
kruislaan 4131098 SJ amsterdam

Printed at the Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.
The Mathematical Centre, founded llth February 1946, is a non-profit institution for the promotion of pure and applied mathematics and computer science. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

WEAK DISJOINTNESS AND THE EQUICONTINUOUS STRUCTURE RELATION *)

by
JOE AUSLANDER, DOUG MCMAHON,
JAAP VAN DER WOUDE AND TA SUN WU

Abstract

We discuss weak disjointness of homomorphisms of minimal transformation groups and we use the techniques involved to deepen our knowledge of the equicontinuous structure relation.

KEY WORDS \& PHRASES: minimal topological transformation group, relatively invariant measure, regionally proximal relation.
*) this report will be submitted for publication elsewhere

0. INTRODUCTION AND NOTATION

A topological transformation group (ttg) is a triple $\mathcal{X}=<T, X, \pi\rangle$, where T is a T_{2} topological group, X is a compact T_{2} space and $\pi: T \times X \rightarrow X$ is a continuous map such that $\pi(e, x)=x$ and $\pi(s, \pi(t, x))=\pi(s t, x)$. I.e., T acts as a continuous group of homeomorphisms on X. We shall fix T and suppress the action symbol.
Let \mathcal{X} be a ttg, $x \in X$, then $T x(\overline{T x})$ denotes the orbit (-closure) of x in X and a subset $A \subseteq X$ is called invariant iff $T a \subseteq A$ for every $a \in A$. A $\operatorname{tg} \mathcal{X}$ is called minimal iff X contains no proper closed invariant subsets, X is called ergodic iff every invariant open subset of X is dense. An example of an ergodic ttg is a pointtransitive tg, which is a $\mathfrak{t g}$ with a dense orbit. A $\mathfrak{t g}$ is minimal iff every orbit is dense.

For (our fixed) T there exists a universal pointtransitive $\operatorname{tg} \delta_{T}$, such that T can densely and equivariantly be embedded in S_{T}. The multiplication on T can be extended to a multiplication on S_{T}, then S_{T} is a closed semigroup with continuous right translations. The universal minimal ttg $\mathfrak{\pi}=<T, M>$ for T is isomorphic to every minimal left ideal in S_{T} and so M is a closed semigroup with continuous right translations. Hence the collection $J:=J(M)$ of idempotents in M is nonempty. Moreover, $\{v M \mid v \in J\}$ is a partition of M and every $v M$ is a group with unit element v.
The sets S_{T} and M act on X as semigroups and $\overline{T x}=S_{T} x$, while for a minimal $\operatorname{ttg} \mathfrak{X}$ we have $\overline{T x}=M x$ for every $x \in X$. Let x be an almost periodic point in X, i.e. $\overline{T x}$ is minimal, then denote the nonempty set $\{v \in J \mid v x=x\}$ by J_{x}. Note, that for a $\operatorname{ttg} \mathscr{X}, J X$ is the collection of almost periodic points in X.

Proximality is another dynamical concept that can be described by the action of S_{T}. Two points x_{1} and x_{2} are called proximal iff $\overline{T\left(x_{1}, x_{2}\right)} \cap \Delta_{X} \neq \varnothing$. Let \mathcal{Q}_{X} be the unique uniform structure of X, then $P=\bigcap\left\{T \alpha \mid \alpha \in \mathscr{Q}_{X}\right\}$ is the collection of proximal pairs in X, the proximal relation; if $P=X \times X$ then \mathscr{X} is called proximal.
It turns out that x_{1} and x_{2} are proximal in \mathscr{X} iff $v x_{1}=v x_{2}$ for some idempotent $v \in S_{T}$ iff there is a minimal left ideal I in S_{T} such that $p x_{1}=p x_{2}$ for every $p \in I$.
Let 2^{X} be the collection of nonempty closed subsets of X endowed with the Vietoris topology [Mi 51]. Note that a base for the Vietoris topology on 2^{X} is formed by the sets

$$
<U_{1}, \ldots, U_{n}>:=\left\{A \in 2^{X} \mid A \subseteq \bigcup_{i=1}^{n} U_{i} \text { and } A \cap U_{i} \neq \varnothing \text { for every } i\right\}
$$

where U_{i} is open in X. Then $2^{\mathfrak{x}}:=<T, 2^{X}, \tilde{\pi}>$ defined by $\tilde{\pi}(t, D):=\pi[\{t\} \times D]$ is a ttg again, and S_{T} acts on 2^{X} too. To circumvent ambiguity we denote the action of S_{T} on 2^{X} by the circle operation as follows. Let $p \in S_{T}$ then for $D \in 2^{X}$ define $p \circ D:=\lim _{2^{x} t_{i} D}$ for any net $\left\{t_{i}\right\}_{i}$ in T with $t_{i} \rightarrow p$. Moreover

$$
p \circ D=\left\{x \in X \mid \text { there are } d_{i} \in D \text { with } x=\lim t_{i} d_{i}\right\}
$$

for any net $t_{i} \rightarrow p$ in T. If $F \subseteq S_{T}, D \in 2^{X}$ then we define

$$
F \circ D:=\bigcup\{f \circ D \mid f \in F\}
$$

A homomorphism of ttgs $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ is a continuous map $\phi: X \rightarrow Y$ of the phase spaces of the tgs such that $\phi(t x)=t \phi(x)$ for all $t \in T, x \in X$.
The map ϕ is called proximal iff $R_{\phi} \subseteq P$ iff $P_{\phi}:=\bigcap\left\{T \alpha \cap R_{\phi} \mid \alpha \in \mathcal{Q}_{X}\right\}=R_{\phi}$.
Let $\phi: \mathscr{X} \rightarrow \mathscr{Z}$ and $\psi: \mathscr{Y} \rightarrow \mathscr{Z}$ be surjective homomorphisms of ttgs, then ϕ and ψ are called disjoint iff $R_{\phi \psi}:=\{(x, y) \mid \phi(x)=\psi(y)\}$ is minimal, notation $\phi \perp \psi ; \phi$ and ψ are called weakly disjoint iff $R_{\phi \psi}$ is ergodic, notation $\phi \doteq \psi$.

