/E<t> is highly proximal (one 

could say that </> is a locally almost periodic map) then every 

x E X is a </>-locally ergodic point. 

PROOF. 

a) Let W C X be open. Let x EX and let V 1, ••• , Vn be open in 

<f><--<f>(x) . For every i E { 1, ... , n} choose X; E Vi ; then <f>(x;) = <f>(x) . 

As </> is proximal (x J, ... 'Xn) is proximal to (x ' ... 'x) in xn . As 

X and so the diagonal in Xn is minimal, (x, ... , x) E T(x 1' ... , Xn) . 

Let tET be such that txEW; as t(x, ... ,x)ET(x 1, ••• ,xn), 

wn n T(x1> ... ,xn) ;;/:= 0. But then T(V1X · · · X Vn)n wn ;;/:= 0. 

Hence x E X is <j>-ergodic. 

b) Let W C X be open and let x EX . As K: ~~ ~/E<t> is hp, there 

is a tET with tE<f>[x]=tK<--K(x)c;W. Define U:=t- 1Wn<j><--<f>(x). 

Clearly, U satisfies the conditions (i) and (ii) of 2.1. for every n E N with 

n ;;;;;. 2 . So x is a <j>-locally ergodic point. D 
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2.4. 1HEOR.EM. Let 'f>: <?X,~61:1 be a homomorphism of minimal ttgs. 

a) If x E X is a '1>-2-locally ergodic point then Q ip [x] = E ip [x] and 

Eip = QipoP ip = {(x 1 ,x2)E Rip I u(x1 ,x2)E Qip for some u E J}. 

b) If xEX isa'f>-2-ergodicpointthen Qip[x]='f><-f/>(x) and 

R ip = Q ip o Pip = { ( x 1 , x 2) E R ip I u (x 1 , x 2) E Q ip for some u E J } . 

PROOF. 

b) (a)) For x'E '1><-'f>(x) ( x'E Eip[x]) we prove that x'E Qip[x]. 

For an arbitrary aE 6lLx let /3E 6lLx be such that p- 1 = f3 and 

{3o{3r:;;;_a, then /3(x)X/3(x)c_a. Let W:={3(x) and choose U for 

W as in the definition (2.1.) (in case b U : = '1> <-'1> (x) ). Then for every 

(basic) open neighbourhood V X V' of (x, x ') in U X U we have 

T(VX V')n WX W =!= 0 , hence 

0 =!= vx V'n T(f3(x)X {3(x))C. VX V'n Ta= VX V'n Tan UX U. 

But then 

(x, x ') E Tan U X U c. Tan Rip . 

As a E 611,x was arbitrary, it follows that 

As for some x EX we have Eip[x] = Qip[x], it follows, as in the proof of 

1.19., that 

Eip = QipoP ip = {(x1 ,x2)E Rip I u(x1 ,x2)E Qip for some u E J}. 

For case b note that if (x 1 , x 2) E Rip then 

u(x 1,x2) = up- 1(px1 ,px2) = up- 1(x ,px2) 

for pEM with px 1=x. Aswejustprovedthat Qip[x]='f><-f/>(x) itfol

lows that 

D 

2.5. 1HEOREM. Let 'f>: <?X,~61:1 be a homomorphism of minimal ttgs, such that 

K: <?X,~ <?X,/ E ip is open. If there exists a '1>-2-locally ergodic point x E X 

then Eip = Qip. 

PROOF. Let x EX be a cp-2-locally ergodic point, then Eip[x] = Qip[x] by 

2.4.a. Let (x1,x2)EEip and define zo:=K(x 1)=K(x2) and z:=K(x). 
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For a net {t;}; in T with t;x ~x 1 we have t;z ~z0 • As K is open we 

can find 

x~ E E.,.[x] = K<--(z) = K<--K(x) with t;x~ ~x2 • 

But E.,.[x] = Q.,.[x], so (x,x~)E Q.,. and (x 1 ,x2) = limt;(x ,x~)E Q.,.. D 

2.6. COROLLARY. Let <1>: ~~ 611 be an open homomorphism of minimal ttgs. 

If there exists an x EX which is c/>-2-ergodic, then R+ = Q.,.. 

PROOF. By 2.4. we have R.,. =E.,., hence c/> = K: ~~~/E.,.= 611 is open. 

So, by 2.5., it follows that E.,.= Q.,., hence E.,.= Q.,. = R.,.. D 

2.7. COROLLARY. Let ~ be minimal. Then Q~ = X X X if! there is a 2-

ergodic point in X (i.e., if! every point in X is 2-ergodic). 

PROOF. If there is a 2-ergodic point in X then by 2.6., Q~ = X X X . 

Conversely, let W k X be open and let U and V in X be open. We 

have to show that T ( U X V) n W X W =I= 0 . As follows: Since X is 

minimal, llx is minimal. So by 1.1.1.c, T ( W X W) is a neighbourhood of 

llx, and there is a /JE "11x with T/Jk T(WX W). As Q~ = XX X, 

we have X X X = T /3 , so U X V k T /3 and U X V n T /3 =I= 0 . Hence 

ux vn T(WX W) =I= 0 and T(UX V)n wx w =I= 0. D 

In several situations (e.g. metrizability of the phase spaces) we can show that 

a qrn -ergodic point is a point with some "dense proximality" in its fiber. 

Let et>: ~~611 be a homomorphism of ttgs and let n EN with n ;;;;i. 2. A 

point x E X is called a P;-point if 

{(xi. ... ,xn)E (c/><--c/>(x)r I T(xi. ... ,xn)ntl~ =I= 0} 

is dense in (c/><--c/>(X ))n ( /l~ is the diagonal in Xn ). 

Clearly, if c/> is proximal then every x E X is a P;-point for all n E N 

with n ;;;;i. 2. 

2.8. 1HEOREM. Let <1>: ~~611 be a homomorphism of minimal ttgs and let 

n E N with n ;;;;i. 2 . 

a) Every P;-point is a c/>-n -ergodic point. 

b) If there is a point xoE X which has a countable neighbourhood base 

6llfx0 , then every c/>-n -ergodic point is a P;-point. 

In particular, if ~ is a metric minimal ttg, then the c/>-n -ergodic points 

are just the P;-points. 
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PROOF. 

a) Let x E X be a P;-point. Choose W C X open and let 

U 1> ••• , Un be open subsets of q,+-q,(x) . We shall show that 

T(U1X · · · X Un)n wn =/:= 0. Since ~ is minimal, .::l~C T(Wn). As 

U1X · · · X Un is open in (cp+-cp(x)f and as X is a P;-point, there is a 

point 

(x1, ... ,xn)E U1X · · · X Un 

such that a~ n T (x J, ••• , Xn) =I= 0 . So, by minimality of ~ ' 

.::l~C T(x1> ... ,xn)C T(U1X · · · X Un). 

Hence .::l~C T(U1X · · · X Un)n TWn and so 

T(U1X · · · X Un)n wn =/:= 0. 

b) Let x EX be a cp-n-ergodic point. Choose UC (cp+-cp(x ))n open 

in (cp+-cp(x)f , and let VI> ... , Vn be open in q,+-q,(x) such that 

V1X · · · X Vn CU. Let 6llfx0 = {Wa I aE N} be the countable neigh

bourhood base for x 0 in X . For aE N define, inductively, taE T and 

vr, ... , vna open in q,+-cp(x) as follows: 

As x is a cp-n -ergodic point, there is a t 1 E T with 

Define V;1 : = Vi . 
Let Vf , ... , Vna , open in q,+-q, (x) , be defined. Then there is a ta E T 

with 

ta(Vf X · · · X Vna)n w: =/:= 0 . 

Let V;a+l =/:= 0 be open in q,+-q,(x) such that 

v..a+ I C v..a+ I C V,.a n t -1 W . 
I - I - I a a 

For all i E { 1, ... , n} let 

X; E n {Via I aE N}C Vi n n {ta- 1Wa I aE N}. 

Then (x1, ... ,xn)E U and ta(xi. ... ,Xn)°'(x0 , ••• ,x0). Hence x is 

a P;-point. D 

The following shows that there are situations in which lots of cp-locally 

ergodic points exist. 
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2.9. LEMMA. Let q,: ~~611 be a RIM extension of minimal ttgs with section 

A . Let 1c: ~~ ~/ E </> be the quotient map and let x E X . If x has 

a neighbourhood V in q,+-q,(x) such that 

(i) E.p[x]C V and E.p[V]C suppA.p(x)>· 
(ii) K'=Kl.p+-.p(x):q,<-q,(x)~K['/> .... 'l>(x)] is open in al/points ofa dense 

subset of V; 

then x is a q>-locally ergodic point. 

PROOF. Let W C X be open and let n E 1\1 with n ;;;;.: 2 . By 1.1.4.a, 

K[W]0 =I= 0 ; so there is an open neighbourhood v* of K(x) and a 

t ET with tV* C K[W]0 • Define U:= K .... [V*]n V, then U is an open 

neighbourhood of x in q,+-q,(x) with E.p[x]C U and U has a dense set 

of points in which K' is open. Let VI> ... , Vn be open in q,+-q,(x) with 

V; CU. We shall show that T(V1X · · · X Vn)n wn =/= 0 and so that 

x is a cp..n -locally ergodic point for all n E 1\1 with n ;;;;.: 2 . As the points 

of openness of IC' are dense in U , we can find Vj C V; open in q,+-q,(x) 

such that E.p[V/] = K .... K[V/] is open in q,+-q,(x). Obviously, 

Remember that for m E 1\1 with m;;;;.: 2, R; is defined by 

R; = {(XJ, ... , Xm}E xm I q>(x1) = q>(x2) = ... = '/>(Xm)} . 

Let q,m : 'ill,;~ 611 denote the obvious homomorphism. Define Am by 

A.p(x) = A.p(x)X · · · X A.p(x) (m-times). Since the support of A.P<x> is 

included in R; , Am may be considered as a mapping from 611 into 

IDl(R;). Clearly, Am is a section for q,m , so q,m: 'fll,;~611 is a RIM 

extension (with section Am ). As V2X · · · X V~ C suppA;<-;>1 and 

v2x ... xv~ is open in (q, .... q,(x)f 'it follows from 1.17. applied to q, 
and q,n - I , that 

E.p[V'1]X v2x ... xv~ c T(V'1X v2x ... x V~). 

As the set E.p[V'1]X V3X · · · XV~ is an open subset of (q, .... q,(x))n and 

since E.p[V'1]X V3X · · · X V~ C suppA;<;l , it follows from 1.17. and 

from what we have shown above, that 

E.p[V'i]X E.p[V2]X v3x ... xv~ c T(E.p[V'1]X v2x ... x V~)C 

C T(V'1X · · · X V~)C T(V1X · · · X Vn). 

Proceeding this way, it follows that 
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E.p[V'1]X · · · X E.p[V~]C T(V'1X · · · X V~)C T(V1X · · · X Vn). 

Since tE.p[V/] = E.p[tVj] = ic<-ic[tVj] and ic[tVj]C ic[tU]C tV* \;;; ic[W] 0 , 

it follows that W n tE 4> [V j] =:/= 0 for i E {I, ... , n } . Hence 

0 =:/= wn nt(E.p[V'i]X · · · XE.p[V~])C wn nT(V1X · · · X Vn), 

and so T ( V 1 X · · · X Vn) n wn =:/= 0 , which completes the proof. D 

The following lemma is taken from [V 70] (prop. 3.1.), to which we refer for 

the proof. 

2.10. LEMMA. Let cf>: ix~ 61! be a homomorphism of minimal ttgs (it is 

sufficient to require 61! to be minimal and X to have a dense subset of 

almost periodic points). Let X 0 \;;; X be a residual subset of X. Then 

there is a residual subset Y 0 \;;; Y such that X 0 n cf><-(y) is residual in 

cf><-(y) for ally E Yo. D 

2.11. THEOREM. Let cf>: ix~ 61! be a RIM extension of minimal ttgs. 
a) If X is metrizable, then there is a residual set of cf>-/ocally ergodic 

points. 
b) If Rip= E.p then every x EX with suppA.p(x) = cp<-cf>(x) is a cf>

ergodic point. 

PROOF. 

a) Let ic: X ~ X/ E 4> be the quotient map. As X is metric it follows 

from II.1.3.e that there is a residual set X 1 \;;; X in each point of which ic is 

open. Hence, in each point x of X 1 the map ic': cf><-cf>(x)~ ic[cf> ..... cf>(x)] is 

open in x . By 1.6., there exists a residual set X 2 \;;; X such that 

supp A.p(x) = cf> <-cf> (x) for every x E X 2 • (Note that the full original of a 

residual set in Y is a residual set in X, by IV.5.12.). Let X0 = X1nX2 ; 

then X 0 is residual. By 2.10., there is a residual set Y 0 \;;; Y such that 

X0 ncp ..... (y) isresidualin cf><-(y) forevery yEY0 • Let xEcf> ..... [Y0];then 

ic is open in all points of X 0 ncp ..... cf>(x), which is is a dense subset of 

cp<-cf>(x). Also suppA.p(x) = cf><-cf>(x). But then cf><-cf>(x) is an open neigh-

bourhood of x in cf><-cf>(x) that satisfies the conditions in 2.9.. So by 2.9., 

x is a cf>-locally ergodic point. As cf><-[Y0] is residual in X this proves a. 

b) In this case ic and cf> are identical. If for some x E X we have 

suppA.p(x) = cf><-cf>(x) then, by 1.5., ic is open in every point of cf><-cf>(x). 

So cf><-cf>(x) is an open neighbourhood of x in cf><-cf>(x) that satisfies the 

conditions in 2.9.. So by 2.9., x is a cf>-locally ergodic point. But, since 

E.p[x] = cf><-cf>(x), x is even a cf>-ergodic point. D 
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Ergodic points can play a role in weak disjointness of homomorphisms of 
minimal ttgs as the following generalization of [G 75.l] Thm. 1.1. shows. 

2.12. THEOREM. Let cp: ~~61J and tfJ: 5!:~61J be homomorphisms of minimal 

ttgs and let one of them be open or suppose that (cf>,o/) satisfies the general

ized Bronstein condition. If for every n E l\J with n ;;;;. 2 there exists a 

cp-n -ergodic point in X , then cf> and t/J are weakly disjoint ( cf> _:_ t/J ). 

PROOF. Let W = TW c; R<i>i/t with intR"'"'W ¥= 0 . We shall show that 

W =RH, as follows: For (x',z')E R<i>i/t and an arbitrary open neighbour
hood 0 of (x',z') in R<i>i/I we shall prove that 0 n W ¥= 0 and so that 
(x',z')E W = W. 

By the assumption and I.3.7., we can find open sets Ui and Vi in X and 
Z such that 0 ¥= Ui X Vi n RHC 0 and cp[Ui] = t/J[Vd. Also we can 

find open sets U and V in X and Z with 0 ¥= UX VnR<l>i/tc; W 
and cf>[U] = t/J[V] . 
As 5!: is minimal there are finitely many t i, ... , tm in T such that 
Z = U {t; V Ii E { 1, · · · ,m}} . By assumption, X contains a <P-m

ergodic point, and so by 2.2.a, X has a dense set of cf>-m -ergodic points. 
Let x be a cf>-m -ergodic point in U i and let z E Vi be such that 
cf>(x) = t/J(z), say y = cf>(x) = o/(z). As 

o/<--<y) C Z C { t; V I i E { 1, ... , m } } , 

we may renumerate (if necessary) the t; 's in such a way that for some 
n ~ m we have o/.._(y) C LJ { t; V I i E {1, ... , m } } , while 
o/ .... (y) n t; V ¥= 0 for every i E { 1, ... , n } . 

Suppose n ;;;;. 2 . Define 

L: = ti U X · · · X tn Un (cf>.._(y )t , 

then L is open in (cf> .... (y )t and nonempty. For let z; E V n t; -io/ .... (y) 
and let X; EU be such that cf>(x;) = t/J(z;), then (tixi, ... , tnxn)E L . 
As x is cf>-n -ergodic, TL n ( U it ¥= 0 . So for some t E T we have 

i.e., we can find xiEU with tt;xiEUin<t> .... (ty) for iE{l, ... ,n}. 
Let z'E Vi be such that o/(z') = cp(tt;xi) = ty for every i E {1, ... ,n}, 
then t-iz' E t/J .... (y) . But then for some io E { 1, ... , n} we have 
t-iz'E t; 0 VntfJ .... (y) and z'E tt;0V. Hence 
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and 

So W n 0 =f= 0 , which settles the case for n ;;;;;.: 2 . 

