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Abstract. In this expository paper we discuss some notions from (abstract) 

Topological Dynamics. Moreover, we present self-contained simple proofs of the 

following results. Let$: X ~ Y be an open extension of minimal flows and suppose 

that $ admits a relatively invariant measure. Then QI/>= E$' i.e. the relative 

regionally proximal relation is an equivalence relation. Also, if E = R (tha~ 
$ $ 

is, $has no non-trivial almost periodic factor), then$ is weakly mixing. 
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INTRODUCTION 

In this paper we illustrate an important problem from Topological Dynamics. Our 

aim is to.describe for a general audience a partial solution of this problem. 

Therefore, this paper will be essentially self-contained. In Sections I, 2 and 3 

we discuss some basic notions (flows, homomorphisms, almost periodic factors of 

homomorphisms), and we present the main problem to which this paper is devoted: 

for which 'homomorphisms $ of minimal flows one has QI/> =El/>, i.e. for which $ is the 

relative regionally proximal relation an equivalence relation? We also mention 

that weak mixing of $ implies that El/> = R<I>' which means that I/> has no non-trivial 

almost periodic factor, and we ask under which additional conditions the converse 

holds. In Se.c.tion 4, _!.elatively i:_nvariant ~asures (RIM's) are briefly discussed, 

and we state that the answer to both problems is affirmative in case $ is open 

and has a RIM. In Section 5, we present the proofs. These results are a generali

zation of McMahon's paper [5] and were obtained by the second author in his thesis 

[9] (see also [I]). The "absolute" case of the results to be discussed below, that 

is, the case that I/> is the homomorphism of a flow onto the trivial (one-point) 

flow, is discussed in [8]. Either [8] or the first author's paper [7] can be used 

as an introduction and motivation for the present paper. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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I. FLOWS, HOMOMORPHISMS AND FACTORS 

In the sequel of this paper T is a topological group, arbitrary but fixed. A flow 

(also called a T-space with compact Hausdorff phase space, or a compact Hausdorff 

ttg with acting group T) is a pair X := <X,n> where X is a compact Hausdorff space 

and n is an action of Ton X. This means that n: (t,x) >+ tx: T x X + X is a con

tinuous mapping which satisfies the following conditions: 

ex = x and t ( sx) ( ts) x 

for all t,s E T and x E X (e denotes the unit element of T). We refrain from giving 

examples; for those, see e.g. [8], 1.3. 

If X = <X,n> and V = <Y,o> are flows, then a homomorphism from X to Vis a 

continuous mapping cp: X + Y such that cpon(t,-) = o(t,-) 0 cjl for all t E T; notation: 

~: X + V. If cp: X + V is a homomorphism of flows and ~: X + Y is a homeomorphism 

of x onto Y, then cp is called an isomorphism. A homomorphism cp: x ->- v such that 

cp: x + y is a surjection is called an extension (of V). In that case, V is also 

called a factor of X, and sometimes cp is also called a factor mapping. This nomen-

clature is related to the following observation. 

Let X be a flow and let R be a closed invariant equivalence relation in X. 

Here "invariant" means that R as a subset of X x X is invariant under the action 

(t, (x 1,x2)) ~ (tx 1,tx2): Tx(XxX) + X x X of Ton X x X (it is a straightforward 

exercise to check that this is, indeed, an action). So (x 1 ,x2) E R implies 

(tx 1,tx2) .E R for all t E T. Since Risa closed subset of X x X, the quotient 

space X/R with the usual quotient topology is a compact Hausdorff space, and as R 

is invariant an action of T on X/R can unambiguously be defined by 

tR[ x] := R[ tx] for t E T and x E X. 

(since the quotient map R[-]: X + X/R is perfect, this action is continuous). 

Thus, we obtain a flow on X/R, to be denoted by X/R. Clearly, R[-J: X + X/R is a 

factor mapping in the sense defined above, i.e. X is an extension of X/R and X/R 

is a factor of X. 
It is important to observe that every factor of any flow X arises in this way. 