In section 2 we shall relate weak disjointness of homomorphisms of ttg to that of their maximally equicontinuous factors. A homomorphism of tgs is called equicontinuous or almost periodic iff for every $\alpha \in \mathcal{U}_{X}$ there is a $\beta \in \mathcal{U}_{X}$ such that $T \alpha \cap R_{\phi} \subseteq \beta$, where $R_{\phi}:=R_{\phi \phi}$.
Let $Q_{\phi}:=\bigcap\left\{\overline{T \alpha \cap R_{\phi}} \mid \alpha \in \mathcal{U}_{X}\right\}$ be the regionally proximal relation and define the equicontinuous structure relation to be the smallest closed invariant equivalence relation that contains Q_{ϕ}. Then $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ is almost periodic iff $Q_{\phi}=\Delta_{X}$. If $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ is a homomorphism of ttgs, then $\theta: \mathscr{X} / E_{\phi} \rightarrow \mathcal{Y}$ is the maximally equicontinuous factor of ϕ (also called the maximally (uniformly) almost periodic factor of ϕ).

Before we can discuss the material in section 2 we need to collect some results concerning the equicontinuous structure relation of certain types of homomorphisms of minimal ttgs, which will be done in section 1. Most of the results in that section 1 are known, but the results in 1.9.d, 1.12.c and 1.16.b seem to be new.

In section 3 we refine our knowledge about the regionally proximal relation being an equivalence relation. We prove that in several cases (RIC, Bc, RIM) we have

$$
E_{\phi}=Q_{\phi}=\bigcap\left\{\operatorname{int}_{R_{\phi}} \overline{T \alpha \cap R_{\phi}} \mid \alpha \in \mathcal{U}_{X}\right\}\left(=Q_{\phi}^{\#}\right) .
$$

Note that it was already known that $E_{\phi}=Q_{\phi}$ for open Bc extensions [B 73], Bc extensions [V 77] and open RIM extensions [Wo 80].

In section 4 we revisit the transitivity of the regionally proximal relation and translate some of the "\#-ideas" as exposed in section 3 to the idea of regional proximality of second order.

A more detailed discussion about ttgs may be found in [B 75/79] and, with more notational resemblance, [G 76] and [V 77]; for a function-algebraic approach see [E 69].
We like to thank J. DE VRIES for his many valuable suggestions, and T. S. MCWOULANDER for his communications.

1. SOME GENERALITIES

Let X be a CT_{2} space and let $\mathfrak{M}(X)$ be the collection of regular Borel probability measures on X provided with the weak star topology; i.e., a net $\left\{\mu_{i}\right\}_{i}$ in $\mathfrak{M}(X)$ converges to $\mu \in \mathfrak{M}(X)$ iff $\int f d \mu_{i}$ converges to $\int f d \mu$ for all real valued continuous functions f on X. Then $\mathfrak{M}(X)$ is a
CT_{2} space in which X is embedded by the mapping $x \mapsto \delta_{x}$, where δ_{x} is the dirac measure at x. If $\phi: \mathcal{X} \rightarrow \mathcal{Y}$ is a continuous map between CT_{2} spaces, then ϕ induces a continuous map $\mathfrak{M}(\phi): \mathfrak{M}(X) \rightarrow \mathfrak{M}(Y)$ which extends ϕ. Note, that $\mathfrak{M}(\phi)$ is surjective (injective) (homeomorphic) iff ϕ is.

Let \mathfrak{X} be a ttg for T. For $t \in T$ and $\mu \in \mathfrak{M}(X)$ define $t \mu \in \mathfrak{M}(X)$ by $t \mu(A)=\mu\left(t^{-1} A\right)$; or, what is the same, $\int f d(t \mu)=\int f t d \mu$, where $f t: X \rightarrow \mathbb{R}$ is defined by $f t(x)=f(t x)$. Also one could say $t \mu:=\mathfrak{M}\left(\pi^{t}\right)(\mu)$, where $\quad \pi^{t}:=x \mapsto t x: X \rightarrow X$. One can show that $(t, \mu) \mapsto t \mu: T \times \mathfrak{M}(X) \rightarrow \mathfrak{M}(X)$ is continuous. So $\mathfrak{M}(\mathfrak{X})$ is a ttg for T.
If $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ is a homomorphism of tgs, then $\mathfrak{M}(\phi): \mathfrak{M}(\mathfrak{X}) \rightarrow \mathfrak{M}(\mathscr{Y})$ is a homomorphism of ttgs.
A surjective homomorphism $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ of ttgs is said to have a relatively invariant measure (ϕ has a RIM, ϕ is a RIM extension) if there exists a continuous homomorphism $\lambda: \mathscr{Y} \rightarrow \mathfrak{M}(\mathscr{X})$ of ttgs such that $\mathfrak{M}(\phi) \circ \lambda: \mathscr{Y} \rightarrow \mathfrak{M}(\mathscr{Y})$ is just the (dirac) embedding. In other words: ϕ is a RIM extension iff for every $y \in Y$ there is a $\lambda_{y} \in \mathfrak{M}(X)$ with $\operatorname{supp} \lambda_{y} \subseteq \phi^{\leftarrow}(y)$ and the map $y \mapsto \lambda_{y}: \mathscr{Y} \rightarrow \mathfrak{M}(\mathcal{X})$ is a homomorphism of tgs; this map λ is called a section for ϕ. If ϕ is a RIM extension, then a point $x \in X$ is called a supprim point if for some section λ for ϕ we have $x \in \operatorname{supp} \lambda_{\phi(x)}$.
In particular, $\phi: \mathfrak{X} \rightarrow\{\star\}$ has a RIM iff \mathfrak{X} has an invariant measure iff $\mathfrak{M}(\mathcal{X})$ has a fixed point. In case \mathscr{X} is minimal it follows easily that every point of X is a supprim point.
Another example of a RIM extension is an almost periodic homomorphism of minimal ttgs, which even has a unique section and every point is a supprim point. For more details on RIM extensions see [G75].

RIM extensions of minimal ttgs turn out to behave nicely with respect to the interpolation of maximal almost periodic factors, i.e., with respect to the equicontinuous structure relation.
1.1. THEOREM. ([M 78] 2.2.) Let $\phi: \mathfrak{X} \rightarrow \mathscr{Y}$ be $a \operatorname{RIM}$ extension, then ϕ is open in the supprim point \mathbb{E}.