Suppose that n = 1 ; i.e., o/<-(y) ~ t; V . Then t 1 Un cp<-(y) =:/= 0 and by 

minimality of '?X- , we can find a t E T with t (t 1 U n cp<-(y )) n U 1 =f= 0 . 

Let x'1EU be such that t 1x'1E<j> ..... (y) and tt 1x'1EU1 and choose 

z1E V1 with <j>(tt1x'1)=o/(z')=ty. Then t- 1z'Eo/ ..... (y)~t 1 V, so 

z 'E tt 1 V and 

(tt1x'1,z')E T(UX VnR<Po/)~ W, 

while 

(tt1x'1,z')E U1X V1nR<Po/~o. 

Hence Wn 0 =:/= 0 . D 

2.13. COROLLARY. Let <j>: '?X-~ 6Y be an open RIM extension of minimal ttgs 

with section A. Suppose there is an x EX with cp<-cp(x) = suppA.i,(x) 

(e.g. X is metrizable). Then the following statements are equivalent: 

a) Eq, = Rq,; 
b) Qq,=Rq,; 
c) <J> is weakly mixing; 

d) </> __:_ o/ for every homomorphism o/: 2:~ 6Y of minimal ttgs. 

In particular, if '?X- is minimal and has an invariant measure, then '?X- is 

weakly mixing iff '?X- is weakly disjoint from every minimal ttg iff 

E-x, = Q-x, = X X X. 

PROOF. The implications d ~ c ~ b ~ a are obvious (for c ~ b see I.3.11.). 

a ~ d By 2.11.b, x is a <j>-ergodic point and so x is <j>-n-ergodic for 

every n E 1\1 with n;;;;;.: 2. As <J> is open it follows from 2.12. that <J>_:_ o/ 

for every homomorphism o/: 2:~ 6Y of minimal ttgs. 

If '?X- is minimal and has an invariant measure µ , then X = supp µ , so we 

can apply the above equivalences to cp: '?X-~ { *} . D 

2.14. COROLLARY. Let <j>: '?X-~ 6Y and o/: 2:~ 6Y be homomorphisms of 

minimal ttgs and let one of them be open. If <J> is proximal, then <J> __:_ o/ . 

In particular, an open proximal homomorphism of minimal ttgs is weakly 

mixing. 
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PROOF. If q, is proximal, then every x E X is a qi-ergodic point by 2.3.a, 
and so every x EX is ip-n -ergodic for every n E 1'J with n ;a. 2 . The 
corollary follows from 2.12.. D 

Looking at the ergodic behavior inside the neighbourhood of some specific 
point x E X turns out to be a little inconvenient. Too many times counta
bility assumptions or openness are required to come to reasonable results. In 
the next section we shall "globalize" our efforts to prove stronger results for 
weak disjointness problems. 

VII.3. WEAK DISJOINTNESS AND MAXIMALLY ALMOST PERIODIC 
FACTORS 

A central theme in this section is the question, how "unrelated are 
homomorphisms whose maximal almost periodic factors are disjoint (see 
[P 72], [K 72] and [EGS 76] 4.2.). So consider the next diagram of 
homomorphisms of minimal ttgs: 

?X/ E <t>--Orx-- ----6}j/Eif 
(}6/j 

We shall prove that in several cases we have Orx ..l 061J iff 4'-=- if . 
As a by-product we shall see that for an open RIM extension the region
ally proximal relation is an equivalence relation. 

We shall need the following remark on lifting of ergodicity. 

3.1. THEOREM. Let q,: ?X,~6Jj be a surjective proximal homomorphism ofttgs 
and let ?X have a dense subset of almost periodic points. Then ?X, is 
ergodic if! 6Jj is ergodic. 

PROOF. Clearly, if ?X is ergodic then 6Jj is ergodic (l.1.3.e). 
Conversely, suppose that 6Jj is ergodic. Let A ~ X with A = TA and 
A 0 =fa 0 and let B : = X \A . Then B = TB and X =A U B . 
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As </>[A ]U </>[B] = <t>[X] = Y, </>[A] or <t>[B] must have a nonempty inte

rior in Y , and so, by ergodicity of 6Y, </>[A]= Y or <t>[B] = Y . 

Suppose that </>[A ] = Y . Let x E X be an almost periodic point. Then for 

some a EA , </>(a) = </> (x) . As </> is proximal, a and x are proximal 

and by almost periodicity of x we have that x E Ta <;;; TA =A . Conse

quently, every almost periodic point in ~ is in A , so X = A . 

Suppose that <t>[B] = Y then, similarly, it follows that X = B ; which con

tradicts the assumption of A 0 =I= 0 . 

Hence X = A and ~ is ergodic. D 

As we intent to relate weak disjointness of </> and If; with the weak disjoint

ness of their maximally almost periodic factors, we need to relate open sets in 

RH with open sets in R 96J!J"". We shall do this in the following lemmas in 

a slightly generalized form. 

3.2. LEMMA. Consider the following commutative diagram of (surjective) 

homomorphisms of ttgs: 

Let ~ be minimal and suppose that one of the following conditions is 

satisfied 
(i) (</>,I/;) satisfies the generalized Bronstein condition; 

(ii) If; is open; 
(iii) </> is open and Y has a dense set of points in which If; is open; 

(iv) </> is open and Y has a dense subset of almost periodic points. 

If W is a nonempty set which is open in R.p>/J, then: 

a) There exist open sets U and V in X and Y such that 

0 =I= U X V n R.p>/JC W and <t>[U] = lf;[V]; 

b) K X idy[W] has a nonempty interior in Ro>/J. 

PROOF. 

a) This is just 1.3.7.; for case (iii) note that If; is semi-open. 

b) Let W <;;; RH be open and nonempty and let U and V be as in 

a. As </> is semi-open, W': = intz</>[U] is nonempty, and, clearly, 

W'<;;;intz(</>Xl/;[W]). Define U':= Un<t><-[W']; then U' is open and 
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nonempty. As <?X, is minimal, K[U'] has a nonempty interior in X'. Since 

0 =I= 0[K[U']0 ]C !J>[U] = o/[V] 

it follows that K [ U '] 0 X V n R 8.,, is a nonempty open subset of R 8.,, , which 
is contained in K X idy [ W] . D 

3.3. We shall consider a diagram as in lemma 3.2., so <?X, and 5!: are 
minimal, and we shall deal with the following question (in the case that 
6X: = '?X,/Et/> ): 

Under what conditions do we have !J>_.:_ !Ji if and only if 0 _.:_!Ji. 

K 

Clearly, !J>_.:_o/ implies O_.:_!Ji, as K X idy[RH] = R 8.p. So the real prob
lem is what we can say about the converse implication. 

3.4. LEMMA. Consider the diagram in 3.3. and let !J> and !Ji satisfy one of 
the conditions in lemma 3.2 .. Suppose that for every nonempty (basic) open 
set U X V n Rt/>o/ in Rt/>o/ there is an open set 0 in X such that 

U = Et/>[U] and 0 =I= 0 x V n RtJ>.pC T(U x V n RtJ>.p). 

Then !J> _.:_ !Ji if! 0 _.:_ !Ji . 

PROOF. Suppose 0 _.:_!Ji ; i.e., suppose that R 8.p is ergodic. For an arbitrary 
nonempty (basic) open set U X V n RH in RH , we shall prove that 
Rt/>o/ = T(U X V n RH). Then it follows that RH is ergodic. 

Let 0 be a nonempty open set in X as in the assumption, and note that 
K[U] is an open set in X/Et/>, because 0 = Et/>[U] = K<--K[U]. Hence 
K[U]X VnR 9 .p is open in R 8 .p and nonempty, for Ox VnRH was 

supposed to be nonempty. As R 8 .p is an ergodic set it follows that 
T(K[U]X V n R9.p) is dense in R9.p. 

Let U1 X V 1 nRtJ>.p be an arbitrary nonempty (basic) open set in Rt/>o/. 
Then by 3.2.b, K [ U 1] X V 1 n R 8.,, has a nonempty interior in R 8 .p . Hence, 
by ergodicity of R 8.p, for some t ET we have 

K[Ui]X V1 n R 8.,,n tK[U]X tV =I= 0 . 
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Let (xi ,yi)E Ui X Vi n R<f>o/ be such that 

(IC(Xi),yi)E IC[Ui)X Vi n R1J>fn t1C[UlX tV. 

i - - - -Then t- xi E 1C<-1C[Ul = E<f>[Ul = U , so (xi ,yi)E t(U XV n RH) and by 

assumption 

(xi,yi)E t(UX vnR<f>o/)C T(UX VnRH). 

Hence Ui X Vi n T(U XV n RH) =F 0 . As Ui X Vi is open, we have 

UiX VinRHn T(UX VnR</>o/) =F 0. 

But UiX VinR<f>o/ was arbitrary, so it follows that T(UX VnRH) is 

dense in R <f>o/ , which proves the theorem. D 

We shall look for situations in which 3.4. is applicable. For that purpose we 

need the following lemma. 

3.5. LEMMA. Consider the diagram in 3.3. and let </> and iJ; satisfy one of 

the conditions in lemma 3.2 .. Assume that for every nonempty (basic) open 

set UiX VinR<f>o/ in R<f>o/ there is a point (x,y)E UiX VinRH 

such that 

Then for every nonempty (basic) open set U X V n R<f>o/ in RH we 

have 

0 =F Ox vnRHc T(Ux vnR<t>>f), 

where U: = 1C<-[1C[Ul0 l = E<f>[Ul. 
Consequently, under this assumption fJ....:.... iJ; implies </>....:.... iJ; . 

PROOF. Let W: = U X V n R<f>o/ be an arbitrary nonempty (bask) open set 

in R <f>o/ . Define 0 : = IC<-[ IC [ U l0 l and note that 0 = E </> [ 0 l is nonempty 
and open in X . Let U' and V' be open sets for W as in 3.2.a. Then by 

3.2.b, 1C[U'l0 X V'nR 11 o/ =F 0. Let u EU' with 1C(u)E 1C[U'l0 and 

v E V' with (u, v)E RH, then 

(u, v) E (U' n 1C<-[1C[U'l0 ]) X V' n R<f>o/C 1C<-[1C[ Ul 0 l X V n R<t>o/ = 

= U X VnR<t>o/; 

so 0 X V n R<f>o/ is nonempty and open in RH. 
---'-"------

In order to prove that 0 X V n R <f>o/ C T ( U X V n R <f>>f) we have to show 
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that every (basic) open subset U 1 X V 1 n RH of U X V n R <t>>f has a 
nonempty intersection with T(U X V n Rq,>f) . 
So let U 1 X V 1 n RH be a nonempty (basic) open set inside U X V n ~ <1>1" ; 

i.e., U 1 C U and V 1 C V . By the assumption, we can find a point 
(x,y)E U 1X V 1nRq,>f such that Eq,[x] X {y}C T(U1X V1nRq,>f). Then 
xEU1CUCK._K[U] and yEV. Let u'EU with K(u')=K(x); then 
u'EEq,[x]. Since 

and as U X V n RH is open, it follows that 

But then 

which proves the lemma. D 

We shall now consider two situations in which the assumptions of lemma 3.5. 
are satisfied. 

3.6. THEOREM. Consider the diagram in 3.3. with cp a RIC extension and let 
(cp,tfl) satisfY gBc. Then cp_:_ o/ if! () ....:_ o/. 

PROOF. We shall prove that if (x ,y) E RH is an almost periodic point and 
if U X V n Rq,>f is a (basic) open neighbourhood of (x ,y) in Rq,>f, then 

E </> [x] x {y} c T( u x v n RH) . 

Note that the assumption of (cp,ifl) satisfying gBc together with the above, 
gives that the assumptions of lemma 3.5. are satisfied. Hence it follows that 

cp ....:_ o/ iff () ....:_ o/ . 
Let (x ,y) be an almost periodic point in R <t>>f , say (x ,y) = u (x ,y) for 
some u E J . Let U X V n RH be a (basic) open neighbourhood of 
(x ,y) in Rq,>f_:_ As V is an open neighbourhood of y = uy in Y , the 

set V': = V n Ty is a neighbourhood of y in Ty . So by III.2.1.c, we can 
find an open set W in T which has the form W = W(u), such that 
W.y C V' C V . Define U: = [U, W] n ucp--(z), where z = cp(x) = o/(y) . 

Then U is an ~(~,u)-neighbourhood of x in ucp<-(z) (III.2.2.). Let 
x'E U , then x' = t- 1x 0 E ucp<-(z) for some t E W and x 0 E U. So 
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Hence U X {y} c T(U X V n Rq,.i-) and so 

u o U X {y} = u o (U X {y })C T(U XV n RH). 

ByIIl.3.10.b,weknowthat Eq,[x]CuoU ,so 

E 4> [x l x {y } c u 0 u x {y } c T ( u x v n R q,.j.) ' 

which proves the theorem. 0 

3.7. Let if;: 6]j ~ 2: be a RIM extension and denote the collection of sections 

for if; by ~ (if;) . A point y E Y is called a supprim point if y E supp \y<y) 

for some section ;\ E ~ (if;) . 

Note that in the following cases the supprim points are dense in Y : 

a) 6]j is minimal; 
b) 2: is minimal, suppAz = lf;~(z) for some AE ~(if;) and some z E Z , 

and either if; is open or Y has a dense set of almost periodic points. 

3.8. THEOREM. Consider the diagram in 3.3. and let cp and if; satisfy one of 

the conditions in lemma 3.2 .. If if; is a RIM extension and if Y has a 

dense set of supprim points, then cp....:... if; if! 0....:... if; . 

PROOF. We shall prove that for every nonempty (basic) open set 

U X V n Rq,.i- in Rq,.i- there is a point (x ,y) E U X V n RH such that 

Eq,[x] X {y}C T(UX VnRq,.i-). Then the theorem follows from 3.5 .. 

Let U X V n Rq,.i- be an arbitrary nonempty (basic) open set in Rq,.i-. Then 

by 3.2., there are open sets U' and V' in X and Y such that 

cp[U'] = lf;[V'] and 0 =I= U'X V' n Rq,.i-C U X V n Rq,.i-. As the supprim 

points are dense in Y, there is a AE ~(if;) and a y E V' with 

y E supp\y<y). Let x EU' with cp(x) = lf;(y). Then by 1.17., we have 

E 4> [ x] X {y } C E 4> [ x] X ( V' n supp Aq,<x )) C T ( { x } X V' n RH) , 

0 

Let cp: ex~ 6]j be a homomorphism of minimal ttgs. We call cp a totally 

weakly mixing extension iff 

is ergodic for every n E N with n ;;;;.: 2 . 
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3.9. LEMMA. Consider the diagram in 3.3. and let c/> and if; satisfy one of 
the conditions in lemma 3.2. ( ~ minimal). Let c/> be a RIM extension 
with section A and let Y 0 be a dense subset in Y . Then 

U {suppAz X Y0 nR.pl/J I z E Z} 

is dense in R <Pi/I • 

PROOF. Let U X V n R.pl/J be a (basic) open set in RH. By 3.2.a, we may 
assume, without loss of generality, that c/>[U] = i[;[V] . Let x E U with 
x E supp/\.p(x) and let y E V be such that tf;(y) = cp(x). As Y 0 is dense 

in Y, there is a net {y;}; in Yo converging to y . Then {if;(y;)}; con
verges to cp(x), hence {~(r;)}; converges to /\.p(x) in IDC(X). By 1.4., it 

follows that x E supp/\.p(x)k ~xsupp~(r;). As U is an open neighbour

hood of x in X , there is a i 0 such that Un supp~(r;) =I= 0 for every 

i ~ i 0 • So we can find an i 1 ~ i 0 with y 1: = y; 1 E V and a supprim point 

x 1 EU n supp~<ri>. Hence 

D 

3.10. COROLLARY. Let c/>: ~~ 61! be an open RIM extension of minimal ttgs 
with section A . Then for every n E N with n ~ 2 the canonical 
homomorphism c/>n : ~ ~ 61! is an open RIM extension with section An 
and the supprim points are dense in R; . 