Indeed, let cjl: X + V be a factor mapping of flows. Then 

is a closed invariant equivalence relation in X (invariantness follows from the 

property that cjl(tx) = t~(x) for all t E T and x E X). It is easy to show that the 

space X/R~ is homeomorphic with Y (X/R~ is a compact and Y is a Hausdorff space) 
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and that this homeomorphism establishes an isomorphism of flows· between X/R<ji and 

Yin such a way that R.[-] correr"onds to • : 

• x y 

R·~/. 

2. ALMOST PERIODIC EXTENSIONS OF MINIMAL FLOWS 

A flow X is called minimal whenever it has no proper closed invariant subsets. 

Equivalently, a flow X is minimal whenever the orbit Tx(:= {tx!tET}) is dense in 

X for every x E X (in general, if P ~ T and A~ X, then PA := {sz!sEP&zEA}, 

tA := {t}A and Px := P{x)). By Zorn's lemma and compactness of X, every flow X 
contains a minimal subset, that is, a closed invariant non-empty subset such that 

the action of the group T, restricted to this subset, defines a minimal flow. For 

examples, cf. [7],[8]. 

In the investigations of the structure of minimal flows one often encounters 

inverse limits. This is the reason for the study of homomorphisms between minimal 

flows. We shall describe now a couple of notions which are basic for the factori

zation of certain homomorphisms between minimal flows into an inverse limit of 

"simple" factors (for more details, cf.[7]). 

A homomorphism qi: X -+ Y is called almost per>iodie (or: equieontinuous, cf. 

[ 7]) whenever )1 

(in cartesian products of flows we only consider coordinate-wise actions, so 

TS := {(tx1,tx2): t ET & (x 1,x2) E Sl; note, that (TS) n R<ji = T(SnR<P) by in

variantness of R.). So qi is almost periodic iff for all a E UX there exists SE l!X 

such that the implication "(x 1 ,x2) E S =<> (tx 1, tx2) E a for all t E T" is 

valid only for the points (x 1,x2) EX x X with <ji(x 1) qi(x2). In particular, if T 

acts uniformly equicontinuous on X, then cj> is almost periodic. Also, if there is a 

continuous function d: R<ji + R such that d is a "fibre-wise metric" (i.e. 
+ 

di + ] + ] is a continuous metric on <P [y] for each y E Y) such that T acts 
q, [y "'• [y 

isometrically on fibers (i.e. qi(x1) = <ji(x2) implies d(tx 1,tx2) = d(x1,x2) for all 

t E T), then qi is clearly an almost periodic extension of Y. (If qi has this par

ticular property, then <ji is called an isometY'ie extension, cf. [3]. For a 

) 1 Here UX denotes the (unique) uniformity which is compatible with the topology 

of X. 
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generalization of this notion, see [6], 2.4.2 and 2.4.3. Compare also with the 

continuous IFP's of Section 4 below.) 

For an arbitrary homomorphism of flows <jl: X + Y, let 

Q<!i : = n Tei n R<P • 
ci€UX 

It is easily checked that <ji is aZmost periodic iff Q$ = ~X' the diagonal in X x X. 

In general, Q$ is a closed invariant symmetric subset of R$(£XxX), and usually it 

ts not transitive, that is, usually Q$ is not an equivalence relation. Let E<ji be 

the smallest closed invariant equivalence relation in X x X which includes Q<ji; E<ji 

is called the reZative regionaZZy pro::cimaZ reZation). As R$ is a closed invariant 

equivalence relation which includes Q$' it follows that Q$ £ E$ £ R$. In particu

lar, this implies that we have the following commutative diagram of homomorphisms: 

Here K: X + X/E<P is the quotient mapping and~: X/E<ji + Y is unambiguously defined 

by $(K(x)) := <ji(x) for x e X. It is easily checked that$ is a homomorphism of 

flows. Although we shall not need it explicitly in the sequel, we mention that 

the importance of the construction of X/E~ and $ lies in the fact that Q·~ = ~X/E , 
~ ~ <ji 

i.e. <P is almost periodic. But we shall need, that this construction is "canonical" 

in the sense that $ is, in a well-defined sense, the ma::cimaZ aZmost periodic fac

tor of <ji: namely, for every factorization <P = no~ of <ji with n almost periodic one 

' has E<P £ R~, which means that the following diagram can be collllllutatively completed 

by the dotted arrow: 

X---<P __ ..,.y 

~If 
z 

For details, see [7], 3.9 (where the reader, in turn, will be referred to other 

literature for the fine details of the proof). 