In [M 78] a technique is developed to investigate the equicontinuous structure relation for RIM extensions. The most important results are 1.2 and its consequences 1.3 and 1.4. below.
1.2. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs, and let $\psi: \mathscr{Z} \rightarrow \mathscr{Y}$ be a RIM extension with section $\lambda(\mathscr{Z}$ not necessarily minimal). Let $x \in X$ and let U be an open set in Z. Then

$$
E_{\phi}[x] \times\left(V \cap \operatorname{supp} \lambda_{\phi(x)}\right) \subseteq \overline{T\left(\{x\} \times V \cap R_{\phi \psi}\right)}
$$

1.3. COROLLARY. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a RIM extension of minimal ttgs with section λ. Then for every $x \in X$ with $x \in \operatorname{supp} \lambda_{\phi(x)}$ we have the equality $E_{\phi}[x]=Q_{\phi}[x]$. In particular, if a minimal ttg \mathfrak{X} has an invariant measure then $E_{\mathfrak{X}}=Q_{\mathscr{X}}$.
1.4. COROLLARY. Let $\phi: \mathfrak{X} \rightarrow \mathscr{Y}$ be a RIM extension of minimal ttgs. Then $E_{\phi}=Q_{\phi} \circ P_{\phi}=P_{\phi} \circ Q_{\phi}=\left\{\left(x_{1}, x_{2}\right) \in R_{\phi} \mid\left(u x_{1}, u x_{2}\right) \in Q_{\phi}\right.$ for some $\left.u \in J\right\}$.

Two other types of extensions that behave nicely with respect to the equicontinuous structure relation are the Bc extensions and the RIC extensions.
Let $\phi: \mathscr{X} \rightarrow \mathscr{Z}$ and $\psi: \mathscr{Y} \rightarrow \mathscr{Z}$ be surjective homomorphisms of ttgs (not necessarily minimal). Then ϕ and ψ are said to satisfy the generalized Bronstein condition (gBc) if $\overline{J R_{\phi \psi}}=R_{\phi \psi}$; i.e., if the almost periodic points are dense in $R_{\phi \psi}$. If $\overline{J R_{\phi}}=R_{\phi}$ then ϕ is said to satisfy the Bronstein condition (Bc); we shall also say that ϕ is a Bc map or a Bc extension.
We say that ϕ satisfies the n-fold Bronstein condition for certain $n \in \mathbb{N}$ whenever

$$
R_{\phi}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid \phi\left(x_{1}\right)=\cdots=\phi\left(x_{n}\right)\right\}
$$

has a dense subset of almost periodic points (notation: ϕ is $n-\mathrm{Bc}$).
So ϕ is a Bc map iff ϕ is 2-Bc.
A homomorphism $\phi: \mathcal{X} \rightarrow \mathcal{Z}$ of minimal ttgs is called a RIC extension iff $\phi \leftarrow(z)=u \circ u \phi \leftarrow(z)$ for every $z \in Z$ and for every $u \in J_{z} \quad$ (RIC stands for Relatively InContractible). Note that a RIC extension is an open extension ([G76] X.1.1.).
Examples of RIC extensions are almost periodic-, distal- and open point distal maps.
The proof of the next lemma is straightforward and will be omitted.
1.5. Lemma. Let \mathfrak{X} be minimal. Consider the next diagram of surjective homomorphisms.

The following statements are equivalent:
a) ϕ and ψ satisfy gBc ;
b) $\quad R_{\phi \psi}=\overline{T(\{x\} \times u \psi \leftarrow \phi(x))}$ for some $x \in X$ and some $u \in J_{x}$;
c) $\quad R_{\phi \psi}=\overline{T(\{x\} \times u \psi \leftarrow \phi(x))}$ for every $x \in X$ and every $u \in J_{x}$.

Two other useful remarks concerning dense sets of almost periodic points are
1.6. REMARK. (Situation as in 1.5.) Let $u \in J$. Then ϕ and ψ satisfy gBc iff $\psi \leftarrow \phi(x)=J_{x} \circ u \psi \leftarrow \phi(x)$ for every $x \in X$.
In particular, ϕ is a Bc extension iff $\phi \leftarrow \phi(x)=J_{x} \circ u \phi \leftarrow \phi(x)$ for every $x \in X$.
PROOF. The "if-part" is obvious.
Conversely, let $x \in X$ and $y \in \psi \leftarrow \phi(x)$. Then, by 1.5.c, $(x, y)=\lim t_{i}\left(u x, u y_{i}\right)$ where $u y_{i} \in u \psi \leftarrow \phi(u x)=\psi \leftarrow \phi(x)$. After passing to a suitable subnet let $p=\lim t_{i} u \in M$. Then it follows that

$$
y=\lim t_{i} u y_{i} \in p \circ u \psi^{\leftarrow} \phi(x) \text { and } p x=x
$$

For $v \in J$ with $v p=p$ we have $v \in J_{x}$ and

$$
y \in p \circ u \psi \leftarrow \phi(x)=p \circ u p^{-1} u p \psi \leftarrow \phi(x) \subseteq v \circ u p \psi \leftarrow \phi(x) \subseteq v \circ u \psi \leftarrow \phi(p x)=v \circ u \psi \leftarrow \phi(x) .
$$

So $y \in v \circ u \psi \leftarrow \phi(x) \subseteq J_{x} \circ u \psi \leftarrow \phi(x)$.
1.7. REMARK. Let $\phi: \mathcal{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs with \mathcal{Y} minimal and \mathfrak{X} having a dense subset of almost periodic points. Then ϕ is semi-open (i.e., for every nonempty open $U \subseteq X, \phi[U]$ has a nonempty interior in Y).

PROOF. The remark is well known for \mathfrak{X} minimal. Let \mathfrak{X} have a dense subset of almost periodic points and let $U \subseteq X$ be open and nonempty. Then $U \cap Z \neq \varnothing$ for some minimal orbit closure Z in X. As $\phi[U \cap Z]$ has a nonempty interior in Y the remark follows.