PROOF. Remember that An is defined by A; = Ay X · · · X Ay (n -times) 
and note that suppA; = suppAy X · · · X suppAy (n-times). Clearly, An is 
a section for c/>n (cf. the proof of 2.9.) and the fact that c/>n is open is obvi
ous from the observation that 

n 
c/>n ( U 1 X · · · X Un n R;) = n c/> [ U;] . 

i=I 

As ~ is minimal, the set X 0 of supprim points is dense in X . So by 3.9., 
applied to c/> and c/> , it follows that U { supp Ay X supp Ay I y E Y} is 

dense in R <I> = R J . Suppose, the corollary is true for n 0 E N ( n 0~ 2 ); 
then apply 3.9. to c/>n 0 and c/> . It follows that 

n n +I U {suppAy 0 X suppAy IY E Y} = U {suppAy 0 IY E Y} 

l·s dense i·n R:o+I B · d t. th ll f 11 .,. . y m uc ion e coro ary o ows. D 
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3.11. THEOREM. Let c/>: 'X~ 61J be a homomorphism of minimal ttgs. If c/> is 
a RIC extension or an open RIM extension then the following statements 
are equivalent: 
a) E<t>=R<t>; 
b) c/> is totally weakly mixing; 
c) cp is weakly mixing. 

PROOF. 

b ~ c Trivial. 
c ~a If cf> is weakly mixing then, by ergodicity of R<t>, it follows that 

R<t> =Tan R<t> for every aE 62Lx . Hence 

a ~ b If E </> = R </> then (): 'X/ E </> ~ 61J is an isomorphism. Hence 
R; is ergodic iff ()--=-- c/>n , for R; ,....., Ro<l>n . 

Suppose cf> is a RIC extension. By III.1.9., it follows that R; has a dense 
subset of almost periodic points for every n E 1\1 with n ;;;;.: 2 . Hence by 
IIl.1.5.b, it follows that (c/>,c/>n) satisfies gBc for every n E 1\1 with n;;;;.: 2, 
where cp1 : = cf> • As () is an isomorphism, () _L cf> ; so it follows from 3.6., 
applied to cf> and cp , that cf>--=-- cf> • In other words, it follows that R J is 

ergodic. Assume that R;0 is ergodic for some n 0 ;;;;.: 2 ; then we may apply 

3.6. to c/> and c/>n 0 • As R;0 is ergodic, {}_:_cf>n 0 and so c/>--=--c/>n 0 ; i.e., 

R;o+I is ergodic. This settles the case for RIC extensions. 
Suppose cf> is an open RIM extension. Then by 3.10., c/>n : ~ ~ 61J is an 
open RIM extension and R; has a dense set of supprim points for every 
n E N with n ;;;;.: 2 . Induction and application of 3.8. proves the case that 
c/> is an open RIM extension. D 

We shall now generalize 3.6., 3.8. and 3.11. to the "weaker" situations of c/> 
being a Be extension or an RMM extension. To that end we shall construct a 
kind of double diagram. 

3.12. Consider the diagram in 3.3. with cf> a Be extension and let (c/>,1/1) 
satisfy gBc. Then we can lift the left hand part of the diagram to the level of 
the universal minimal proximal extensions, as follows: 
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For the exact construction, let u E J , z 0 = uz 0 E Z and 
x 0 = ux0 E cp<--(z 0). Let K = @(~,z 0) and H = @('X,x 0) be the Ellis 

groups of ~ and 'X in G with respect to the points z 0 and x 0 . Then, 
by 111.1.13.b, 

2.f ('X): = ~(u o H, ~) and 2.f(~: = ~(u oK, ~); 

a:2.f('X)~'X is defined by a(poH)=px 0 and 11:2.f(~~~ by 
1J (p o K) = pz 0 . The induced RIC extension cp': 2.f ('X) ~ 2.f (~ is defined 

by cp'(p o H) = p o K (III.1.15.). As cf> satisfies Be and 1J is proximal, we 
have a X a[Rq1] = Rr/> (IV.4.5.); as a is proximal and Er/>= Qr/> (IIl.3.9) it 
follows from IV.4.3. that a X a[Er/>'] =Er/>. Hence by IV.4.10., 
~: 2! ('X)/ E </>' ~ 'X/ Er/> is proximal. Define Y' C Y X 2.f (Z) by 
(y ,po K) E Y' iff y E po uif; ..... (zo), and let T: Y' ~ Y and 
1/;' : Y' ~ 2.f ( Z) be the projections. 

3.13. LEMMA. Consider the diagram in 3.12. (with the same notation). 
a) Y' is closed (in Y X 2.f (Z) ), T ·invariant and has a dense subset of 

almost periodic points. In particular 611' is a ttg. 
b) T: 611' ~ 611 is a proximal surjection. 

PROOF. First note that Y' is well defined: Let (y ,p o K) E Y' and let for 
certain q EM , po K = q o K. We have to show that y E q o uif; ..... (z 0). 

As kzo = z 0 for every k EK , k o uif; ..... (z 0) = u o uif; ..... (z 0) for every 
k E K (11.3.11.d); consequently, Ko u if; ..... (z 0) = u o u if; ..... (z 0) . Since 
p E p o K = q o K , it follows that 

po uif; ..... (z 0)C q o Ko uif; ..... (z 0) = q o u o uif; ..... (z 0) = q o uif; ..... (z 0). 

Similarly, q o uif; ..... (zo)Cp o uif; ..... (z 0); hence po uif; ..... (z 0) = q o uif; ..... (z 0), and 
y E q o uif; ..... (z 0). 

a) Clearly, Y' is T-invariant. Let {(yi,pioK)}i be a net in Y' 
which converges in YX2.f(Z), say (yi,p;oK)~(y,poK). Then 
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y =limy; C ~yp; o uif;<--(z 0). For a suitable subnet let q =limp; . Then 

poK=qoK and 

So (y ,p o K) = (y, q o K) E Y' ; hence Y' is closed and L\]j' is a ttg. 
Let (y ,po K) E Y' . We shall show that (y ,po K) is the limit of a net in 

Y' , consisting of almost periodic points in Y' . As (y ,p o K) E Y' , y is 
an element of pouif;<--(z0). Let {t;}; beanetin T with p =limt; ,then 

(after passing to a suitable subnet) there are y; E utf;<--(z 0) such that 

y = limt;y; . So 

(y ,p o K) = lim t; (y; , u o K) , 

while (y; , u o K) = u (y; , u o K) is an almost periodic point in Y X ~ (Z) ; 

However, y; =uy;Euif;<--(z 0)Cuouif;<--(z 0),so (y;,uoK)E Y'. 

b) First we shall show that T is a surjection. Note that it is sufficient 

to show that Y = LJ {p o u if;<--(z 0) I p E M} . Let y E Y and remark that 

Y as a factor of RH has a dense subset of almost periodic points. Then 

y =limy; for almost periodic points y; E Y , say y; = v;y; with v; E J . 

Let p;EM be such that i/;(y;)=p;z 0 • Then y;=v;p;up;- 1y; and 
if; (up; - 1y;) = up; - Ip; z 0 = z o , so y; E v;p; u o/<--(z o) C v;p; o u o/<--(z o) . After 

passing to a suitable subnet let q = lim v;p; E M , then 

Hence T is surjective. Suppose -r(y 1 ,p 10K)=-r(y2,p20K), so y 1 =y2. 

Since 1J oif;' = tf;o T , this implies that 1J (p 1 o K) = 1J (p 2 o K) and, conse

quently, that p 1 o K and p 2 o K are proximal. But then (y 1 ,p 1 o K) and 

(y 2 ,p2 oK) are proximal in Y'. D 

3.14. 1HEOREM. Consider the diagram in 3.3 .. Let cJ> be a Be extension and 

let (c/>,t/;) satisfy the generalized Bronstein condition. Then cp...:.... if; iff 
(J...:..... if; . 

PROOF. Consider the diagram in 3.12. and suppose (J...:..... if; , i.e. R lll/J is 

ergodic. As (c/>,tf;) satisfies gBc, Y has a dense subset of almost periodic 

points. Since (J is almost periodic and so RIC, it follows from IIl.1.5.b, that 

R Ill/I has a dense subset of almost periodic points. With the same reasoning 

Rlfl/I has a dense subset of almost periodic points. By IV.4.5., the proximal 

map ~ X T: R If 1/1 ~ R Ill/I is a surjection. So, by 3.1., R II' 1/1 is ergodic, i.e. 
(J'...:..... if;' . 
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But cf>' is a RIC extension and Y' has a dense subset of almost periodic 
points, so by 111.1.5., (cf>',1f/) satisfies gBc. Application of 3.6. to cf>' and If/ 
implies that cf>' ...:..._If! ; i.e., R <P' 1fl is ergodic. As 11 is proximal and as R "'"' 
has a dense subset of almost periodic points, it follows from IV.4.5. that 
CJXT:R<1>'1fl"°'R<1>.P isasurjection,hence R.,..p isergodicand cf>...:..._i/J. D 

3.15. Consider the diagram in 3.3. with ~ minimal and cf>: ~""' ~ an open 
RMM extension of minimal ttgs. We shall lift the diagram to the following 
double diagram: 

i/J' 

The right hand part is the lifting of i[I to the level of the universal minimal 
strongly proximal extensions; so 1fl: ~s (~ "°' ~s (~) is an open RIM exten
sion and 71 and 'T are strongly proximal (cf. 1.10. and the remark after it). 
As cf> is an open RMM extension, cf> 1- 71 by 1.15 .. Define 'X': = ~.,,.,, and 
let cf>' and CJ be the projections, then CJ is a proximal extension and cf>' is 
an open RIM extension (also see 1.16.). Clearly, a X a[R.,,·] = R.,. and as 
E.,.= Q.,.oP.,, (1.20.), it follows from IV.4.3. and IV.4.10. that the map 
~: 'X'/ E <I>'"°'~/ E.,, is proximal. 

3.16. TIIEOREM. Consider the diagram in 3.3. with ~ minimal and let 
cp: ~""' ~ be an RMM extension of minimal ttgs. Suppose that either 
(cf>,i/J) satisfies the generalized Bronstein condition or cf> or i[I is open. 

Then cf>...:._ifl ifJ 8...:._i[I. 

PROOF. First we shall prove the theorem in case cf> is an open RMM exten
sion. 
If cf> is an open RMM extension, we can construct the diagram in 3.15 .. 
Suppose 8...:._i[I and note that in the same way as in 3.14., Rff1f/ and R 6 .p 
have a dense subset of almost periodic points. As in 3.14., it follows from 3.1. 
that 8' ...:..._ 1fl • As If/ is an open RIM extension of minimal ttgs, we may 
apply 3.8. to conclude that cf>'...:._1/f. We prove that a X T[Rrp-1f1] = R.,..p, 
then R "'"' as a factor of an ergodic ttg is ergodic it self, and so cf> ...:..._ i[I . 
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As </> is open it follows from 1.3.9. that RH= T(</> .... lf!(y) X {y}) for every 

y E Y . We shall show that 

and so that RHc_:: a X r[R.p·.vl . 

Let y E Y, y'E ~s(Y) with r(y') = y and let z'E ~s(Z) be such that 

z' = l[l'(y'). As 11(z') = l[!(y), it follows from the fact that X' = R.p., that 

</><-o/(y)X {z'}c_::X'. Hence (</> .... o/(y)X {z'})X {y'}c;;;R.p'.V and so 

</><-o/(y)X {y} =a X r[(</> .... o/(y)X {z'})X {y'}]c_:: a X r[R.p'•V]c_:: RH. 

Consequently, cJ>...:_lf!, which settles the case for an open RMM extension </>. 

Now let </> be an RMM extension and let </> or 1[! be open or let (</>,o/) 

satisfy gBc. We construct the double* diagram (cf. IV.3.10.): 

<P 
. f ex· 

------ ~ 
<£ "?!* 

·j K'------... 6X*/E<t>. 

1" lT 
'~ $ ~ 6X '.£: "?! 

~6X/E<t>~ 
By the discussion in 1.15., q,* is an open RMM extension. As, by the 

definition of RMM extension, a X a[R<f>.] = R<f>, and since, by 1.20., 

E.p = Q<f>oP <I>, it follows from IV.4.3. and IV.4.10. that ~: 6X*/E <1>* ~ 6X/E<t> 

is a proximal extension. With the same reasoning as before, the map 

~ X r: R8'1/J* ~Rolf! is a proximal surjection between ttgs with dense subsets 

of almost periodic points. Suppose (J ...:..._ 1f! ; then by 3.1., (J' ...:..._ f . Hence by 

the first part of the proof, q,* ...:..._ 1[!* . As (</>,o/) satisfies gBc or </> or 1f! is 

open, it follows from IV.4.16.c that </> ...:..._ 1f! • D 

3.17. THEOREM. Let <J>: 6X~611 be a homomorphism of minimal ttgs. If</> is 

a Be extension or if </> is an RMM extension then </> is weakly mixing 

if! E<t> = R.p. 

PROOF. Clearly, if </> is weakly mixing then E.p = Q.p = R<f> (see also 3.11.). 

Suppose that </> is a Be extension with E </> = R .p . Then (J: 6X/ E </> ~ "?! is an 

isomorphism; so (J l.. </> • By 3.14., it follows that </> ...:..._ </> and so that </> is 

weakly mixing. 
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Suppose that q, is an RMM extension with Eq. = Rq.. Then q,* is an open 
RMM extension and so (in *('/>)) a X a[Rq.*] = Rq.. As Eq. = Qq.oP q. 
(1.20.), it follows from IV.4.1.c that 

Rq.* =(a X a) .... [Rq.] =(a X a><-[Qq.oP q.] = Qq.• oP q.* = Eq.* . 

Similar to the Be case above it follows from 3.16. that q,* is weakly mixing. 
Hence it follows from IV.4.17. that q, is weakly mixing. D 

3.18. Now we shall turn to what we announced in the abstract as the central 
theme of this section. 
So consider the following diagram of homomorphisms of minimal ttgs. 

~/ E q. __ ()_<X __ 

We shall apply the results in 3.6., 3.8., 3.14. and 3.16. to show that in several 
cases 86.X....:..... 8"!J implies q,...:..... t/J • 
Clearly, the equality (K6.X.X 1C61J}[Rq.+] = R 8"X8"!1 implies that the inverse impli-
cation is true. 

First we shall show that 86.X....:..... 86/J iff 86.X. ..L 86/J (for a more general result see 
4.5.). This is an immediate consequence of: 

3.19. TIIEOREM. Let q,: ~--') ~ and t[J: 61J--') ~ be almost periodic extensions 
of minimal ttgs. Then q,...:..... t/J if! q, ..L t/J • 

PROOF. Let a!:: «(~--') ~ be the universal minimal almost periodic extension 
of ~ and let 0'.6.X.: «(~ --') ~ and 0'.6IJ: «(~ --') 61J be the almost periodic exten
sions such that a!:= 'f>oa'.6_X, = t/Joa'.6!J • 
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Since a!: is almost periodic, 

As ~X a.,,: R ~--+ R "'"' is a closed continuous surjection and as 

{T~n R~ I ~E ~z)} is a collection of closed subsets of R~ directed by 

inclusion, it follows that 

~x a.,,[dtl(z)] = ~x a.,,[ n {T~n R~ I ~E ~Z)}] = 

= n {~X a.,,[T~nR~] I ~E ~Z)}. 
Applying 3.2.b to both sides of the diagram implies that for every ~ E ~Z) 

we have 

Suppose that cf> .l. i/J, then Rq,"' = ~X a.,,[T~n Ra:i::1 for every ~E ~Z). 

Hence ~X a.,,[~z)] =RH, and as dtl(z) is minimal it follows that Rq,"' 

is minimal; so cf> .l. i/J . 
The converse is trivial. D 

3.20. THEOREM. Consider the diagram in 3.18 .. In each of the following cases 

we have cf> _;_ i/J if! 8-x _;_ 861J (if! 8-x .l. 868 ). 
a) (cf>,1/1) satisfies the generalized Bronstein condition and. in addition, 

either cf> satisfies the Bronstein condition 
or cf> is a RIM extension 
or cf> is an RMM extension; 

b) i/J is open and cf> is a RIM extension or an RMM extension; 
c) cf> is an open RMM extension. 

PROOF. By 3.19., 8-x_;_ 861J iff 8-x .l. 868 . Clearly, cf>_;_"' implies 8-x_;_ 86'i! . 

As 8-x and 868 are almost periodic extensions, they are open RIM exten

sions ( 1.3.c ). So, by 3.8., 8-x _;_ 868 iff cf> _;_ 861J and 8-x _;_ 861J iff 8-x ~- i/J . 

a) Suppose (cf>,l/J) satisfies gBc. Let cf> be a Be map and let 8-x..;_868 . 

Since we know already that 8-x_;_i/J it follows from 3.14. that cf>_;_l/J. 

Let cf> be a RIM extension. As 'X is minimal, X has a dense set of 

supprim points. If 8-x _;_ 868 then by the above, cf> _;_ 868 . As cf> and i/J 

satisfy one of the conditions in 3.2., it follows from 3.8. that cf> _;_ i/J . 