The study of Q<P and E<P plays an important role in abstract Topological Dyna

mics. In this paper we shall discuss a particular answer to the following questions 

(a) Under which conditions is E<ji = R<ji (i.e.$ is an isomorphism); equivalently, 

when has <P no non-triviat almost· periodic factor? 
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(b) Under which conditions is Q~ = E~, that is, when is Q~ itself already an equiv-
alence relation? 

For examples, showing that in (a) and (b) indeed additional conditions are needed, 
we refer to [5] and the references given there; see also [9]. In [8], similar 
questions are discussed for the "absolute" case, that is, for the case that 
R~ = X x X (so Y a singleton) . In that situation, the notion of an invariant measure 
on X turned out to be very useful. In the present, more general, situation, we 
need the notion of a reZativeZy irrvariant measure. 

3. RELATIVELY INVARIANT MEASURES 

Let X be a flow and let M(X) denote the set of probability measures on X, endowed 
with the weak topology. So 

a closed convex subset of the (compact!) unit ball in Cu(X)' with its weak topol
ogy. The action of Ton X induces an action of Ton M(X). This action is given by 

tµ(f) := µ(fo'IT(t,-)) = f X f(tx)dµ(x) 

for f E c (X) and µ E M(X). If (via the Riesz representation theorem) an element u 
µ of M(X) is considered as a probability measure (= non-negative regular Borel 
measure with µ (X) = I), then the action of T on M(X) is described by 

-I (tµ)(A) :=µ(t A) 

for every Borel subset A of X and t E T. Using a standard compactness argl.llllent it 
is not difficult to show that the mapping (t, µ) ,.,. tµ: T x M(X) + M(X) is con
tinuous. Since it is easily checked that eµ =µand s(tµ) = (st)µ for all 
µ E M(X) and s,t ET, it follows that we have, indeed, an action of Ton M(X), 
which defines a flow, denoted by M(X). Observe, that the mapping 

0: x I+ 6x; x .... M(X), where ox(f) := f(x) for f E C(X), 

is a topological embedding, and that 6tx = tax for all t E T and x E X. So 
6: X + M(X) is a homomorphism of flows· 

If ~: X + Y is a homomorphism of flows, then a mapping~: M(X) + M(Y) is 

defined by 
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tji(µ) (f) := µ(fo<ji) for µ E M(X) and f E C(X), 

or, alternatively, by 

(~µ)(A) := µ(<f>+[A]) for a Borel set A in Y. 

It is easy to show that q, is continuous, and a straightforward calculation shows 

that~: M(X) + M(Y) is a homomorphism of flows. Moreover, the following diagram 

commutes: 

M(X) 

·1 
x 

-------.»M (Y) 

·1 
y 

(We shall make no notational distinction 

between o: X + M(X) and o: Y + M(Y), 

as it is usually clear from the context 

which mapping is meant) 

Now we come to the definition of a Relatively Invariant Measu:!'e (RIM) for a homo

morphism <ji: X + Y of flows: this is a homomorphism of flows A: Y + M(X) for which 

the following diagram commutes: 

M(X) 

Such a mapping \ is called a section for <ji. Note, that <f> has a RIM iff for each 

y E y there exists A 
y 

E M(X) such that 

(i) the mapping A: y ~ \y: Y + M(X) is continuous; 

(ii) \ = t\y for all t E T and y E Y· ty , 
(iii} the support of A is included in the fib er <f>+ (y) of y. y 

Indeed, (i) and (ii) express that A: Y + M(X) is a homomorphism of flows, and (iii) 

is equivalent with the commutativity of the above diagram. (Recall, that the 
support supp µ of µ E M(X) is the complement of the largest open set of measure 

zero, i.e. supp µ is the smallest closed set of measure one; consequently, for 

an open subset U of X, µ (U) = 0 iff U n supp µ = 0 .) 