For the following denote by $\left(u \phi^{\leftarrow}(z)\right)^{n}$ the cartesian n-power of $u \phi^{\leftarrow}(z)$; and by 2_{ϕ}^{α} the "relativized hyper $\operatorname{ttg}^{\prime \prime}$, defined as a subttg of $2^{\text {ox }}$ by

$$
2_{\phi}^{X}:=\left\{A \in 2^{X} \mid \phi[A] \text { is a singleton }\right\}
$$

The simple proof of the following lemma is left to the reader.
1.8. LEMMA. Let $\phi: \mathfrak{X} \rightarrow \mathscr{Z}$ be a homomorphism of minimal ttgs.
a) ϕ is n - Bc iff $R_{\phi}^{n}=\mathrm{cl}_{X^{n}}\left[T .\left(u \phi^{\leftarrow}(z)\right)^{n}\right]$ for every $z \in Z$ and every $u \in J_{z}$.
b) If ϕ is $n-\mathrm{Bc}$ for all $n \in \mathbb{N}$, then for every $z \in Z$ and every $u \in J_{z}$ the set

$$
\bigcup\left\{t\left\{x_{1}, \ldots, x_{n}\right\} \mid x_{i} \in u \phi \leftarrow(z), n \in \mathbb{N}, t \in T\right\} \subseteq 2_{\phi}^{X}
$$

is dense in 2_{ϕ}^{X}.
1.9. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Z}$ be a homomorphism of minimal ttgs. The following statements are equivalent:
a) ϕ is a RIC extension;
b) $\phi \perp \psi$ for every proximal extension $\psi: \mathcal{Y} \rightarrow \mathscr{Z}$ of minimal ttgs;
c) ϕ and ψ satisfy gBc for every $\psi: \mathscr{Y} \rightarrow \mathbb{Z}$ with \mathcal{Y} having a dense subset of almost periodic points;
d) ϕ is open and $n-\mathrm{Bc}$ for every $n \in \mathbb{N}$.

PROOF. a and b are equivalent by [G 76] X.1.3..
$\mathrm{a} \Rightarrow \mathrm{c}$ Let $U \times V \cap R_{\phi \psi}$ be a nonempty (basic) open set in $R_{\phi \psi}$. As ϕ is open and ψ is semi-open (1.7.), $W:=\psi\left[\psi^{\leftarrow} \phi[U] \cap V\right]^{\circ} \quad$ is a nonempty open subset of Z and $\phi\left[U^{\prime}\right]=\psi\left[V^{\prime}\right]$, where $U^{\prime}:=U \cap \phi^{\leftarrow}[W]$ and $V^{\prime}:=V \cap \psi \leftarrow[W]$.
Let $y \in V^{\prime}$ be an almost periodic point, say $y=v y$ for certain $v \in J$, and let $x \in U^{\prime} \cap \phi^{\leftarrow} \psi(v y)$. As ϕ is RIC, $x \in v \circ v \phi^{\leftarrow} \psi(v y)$ so $x=\lim t_{i} v x_{i}$ for some net $t_{i} \rightarrow v$ and $v x_{i} \in \phi^{\leftarrow} \psi(v y)$. Hence $(x, y)=\lim t_{i}\left(v x_{i}, v y\right)$ and for certain i_{0}

$$
t_{i_{0}} \in U^{\prime} \times V^{\prime} \cap R_{\phi \psi} \subseteq U \times V \cap R_{\phi \psi}
$$

Consequently, $R_{\phi \psi}$ has a dense subset of almost periodic points.
$\mathrm{c} \Rightarrow \mathrm{d}$ Follows by induction from the observation that $R_{\phi}^{n+1} \cong R_{\phi \eta}$, where $\eta: \Re_{\phi}^{n} \rightarrow \mathscr{Z}$ is the restriction of $\phi^{n}: X^{n} \rightarrow Z^{n}$.
$\mathrm{d} \Rightarrow$ a Let $z \in Z$ and $u \in J_{z}$. By 1.8.b, there are sets $t_{i}\left\{x_{1}^{i}, \ldots, x_{n_{i}}^{i}\right\}$ with $x_{j}^{i} \in u \phi^{\leftarrow}(z)$ which in 2_{ϕ}^{X} converge to $\phi \leftarrow(z)$. As

$$
t_{i}\left\{x_{1}^{i}, \ldots, x_{n_{i}}^{i}\right\}=t_{i} u\left\{x_{1}^{i}, \ldots, x_{n_{i}}^{i}\right\} \subseteq t_{i} u \circ u \phi^{\leftarrow}(z),
$$

it follows that

$$
\phi \leftarrow(z)=\lim t_{i}\left\{x_{1}^{i}, \ldots, x_{n_{i}}^{i}\right\} \subseteq \lim t_{i} u \circ u \phi \leftarrow(z)=p \circ u \phi^{\leftarrow}(z),
$$

where $p=\lim t_{i} u \in M$ (after passing to a suitable subnet).
But, clearly, $p \circ u \phi^{\leftarrow}(z) \subseteq \phi^{\leftarrow}(p z)$, so $z=p z$ and $z=u p^{-1} z$. By openness of ϕ we know that $\phi \leftarrow(z)=u p^{-1} \circ \phi^{\leftarrow}(z)$, so

$$
\phi \leftarrow(z)=u p^{-1} \circ \phi \leftarrow(z) \subseteq u p^{-1} \circ p \circ u \phi \leftarrow(z)=u \circ u \phi \leftarrow(z) .
$$

Obviously, $u \circ u \phi^{\leftarrow}(z) \subseteq \phi^{\leftarrow}(z)$, which shows that $\phi^{\leftarrow}(z)=u \circ u \phi^{\leftarrow}(z)$.

There are several ways to study the equicontinuous structure relation for Bc extensions:
(i) Elementary, using some trickery with syndetic sets and the uniform structure. In [B 73] thm 3, it was proven that $E_{\phi}=Q_{\phi}$ for open Bc extensions ϕ of minimal ttgs, so certainly for RIC. extensions. A suitable "shadow diagram" ([EGS 75]) finishes the general Bc case.
(ii) Using our knowledge about (open) RIM extensions ([M 78], [Wo 80]) and a(nother) shadow diagram ([G 75]).
(iii) The method of the \mathfrak{F}-topologies ([F 63], [E 67], [EGS 75] and [V 77]).