Let cf> be a RMM extension and let 8-x_;_ 868 . Then by the above 8-x_;_ i/J . 

So, by 3.16., it follows that cf> _;_ i/J . 
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b) Let tf; be open and suppose that 0-x _:_ 061) • 
If <P is a RIM extension (of minimal ttgs) then <P and t/; satisfy one of the 
conditions in lemma 3.2 .. As by the above <P _:_ 061) , it follows from 3.8. that 
<f>_:_tf;. 
If <P is an RMM extension then by 3.16., <P _:_ tf; iff 0-x _:_ t/; ; but from the 
above we know that 0-x_:_ 061) implies 0-x_:_ t/; . 

c) If <P is an open RMM extension then by 3.16., <f>_:_ t/; iff 0-x_:_ t/; .D 

The following result is in fact a corollary of 3.5 .. It forms a bridge between 
chapter VII. and chapter VIII.. 

3.21. TIIEOREM. Let <P: ~~ 61J be a homomorphism of minimal ttgs. If <P 
and <P satisfY the conditions in 3.5. then 

PROOF. Let a E 6lLx be an arbitrary index and let U C X be an open set 
such that U X U C a . Let K: ~~ ~/ E <I> be the quotient map. Define 
U: = K._[K[U] 0 ] and U0: =Un U . Then U0 is open and nonempty. By 

3.5., 

ux unRtpCT(UX UnRtp)t'.;;;TanRtp, 

hence as U = Etp[U] 

E <1> [ U 0] x U 0 n R <1> c U x U n R <1> c Tan R <1> • 

As U is open, even 

If x E X , then there is a t E T with tx E U 0 , and so 

Hence 

t(Etp[x] X {x }) = Etp[tx] X {tx} C Etp[U0] X U0 n R<PC intR/Tan Rtp). 

So 

As x E X was arbitrary it follows that 
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As a E ~x was arbitrary 

3.22. COROILAR.Y. Let cp: ~~611 be a homomorphism of minimal ttgs. 

a) If cp is a RIC extension or an open RIM extension then 

E.p = Q.p = n {intR.,.(TanR.p) I aE ~x}. 

b) If</> is an RMM extension then E.p = Q.p. 

PROOF. 
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D 

a) In 3.6. and 3.8. we proved that if cp is a RIC extension or an open 

RIM extension then cp and cp satisfy the conditions in 3.5. (in both cases let 

l[I and q, be identical). The corollary follows from 3.21.. 

b) Let cp be an RMM extension; then by 1.16. we can construct a b 
diagram 

such that q,b is an open RIM extension and abx ab[Rcp11] = R.p. So by a 

and IV.4.3.d, it follows that E.p = Q.p. D 

We end this section with two observations on PI towers. 

3.23. Let cp: ~~611 be a homomorphism of minimal ttgs and construct the 

canonical PI tower for cp as in llI.4.6. and Ill.4. 7 .. Then we have the next 

diagram of homomorphisms of minimal ttgs: 

a' 00 

where q,'00 is a RIC extension without nontrivial almost periodic factors, 
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a'00 is proximal and 7"1
00 is a strictly-PI extension. 

By 3.11., it follows that c/>'00 is a weakly mixing homomorphism of minimal 
ttgs. So every homomorphism of minimal ttgs is a PI extension up to some 
weakly mixing junk in the top of the tower (cf. [V 77] 2.l.3.). 

3.24. Similar to the construction of the canonical PI tower for cJ> , we can 
construct a canonical SPI tower for cJ>, using the G diagrams (1.10.). Then 
we get the following diagram of homomorphisms of minimal ttgs: 

a# 
00 

6X# 
00 6X 

•!l l• 
G]j# ~ 6]j 

00 
'T # 

00 

where cJ>! is an open RIM extension without nontrivial almost periodic fac
tors, a! is strongly proximal and 'T! is a strictly-PI extension in which 
every proximal map is even strongly proximal. 
Again by 3.11., we have that cJ>! is weakly mixing. So every homomorphism 
of minimal ttgs is an SPI extension up to some weakly mixing junk in the 
top of the SPI tower (cf. [M 80]). 

VII.4. REMARKS 

4.1. In section VII. I. we introduced RMM extensions in a somewhat 
artificial way. As strong proximality is a property between proximality and 
high proximality one should expect a natural notion between RIC and open
ness which is characterized similar to RIC and openness as in the definition 
and in IV.3.16. respectively, but then with respect to strong proximality. In 
the metric case 1.14. is such a decent characterization. In the nonmetric case 
such a characterization seems to be unknown. 
A related problem is how to characterize universal strongly proximal exten
sions as quasifactors of ~. Clearly, 2fs(6X) is an MHP ttg for every 
minimal ttg 6X (1.9.b). So the question could be "restated" as: what kind of 
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MHP generator generates "MSP" ttgs? Note that it must depend on the 

choice of the idempotents only. Because, for a ttg 'X with Ellis group H 
and MHP generator C = u o C = KH , where K = C n J , it is clear that 

u o H C S C C if S is the MHP generator that generates ~s ('X) . 

QUESTIONS 

a) Characterize RMM extensions in the nonmetric case. 
b) Characterize the universal strongly proximal extensions as quasifactors 

of~-

c) Let q,: 'X~6Y be a homomorphism of minimal ttgs with 6Y = ~s(6Y). 
Then q, is a RIM extension, say with section A. What can be said 

about this 'A or about supp'Ay for y E Y ? Note that if 

supp Ay = q, ..... (y) for some y E Y , then this answers question a too. 
d) Let q,: ex~ 6Y be a homomorphism of minimal ttgs. If 4' is a RIM 

extension, is q,• a RIM extension? If q,• is a RIM extension and if q, 
is open, is q, a RIM extension? 

4.2. The problem stated in the abstract of section VII.3. is attacked by many 

people; e.g., see [P 72], [K 72], [M 78] and [V 77]. The results in section 

VII.3. extend all of the known ones on that matter. 

Also the problem whether or not E q, = R q, implies weak mixing of the 

homomorphism is considered frequently in the literature. The strongest 

results until now are [V 77] 2.6.3., which answers the question in the 

affirmative for Be extensions, and [M 78], where the question is answered in 

the affirmative for minimal ttgs with invariant measure as well as for some 

special other cases. Here we answered the question in the affirmative for 

RMM extensions. 
Moreover we proved that an open RIM extension q, with E q, = R q, is 
weakly mixing of countable order. The step to uncountable order is still open 

(see also [M 80]). Another "new" accomplishment in this chapter is the fact 

that for an RMM extension q, of minimal ttgs we have that Eq, = Qq,. 

Until now the strongest result was that the equality holds true for an open 

RIM extension with Eq, = Rq, ([MW 83]). In the absolute case it was 

already known that the equation holds for a minimal ttg 'X supporting an 

invariant measure ([M 78]). 
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4.3. Note that by 3.17. and 1.11., it follows that for an amenable group T 
the collections D l. and WM coincide. What is more, it even follows that 
SP l. n D l. C WM , where SP l. is the collection of minimal ttgs that are 

disjoint from every strongly proximal minimal ttg. 

The following generalization of 3.19. as presented in 4.5. is suggested by 
J. AUSLANDER. 

4.4. LEMMA. Let q,: 'X""' 6M be a surjective homomorphism of ttgs (not neces
sarily minimal). Let X' C X be a closed invariant subset of X such 
that 
(i) q,[X'] = Y , 
(ii) <Plx,:X'""'Y isopen. 
If 'X is ergodic then X = Q<l>[X']. 

PROOF. Let x EX and let x'E X' be such that <P(x') = <P(x). As 'X is 
ergodic it follows that x' E Ta (x) for every a E GlLx ; so for every 
aE GlLx we have a(x')n Ta(x) =I= 0 . For aE GlLx let XaE a(x) and 
taE T be such that taxaE a(x'). Then, after passing to suitable subnets, 
x a""' x and t aX a""' x' ; so t a<P (x a)""' <P (x ') . As et> IX' is open, there are 
x:rE X' with ij>(x:r) = ij>(xa) such that taX:r""'x'. Let for a suitable sub-

net z = limx:r. Then z EX' and (x,z)E Q<I>. Hence x E Q.p[z] and so 
Xc; Q<l>[X']. D 

4.5. THEOREM. Let ip: 'X""' 6M be an almost periodic extension with 'X 
ergodic and 6M minimal. Then 'X is minimal. 

PROOF. Let X' be a minimal subset of X . As it>lx' is almost periodic, 
<Pix' is open. From 4.4. it follows that X = Q.p[X']. As !J> is almost 

periodic, Q<I> =Ax, so X = X'. D 

Note that 4.5., IV.4.13. and IV.2.2.c show that it>-=- 1f; iff it> 1- 1f; in case <P 
and 1f; are HPI extensions which satisfy gBc. 

As we promised in 111.5.7., we shall now present a slight generalization of the 
characterization of PI extensions in (B 77]. 
A homomorphism it>: 'X""' 6M of minimal ttgs is called a C' extension if every 
ergodic subset of R <P with a dense subset of almost periodic points is 
minimal. Note that a C' extension is a C extension (cf. 111.5.7.) and that a C 
extension of metric ttgs is a C' extension (1.1.2.b). 
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4.6. REMARK. 

a) A weakly mixing C' extension of minimal ttgs that satisfies the Bron

stein condition is an isomorphism. 
b) Let q, and 1" be homomorphisms of minimal ttgs such that 1" o 4> is 

a C' extension. Then q, is a C' extension. 

c) Let { 4>a I 4>a: ~--+ ~, a< 11} be an inverse system of C' extensions 

of minimal ttgs, and let q, = inv fun 4>a . Then 4> is a C' extension. 

PROOF. 

a) Immediate. 

b) Clear from the fact that R"' ~ Rt.<1> • 

c) Let ~=invlitn~ and let q,:~-+~ be the inverse limit of the 

4>a's. We denote by Ya the canonical map Ya:~--+~ such that 

4> = 4>aoYa. Let N be a closed invariant subset of Rep with a dense subset 

of almost periodic points which is ergodic. Then YaX Ya[N] is a C' exten-

sion, YaX Ya[N] is minimal. Clearly, N = invlitnyaX Ya[N], so by 1.1.6., 

N is minimal. D 

4. 7. LEMMA. Let q,: ~--+ ~ and 1": ~--+ !2: be homomorphisms of minimal 

ttgs. 
a) If 1" is a C' extension and if q, is almost periodic then i/iof/> is a 

C' extension. 
b) If 4> is a proximal extension then 1" is a C' extension if! i/iof/> is a 

C' extension. 

PROOF. 

a) Let N be a closed invariant and ergodic subset of Rt.cp with a 

dense subset of almost periodic points. Then q, X q,[N] is an ergodic subset 

of Rt with a dense subset of almost periodic points. As 1" is a C' exten

sion, q, X q, [N] is minimal. By 1.1.21., q, X q,: ~ X ~--+ ~ X ~ is almost 

periodic, so 4> X 4> IN : '?Jt-+ 4> X q, ['?Jt] is an almost periodic extension of a 

minimal ttg. Since N is ergodic it follows from 4.5. that N is minimal. 

Hence 1" o q, is a C' extension. 

b) Let 1" be a C' extension and let N be an ergodic subset of Rt.<1> 

with a dense subset of almost periodic points. As 1" is a C' extension, 

4> X f/>[N] is a minimal subset of Rt. The map q, X 4> is proximal so 

4> X 4>IN: '?Jt-+4> X q,['?Jt] is a proximal extension of a minimal ttg. But then, 

by 1.1.23.c, N has a unique minimal subset; hence N is a minimal subset 

of Rt.<1> . So i/iof/> is a C' extension. 

Conversely, let i/iof/> be a C' extension. Let N be an ergodic subset of Rt 
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with a dense subset of almost periodic points. For every n E JN we can 
find a n' E JR>/lor/> such that cf> X cf>(n ') = n . Define 

N': = {tn ' I t E T , n E JN } . 

Then N' is a closed invariant subset with a dense subset of almost periodic 
points which is proximally mapped onto the ergodic subset N of R If (by 

cf> X cf> ). Hence, by VII.3.1., N' is ergodic. As lf;ocf> is a C' extension, N' 
is minimal. So N is minimal; which shows that If; is a C' extension. D 

4.8. 1HEOREM. Let cf>: ex~ 6Y be a homomorphism of minimal ttgs. Then 
cf> is a C' extension if! cf> is a PI extension. 

PROOF. Suppose cf> is a C' extension and construct the canonical PI tower 
for cf> as in III.4.6. and III.4.7 .. Then by VII.3.23., c/>'00 is a weakly mixing 
RIC extension. As a'00 is proximal, it follows from 4.7.b that cf>oa'00 is a C' 
extension and so by 4.6.b, that cf>'oo is a C' extension. But then, by 4.6.a, 

c/>'00 is an isomorphism; which shows that cf> is a PI extension. 
Conversely, let cf> be a PI extension. Then there is a strictly-PI extension If; 
and a proximal homomorphism (J such that If;= cf>oO. By 4.7.b, it follows 
that we only have to show that If; is a C' extension. But it is obvious from 
4.7.a, 4.7.b and 4.6.c that a strictly-PI extension is a C' extension. D 

We end this chapter with the next generalization of Vl.3.1. (made possible by 
4.5.). 

4.9. REMARK. Consider the following commutative diagram of homomorphisms 
of minimal ttgs: 

ijJ 
ex ~ 

$1 
,,,:r 

l· / 
/ 

(J ...--"' 
/ 

/ 
/ 

6Y 6ll) 
g 

Let cf> be weakly mixing and 1/ be distal. Then there is a homomor
phism of minimal ttgs (J: 6Y ~ ~ such that the diagram commutes (so 
metrizability of ~ is not necessary). 

PROOF. We shall prove the remark for an almost periodic extension 1/ • By 
FST the remark follows for a distal map 1/ • 



Chapter VII Weak disjointness 255 

First note that, by 1.1.21.b, the map 1J X 1J: R 11 ~ Liw is almost periodic. As 

cp is weakly mixing, R<t> is ergodic. Hence If; X l/;[R<I>] is an ergodic subset 

of R 11 • But 1J X 1J: If; X l/;[R<I>] ~ Liw is an almost periodic extension of a 

minimal ttg (Liw ). So, by 4.5., If; X l/;[R<t>J is minimal. Clearly, 

Liz C If; X l/;[R<I>]; hence Liz =If; X l/;[R<t>J and R<t>C R>/i. This shows that 
there is a map 8: 6Y,......, 6X/R<t>~~,......, 6X/R>ii. D 



VIII 

A VARIATION ON REGIONAL PROXIMALITY 

1. sharp regional proximality 

2. factors and lifting 

3. transitivity and Q # 

4. regional proximality of second order 

5. remarks 

In this final chapter we are interested in a sharp form of regional proximality, 

which in some cases implies the regionally proximal relation to be an 

equivalence relation. 
In the first section we introduce sharp regional proximality, which is in fact 

regional proximality "in every direction". Also we give examples of exten

sions cf>: ?X.~ 61:1 for which E.p = Q.p = Qf , where Qf is the collection of 

sharp regionally proximal pairs for cf> ; for instance: RIC extensions and 

open RIM extensions have that property. 

The second section is devoted to the question whether or not Q </> = Q f is 

preserved under factors and it is proved that this is the case if E .p = Q .p . 

Transitivity problems are dealt with in the third section. In particular, we 

show that Q.p = Qf implies that Q.p is an equivalence relation in case cf> 

is open or in case X is a metric space. 

In the forth section the "vital part" of the equality Q </> = Q f is used to give 

a necessary and sufficient condition for transitivity of the regionally proximal 

relation. 

All results in this chapter are contained in [AMWW ?] and they result from 

joint research of J. AUSLANDER, D. c. MCMAHON, T. S. WU and the author. 
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VIII.l. SHARP REGIONAL PROXIMALITY 

We shall discuss a special form of regional proximality, which could be 

paraphrased as regional proximality in every direction. The main objec

tive in this section is to introduce sharp regional proximality and to give 

examples for which Q = Q # , i.e., examples for which every regionally 

proximal pair is sharply regionally proximal. In section VIIl.3. we shall 

see the use of this in transitivity questions for Q . 

1.1. Let </>: '?X',~ 6lJ be a homomorphism of ttgs. 

257 

If (x 1 ,x 2)EQep then there are nets {(x\ ,x~)}; m Rep and {t;}; in T 

such that 

(x\ ,x~)~(x 1 ,x 2) and t;(x\ ,x~)~(x,x) for some xEX. 