REMARK. If we apply this definition to the case that Y is. 4··one-point tipace, then 

the obvious homomorphism <ji: X + Y has a section A iff there is a measure µ E M(X) 

(namely, µ := A;, where y is the unique point of Y) such that Q.l Aty Ay = µ 

for all t E T, that is, iff X has an irnraf:tant measure. Note, that in this case 

supp µ = X = <f>+(y), provided X is minimal (this .is, because for an invariant 
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measure µ the support supp µ is a non-empty, closed invariant subset). In the case 

of an arbitrary homomorphism of minimal flows cp: X + Y which has a RIM A it is not 

true that supp \ = cp+(y) for all y E Y. We will return to this in the next Section. y 
As to the question which homomorphisms admid a RIM, we refer to [4]. 

Before stating our main theorem.we need one more definition. A homomorphism 

of flows cp: X + Y is called weakly mixing whenever Rep (as a subflow of XxX) is er

godic, that is, if invariant subsets of Rep are either dense or nowhere dense in 

R,<j>. Equivalently, cp is weakly mixing whenever for every two open subsets o1 and o2 
of Rep there is t E T such that to 1 n o2 ~ ~. Again, this is equivalent to requiring 

that for every four open subsets U 1, u2 and V 1, V 2 of X such that (U1 xu2) n R<P and 

(v 1xv2) n Rep are non-empty there exists t ET such that 

The following result generalizes a result from [5], where X was assumed to be 

metrizable. For more general results and other answers to the questions posed 

above, see [9] (also,[!]). 

THEOREM. Let cp: X + Y be an open homomorphism of minimal flows and suppose that $ 

has a RIM. Then Qep = Eep. Moreover, if Ecp =Rep then ep is weakly mixing. 

The proof of this theorem will be presented in the next section. It should 

be noted that the second statement in the theorem is the converse of the following, 

almost trivial, statement (where ep need not be assumed to be open, nor is assumed 

to have a RIM): if ep is weakly mixing then Eep = R~. 

PROOF. For each a E Ux• Tan Rep is a closed invariant subset of R~. M~reover, it 

has a non-empty interior in R , because a contains an open nbd of ~X 1n X x X. 

So if ep is weakly mixing, then Ta n Rep = Ref> for every a E UX' hence Qep = Rt, and 

therefore Eep =Rep. 

4. PROOF OF THE THEOREM 

4.1. In this section we consider minimal flows X and Y and a homomorphism 

~: X + Y; Moreover, let\: y + M(X) be a section for~- An important notion for 

the proof of the theorem is that of an invariant fibre--wise pseudometria (abbre

viated IFP). 

A continuous(~) mapping p: R~ 

ditions are fulfilled: 

+ R+ is called an IFP whenever the following con-

+ 
( i) 'ly E Y· p J +' + is a pseudometric on ep (y); 

• cf> (y)xep (y) 
(:i) p is invariant on fibers, that is, if x 1,x2 EX and t ET, then 
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If p is an IFP then let 

It is clear that D is a closed invariant equivalence relation (transitivity of 
p 

the relation D follows from the triangle-inequality within fibers). The following 
p 

simple lemma shows what DP has to do with E$: 

4.2. LEMMA. Let $be as above. Then for every IFP p one has the inaZusion E$ £DP. 

PROOF. Since D is a closed invariant equivalence relation and, by definition, 

D s R there exists a unique homomorphism$: X/D + Y such that ~ = $ 0 ~, where 
p $ p 