With help of the \mathfrak{F}-topologies one tries to imitate the properties of a compact group action. We shall briefly describe the \mathfrak{F}-topologies and some of the properties, resulting in a first description of the equicontinuous structure relation (1.16., 1.17.). Our approach will be based upon [V 77] which will also serve as a general reference.

First we shall specify a certain neighbourhood base at U in M (for the usual topology).
Let V be a subset of T such that $u \in \operatorname{int}_{S_{T}} \mathrm{cl}_{S_{T}}[V]$, and let $h(V):=\operatorname{cl}_{S_{T}}[V] \cap M$. Then define

$$
V(u):=\left\{t \in T \mid t u \in \operatorname{int}_{M} h(V)\right\}
$$

Clearly, $V(u)$ is open in T, but in general V and $V(u)$ do not coincide. However, the collection of subsets V of T for which V and $V(u)$ are the same can be used to define a neighbourhood base for u in M, as follows.
1.10. LEMMA. The collection $\left\{h(V) \mid V=V(u) \subseteq T, u \in \operatorname{int}_{S_{T}} \mathrm{cl}_{S_{T}}[V]\right\}$ forms a neighbourhood base for u in M.

Let \mathfrak{X} be a ttg. We shall define a topology $\mathfrak{F}(\mathcal{X}, u)$ on $u X=\{x \in X \mid u x=x\}$ by specifying a neighbourhood base for every $x=u x$ in $u X$. So let $x \in u X$. A typical neighbourhood of x in ($u X, \mathfrak{F}(\mathfrak{X}, u)$) will be a set of the form

$$
[U, V] \cap u X \text { with }[U, V]:=\bigcup\left\{t^{-1} U \mid t \in V\right\}
$$

where U is a neighbourhood of x in X (usual topology) and V is an open subset of T such that $u \in \operatorname{int}_{s_{T}} \mathrm{cl}_{S_{T}}[V]$ and $V=V(u)$.
The union of those neighbourhood bases forms a base for the $\mathfrak{F}(\mathcal{X}, u)$ topology on $u X$.

1.11. PROPERTIES.

a) The $\mathfrak{F}(\mathfrak{X}, u)$ topology can be defined by the closure operator $A \mapsto u(u \circ A)(A \subseteq u X)$.
b) ($u X, \mathfrak{F}(\mathfrak{X}, u))$ is a compact T_{1} topological space;
c) $\lambda_{a}: x \mapsto a x:(u X, \mathfrak{F}(\mathfrak{X}, u)) \rightarrow(u X, \mathfrak{F}(\mathfrak{X}, u))$ is a homeomorphism for every $a \in u M$;
d) $\lambda_{v}: x \mapsto v x:(u X, \mathfrak{F}(\mathcal{X}, u)) \rightarrow(v X, \mathfrak{F}(\mathfrak{X}, v))$ is a homeomorphism for every $v \in J$.

A special case is $(u M, \mathfrak{F}(\mathscr{R}, u))$. With the $\mathfrak{F}(\mathscr{R}, u)$ topology $u M$ is a group with a compact T_{1} underlying space and not only the left translations are homeomorphisms (1.11.b) but also the right translations and the inversion are. This space $(u M, \mathfrak{F}(\mathscr{R}, u))$ is some sort of prototype for the \mathfrak{F} topologies; i.e., we can consider the \mathfrak{F} topologies as quotients of the $\mathfrak{F}(\mathscr{H}, u)$ topology.
1.12. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs and define the map ϕ_{u} by

$$
\phi_{u}:=\left.\phi\right|_{u X}:(u X, \mathfrak{F}(\mathfrak{X}, u)) \rightarrow(u Y, \mathfrak{F}(\mathfrak{Y}, u)) .
$$

Then
a) ϕ_{u} is a homeomorphism iff ϕ is proximal;
b) ϕ_{u} is a closed continuous surjection;
c) ϕ_{u} is open.

PROOF.

a) [V 77] 2.5.8..
b) [V 77] 2.5.7..
c) It is well known (e.g. [G 76] X.3.2.) that there are proximal maps σ and τ and a RIC extension ϕ^{\prime} such that $\tau \circ \phi^{\prime}=\phi \circ \sigma$ (EGS diagram). From a) it follows that it suffices to show that ϕ_{u}^{\prime} is \mathfrak{F}-open; or better, it follows that we only have to prove the statement for RIC extensions.
Let ϕ be a RIC extension, $x \in u X$ and let $[U, V] \cap u X$ be an $\mathfrak{F}(\mathcal{X}, u)$ neighbourhood of X in $u X$ with $V=V(u)$ open in T and U is a neighbourhood of X in X. As ϕ is open, it will follow that ϕ_{u} is open. First note that

$$
\phi_{u}[[U, V] \cap u X] \subseteq \phi[[U, V]] \cap \phi[u X]=[\phi[U], V] \cap u Y .
$$

Let $y=u y \in[\phi[U], V] \cap u Y$, then $y=\phi\left(t^{-1} x^{\prime}\right)$ for some $t \in V$ and $x^{\prime} \in U$. As ϕ is RIC we have $z:=t^{-1} x^{\prime} \in \phi^{\leftarrow}(y)=u \circ u \phi \leftarrow(y)$. Let $\left\{t_{i}\right\}_{i}$ be a net in T with $t_{i} \rightarrow u$ and let $x_{i} \in u \phi^{\leftarrow}(y)$ be such that $z=\lim t_{i} x_{i}$. Since left multiplication with t is a homeomorphism we have $t t_{i} x_{i} \rightarrow t z=x^{\prime}$ and $t t_{i} \rightarrow t u$, hence $t t_{i} u \rightarrow t u$. As $t \in V=V(u)$ we have $t u \in \operatorname{int}_{M}\left(\mathrm{cl}_{S_{T}}[V] \cap M\right)$, so $t t_{i} u \in \operatorname{int}_{M}\left(\operatorname{cl}_{S_{T}}[V] \cap M\right)$ eventually, hence $t t_{i} \in V(u)=V$ eventually. Also $t t_{i} x_{i} \in U$ eventually, so we can find some i_{0} such that $t t_{i_{0}} x_{i_{0}} \in U$ and $t t_{i_{0}} \in V$. This shows that

$$
x_{i_{0}}=\left(t t t_{i_{0}}\right)^{-1} . t t_{i_{0}} x_{i_{0}} \in V^{-1} U,
$$

so $\quad x_{i_{0}} \in[U, V] \cap u \phi \leftarrow(y)$. Hence $x_{i_{0}} \in[U, V] \cap u X$, while $\phi\left(x_{i_{0}}\right)=y$ and so it follows that $y \in \phi_{u}[[U, V] \cap u X]$, which implies

$$
\phi_{u}[[U, V] \cap u X]=[\phi[U], V] \cap u Y
$$

in case ϕ is a RIC extension.