In general, however, an arbitrary net {(x\ ,x~)}; that converges to the 

regionally proximal pair ( x 1 , x 2) is far from a net that "makes ( x 1 , x 2) 

regionally proximal" (see 1.5.). 

We say that a pair (x 1 ,x 2)E Rep is sharply relatively regionally proximal, 

whenever for every net {(x\ ,x~)}; in Rep that converges to (x 1 ,x 2) there 

are nets {(zi ,z~)}1 in Rep arbitrarily close to {(x\ ,x~)}; (this will be 

explained below) having the following property: 

(zi ,z~)~(x1,X2) and t1(zi ,z~)~(z,z) 

for some net {t1 }J in T and some z EX (paraphrased: if (x 1 ,x 2) can 

be approximated from all directions in a regionally proximal way). 

We say, that we can find nets (with a certain property) arbitrarily close to 

{(x\ ,x~)}; whenever for every net {U;}; of neighbourhoods U; of 

(x\ ,x~) in Rep there are a subnet {Ui}1 and a net {(zi ,z~)}J (with 

that property) such that (zi , z~) E Ui for every j . 

Denote the collection of sharply relatively regionally proximal pairs for </> 

by Q:. 
1.2. REMARK. Let </>: '?X',~ 6lJ be a homomorphism of ttgs. Then 

Q: = n {intR/TanRep) I aE 621x}. 

PROOF. Let (x 1 ,x 2)E Qt . Assume (x 1 ,x 2)~intR/TflnRep) for some 

flE621x; then we can find a net {(x\ ,x~)}; in W:=Rep\(TflnRep), 

which converges to (x 1 , x 2) • Define U; : = W for every i . Then there is 
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a net {(z{ ,z~)}1 in W such that (z{ ,z~)~(x 1 ,x 2) and there is a net 
{t1 }1 in T with tj(z{,z~)~(z,z) for some zEX. Hence 
t1(z{ ,z~)E f3nR</> eventually, and so (z{ ,z~)E Tf3nR</> eventually, 

which contradicts the fact that (z{ , z~) E W . 

Conversely, let 

(x 1.x2)E n {intR</>(Tan R</>) I aE 62Lx}. 

Let {(x\ ,x~)};E/ be a net in R</> which converges to (x 1,x2) and let 
{U;};EJ be a net of open neighbourhoods U; of (x\ ,x~). As for an 

open index a E 62Lx the set 

is a neighbourhood of (x 1 ,x2) in R</>, there is an i(a)E I such that 

U; n a(x1)X a(x2)n intR (Tan R</>) =I= 0 for every i:;;;. i(a), </> 

and so for every i:;;;. i (a) there are (z\ , z~) ER</> and t; E T with 

(z\ ,z~)E U; n a(x 1)X a(x 2)n Tan R</> and t;(z\ ,z~)E a. 

But then for a suitable directed subset J <;;:: I X 62Lx there are nets 

{(z{ ,z~)}JEJ and {t1 }JEJ in R</> and T such that 

(z{ ,z~)~(X1,X2), tj(z{ ,z~)~(z,z) and (z{ ,z~)E Uj 

for some z E X and for Ui : = U; whenever j E { i} X 62Lx . D 

1.3. EXAMPLES. Let </>: ~~ ~ be a homomorphism of ttgs. 
a) P </> <;;:: Q f <;;:: Q </> ; so if </> is proximal, R </> = P </> = Q f = Q </> = E </> . 
b) If </> is weakly mixing then R</> = Qf = Q</> = E</>. 
c) If </> is almost periodic then /),.x = E</> = Q</> = Qf = P </>. 

PROOF. 

so 

a) Obviously, Tan R<t>C intR/Tan R</>) for every open aE 62Lx , and 

p </> = n {Tan R </> I a E 62Lx} = n {Tan R </> I a E 62Lx ' a open}<;;:: 

<;;:: n {intR</>(Tan R</>) I aE 62Lx' a open} = 

= n {intR</>(TanR</>) I aE 62Lx} = Qf . 

b) If </> is weakly mixing, R </> is ergodic and so Tan R </> = R </> for 
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every aE 6lLx . Hence TanRq, = intRiTan Rq,) 

so Qq,=Qt =Rq,. 
c) If cp is almost periodic then !!:.x = Qq,. As 

follows that !!:.x = P q, =Qt = Qq, = Eq,. 
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for every a E 6lLx , and 

!!:.x C P q,C Qt C Qq,, it 
D 

1.4. EXAMPLES. Let cp:'X~61J be a homomorphism of minimal ttgs. In each 

of the following two cases we have Eq, = Qq, =Qt . 
a) cp is a RIC extension; 
b) cp is an open RIM extension. 

PROOF. Cf. Vll.3.22 .. D 

The following example shows that there are minimal ttgs for which 

Q * Q# . 
Moreover, it shows that if cp and l[; are homomorphisms of minimal ttgs 

with Qq, =Qt and Qt/I= Qf then Qif 0 q, and Qf0 q, may be different 

from each other. 

1.5. EXAMPLE. Let 61J be the fourfold covering of the minimal proximal rota

tion 'X (cf. I.4.7.). Then Q,: =¥= Q61J =¥= E61J. 

PROOF. Let T be the free group on two generators and let X , a and b 

be as in I.4.7.(i). Let Y be the circle and define the map c: Y ~ Y by 

c (y): = y + ~a and d : Y ~ Y by d (y): = ~k + 4(y - ~k )2 whenever 

k.;;;;;; ~ < k + 1 (k E {O, 1,2,3}). Define the ttg 61J: = <T(c,d), Y> and 

let cp: 61J ~ 'X be defined as cp (y ) = ~ (mod 1) . Then 61J (or better cp ) is 

the fourfold covering of 'X • 
Note that P6X = Q& = Q6X = E6X = X X X ; and that cp is almost periodic, 

so that P q, =Qt = Qq, = Eq, = !!:.y . 
Obviously, 61J does not admit nontrivial almost periodic factors, in other 

words E 6IJ = Y X Y . As c preserves distances, it is not difficult to see that 

(y ,y ') E Q 6IJ iff the distance (mod 1) between y and y' is smaller then or 

equal to 1/.i. So Q61J =¥= E61J. 
If the distance between y and y' equals 1/.i, then we can approach (y ,y ') 
with pairs with a distance greater then 1/.i (from the outside), which shows 

that (y,y')~ Q,: . So Q61J =¥= Q,: . D 

An indication of the power of sharp regional proximality is given in the fol

lowing theorem, which hints at regional proximality of second order as will 

be discussed in VIII.4. (1.6.b). 
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1.6. THEOREM. Let <f>: ~~ 611 be a homomorphism of minimal ttgs. 
a) Let (x 1 ,x 2)E Rq,. If T(x 1 ,x2)n Q: =I= 0 then we have 

(x1 ,x2)E Q: , and so T(x1 ,x2)C Q: C Qq,. 

In particular, if Qq, = Q: then Qq, contains the orbit closures that 

have a nonempty intersection with Q q, . 
b) Let (x 1 ,x2)E Q: and let {(x\ ,x~)}; be a net in Rq, converg

ing to (x 1 ,x 2). Choose {t; }; in T and (for a suitable subnet) let 

(z 1 ,z2) = limt;(x\ ,x~). Then (z1 ,z2)E Qq,. 

PROOF. 

a) If T(x I' X2) n Q: =I= 0 then T(x I' X2) n intR.p(Ta n Rq,) =I= 0 

for every aE GlLx , and so T(x 1 ,x2)n intR/Tan Rq,) =I= 0 . But then it 

follows that (x 1 , x 2) E intR /Tan R q,) for every a E GlLx and, consequently, 

(x 1 ,x2)E Q: . 
b)Let aEGlLx. As (x 1,x2)EintR/TanRq,), there is an i(a) such 

that (x\ ,x~)EintR.p(TanRq,) for every i~i(a). But then, also, 

t;(x\ ,x~)E intR.p(Tan Rq,) for every i ~ i(a) and so 

(z 1,z 2) = limt;(x\ ,x~)E Tan Rq,. 

As a was arbitrary it follows that 

D 

1.7. COROLLARY. Let <f>: ~~611 be a homomorphism of minimal ttgs. If 

J.Q: C Q: (e.g. Q: is closed, in particular if Qq, = Q: ) then 

Q: oPq,=Pq,oQ: = Q:. 

PROOF. Let (x1,X2)EPq, and (x2,X3)E Q:. Let I be a minimal left 

ideal in ST such that px 1 = px2 for every p EI and let v E lx 3(J) . 

Then 

v(x1 ,x3) = (vx 1,x3) = (vx2 ,x3) = v(x2 ,x3)E J.Q: C Q: 

By 1.6.a, it follows that (x1 ,x3)E Q: . Hence Q: oP q,C Q: 

Clearly, Q: C Q: oP q,, so Q: oP q, = Q: . 

In a similar way it follows that P q,oQ: = Q: . D 
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1.8. REMARK. Let cp: ex~ 6Y be a RIM extension of minimal ttgs. If 

Q </> = Q: then E </> = Q </> = Q: . 

PROOF. By VII.1.19., we know that E<I> = Q<l>oP </>, and so, by assumption, 

E<I> = Q: oP <I>. From 1.7. it follows that Q: oP <I>= Q: = Q<I>; so 

E<l>=Q<l>=Q:. D 

The following theorem reflects the way we proved VII.3.22. using VII.3.5 .. 

But first we need a lemma. 

1.9. LEMMA. Let cp: cx~6Y be a homomorphism of minimal ttgs and let 

ic: 'X~'X/E<1> be the quotient map and 0: 'X/E<1>~6Y the maximal 

almost periodic factor of cp . Denote the collection of nonempty open sets 

in X/E<1> by 8. Then 

E</> = n {T(ic .... [U] x K .... [U] n R</>) I u E 8} = 

= n {T(ic .... [U] x K .... [U] n R</>) I u E 8}. 

PROOF. Let U E 8 and (x 1 ,x 2)E E<I>. Then for some t ET we have 

tic(x 1) = tic(x 2)E U and so 

(x 1 ,x 2)E ic .... [t- 1U] x ic .... [t- 1U] nR<PC T(ic .... [U] x ic .... [U] nR<P). 

Hence 

E</>c; n {T(ic .... [U] x K .... [U] n R</>) I u E 8} c 

c n {T(ic .... [U] x K .... [U] nR</>) I u E 8}. 

On the other hand, 

IC x ic[ n {T(ic .... [U] x K .... [U] n R</>) I u E 8}]C 

c n {T(ic x ic(ic .... [U] x K .... [U] n R</>) I u E 8} c 

c n {T(U x u n R</>) I u E 8} = Q9 = llx;E</>. 

So n {T(ic .... [U] x K .... [U] n R</>) I u E 8} c (ic x ic) .... [llx;E</>] = E</>. D 
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1.10. THEOREM. Let cp: <?X,_,.611 be a homomorphism of minimal ttgs and let 

K: ex_,. <X/ E .p be the quotient map and (J: <X/ E .p __,. 611 the maximal 

almost periodic factor of cp . Then the following statements are 

equivalent: 

a) E.p=Q.p=Q:; 

b) for every a E 61.Lx there is a nonempty open set V in X such that 

V = E.p[V] and VX VnR.pC TanR.p; 

c) for every open set U in X there is a nonempty open set V in 

X such that V = E .p [V] and V X V n R .pc T ( U X U n R .p) . 

PROOF. 

b =:. c As <X is minimal, T(U X U) is an open set containing the 

diagonal for every open U in X . Hence a: = T ( U X U) E 61.Lx . 

c =:> b For every a E 61.Lx there is a /3 E 61.Lx with /3 = 13- 1 and 

/32 C a. Then /3(x)X f3(x)nR.pC anR.p for every x EX and so there is 

a nonempty open U in X with T ( U X U n R .p) C Tan R .p . 

b =:. a Let a E 61.Lx . By assumption, there is a nonempty open set V 

in X with V = E.p[V] = K ..... K[V] and V XV n R.pC Tan R.p. As K[V] 

is open in X/E.p it follows from 1.9. that 

E.pC T(K ..... K[V] x K ..... K[V] nR.p) = T(Vx vnR.p). 

So E.pC T(VX v nR.p)C T.TanR.p = TanR.p and as T(VX vnR.p) lS 

an open set in R.p, E.pC intRlTan R.p). As o:E 61.Lx was arbitrary, it fol-

lows that E.pC Q: C Q.pC E.p. 

a =:. b Let 'Y be the collection of nonempty open sets V in X with 

V = E.p[V]. Suppose there is an o:E 61.Lx with 

vx VnR.pn (XXX\TanR.p)=I= 0 

for every V E 'Y. Define 

then X(V) is closed and nonempty for every VE 'Y. As 'Y is closed 

under finite intersections and invariant under T , it follows that 

{X(V) I VE 'Y} has the finite intersection property. Hence 

n = = n {x(v) 1 v E 'Y} =1= 0 . 

By 1.9., H C E.p and by construction H n Q: = 0 , which contradicts 

assumption a. D 
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l.ll. THEOREM. Let cp: ~~l>]j be a Be extension of minimal ttgs. Then 

E.p = Q.p = Q: . 

PROOF. First we shall show that cp and cp satisfy the conditions of lemma 
VII.3.5. (compare the proof of VII.3.6.). 
Let U 1 X U 2 n R .p be a nonempty (basic) open set in R .p and let 
(x 1 , x 2) E U 1 X U 2 n R .p be an almost periodic point; say 
(x 1 ,x2) = u(x 1 ,x2) for some u E J . We shall show that 

E.p[xi] X {x2} C T(U 1 X U2 n R.p). 

Let V be an open set in T with V = V(u) and Vx 2 c; U2 (III.2.1.c). 

Define U:=[U1,V]nucp<--cp(x 1),then U is an ~(~,u)-neighbourhoodof 

x 1 in ucp<--cp(x 1). Consider an arbitrary x'E U ; say x' = t- 1z for 
some tEV and zEU 1 • Then (x',x2)=t- 1(z,tx2)ET(U1XU2), so 
(x',x2)E T(U 1X U2nR.p). Hence 

Therefore cp and cp satisfy the conditions of lemma VII.3.5 .. 
Let U be a nonempty open set in X . By VII.3.5., there is a nonempty 
open set 0 with 0 = E.p[O] such that 

0 -=t= Ox unR.pC T(UX unR.p). 

Again by VIl.3.5. and the facts that cp[O] = cp[O n U] and 
0 = K<--[ IC [ 0 n Uj 0 j , it follows that 

0 -=t= Ox OnR.pC T(Ox unR.p). 

Hence 0 X 0 n R.pC T(U X Un R.p) and the theorem follows from 1.10 . .D 
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v:m.2. FACTORS AND LIFTING 

Let </>: 'X-~ 6Y be a homomorphism of minimal ttgs and let (): ~~ 6Y 
be a factor of cp. By 1.4.3., E.p = Q.p implies Eo = Qo. We shall 
see that E.p = Q.p =Qt implies Eo = Qo = Qf too. Also we 
shall study the lifting of sharp regional proximality in shadow diagrams. 

2.1. TIIEOREM. Consider the following diagram of homomorphisms of minimal 

ttgs. 

a 

611' 

Let a be proximal and suppose that a X a[R.p'] = R.p. Then 
a) aXa[Q; nJR.p1]<.:Qt; 
b) Q.p• = Q; implies Q.p =Qt ; in particular, E.p' = Q.p• = Q; 

implies E.p = Q.p =Qt . 

PROOF. 

a) Let (z 1 , z2) E Q; n JR.p' , then 

(x1 ,xz): =a X a(z1 ,z2)C a X a[Q.p•] <.: Q.p. 

Suppose that (x 1 ,x2)jl Qt . Then there is an index aE 61.Lx such that 
(x 1, x 2) jl intR<P(Ta n R.p) . And so there is a net { (x\ , x~)}; converging to 

(x 1,x2) with (x\ ,x~)jl TanR.p for every i. Let (z\ ,z~)ER.p' be 
such that a X a(z\ ,z~) = (x\ ,x~) and, after passing to a suitable subnet, 
let (z1 ,Z2) = lim(z\ ,z~). Then 

and as a X o: ~ X ~ ~ 'X- X 'X- is proximal (1.1.21. b ), it follows that 
(z1 ,Z2) and (z 1 ,z2) are proximal in R.p·. However, (z 1 ,z 2) is an almost 

periodic point, so (z 1 ,z 2)E T(z1 ,Z2). As (z 1 ,z 2)E Q; it follows from 
1.6.a that (z1 ,Z2)E Q; . 
Let /3E62Lx· besuchthat aXa[{J]c;a,then aXa[T{JnR.p·]<.:TanR.p. 
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Since 

(z1 .Z2)E Q: <;;;;, intR/TPn R.p')' 

we know that (z i , z ~) E T P n R <I>' for i large enough. But then 

(xi ,x~)=oXo(zi ,z~)EoXo[T/JnR.p']C TanR.p 
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for i large enough, which contradicts the choice of the net { ( x i , x ~ ) } ; . 
Hence (x1 ,x2)E Q: . 

b) Note that by IV.4.2.b, we have a X o(Q.p'] = Q.p; so it follows that 
a X a[JQ.p'] = JQ.p. If Q.p' = Q: then JQ<I>' = Q: nJR.p' and so, by a, 

it follows that 

JQ.pC a X a(Q: nJR.p,]C Q: . 