~= X + X/DP is the quotient mapping. Let p: R$ + :R+ be defined by 

Then p is unambiguously defined, and as ~x~ is a quotient mapping (all spaces 

under consideration are compact Hausdorff) it follows that p is continuous. In 

addition, it is eas-ily checked that p defines a metric on each fiber of $, so that, 

by compactness of the fibers, on each fiber the topology is actually generated by 

this metric. Since p is invariant on the fibers of $, it follows that for all E > 0 

and z 1,z2 € X/D 0 , 

This means exactly, that $ is almost periodic according to the definition in Sec

tion 2 (in fact, $is an isometric extension). Since E$ defines the maximal al

most periodic factor of$, this implies that E$ s R~ =DP. D 

4.3. We shall now indicate a class C of IFP's such that the set D(C) := n{D !pEC} 
p 

has the property that D(C) s Q$. This is sufficient for the proof of the first 

part of the theorem: indeed, E$ s D(C), by Lemma 4.2, and since Q$ £ E$' the in

clusion D(C) s Q$ implies Q$ = E$ = D(C). 

The construction of the set C is as follows (a number of steps can be done 

in greater generality, and the results can be sharpened: see Section VII. 3 of 

[9]). First, let for every subset N of R$ and every point x in X the "section" 

of N at x be denoted by 

N[x] := {x' € X! (x,x') € N}. 
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+ 
Obviously, N[x] s ~ ~(x) (for NsR$)' and if N is closed in R$ then N[x] is closed 

in $+$(x), hence in X. If N is invariant, 'then tN[x] = N[tx] for every t c T. We 

shall see below that if N is a non-empty closed invariant subset of R$' then 

N[x] # 0 for every x E X. 

4.4. LEMMA. Let N be a non-empty aiosed invar>iant subset of R$' and define the 
. + b )* mapp1-ng pN: R$ + B. y 

Then PN is continuous and, in fact, pN is an IFP on R$. 

PROOF. It 

$+(y) for 
is straightforward to check that pN is a pseudometric on each f iber 

y € Y (note that the asymmetry in the definition is just seeming, be-
+ 

cause for x 1,x2 E $ (y) one has A$(XJ) = Ay = A$(x2). Also, it is easy to show, 
using the various invariantness definitions, that pN is invariant on fibers. So 

it remains to show, that pN is continuous. This will be done in several steps. 

I. For every x € X, the set N[x] is not empty. This is a consequence of invariant-

ness ?f N: its projection onto the first coordinate is a closed (N is compact~), 

non-empty (N # 0~) invariant subset of X, hence all of X (minimality of X). So for 

every x • X there is x' E X with (x,x') € N, that is, x' E N[x]. 
x Let 2 denote the space of all closed non-emtpy subsets of X endowed with 

the Vietoris topology (for the sequel, it is not necessary to know what th: 

means). We have shown, that N[x] € 2X for every x e X. We claim: 

~·The mapping x >+ N[x]: X + 2X is upper semiaontinuous, that is, for every x • X 

and every open nbd U of the closed set N[x] in X there exists a nbd V of x in X 

such that N[x'] s U for all x' • V. The easy proof by contradiction is left to the 

reader. 

3. If x 1,x2 • X then A$(xi) (N[x 1J) = A$(x2)(N[x2J). To prove this, let£ > 0 and 

let U be an open nbd of N[x2J in X such that 

(regularity of the measure A$(x2)). In addition, let U' be an open nbd of the 

(compact~) set N[x2J such that fiT SU and let f: X + [0;1] be a continuous func

tion such that f(x) = I for x e ijT and f(x) = 0 for x ~ U. Then by the inequality 

above, 

£ 
A$(x2)(f) < A$(x2) (N[x2]) + 2 

*) Here ~ denotes the symmetric difference: AAB = (A\B)u(B\A) (AuB)\(AnB). 
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Since the mapping x ~ A$(x): X + M(X) is continuous, it follows that there is a 

nbd V of x2 in X such that IA$(x')(f)-A$(xz)(f) I <I, hence 

+ E 

for all x' E V. By~ above, there is a nbd W of x2 in X such that N[x'J s U' for 

all x' E W. Hence for all x' E V n W we have (recall, that fiu 1=J): 

As X is minimal, the point x 1 has a dense orbit, so there is t € T such that 

tx1 E V n W, hence 

This holds for every E > O, so A$(x )(N[x 1J) ~ A$(x )(N[x2J). Since x2 has also 

a dense orbit, a similar proof can ie given to esta$lish the reversed inequality. 