As every minimal $\operatorname{ttg} \mathfrak{X}$ is a factor of \mathfrak{T}, it follows from 1.12. that $(u X, \mathfrak{F}(\mathcal{X}, u))$ is an open, closed and continuous image of $(u M, \mathfrak{F}(\mathfrak{R}, u))$. So $(u M, \mathfrak{F}(\mathfrak{T}, u))$ plays a central role in the observations about \mathfrak{F}-topologies.

Let \mathfrak{X} be a minimal $\operatorname{ttg}, x_{0}=u x_{0} \in X$. Then define the Ellis group $\mathfrak{G}\left(\mathscr{X}, x_{0}\right)$ of \mathfrak{X} with respect to x_{0} by

$$
\mathfrak{G S}\left(\mathcal{X}, x_{0}\right)=\left\{a \in u M \mid a x_{0}=x_{0}\right\}\left(=u M \cap \rho_{x_{0}}^{\leftarrow}\left(x_{0}\right)\right) .
$$

Clearly, $\mathfrak{S}\left(\mathcal{X}, x_{0}\right)$ is a subgroup of $u M$. As $\rho_{x_{0}}: a \mapsto a x_{0}: \mathscr{T} \rightarrow \mathcal{X}$ is a homomorphism of minimal ttgs and $(u X, \mathfrak{F}(\mathscr{X}, u))$ is T_{1}, it follows from 1.12.b that $\mathfrak{F}\left(\mathscr{X}, x_{0}\right)$ is $\mathfrak{F}(\mathscr{T}, u)$-closed.
Note that, by 1.12.a, $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ is proximal iff $\mathscr{S}\left(\mathcal{X}, u x_{0}\right)=\mathscr{S}\left(\mathscr{Y}, \phi\left(u x_{0}\right)\right)$.
On the other hand, if F is an $\mathfrak{F}(\mathscr{T}, u)$-closed subgroup of $u M$, then there exists a minimal ttg $\mathfrak{U}(F)$ defined by

$$
\mathfrak{A}(F):=\{p \circ F \mid p \in M\} \subseteq 2^{M}
$$

such that $F=\mathfrak{S}(\mathfrak{A}(F), u \circ F)$, i.e., F is the Ellis group of $\mathfrak{A}(F)$ with respect to $u \circ F$.
1.13. The $\operatorname{tgg} \mathfrak{A}(F)$ is the universal minimal proximal extension of every minimal $\operatorname{tg} \mathscr{X}$ with Ellis group F. So let $x_{0}=u x_{0} \in X$ be such that $\mathfrak{G}\left(\mathscr{X}, x_{0}\right)=F$, then $\sigma: p \circ F \mapsto p x_{0}: \mathfrak{A}(F) \rightarrow \mathcal{X}$ is the maximally proximal extension of \mathcal{X}.
Note that every extension $\psi: \mathscr{Y} \rightarrow \mathfrak{U}(F)$ is a RIC extension (use 1.9.b and the universality of $\mathfrak{A}(F)$).
Let $\phi: \mathscr{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs, $x \in u X, y=\phi(x)$ and $F=\mathscr{G}(\mathscr{Y}, y)$. Then $u \phi \leftarrow(y)=F x$. Let $\mathscr{\Re}_{x}$ denote the $\mathfrak{F}(\mathcal{X}, u)$ neighbourhood system of x in $F x$. Define ([V 77])

$$
E(x):=E(x, \phi, u)=\bigcap\left\{\operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} \mathcal{u} \mid \mathcal{U} \in \mathfrak{\Re}_{x}\right\} .
$$

For $\rho_{y}: p \mapsto p y: \mathfrak{A} \rightarrow \mathcal{Y}$ we have $\mathrm{H}(F):=E\left(u, \rho_{y}, u\right)$ is the smallest $\mathfrak{F}(\mathscr{R}, u)$-closed normal subgroup K of F such that F / K is a CT_{2} topological group.
By 1.12., it follows easily that $E(x)=\mathrm{H}(F) x$. It turns out that $\left\{E\left(x^{\prime}\right) \mid x^{\prime} \in F x\right\}$ forms a partition of $u \phi^{\leftarrow}(x)$ and that $F / \mathrm{H}(F)$ acts on it as a CT_{2} topological group. This is what we meant with imitating the compact group action (discussion after 1.9.). Paraphrazed we may say that in $H(F) x$ we collect all the non-equicontinuous garbage for ϕ in $u \phi^{\leftarrow}(y)$, which might be illustrated by the following theorem ([E 73] 5.4., 6.3.).
1.14. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a Bc extension of minimal ttgs, $x \in u X$ and $F=\mathscr{S}(\mathscr{Y}, \phi(x))$. Then $E_{\phi}[x]=J_{\phi(x)} \mathrm{H}(F) x \quad$ (and so $\left.\quad \mathscr{G}\left(\mathscr{Y} / E_{\phi}, E_{\phi}[x]\right)=\mathrm{H}(F) . \mathfrak{G}(\mathfrak{X}, x)\right)$.

The next lemma is a slightly modified version of the crucial idea in [V 77].
1.15. Lemma. Let $\phi: \mathscr{X} \rightarrow \mathscr{Y}$ be a homomorphism of minimal ttgs, $x \in u X, F=\mathscr{S}(\mathscr{Y}, \phi(x))$, and denote by \mathscr{N}_{x} the collection of $\mathfrak{F}(\mathfrak{X}, u)$ neighbourhoods of x in $u \phi^{\leftarrow} \phi(x)=F x$. Then $u \circ F x \cap J H(F) x \subseteq u \circ u$ for every $u \in \Re_{x}$.