If (x 1,x2)E Q.p then T(x 1,x2) contains an almost periodic point; hence 
T(x 1 ,x2)nJQ.p =f=. 0 and so T(x 1 ,x 2)n Q: =f=. 0 . Hence by 1.6.a, it 

followsthat (x 1,x 2)EQ:. Consequently, Q.p=Q:. 

Suppose E.p' = Q.p' = Q: ; then by IV.4.3.d, E.p = Q.p and by the above 
Q.p=Q:. D 

Theorem 2.1. enables us to give an alternative proof of 1.11. as follows. 

2.2. COROLLARY. Let cp: ~~ 611 be a homomorphism of minimal ttgs. If cJ> 
is an RMM extension or if cJ> satisfies the Bronstein condition, then 

E.p=Q.p=Q:. 

PROOF. If cJ> is an RMM extension then, by VII.1.16., we can construct a 
diagram as in 2.1. such that cJ>' is an open RIM extension. Hence by 1.4.b, 
E.p' = Q.p' = Q: and by 2.1., we may conclude that E.p = Q.p = Q: . 

If cJ> is a Be extension then, by IV.4.5., EGS(cJ>) is a diagram which satisfies 
the assumptions in 2.1., such that cJ>' is a RIC extension. Again by 1.4. and 
2.1., it follows that E.p = Q.p = Q: . D 

In IV.4.8., IV.4.16. and IV.4.17. we have shown that highly proximal lifting of 
homomorphisms of minimal ttgs preserves many decent properties of those 
homomorphisms. In addition to this, we show: 
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2.3. THEOREM. Consider the following diagram of homomorphisms of minimal 

ttgs: 

CJ 

Assume that cf>' is open, CJ is highly proximal and CJ X CJ[Rcp'] =Ref>. 

Then Ecf>·=Qcf>'=Qf, if! Ecf>=Qcf>=Q:. 

PROOF. By 2.1.b, it follows that Ecf> = Qcf> = Q: if Eel>'= Qcf>' = Qf, . 

Conversely suppose that E cf> = Q cf> = Q: . Remember that the openness of 

cf>' implies that CJ': = CJ X CJ I R .v: R cf>' -+ R cf> is an irreducible map (IV.4.13. ). 

Let W be a nonempty open set in X', which by IV.2.1., without loss of 

generality may be chosen such that it is of the form W = CJ+-CJ[W] ; hence 

CJ[W] is an open set in X . We want to find a nonempty open set U in 

X' such that 

u =E.,.,[U] and ux UnR.,.,k T(WX WnR.,.,)' 

which proves the theorem by 1.10.c. 

As Ecf> = Qcf> = Qf and CJ[W] is open in X, by 1.10.c, we can find a 

nonempty open set V in X such that 

V=Ecf>[V] and vxvnRc1>kT(CJ[W]XCJ[W]nR<1>)· 

Define an open set U in X' by U : = a+-[V] . Then 

The proof is finished if we show that UX UnR.,.,k T(WX WnR.,.,). We 

shall show that every nonempty open subset U' of U X Un R<I>' intersects 

T(WX WnR<I>'), which implies that every element of UX UnR.,., is in 

the closure of T(WX WnR.,.,). 

So let U' beopenandnonemptyin UXUnR<f>'· As a':R<1>'-+R<1> is 

irreducible, by IV.2.1., we can find a nonempty open set V'k U' such that 

V' = a'+-a'[V']. Note that a'[V'] is open and that 
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so a'[V'] n T{a[W]X a[W]nRct>) =I= 0 . As V' = a' ..... a'[V'] it follows 

that V'n T(WX WnRct>') =I= 0, hence that U'n T(WX WnRct>') =I= 0. 

This concludes the proof. D 

2.4. COROLLARY. Let <f>: ex~6Y be an open homomorphism of minimal ttgs 

and let </>• : ex• ~ 6ll* be the MHP lifting of </> . Then. E et> = Q et> = Q f 
if! Ect>. = Qct>. = Q:- . 

PROOF. If </> is open then *(</>)is a diagram as in 2.3. (IV.4.7.). D 

2.5. Consider the following diagram consisting of homomorphisms of 

minimal ttgs. 

</> ex------""' qi 

~~/. 
In the remainder of this section we shall deal with the question: does 

Q et> = Q f imply Q o = Q f ? 

2.6. THEOREM. Consider the diagram in 2.5 .. If if; is open then Qct> = Qf 

implies Qo = Qf . In particular, if if; is open then Ect> = Qct> = Qf 

implies Eo = Qo = Qf . 

PROOF. If if; is open then if; X if; I R <1>: R et>~ R 8 is an open homomorphism 

of ttgs. For if; X if;: X X X ~ Z X Z is open and Ref>= (if; X i/Jr[R 8] • Let 

a E 6lJ,z ; then there is a PE GlLx such that if; X if; [p] C a , hence 

T.if; x if;[jJnRct>]C TanR 8 • 

By 1.4.3.b, Qo =if; X if;[Qcf>] and so, assuming that Qct> = Qf , 

Qo =if; x if;[Qf ]C if; x if;[intR.p(TjJnRcj>)]. 

As if; X ifJIR<P is open 

QoC intRiifJ x if;[TjJnRcj>]) = intR/Tif; x if;[jJnRcj>]). 

Hence it follows that 
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QoC intRiTo/ x l[;[{JnRq.])C intRu<Tan R(J). 

As a E 6ll,z was arbitrary, it follows that Q o <;;;, Q f ; so Q o = Q f 

If Eq. = Qq. then, by I.4.3., E 0 = Qo. D 

2.7. 1HEOREM. Consider the diagram in 2.5 .. 
a) If cp is open and if o/ is highly proximal then Eq. = Qq. =Qt iff 

Eo=Qo=Qf. 
b) If o/ is proximal then Qq. =Qt implies Qo = Qf . 
c) If ex= ex• then Qq. =Qt implies Qo = Qf . 

PROOF. 

a) As the diagram of 2.5. is a special case of the diagram in 2.3. and as 
the assumption guarantees that the assumptions in 2.3. are satisfied, a follows 
immediately from 2.3 .. 

b) In the same way b is a special case of 2.1.. 
c) Let ~: <£ ~ 2: be the MHP extension of 2: and let l[; • : ex• ~ <£ 

be the MHP lifting of l[; . Then cp = fJo~ol[;* . As l[;* is open it follows 

from 2.6. that Qq. =Qt implies Qo 0 x'£ = Qfox'£ . Hence by b, we know 

that Q0 = Qf D 

2.8. 1HEOREM. Consider the diagram in 2.5.. If Qq. = (o/ X o/Y .. [Qo] then 

Qq. =Qt implies Qo = Qf . 

PROOF. Let PE 6ll,z and let a E 62Lx be such that o/ X o/ [a] <;;;, P . Then 

o/ X l[;[TanRq.]C To/ X l[;[a]nR 0 <;;;, T{JnRo. 

Suppose Qq. =Qt then 

Qq.C intR.p(Tan Rq.) = Rq. \ clR/Rq. \(Tan Rq.)). 

As Qq. = (o/ X l[;) .... Qo = (o/ X l[;) .... (o/ X l[;)[Qq.] it follows that 

Qo = o/ x o/[Qq.]C o/ x o/[Rq.]\ o/ x l[;[clR/Rq. \ (TanRq.))]C 

<;;;,Ro\ clRiRo \ o/ x l[;[Tan Rq.] = 

= intR 8(R 0 \(Ro\ o/ X o/[Tan Rq.])) = intRio/ X l[;[Tan Rq.])C 

<;;;, intRiTo/ x l[;[a]nRo)C intRe<TPnRo). 

As P was arbitrary this shows that Q 0 <;;;, Q f . D 
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2.9. REMARK. Consider the diagram in 2.5 .. If E<J> = Q<J> and if Ro/<: Q<J> 

then Q<J> = (i/1X1/1)..-[Qo]. 

PROOF. Note that if1 X i/![Q<J>] = Qo (I.4.3.b), hence Q</>C (i/1X1/1)..-[Qo] . 

Let (x 1 ,x2)E (i/1X1/1)..-[Qo]. Then, by 1.4.3.b, there is a (z1 ,z2)E Q</> such 

that if1Xif1(z 1,z2)=if1Xif1(x 1,x2). But then (x1,z1)ER>1' and also 

(x2,z2)E Ro/. Hence 

(x1 ,x2)E Ro/oQ<J>oRo/C QJ , 

and so (x 1 ,x2)E E<P = Q<P. 

By now we are able to prove the main result of this section. 

0 

2.10. lHEOREM. Consider the diagram in 2.5.. If E<J> = Q<J> = Q: then 

Eo= Qo= Qf · 

PROOF. Note that E<P = Q<P implies that E 8 = Q8 (1.4.3.). 

Now consider the following diagram of homomorphisms of minimal ttgs. 

Let K: ex~ ex; Q </> and A: ~~ ~/ Q () be the quotient maps. Since 

if1 X if1 [Q <1>] = Q 8 there exists a unique homomorphism µ.: ex; Q </> ~ 61J / Q o 

such that Aoi/1 =µore. As a= f3oµ., µ. is almost periodic. Let x E uX , 

z :=if1(x) and note that (rc(x),z)ERµll.. Define W:= T(rc(x),z), then 

W is a minimal subset of Rµll. (for lx <: J K(x)nlz ) and W projects 

onto X/Q<J> and Z by w1 and w2 respectively. It is an elementary exer

cise to show that w2 is an almost periodic map ( µ. is almost periodic!), so 

w2 is open. Define x: 61lf ~ 61J by x = a o w1 and let ~: ex~ 61lf be defined 

by Hx) = (rc(x),z). Then <f> = xo~. As, clearly, RE<: R" = Q<J> it fol

lows from 2.9. that Q<J> = (~ X ~><--[Qxl. Hence by 2.8., we know that 

Qx = Q: . As x = Oow2 and w2 is open it follows from 2.6. that 

Q 8 = Q f , which proves the theorem. 0 



270 Topological Dynamix 

vm.3. TRANSITIVITY AND Q # 

In general the regionally proximal relation is not an equivalence relation. 
However, there are conditions that imply transitivity of the regionally 
proximal relation, for instance the Bronstein condition and "open RIM". 
In all these cases the equicontinuous structure relation turns out to be 
the sharply regionally proximal relation. From that one could conjecture 
that Q </> = Q: implies transitivity of Q </> . In this section we shall see 
it does in case c/> is open or if the ttgs in question are metric. One also 
could conjecture the converse: transitivity of Q </> implies Q </> = Q: . 
However, we don't have evidence for that. 

First we introduce some notation: 
Let c/>: 'X~ 611 be a homomorphism of minimal ttgs. Let (x 1 , x 2) E R </> and 
p E Sr . Then define 

P•(X1 ,x2): = n {p 0 v I vis a neighbourhood of (x1 ,x2) in R<[>}. 

Clearly, p•(X1 ,x2) = n {p 0 (U1 x U2n R<[>) I U; E 'Yx) (remember that we 

denote the neighbourhood system of x in X by 'Yx ). 
Note that there is some ambiguity in the notation as we do not specify the 
map. As we use it only in the situation of one specific homomorphism c/> 

and never with respect to X X X , no serious problem will arise. 

3.1. THEOREM. Let c/>: 'X~ 611 be a homomorphism of ttgs (not necessarily 
minimal), let (x1 ,x2)E R<f>. Then (x1 ,x2)E Q<f> ijJ there is a minimal 
left ideal I in Sr with P* (x 1 ,x 2) n Lix =fa 0 for every p EI . 

PROOF. Let (x 1 ,x2)E Q<f>. Then there are nets {(x\ ,x~)}; and {t; }; in 
R<f> and T such that (x\ ,x~)~(x 1 ,x 2) and t;(x\ ,x~)~(x,x) for 

some x EX . Without loss of generality we may assume that the net {t; }; 

converges to some p E Sr . Let V be a neighbourhood of (x 1 ,x 2) in 
R<f> . Then there is an i 0 such that (x\ , x~) E V for every i;;;;. i 0 . Hence 

(x,x)=lim{t;(x\ ,x~)I i;;;;.io}Elimt;V=poV. 

As V was arbitrary, (x,x)Ep•(x 1,x2) and so p•(x 1,x2)niix =fa 0 
Conversely, suppose that for some p E Sr we have p•(x 1 ,x 2)n Lix =fa 0 , 

R say (x,x)Ep•(X1,x2). For aE611x, po(a(x 1)Xa(x2)nR<1>)E2 <t> and 

<(anR</>) 0 ,R<f>> isaneighbourhoodof po(a(x 1)Xa(x2)nR<f>) in 2R<I>. 

Let {t; }; be a net in T with t; ~p in Sr . Then 

t;(a(x1)X a(x2) nR<f>)~p o(a(x1)X a(x2) nR<f>) in 2Rq,. 
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So there is an i a such that 

Hence t;.,(a(x 1)Xa(x2)nR.,,)nanR.,,=F 0 and we can find ta:=t;., in 

T and (xf ,xf)E a(x 1)X a(x 2)nR.,, such that ta(xf ,xf)E anR.,,. 

Doing this for every aE 6h,x , we obtain nets {ta}aE'b-x in T and 

{(xf ,xf)}aE'b-x in R.,, such that, after taking a suitable subnet, 

(xf ,xf)~(x 1 ,x 2) and ta(xf ,xf)~(x',xprime). 

for some x'E X. Consequently, (x 1 ,x2)E Q.,,. By now we have shown 

hence the "if" -part of the theorem is proved. 
Let (x 1 ,x 2)E Q.,, and define 

S := {p E Sr IP*(x1,x2)nilx =F 0}. 

By the above, S =F 0 and, clearly, S is T-invariant. We shall show that 

S is closed. Then S contains a minimal left ideal, proving the theorem. 

For each neighbourhood V of (x 1 ,x2) in R.,, the mapping p ~po V is 

continuous, hence the mapping 

'l':p ~ n {p 0 v I v neighbourhood of (x1 ,x2) in R.,,}: Sr ~2R<P 

is upper semi continuous. Since Llx is closed and as S is the full original 

under 'I' of the closed subset {A E 2R<P I A n Llx =F 0} of 2R<P, it follows 

that S is closed. D 

3.2. REMARK. Let '[>: 'X..~ 6]j be a homomorphism of ttgs and let 

(x1 ,x2)E R.,,. 
a) If (x1 ,x2)E Qf , then P*(x1 ,x2)C Q.,, for every p E Sr. 
b) If P*(X1 ,x2)n Qf =F 0 for some p E Sr, then (x1 ,x2)E Q.,,. 

PROOF. 

a) Let aE 6h,x , then (x 1 ,x2)E intR<P(Tan R.,,). So there are open 

neighbourhoods U 1 E ~ 1 and U2 E ~2 such that 

For every p E Sr it follows that 

P*(X1 ,x2)Cp 0 (U1X U2n R.,,)C T. intR/TanR.,,)C Tan R.,,. 
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As a was arbitrary, P*(x 1 ,x 2)C Qep for every p E Sr . 

b)Suppose p•(x 1 ,x 2)nQ: =F 0. Let {t;}; be a net in T with 

t; --.,) p and let a, /3 E 6l1x be such that /3 C a . Then 

so <intR.p(TanRep),Rep> is an open neighbourhood of the element 
R 

p o(/3(x 1) X /3(x 2)nRep) of 2 <t>. From 

t;(/3(x 1) X /3(x 2) nRep)-,)p o(/3(x 1) X /3(x2) nRep), 

it follows that 

t;(/3(x 1) x /3(x 2) nRep) n intR<t>(TanRep) =F 0. 