4. In order to prove that pN is continuous on R$ it is (by the triangle inequality) 

sufficient to show that for every point x € X and every E > 0 there is a nbd V' 

of x such that 

pN(x,x') < £ for all x' € V' with $(x') = $(x). 

First note, that if $(x) = $(x'), then in the right-hand side of the following 

identity x and x' may be interchanged by l_: 

A$(x)(N[x]\N[x']) = A$(x) (N[x])-A~(x)(N[x] n N[x'J), 

and this shows that A$(x)(N[x]\N[x']) = A$(x')(N[x']\N[x]). However, A$(x) 

and using this, we see that 

Now let U and W be as in 1 with x instead of x2 : then for x' € W n $+$(x). we have 

N[x'] SU, hence by inequalities (*) and identity(**): 

This concludes the proof. D 
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As the family C of IPF's on R$ we shall take 

(note, that N = TN means exactly, that N is closed and invariant). 

4.5. First attempt of a proof for the inclusion D(C) s Q$ 

Suppose that for all x E X we would have x E supp A$(x). Then we could prove 
the desired inclusion as follows (the proof is completely similar to the proof in 
[ 8]: 

Let (x 1,x2) E D(C), a E UX' and set N :=Tan R$. Then N is a non-empty closed 
invariant subset of R$' so· pN E C and by assumption pN(x 1 ,x2) = 0. Consider an ar
bitrary nbd U of x2 such that U s a[x 2J. Then clearly U n $+$(x2) s N[x2 J, so the 
set (Un~+~(x 2))\N[x 1 ] is a (possibly empty) subset of N[x 1J6N[x 2J. However, 

so A$(x2)(Un$+$(x2)\N[x 1J) = 0. Since we are considering an open.set, this implies 

that 

+ 
or, equivalently (recall, that supp A$(x2) S <P $(x2)): 

Since we were assuming that x2 E 

x2 E N[x 1 J, i..e. (x 1 ,x2) E N. So 

a E UX, which implies D(C) E Q~-

supp A ( ) this clearly implies that 
cp xz ---

we have shown that D(C) E Ta n Rep for every 

D 

4.6. The condition that x E supp Acp(x) for all x EX is rather heavy. It is easy 
to show that the set {x E x: x E supp A~(x)} is dense in X, as follows: consider 

an arbitrary point x0 in X and x 1 E supp 'cpCxo) (note that for anyµ E M(X), 
supp µ # 0). Since the support of A~(xo) is included in the fiber $+cj>(x0), it 

follows that ~(x0 ) = cp(x 1), so x 1 E supp A$(xi). However, 

and since {txr:t E T} is dense in X, this proves our claim. (If X and Y are metric, 

a little bit more can be said: cf. [4]). 
It is not too difficult to show that if x • supp A$(x)' then <P is open at x 
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([5],2.2, also [9],VII.1.5). The converse is not true (see [5], Example 3.2(3)), 

but if q, is open, then the following lemma can be proved, which is just enough for 

our purposes. 

4. 7. LEMMA. If <P is open then there is a dense set of points (x 1 ,x2) in R<P with 

the property that x2 e supp >.<jl(xz) • 

PROOF. Essential for the proof is the observation that for every open subset W of 

X x X such that W n R<P f 0 there exist open subsets U and V of X such that 

0 # (uxv) n R<P .s W and, in addition, <jl[U] = <jl[V]. Assume for the moment that this 

is true. Every open subset of R<P is of the form W n R<P with W open in R<P' a_nd if 
w n R<P # 0 one can consider U and V as above. By the observation at the beginning 

of 4.6, there is a point x2 E Vn supp >-q,(x?)' Now there is x 1 EU such that <P(x 1) 