PROOF. Let \mathcal{U} be an open $\mathfrak{F}(\mathscr{X}, u)$ heighbourhood of x in $F x$. Then $o:=\{f \in F \mid f x \in \mathcal{U}\}$ is an $\mathfrak{F}(\mathscr{T}, u)$ open neighbourhood of u in F, so $O \cap O^{-1}$ is an $\mathfrak{F}(\mathscr{R}, u)$ neighbourhood of u in
F, hence $v:=\left(O \cap O^{-1}\right) x$ is an open $\mathfrak{F}(\mathscr{X}, u)$ neighbourhood of x in $F x$ and $v \subseteq u$. Note that v is symmetric in the sense that for $f \in F$ we have $f x \in \mathcal{v}$ iff $f^{-1} x \in \mathcal{V}$, and remark that $\mathrm{cl}_{\mathfrak{F}(\mathscr{X}, u)} \boldsymbol{v}$ is symmetric too.
Define $A:=\operatorname{int}_{\mathfrak{F}(\mathcal{X}, u)} \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)}$ v in the relative $\mathfrak{F}(\mathfrak{X}, u)$-topology on $F x$. We claim that

$$
\{A\} \cup\left\{g v \mid g \in F \text { and } g x \notin \mathrm{cl}_{\mathfrak{F}(\mathfrak{X}, u)} v\right\}
$$

is an $\mathfrak{F}(\mathfrak{X}, u)$-open covering of $F x$. As follows:
Let $f \in F$ be such that $f x \notin A$; i.e.,

$$
f x \in F x \backslash A=\operatorname{cl}_{\mathfrak{F}(\mathfrak{X}, u)}\left(F x \backslash \operatorname{cl}_{\mathfrak{F}(\mathfrak{X}, u)} v\right) .
$$

So we can find a net $\left\{f_{i} x\right\}_{i}$ with $f_{i} x \in F x \backslash \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} v$ such that $f_{i} x \rightarrow f x$ in the $\mathfrak{F}(\mathcal{X}, u)$ topology. Since

$$
\lambda_{f^{-1}}:(F x, \mathfrak{F}(\mathfrak{X}, u)) \rightarrow(F x, \mathfrak{F}(\mathfrak{X}, u))
$$

is a homeomorphism, $f^{-1} f_{i} x \rightarrow x$ in the $\mathfrak{F}(\mathcal{X}, u)$-topology. As $v \in \mathscr{N}_{x}$, there is an i_{0} with $f^{-1} f_{i_{0}} x \in \mathcal{V}$ and by symmetry of $v, f_{i_{0}}^{-1} f x \in \mathcal{V}$. Hence $f x \in f_{i_{0}} v$, where $f_{i_{0}} \in F$ is such that $f_{i_{0}} x \in F x \backslash \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} \boldsymbol{v}$, which establishes our claim.
By compactness, there are finitely many $g_{i} \in F$ with $g_{i} x \notin \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} v$, say g_{1}, \ldots, g_{n}, such that

$$
F x \subseteq A \cup \bigcup\left\{g_{i} v \mid i \in\{1, \ldots, n\}\right\}
$$

As $\{A\} \cup\left\{g_{i} v \mid i \in\{1, \ldots, n\}\right\}$ is a finite collection it follows that

$$
\left.u \circ F x=u \circ\left(A \cup \bigcup\left\{g_{i} v \mid i \in 1, \ldots, n\right\}\right\}\right)==u \circ A \cup \bigcup\left\{u \circ g_{i} v \mid i \in\{1, \ldots, n\}\right\}
$$

Now let $x^{\prime} \in J H(F) x \cap u \circ F x$, say $x^{\prime}=v p x$ for some $v \in J$ and $p \in \mathrm{H}(F)$. We shall prove that $x^{\prime}=v p x \notin u \circ g_{i} v$ for every $i \in\{1, \ldots, n\}$. It then follows that

$$
x^{\prime} \in u \circ A \subseteq u \circ \operatorname{cl}_{\mathfrak{F}(\mathfrak{X}, u)} v=u \circ u(u \circ v) \subseteq u \circ v
$$

which proves the theorem. Suppose $v p x \in u \circ g_{i} v$, then

$$
\begin{aligned}
& x=u x=u p^{-1} v p x \in u p^{-1}\left(u \circ g_{i} v\right) \subseteq=u p^{-1}\left(u \circ u p u p^{-1} g_{i} v\right) \subseteq \\
& \subseteq u\left(u p^{-1} \circ u p \circ u p^{-1} g_{i} v\right)=u\left(u \circ u p^{-1} g_{i} v\right)=\operatorname{cl}_{\mathfrak{F}(\mathscr{X}, u)} u p^{-1} g_{i} v .
\end{aligned}
$$

As $\mathrm{H}(F)$ is a normal subgroup of F and $g_{i} \in F$ we can find $q \in \mathbf{H}(F)$ such that $u p^{-1} g_{i}=g_{i} q$, so

$$
x \in \operatorname{cl}_{\mathfrak{F}(\mathfrak{X}, u)} g_{i} q v=g_{i} \mathrm{cl}_{\mathfrak{F}(\mathfrak{X}, u)} q v \subseteq g_{i} \mathrm{cl}_{\mathfrak{F}(\mathfrak{X}, u)} \mathrm{H}(F) v .
$$

But $\quad \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} \mathrm{H}(F) \boldsymbol{v} \subseteq \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} \boldsymbol{v}$. For, let $v \in \mathcal{V}$ then $v \in \mathscr{T}_{v}$, so $E(v) \subseteq \operatorname{cl}_{\mathfrak{F}(\mathcal{X}, u)} \boldsymbol{v}$ for every $v \in \mathcal{V}$; as $E(v)=\mathrm{H}(F) v, \mathrm{H}(F) \boldsymbol{v} \subseteq \mathrm{cl}_{\mathfrak{F}(\mathcal{X}, u)} \boldsymbol{v}$ and consequently, $\mathrm{cl}_{\mathfrak{F}(\mathcal{X}, u)} \mathrm{H}(F) \boldsymbol{V} \subseteq \mathrm{cl}_{\mathfrak{F}(\mathcal{X}, u)} \boldsymbol{v}$.
This shows that $x \in g_{i} \mathrm{cl}_{\mathfrak{F}(\mathcal{X}, u)} v$ and so $g_{i}{ }^{-1} x \in \operatorname{cl}_{\mathfrak{F}(\mathfrak{X}, u)} v$. By symmetry of $\mathrm{cl}_{\mathfrak{F}(\mathcal{X}, u)} v$, $g_{i} x \in \operatorname{cl}_{\mathfrak{F}(\mathscr{X}, u)} \boldsymbol{V}$, which contradicts the choice of g_{i}.