But then f3 (x 1) X f3 (x 2) n Tan Rep =F 0 , and as is easily seen, this implies 

(x1 ,x2)E Qep. D 

3.3. LEMMA. Let cp: ~-,)6Y be a homomorphism of ttgs and suppose that 

Qep = Q: . Let (x,y)E Qep and (y,z)E Qep. If cp is open in 

x EX, then (x,z)E Qep. 

PROOF. By 3.1., we can find a minimal left ideal I in Sr , p E I and a 

z'E X such that (z',z')Ep*(y,z). Let aE 6l1x and let Ux C a(x), 

Uy C a (y) and Uz C a (z) be open neighbourhoods of x , y and z in 

X, such that 

(for Uz no further conditions). As cp is open in x , we may assume that 

Uy is such that ct>[Uy]C cp[Uxl. Since 

(z',z')Ep*(y,z)Cp o(Uy X Uz nRep), 

we can find nets {t; }; in T and {(y;,z;)}; in Uy X Uz n Rep such that 

p = limt; and (z',z') = limt;(y;,z;). Let x; E Ux be such that 

cf>(x;) = cp(y;). Then, for every i , 

(x;,y;)E Ux X Uy nRep and (x;,z;)E Ux X Uz nRep. 

Let x~: = limt;x; (after passing to a suitable subnet). Then 

(x~,z') = limt;(x;,y;)Ep o (Ux X Uy n Rep)Cp o (Tan Rep)C Tan Rep 

and 

(x~,z') = limt;(x;,z;)Ep o(Ux X Uz nRep)Cp o(a(x)X a(z)nRep). 
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So for every a E 'lix we can define in this way an element x ~ E X . Let 

x' = li.mxp (after passing to a suitable subnet). Then 

(x',z') = lim(xp,z')E TanR"' for every aE 'lix ; 

hence (x',z')E QI/>= Q: . And 

(x',z') = li.m(xp,z')Ep o(a(x)X a(z)nRI/>) for every aE 'lix. 

As p•(x,z)= n{po(a(x)Xa(z)nRl/>)laE'lix}, it follows that 

(x',z')Ep•(x ,z) and so that p•(x ,z)n Q: =I= 0 . By 3.2.b, it follows 

that (x,z)E QI/>. D 

3.4. THEOREM. Let cp: ~~ ~ be a homomorphism of minimal ttgs, such that 

cp is open in some point x EX. Then QI/>= Q: implies El/>= QI/>. 

PROOF. Let (x 1 ,x2)E QI/> and (x2 ,x 3)E QI/> and let p EM be such that 

x = px1. Then (x ,px2) = p(x1 ,x2)E QI/> and (px2,px3)E QI/>; so, by 

3.3., it follows that (x,px 3)E QI/>. Let v EJx 1 , then 

(x1, vx3) = vp- 1(x ,px3)E QI/>. 

As (vx3,x3)EPI/> we have (xJ.x 3)EPl/>oQI/>. So, by 1.7., (xJ.x 3)EQI/>. 

Hence Q"'oQ"'c;;;; QI/> and QI/> is an equivalence relation. D 

3.5. COROLLARY. 

a) If cp: ~~~ is a RIM extension or if cp is a homomorphism of 

metric minimal ttgs, then Q"' = Q: implies E"' = Q"' = Q: . 
b) If ~ is a minimal ttg then Q~ = Q~ implies E~ = Q~ = Q~ . 
c) Let cp: ~~~ be a homomorphism of minimal ttgs and let 

cp = 8ot[I (as in 2.5.). If cp is open in some point x EX, then 

QI/>= Q: implies Qs = Qf . 

PROOF. 

a) By VIl.1.5. and 11.1.3.e, this follows immediately from 3.4 .. 

b) As cp: ~~ { *} is open, the statement is obvious from 3.4 .. 

c) By 3.4., Q"' = Q: implies El/>= QI/>= Q: . But then by 2.10., we 

know that Es= Qs = Qf ; in particular, Q8 = Qf . D 

It is not known whether or not QI/>= Q: implies El/>= QI/> without 

further restrictions on cp. We shall now give some other conditions on cp 
that are sufficient to deduce E"' = Q"' from Q"' = Q: . 
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3.6. THEOREM. Consider the next diagram consisting of homomorphisms of 

minimal ttgs: 

Suppose that 1/1 is proximal. In each of the following two cases we have 

Q<J> =Qt implies E<J> = Q<J> =Qt . 
a) (} is open; 

b) Ee= QeoP e; e.g., (} is a RIM extension. 

PROOF. As 1/J is proximal, Q<J> =Qt implies Qe = Qf (2.7.b). Hence, 

in both cases a and b, it follows that Ee= Qe (cf. 3.4. and 1.7. respec

tively). As 1/J is proximal and as, by 1.4.3., 

it follows that E<J>~ P <J>oQ<J>oP <I>. But, by 1.7., this gives 

E<J>~P<J>oQ<J>oP<J>=P<J>oQt oP<J>= Qt. 

3.7. THEOREM. Let <j>: 'X~611 be a homomorphism of minimal ttgs and let 

</> = Ooi/J. Suppose 1/1 is open, Ri1-~ Q<J> and let Ee= QeoPe. Then 

Q<J> =Qt implies E<J> = Q<J> =Qt . 

PROOF. As 1/J is open, Q <I> = Qt implies Q e = Q f by 2.6.. Hence, by 

1.7., it follows that 

Ee=Qe 0 Pe=Qf 0 Pe=Qf =Qe. 

Also, by the openness of ifl we have that ifl X t[I: R<J>~Re is an open map. 

We shall show that Q<I> = (t/I X t/IY ... [Q 9], hence that Q<I> is an equivalence 

relation. 

Let (x1,x2)E(t/IX1/Jt-[Qe]; then (z 1,z2):=1/JX1/J(x 1,x2)EQe. So there 

are nets {(z\ ,z~)}; in Re and {t;}; in T such that (z\ ,z~)~(zi.z 2) 

and t;(z\ ,z~)~(z1 ,z1). As (x1 ,x2)E (t/I X ifl) .... (z1 ,z 2) and as the map 

ifl X t[I: R<J>~Re is open, we can find (x\ ,x~) in R<J> such that 

.ifl X i[l(x\ ,x~) = (z\ ,z~) and (x\ ,x~) ~ (x 1 , x 2) • After passing to a suit

able subnet let (.i1 ,.i2) = limt;(x\ ,x~). Then 
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o/(.X1) = limt;o/(x\) = limt;z\ = z1 = limt;z~ = limt;l/J(x~) = o/(.X2), 

hence (.X1 ,.X2)E Rl/Jc;;;;, R<J> and therefore (.X1 ,.X2)E Q<J> = Q: . By 1.6.b, it 

follows that (x 1 ,x2)EQ<J>. Consequently, (o/Xo/) .... [Q 6]c;;;;,Q<J> and as, 

clearly, Q<J>c;;;;, (If! X o/) .... [Q 6], it follows that Q<J> = (o/ X o/) .... [Q 6]. D 

3.8. For the last results in this section remember that for a homomorphism 

cp: ~~ 6h of minimal ttgs the relation Q; is defined by 

Q;: = n {TanJR<J> I a:E GlLx}' 

i.e., Q; is the collection of regionally proximal pairs that can (regionally 

proximal) be reached by nets consisting of almost periodic pairs. Also 

remember that for x E X and u E J , 

Q; [x] = u [ n { v 0 u I u E ~}] 
v EJX 

where ~ denotes the ~ (~, u )-neighbourhood system of ux in 
ucp .... cp(x) (IIl.3.7.). 

In particular, uQ; [x] = H(F)x , where F = @(6h,cp(ux))c;;;;, uM is the Ellis 

group of 6h with respect to cp(ux) (111.3.4.,IIl.2.15.b). 

3.9. LEMMA. Let cp: ~~ 6Y be a homomorphism of minimal ttgs and let 

uEJ. Suppose (x1,x2)=u(x1,x2)EQ:, then 

uQ; [xi] X uQ; [x2] = H(F)x1 X H(F)x2 c;;;;, Q<J>. 

where F = @(6h , u cp (x 1)) c;;;;, uM is the Ellis group of 6h . 

PROOF. Let Lu [x;]: = n { u 0 u I u E ~i} for i = l '2 ; and note that, 

by 111.3.4. and 111.3.1., 

uQ; [x;] = H(F)x; = uL"[x;]. 

We shall prove that (u oL"[x 1]) X L"[x 2]c;;;;, Q<J> and so it follows that 

uQ; [xi] X uQ; [x2] = H(F)x1X H(F)x2 = uL"[xi] X uL"[x 2]c;;;;, 

c;;;;, u((u oL"[x 1]) X L"[x2])c;;;;, Q<J>. 

Let aE GlLx ; then (x 1 ,x2)E intR,,.(Tan R<J>). So there are open neighbour

hoods U and V of x 1 and x 2 in X such that 



276 Topological Dynamix 

As (x 1 ,x 2) = u(x 1 ,x 2) we can find an open set W m T with 

W=W(u) such that Wx 1CU (see III.2.1.c). Define UE'!flt2 by 

U: = [V, W]n uq,<-·q,(x 2). Then 

Let x 2 E U and note that (x i. x 2) = u (x i. x 2) . In the same way as above 
we can find a VE '!flt1 such that V X {x2} C T(U XV n R<t>). Hence 

and as Lu[xi]CuoV, it follows that Lu[xi]X{x2}CTanR4>. Since 

x2EU was arbitrary, Lu[xi]XUCTanR<t>. Hence, as Lu[x2]CuoU, 
it follows that 

u o Lu[xi]X Lu[x2]C u o Lu[xi]X u o U = u o (Lu[xi]X U)C TanR<t>. 

As aE6h.x wasarbitrary: uoLu[xi]XLu[x2]CQ<t>. D 

3.10. 1HEOREM. Let q,: 'X--?61:1 be a homomorphism of minimal ttgs. 
a) If Q<I> = Q: then Q<l>oQ; = Q; oQ<I> = Q<I>. 
b) If Q<t> = Q: and if for some x EX and some u E J we have 

uQ<t>[x] = uQ; [x] then E<t> = Q<t>. 

PROOF. 

a) Let (x1 ,x2)E Q; and (x 2,x3)E Q<t>. Then u(x 1 ,x2)E Q; and 
u(x 2,x 3)E Q<t> = Q: . As ux 1 E uQ; [ux 2] it follows from 3.9. that 

(ux 1, ux3) E uQ; [ux2] X { ux3} C Q<I> = Q: . 

Hence, by 1.6., (x 1 ,x3)E Q<I> and Q<l>oQ; C Q<I>, and so Q<l>oQ; = Q<I>. 
Similarly, Q; o Q <t> = Q <t> . 

b)Let (x 1 ,x2)EQ<t> and (x 2,x 3)EQ<t> and let pEM be such that 
px2=x. Then (px1,x)=(px1,px2)EQ4>, and so we have 
upx 1EuQ<t>[x]=uQ;[x]. As (x,px 3)EJQ4>=JQ: it follows by 3.9. 

that 

( upx 1 , upx 3) E uQ; [ x] X uQ; fpx 3) C Q 4> = Q: , 

and so, by 1.6., it follows that (x 1 , x 3) E Q 4> • Consequently, Q 4> is an 
equivalence relation. D 
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Vill.4. REGIONAL PROXIMAUTY OF SECOND ORDER 

Let '?X- be a ttg. It is not difficult to see that a pair (x 1 , x 2) E X X X 

is regionally proximal if we can find suitable pairs in the neighbourhood 

of (x 1 , x 2) such that after suitable T-translations they tend to a proxi

mal pair. If we could find pairs in the neighbourhood of (x 1 ,x2) that 

after suitable T-translations tend to a regionally proximal pair, we could 

say that the pair (x 1 , x 2) is regionally regionally proximal. We call it 

regionally proximal of second order. 

Let '?X, be a ttg and let A C X . Then define 

where p *A is defined as 

P*A : = n {p 0 v I A c v and v open in X} . 
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Remark that the * defined in section 3. is in full accordance with this 

definition, after noting that p *a : = p * {a } . 

4.1. REMARK. Let '?X, be a ttg and let A C X . Then 

a) D (A , '?X,) is T -invariant; 

b) D(A,'?X-)=D(tA,'?X-) for every tE T; 

c) if A isclosedthen D(A,'?X-)= LJ{D({a},'?X-)laEA}; 

d) if A is closed then D (A , '?X,) is closed. 

PROOF. 

a)Let xED(A,'?X-) and let pESr be such that xEp•A. Then 

x E p o V for every open V in X with A C V . Hence tx E tp o V for 

such V and tx E tp *A C D (A , '?X,) . 

b) Note that po V = pt- 1a tV for every V C X, p E Sr and 

tET.As 

{WI wcx open, tA c W} = {tV I vex open, Ac V} 

for every t ET , it follows that p•A = pt- 1• tA . 

c)Obviously, D({a},'?X-)CD(A,'?X-) forevery aEA. 

Conversely, let x E D (A , '?X,) and let p E Sr be such that x E p *A Let 

a E 6l.L.x be an open index. Then there are a 1, ••• , an in A such that 

Va:= LJ{a(a;)liE{l, ... ,n}} 

is an open neighbourhood of A (in X ). So x E p o Va and as 
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p o Va = LJ {p o a (a;) I i E {1, ... , n}} , 

we can find aaE{a; liE{l, ... ,n}} such that xEpoa(aa)· In this 
way we obtain a point aa in A for every open index aE 62Lx . Let 
a : = fun {a a I a E I } for a suitable subnet I C 62Lx . We shall prove that 
xEp*{a}. 

Let V C X be open and let {a } C V . Then there are f3 and y in I 
such that f3(a)C V and yoy(;; f3. Let 8E I with 8c; y such that 
a8E y(a). Then 

x Ep o 8(a&) and 8(a&)C y(a&)C y(y(a))C f3(a), 

so xEpo8(a8)Cpo{3(a)CpoV; hence xEp*{a}. As aEA =A it 
follows that D(A, ~)C LJ {D({a}, ~)I a EA} . 

d) Let {x; }; be a convergent net in D(A, ~) and let x = limx; . 
By c, we may find nets {a;}; and {p; }; in A and Sr such that 
x; Ep;* {a;}. Let p = funp; and a= lima; after passing to suitable sub

nets. We shall prove that x E p * {a } . 
Let V C X be open with {a } C V . Then {a;} C V for all i ~ i ( V) . 
Hence 

X; Ep;*{a;}Cp; o V for all i~i(V). 

But then it follows that 

x = limx; E liII1ix(p; o V) =po V. 

As V was arbitrary, it follows that x E p * {a} , hence x E D (A , ~) . D 

The proof of the following remark is straightforward and will be omitted 

4.2. REMARK. For a ttg ~, x E X and a E X the following statements 
are equivalent: 
a) xEp*a forsome pESr,inotherwords, xED({a},~); 
b) for every V0 E ~ , and every Vx E 'Vx there is a t E T such that 

tV0 n Vx =I= 0 ; 
c) there is a net {a;}; in X with a; ~a and there are t; in T 

with x = funt;a;; 
d) a E q * x for some q E ST , in other words, a E D ( { x }, ~) . D 
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4.3. EXAMPLES. Let ~ be a ttg and let f/>: ~~~ be a homomorphism of 

ttgs. Then 
a) D(ax.~X~)=Q~; 

b) D(ax .~.,.) = Q.,.; 
c) D(E.,., ~.,.)=E.,. and so D(Q.,., ~.,.)<;;:E.,.; 

d) D(Qf .~.,.) = Q.,., hence Q.,. = Qf implies D(Q.,.,~.,.) = Q.,.. 

PROOF. 

a) Follows immediately from b. 
b) Using 4.1.c and 4.2. this follows easily from the proof of 3.1.. 

c) Let IJ: ~/E.,.~'/>['XJ be the maximal almost periodic factor of '1> 

and let ": ~~~/E.,. be the quotient map. Then it is easily seen that 

"x ic[D(E.,.,~.,.)]c;: D(ax;E.,.•" x ic[~.,.])c;: Q,. 

As IJ is an almost periodic extension, ic X ic[D (E.,.,~.,.)]<;;: ax;E.,. ; hence 

D (E.,.,~.,.) c;: E.,. . The converse inclusion is obvious. 

d) Clearly, Q.,. = D(ax .~.,.)<;;: D(Qf .~.,.). 

Conversely, as Qf c;: intR.,.(Tan R.,.) for every aE ~x , we have 

P* Qf <;:po intR.,.(Tan R.,.)c;:p o Tan R.,.c;: Tan R.,. (aE ~x). 