<jl(x2), hence (x 1,x2) e:(UxV)nR<jls;.WnR<P. This completes the proof of the lermna. 
The proof of the existence of U and V with the desired properties goes as 

follows: first observe, that there are open sets U' and V' in X such that 

0 # (U'xV') n R<P .s W n R<P. Note, that 

0 := <ji[U'] n <P[V'] f 0, 

0 is open. Now U := U' n <jl+[O] and V := V' n <jl+[O] suffice. D 

REMARK. The conclusion of the lermna is sufficient for the sequel. Note, that this 

conclusion can also be drawn if the mapping 8: (x,y) ..,. <P(x.) = <jl(y): R<P + X is semi

open (i.e. 8[W'] has a non-empty interior for each non-empty open subset W' of 

Rq,): instead of 0, take in the above proof O' := int G(U'xv') n R 

4.8. Proof of the inclusion D(C) .s Q<jl under the assumption of the conclusion of 

Lemma 4.7 

For convenience, we shall write D for D(C). 

I. A close inspection of 4.5 shows the following. Starting with any point 

x2 E X and x1 E D[x2J (so that (x2,x 1) E D, hence by symmetry of D, (x 1 ,x2) E D) 

and any open subset U of a[x2J, where a e UX, we have shown that 

{x1} x (Un supp A<jl(xz)) .S Tan R<jl (this is just formula (***); for the proof of 
this formula it was not necessary that x2 e U). Replacing x by x, this means 

2 
that for every x e X, a E UX and open U .s a[x] we have 

D[x] x (U n supp A<jl(x)) .s Ta n R<jl 

~· Next, we want to show that if U' is a non-empty open subset of X such 

that D[U'] = U {D[uJ: u e U'} is open~ we shall see below that there are 
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sufficiently many of such sets - and U' x U' h U S a, w ere a E X' then 

(D[U'] x U') n Rq, S Tan Rq,. 

So let Cz 1 ,z 2) be a point of (D[U']xU') n R, and consider an arbitrary basic-open 
~ 

nbd of Cz 1 ,z 2) in X x X, i.e. consider open nbds v1 of z 1 and v2 of z2 in X. With-

out limitation of generality we may assume that V c D[U'] (here we use that 
1-

D[U' J is open) and that v2 s U'. Since (V 1xv 2) n Rq, is an open nbd of (z 1,z 2) in 

Rq,, there is by our assumption (namely, the conclusion of 4.7) a point (w 1,w2) in 

CV 1xv 2) n R~ such that w2 E supp A ( ) • Note, that w E V c D[U'] so there 
"' q, wz I I - ' 

exists u E U' such that (u,w1) E D. First, this implies that (u,w1) E R hence 
q,• 

<t>(u) = Hw 1) = q,(w2) and consequently w2 E v2 n supp A<jl(u). T1"1s. 

However, {u} x v2 s U' x U' s a so v2 s a[u]. Therefore, we may apply the inclu

sion of _!_above (with u instead of x and v2 instead of U). We conclude, that 

Cw 1,w2) E Tan Rq,. Since also Cw 1,w2) E v1 x v2 , it follows that 

This holds tor every basic nbd of (z 1,z2), so (z 1 ,z 2 ) E Tan Rq,. This concludes 

the proof of the claim. 

3. The next statement is necessary in order to be able to apply the result 

of 2 above: for every open subset U of X there is an open subset U' of U such that 

D[U'] is open in X. 

In order to prove this, first observe that D is a closed invariant equivalence 

relation in X, so that we can consider the flow X/D. Let K := D[•]: X ~ X/D be 

the quotient map. Since X is minimal and K is surjective, it is not difficult to 

show that X/D is also minimal (for a closed invariant subset A of X/D, the set 

K+[A] is closed and invariant in X, hence all of X). By the lemma below, for each 

open subset U of X the set K[U] has a non-empty interior K[U]O in X/D. If we put 

U' :=Un K+[K[U]o], then U' is an open subset of U such that the set D[U'] = 

K+K[U'] is open in X: indeed, K[U'] = K[U]O is open in X/D. 