So p•Qf c;: Q.,. and D(Qf .~.,.)<;;: Q.,.. D 

The next theorem as well as its proof resemble 3.3. and 3.4 .. 

4.4. THEOREM. Let f/>: ~~~ be a homomorphism of ttgs. If for every 
- --

X1 EX there is an x EX with Tx n Tx 1 "=I= 0, such that f/>(x) is 

an almost periodic point and '1> is open in x , then E.,. = Q.,. if! 
D(Q.,.,~.,.) = Q.,.. 

PROOF. If E.,.= Q.,. then, by 4.3., it follows that D(Q.,..~.,.) = Q.,.. 
Conversely, suppose that D(Q.,., ~.,.) = Q.,.. Let (x 1 ,x2}E Q.,. and 

(x2 ,x3}E Q.,., and assume '1> is open in x 1 • We shall prove that 

(xi,x3}E Q.,.. 
Let {(x~ ,x~)}; and {t;}; be nets in R.,. and T such that 

(x~ ,x~)~(x2 ,x 3) and t;(x~ ,x~)~(w, w) for some w EX. 

As f/>(x~) ~ f/>(x 2) = f/>(x 1) and as '1> is open in x 1 , there are 

z; E '1>+-f/>(x~) such that z; ~x 1 • Define z = limt;z; (after passing to a 

suitable subnet). Then 
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As (x 1 , x 2) E Q <P it follows that 

where p = lim ti E Sr (after passing to a suitable subnet). As 

(zi>x~)~(x1,x3) and ti(zi,x~)~(z,w), 

it follows that 

(x1 ,x3)E q*(z, w)C D({(z, w)} ,~q,)C D(Qq,,~.p) = Q.p, 

where q = lim ti -I E Sr (after passing to a suitable subnet). 
Now assume that <f> is not open in x 1 • By assumption, we may find 

x E X such that Tx n Tx 1 =/:= 0 and <f> is open in x , while <f> (x) E Y 

is an almost periodic point. For an almost periodic point z E Tx n Tx 1 let 

I and K be minimal left ideals in Sr such that z = px and z = qx 1 

for some p EI and some q EK . Let v E J .p(x)(I) . Then vx = vp- 1qx 1 , 

and 

(vx, vp- 1qx2) = vp- 1q(x 1,x2)E Q.p and (vp- 1qx2, vp- 1qx3)E Q.p. 

As (x, vx) E P <P, we have (x, vp- 1qx2) E Q.poP <P and it is easily seen that 

Qq,oP .pk D (Qq,, ~.p) = Q.p . By the above, (x, vp- 1qx3) E Q.p and so 

( vp - 1 qx 1 , vp - I qx 3) = ( v x , vp - I qx 3) = v (x , vp - 1qx3) E Q .p . 

But then 

(x 1 ,x3) ED ({(vp - 1qx 1, vp - 1qx3)}, ~.p)C D (Q.p, ~.p) = Q.p , 

which shows the transitivity of Q <P • D 

4.5. COROLLARY. Let cp: X~~ be a homomorphism of ttgs. 
a) If <f> is open then E.p = Q.p if! D (Q.p, ~.p) = Q.p. In particular, 

for every ttg X we have E-x, = Q-x, if! D (Q-x,, X X X) = Q-x,. 
b) If X is a metric ergodic ttg and if ~ is minimal, then E.p = Q.p 

if! D (Qq,, ~.p) = Q.p. 

PROOF. 

a) This follows immediately from the first part of the proof of 4.4 .. 

b) If X is metric, there is a residual set of points in which <f> is open, 
also there is a residual set of transitive points. As ~ is minimal, the assump
tions of 4.4. are satisfied. D 



Chapter VIII A variation on Q 

vm.5. REMARKS 

In this final section we shall mention an other variation on regional prox

imality. This variation is closely related to what is called "Ellis' trick" in 

[G 76], namely, that open sets in the regular topology on the phase space 

X of a minimal ttg 'X do have some thickness in the is: ('X, u )

topology. For a more detailed treatment of this other variation on 

regional proximality we refer to [V 77] and [VW ?]. 

We also consider the regional proximal relation for special kinds of 

incontractible minimal ttgs. 

Let <1>: ix~ 6lj be a homomorphism of minimal ttgs. Define 

u .p[X]: = n {(To:)(x) n </><--</>(X) I a E 6l.Lx} ' 

where (To:)(x) = {x'E X I (x,x')E Ta}. 
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In other words: x'E Uq.[x] iff there are nets {xj }; in </><--</>(x) and 

{t; }; in T such that 

xj ~x' and t;(x ,xj)~(x ,x); 

i.e., the "regionally proximal-making net" may be chosen to be constant in 

x . Define 

Uq.:= {(x,x')ERq.lx'E Uq.[x]}. 

If </>:'X~{*} ,then we write U!'A:[x] and U!'X-. 

Note that this a-symmetric defined notion has a counterpart in the notion of 

SRP(</><--</>(x),x), see III.5.8 .. 

Clearly, P .p C U .p C Q .p ; but in [V 77) W.A. VEECH has shown that in several 

cases one can say more: 

5.1. mEOREM. ([V 77) 2.7.5.) Let <1>:'X~6lj be a homomorphism of minimal 

ttgs. If for every y E Y and u E Iy the set u</><--(y) is dense in 

</><--(y) (e.g., if </> is distal), then Uq. = Q.p = Eq.. D 

In the absolute case even more is true ([V 77] 2.7.6., also see [VW ?]): 

5.2. mEOREM. If 'X is a minimal ttg that satisfies the Bronstein condition 

(i.e., X X X has a dense subset of almost periodic points) then 

U!'X-=Q!'X-=E!'X-. D 
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In the proofs of 5.1. and 5.2. the following set turns out to be of vital impor
tance. For a homomorphism </>: ix~ 61J of minimal ttgs and for y £ Y and 
u EJy define 

~1(y):= {x E <f> ..... (y) I int(ucp<-(yUH~,u))(u(u o U)) =I= 0 for every U E CV!}, 

where CV!:= 'Vx n <f> ..... (y). One can show that ~ 1(y) is a closed subset of 
<f> ..... (y) (easily) and that ~ 1(y) =I= 0 ([V 77] 2.7.2.). 

The following theorem is the basis for 5.2., it can be found in [VW ?] (and 
without proof in [V 77] 2.7.6.). 

5.3. 1HEOREM. Let ix be a minimal ttg. Then ~1(*) = X, where * is the 
only element of { *} , the trivial ttg. D 

5.4. QUESTIONS. 

a) Does 5.2. hold in the relativized case? I.e.: If <f>: ix~ 61J is an open 
Be extension of minimal ttgs, is U cp = Q cp = E cp ? 

b) Is there any relation between Ucp and Q: ? For instance: Does 

Ucp = Qcp imply Qcp =Qt ? 

We end this section with some remarks on E~[x] for an incontractible 
minimal ttg ix . 

5.5. REMARK. Let ix be a ttg and let A C X be nonempty, then for every 
u E J we have E ~[A ] = E ~ [ u o A ] . 

PROOF. Let IC: ix~ ix; E ~ be the quotient map. Then 

E~[u oA] = E~[u oA] = IC<-IC[u oA] = IC<-(u o IC[A]). 

As 1C[A]E 2~/E::: and as, _!>y 11.2.7., 2~/E'X is uniformly almost periodic, it 
follows that IC [A ] = u o IC [A ] for every u E J . Hence 

E~[u oA] = IC<-(u o IC[A]) = IC ..... IC[A] = E~[A]. 
D 

5.6. 1HEOREM. Let ix be a minimal ttg. 
a) Let ix satisfy the Bronstein condition and let x' E X be arbitrary. 

Then for every nonempty open U in X there is an x E U with 
E~[x]CJx'o U. 

b) Let ix be in contractible and let u E J . Then for every non empty 
open U in X there is an x EU with E~[x]C u o U. 
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PROOF. Let u E J . For U C X nonempty and open let V be a 

nonempty open set in X with V C V C U . By 5.3., we know that 

u(u o V) has a nonempty ~('?X,,u)-interior W in uX. Let x E W and 

note that x = u:X E W C u o V . So, by 5.5., there is an x E V C U such 

that E~[x] = E~[i]. 
a) By IIl.3.10.a, we have 

So by the above, E~[x] = E~[i]C Jx'o U for some x EU . 

b) Similarly, b follows from IIl.3.10.b. D 

5.7. THEOREM. Let '?X, be a minimal ttg and assume that the quotient map 

1c: '?X,~ '?X,/ E ~ is open. 
a) If '?X, satisfies the Bronstein condition then for every x' E X we 

have for U nonempty and open in X that 

E~[U) = Q~[U) =Jx'o U. 
b) If '?X, is incontractible then for u E J and for every nonempty open 

- -
U in X we have that E~[U] = Q~[U] = u o U. 

PROOF. 

a) Let x E U and let VE 'Yx . By 5.6.a, there is an xv E U n V 

such that E~[xv]CJx,o(Un V), so E~[xv]CJx'o U. As K is open, 
-- - --

E~[x] = ~xE~[xv] and so E~[x]CJx'o U. Hence E~[U]CJx'o U. 

As, by 5.5., E~[U] = E~[u o U] for every u E J , we have: 

w o UC E~[w o U] = E~[U] for every w EJx'. 

Hence E~[U]C Jx'o UC E~[U] = E~[U]. 
b) Similar to the above one proves, using 5.6.b, that 

But u o U is closed, so E~[U] = u o U . 

E~[U] = u o U. 

D 

5.8. COROLLARY. If '?X, is distal then for every nonempty open U in X we 

have E~[U]=uoU. D 

5.9. COROLLARY. Let '?X, be incontractible and assume that ic: '?X,~'?X,/E~ 

is open. Then for every u EJ we have E~[x] = Q~[x] = u*x. 

PROOF. It is not difficult to see that u*x C Q~[x] = E~[x]. 

Conversely, by 5.7.b, 

D 
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5.10. QUESTIONS. 

a) If ?X, satisfies the Bronstein condition and if x' E X , do we have 
forevery xEX that Q~[x]= LJ{w*x lwEJx•}? 

b) Can we relativize 5.9.? I.e., if q,: ?X-~611 is a RIC extension of 
minimal ttgs such that IC: ?X,~ ?X-/ E q, is open, do we have 
Eq,[x] = Qq,[x] = u*x for every x EX and every u E J .p(x)? 
If so, then one can prove that E q, = Q q, = U q, . 

In 5.9. we have the restriction of IC being open. The following remark deals 
with a situation in which " is not necessarily open. 

5.11. THEOREM. Let ?X, be an incontractible minimal ttg. If x E X is such 
that uTx is dense in X for some u E J , then there is a q E M with 
Q~[x] = q*x . 

PROOF. Let x E X and let u E J be such that uTx is dense in X , and 
let U E ~ . Then, by 5.3., u(u o U) has a nonempty &(?X-,u)-interior in 
uX . By III.2.4., there is an x ' E uX , a continuous pseudometric a and an 
t:>O such that 

U(x',a,t:)nuXC u(uo U). 

As U(x',a,t:) is open in X, there is a t ET with utx E U(x',a,t:). 
But then, by Ill.3.10.b, Q~[utx]C u o U. Since (t- 1utx,x)E P~ and 
E~ = Q~ = Q~oP~, it follows that 

Q~[x] = Q~[t- 1utx]C t- 1u o U. 

So we proved that for every a E 611x , there is a pa E M with 
Q~[x]Cpaoa(x). As for every /3C a we have: 

Q~[x]Cppo/3(x)Cppoa(x), 

it follows that Q~[x] C q o a (x) , where q =limp p for a suitable subnet of 
the pp's with /3C a. Hence Q~[x]C q*x . 
Conversely, if x'E q*x then it is easily seen that (qx,x')E Q~. So, if 
Q~[x]C q*x , then Q~[x] = Q~[qx]. However, it is not difficult to see 

that q*x C Q~[qx], so 

Q~[x]=Q~[qx]=q*x. 
D 

5.12. QUESTION. Do we really need the assumption of uTx being dense in 
X in the above? 
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~(cp) max. RIC shadow diagram 70 

bT Bohr compactification of T, phase space of t9 11 

PrX equivariant T -compactification of X 16 

cl3 closure operator for r-topology 72 

Ca, Ca Ellis group and MHP gen. for max. HPI ttg 180 

x~= 611* ~611 max. hp ext. of 611 109 

D(A,X) prolongational limit 277 
D collection of all min. distal ttgs 190 

6j)' 6j)T univ. min. distal ttg (for T) 23 

E'!X-, Eq. (relative) equicont. struct. relation 13 

E (x), E (x, cp, u) 77 
E a(x), E 00(x) 78 
E(X), E('X) enveloping semigroup 7 
EGS(cp) EGS shadow diagram 67 
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G =uM, vG 

Goo 
@(~,x) 

H(F), Ha(F), F 00 

HPI 

J, J(I) 

U [z] 

')i..P 

M,~ 

Wl(X) 

\m(cp) 

Prx, Pq, 
p 

PI 

'fP' 'fPT 

TI , 'llx 

collection of min. unif. almost peridic ttgs 
univ. min. unif. almost periodic ttg (for T) 

orbit distance 
T-topology 

biggest subgroup of M 

Ellis group of~ w.r.t. x in G 

normal subgroups of F 

collection of min. HPI ttgs 

isotropy subsemigroup of x in I 

set of all idempotents in M (I) 

incontractible sets of idempotents 

left multiplication by p 

univ. min. set (ttg) 

space of reg. Borel prob. measures on X 

map between measure spaces induced by et> 

T-neighbourhood of x (relative et>) 

(relativized) proximal relation 
collection of min. prox. ttgs 
collection of min. PI ttgs 
univ. min. prox. ttg (for T) 

left and right part of the action 'IT 

Qrx, Qq, (rel.) regionally prox. relation 
Q; rel. reg. prox. relation w.r.t. JRq, 
Q: rel. sharply reg. prox. relation 
QF(A, ~), ~(A, 'X) quasifactor of ~induced by A 

190 
11, 23 

72 
72, 73 

20 
76 

22 

76 

190 

21 

19, 20 

169 

83 

19 

20 
213 
213 

72, 80 

14 
190 
190 
23 

3 

13 

32 
257 

51 
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Reg(</>) regularizer of </> 24 
R.p (kernel) relation induced by </> 5 

Rn .p fibered n -power 52 

RH fibered product 25 

Pp, Px right multiplication by p, x 19 

Sr,~ universal ambit 17 
SRP(K,y) strongly regionally prox. relation w.r.t. K 100 

~1(y) strong points for 'T-topology 282 

~(1/J) supprim points for i/J 239 

Td phase group T with discrete topology 2 
Tx, Tx orbit (closure) of x 3 

U(x ,o ,t:) base element for T-topology 72 

U.p strongly regionally prox. relation for </> 281 

G?Lx unique uniformity for X 3 
G?l,* "hyper" uniformity induced by G?1 41 

V(u) open syndetic subset of T 71 

'Vx neighbourhood filter for x 9 

WM collection of all min. weakly mixing ttgs 192 

{*} trivial one point ttg 5 
* (</>) *-diagram (max. open) 116 

* (</>,1/J) double *-diagram 128 

2x hyper space of X 41 

2;, 2; relativized hyper space (ttg) 52 
2-x hyper ttg of ~ 43 
2<1> hyper homomorphism induced by </> 41 
(2M ,o) semigroup 2M with circle operation 143 

~:= <T,X,.,,> ttg 2, 3 
(~,x) ambit 16 

~/R quotient ttg 5 
<f>: ~~61! homomorphism 5 
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K.L min. ttgs disjoint from every member of K 190 
<U>, <U>* subbase elements for the Vietoris topology 41 
<Ui, ... , Un> base element for the Vietoris topology 41 
[HF] Ellisgroup generated by H U F 204 

[U, V] base element for the -r-topology 72 
[K] min. ttgs closed under factors and hp ext. 190 

c/Jad preimage map 41 
q,91 max. RIC lifting of cp ( 2f(cp)) 70 

c/Joo' Xoo top of the PI-tower 96 
q,* ' 6)(,* max. open lifting (*(cp)) 116 
q,# '6)(,# open RIM lifting (G-diagram) 218, 219 

v -v' equivalence of idempotents 19 
J_ cp J_ ij; (relative) disjointness 25 

-f 6X-f ~ (relative) nondisjointness 25 

- cp_:_ ij; (relative) weak disjointness 30 
0 poA ,DoC circle operation 43, 141 
D qoD second order circle operation 155 
© r©C univ. ambit action on 2-x 155 

* p•(X ,y),p•A star operation 270, 277 
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