4.9. LEMMA. Let K: X ~ Z be a homomorphism of minimaZ flows. Then K is semi-open, 

that is, for each open subset U of X the set K[U] has non-empty interior in Z. 

PROOF. Let u1 be an epen subset of U such that u1 SU. From minimality of X it 

follows that X = TU, so by compactness of X, X = U{tu 1; t E F} for a finite sub

set F of T (note, that tU 1 is open in X since t acts as a homeomorphism of X for 
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every t ET), Consequently, Z = UteFtK[U1J = UtEFtK[U 1J. By (a finite variant of) 

Baire's theorem it follows that K[U 1 ] has a non-empty interior (each t acts also as 

a homeomorphism on Z), Since K[U 1J = K[U 1J and K[U] 2 K[U 1J, it follows that 

K[U] as well has non-empty interior. D 

In 4.8 we have all ingredients which we need for a proof of the inclusion 

D = D(C) E Q<P in case <P is an open homomorphism. 

4.10. THEOREM. If <j>: X + Y is a homomorphism of minimal flows and <j> is open )* 

a:nd has a RIM, then D(C) = Q<P E<P. 

PROOF. We want to show that DE Q<P (here D := D(C)). Let (x1,x2) ED and a E UX, 

a symmetric. Fix an open nbd U of x 1 such that U x U Ea. By 4.8(_;?) there is an 

open subset U' of U such that D[U'] is open; not3ce, that U' x U' EU x U Ea, so 

that 4.8(2) is applicable. Since x2 has a dense orbit in X, there is t e T such 

that tx2 EU'. Now t(x1,x2) E tD = D, so tx 1 E D[tx2J S D[U'], hence by 4.8(~, 

In particular, it follows that (x1,x2) E Tan R<P. This holds for all a E UX' 

hence (x 1,x2) E Q<P. This completes the proof. D 

4. I I. THEOREM. 
)* If <P: X + Y is a homomorphism of minimal flows and <P is open 

and has a RIM, then q, is weakly mixing iff E<P = R<P. 

PRoor·. For the "only if", see the end of Section 3. In order to prove the "if", 

assume that E<P = R<P and note that D = Q<P = E<P by 4.10 (where D := D(C)), so that 

D = R<P, Let for i = 1,2, Ui and Vi be open subsets of X such that (U 1xu 2) n R<P f 0 
~nd (V 1xv 2) n R<jl f 0. We have to show that there is t E T such that 

t(U 1xu 2)n(v 1xv 2) n R<P f 0, or equivalently, that 

Put N : = T(U 1xU2) n R<P; then N is aclosed invariant non-empty subset of R<P, 

since D = Rq, it follows that ~ (x 1 ,x2) = 0 for all points (x 1 ,x2) in R<P. 

· By minimality of X there exists t 1 E T such that 

and 

Instead of openness of <P one may require any other condition which implies 
that 8: (x,y) + <ji(x) <ji(y): Rq, + X is semi-open; cf. the remark at the end 
of 4.7. 



INVARIANT MEASURES AND THE EQUICONTINUOUS STRUCTURE RELATION 305 

By the observation in 4.6 above there is a point w E W n supp A~(w)' In view 

of the fact that ~ is open we may assume without limitation of generality that 

~[U 1 J = ~[U2 J and' ~Cv 1 J = ~Cv 2 J (cf. the proof of 4,7). Hence there are x 1 E v1 
and x2 E t 1u1 such that ~(x 1 ) = ~(w) = ~(x 2). Now 

hence W n ~+~(x2 ) E N[x2J. Exactly as in 4.5 this implies (using that 

pN(x1,x2) = O) that 

In particular, w E N[x1] or (x 1,w) EN. Since also (x 1,w) E v1 x v2, this proves 

that the intersection (*) is non-empty, as wanted. 0 
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