Now we are ready for the main theorem of this section.
1.16. THEOREM. Let $\phi: \mathscr{X} \rightarrow \mathscr{Y}$ be a homomorphism of minimal ttgs, $x \in u X$ and $F=\mathfrak{S}(\mathscr{Y}, \phi(x))$.
a) If ϕ is a RIC extension then $E_{\phi}[x] \subseteq u \circ u$ for every $u \in \mathscr{N}_{x}$ ([V77] 2.6.1.).
b) If ϕ is a Bc extension then $E_{\phi}[x] \subseteq J_{x^{\prime} \circ} \mathcal{U}$ for every $x^{\prime} \in \phi^{\leftarrow} \phi(x)$ and every $u \in \mathscr{\Re}_{x}$.

PROOF. As the proof of a) is similar to that of b), we just prove b).
b) Let $u \in \mathcal{\Re}_{x}$ and let $x^{\prime} \in \phi^{\leftarrow} \phi(x)=\phi \leftarrow \phi\left(x^{\prime}\right)$. By 1.6., $\phi \leftarrow \phi(x)=J_{x^{\prime} \circ} \circ \boldsymbol{u} \phi^{\leftarrow} \phi(x)$; so from 1.14. it follows that

$$
E_{\phi}[x] \subseteq J_{x^{\prime} \circ} F x \cap J_{\phi(x)} \mathrm{H}(F) x
$$

Let $z \in E_{\phi}[x]$, say $z \in v \circ F x \cap J H(F) x$ for certain $v \in J_{x^{\prime}}$. Note that

$$
v \circ F x=v \circ u v F x \subseteq v u \circ v F x=v \circ v F x=v \circ v u F x \subseteq v \circ u F x=v \circ F x
$$

so $v \circ F x=v \circ v F x=v \circ v F v x$ and $z \in v \circ v F v x \cap J v H(F) v x$. Applying 1.14. to $v x$ it follows that

$$
v \circ v F x \cap J v \mathrm{H}(F) v x \subseteq v \circ v u
$$

As $v \circ v u=v \circ u u=v \circ u$ (similar to $v \circ F x=v \circ v F x$), we may conclude that

$$
z \in v \circ F x \cap J H(F) x=v \circ v F x \cap J v \mathrm{H}(F) v x \subseteq v \circ v u=v \circ u .
$$

Consequently $E_{\phi}[x] \subseteq J_{x^{\prime} \circ} \mathcal{U}$.
1.17. COROLLARY. Let $\phi: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a Bc extension. Then $E_{\phi}=Q_{\phi}$.

PROOF. Let $x \in X$, and $u \in J_{x}$. By 1.16.b with $x^{\prime}=x$ we know that $E_{\phi}[x] \subseteq J_{x} \circ u$ for every $u \in \mathscr{\Re}_{x}$. Let $\alpha \in \mathscr{U}_{X}$ and let U be a neighbourhood of x in X (usual topology) such that $U \times U \subseteq \alpha$. By 1.10., there is a $V=V(u)$ open in T such that $V x \subseteq U$. Define $v:=[U, V] \cap u \phi \leftarrow \phi(x)$. Then

$$
\{x\} \times E_{\phi}[x] \subseteq\{x\} \times J_{x} \circ v=J_{x} \circ(\{x\} \times v)
$$

As, clearly, $\{x\} \times v \subseteq V^{-1} .\left(V x \times U \cap R_{\phi}\right) \subseteq T \alpha \cap R_{\phi}$, it follows that

$$
\{x\} \times E_{\phi}[x] \subseteq J_{x} \circ(\{x\} \times v) \subseteq \overline{T \alpha \cap R_{\phi}} .
$$

Since $\alpha \in \mathcal{Q}_{X}$ was arbitrary, we have $\{x\} \times E_{\phi}[x] \subseteq Q_{\phi}$, so $E_{\phi}[x] \subseteq Q_{\phi}[x]$.
But x and $u \in J_{x}$ were arbitrary in whole discussion up to now, so it follows that $E_{\phi}=Q_{\phi}$.
We can do better than the corollary above as will be shown in 3.7..

2. RELATIVIZED WEAK DISJOINTNESS

In this section we relate weak disjointness of maps and that of their maximally almost periodic factors. For that we need to keep control over open sets, which can be done by means of a fair amount of openness in the maps involved.
2.1. LEMMA. Consider the next commutative diagram of surjective homomorphisms of ttgs:

and let $\eta: R_{\phi \psi} \rightarrow Z$ be the obvious map $(\eta(x, y)=\phi(x)=\psi(y))$.
a) If ϕ or ψ is open and ψ or ϕ is semi-open then η is semi-open, and for every nonempty open $W \subseteq R_{\phi \psi}$ there are open sets U and V in X and Y with $\varnothing \neq U \times V \cap R_{\phi \psi} \subseteq W$ and $\phi[U]=\psi[V]$.
b) If η and κ are semi-open then $\kappa \times i d_{Y}: R_{\phi \psi} \rightarrow R_{\theta \psi}$ is semi-open.

PROOF.
a) Without loss of generality let ψ be open and ϕ semi-open and let $W \subseteq R_{\phi \psi}$ be a nonempty open set in $R_{\phi \psi}$. Let U^{\prime} and V^{\prime} be open in X and Y such that $\varnothing \neq U^{\prime} \times V^{\prime} \cap R_{\phi \psi} \subseteq W$. Then $U^{\prime} \cap \phi^{\leftarrow} \psi\left[V^{\prime}\right]$ is nonempty and open so by semi-openness of $\phi, O:=\phi\left[U^{\prime} \cap \phi^{\leftarrow} \psi\left[V^{\prime}\right]\right]^{\circ}$ is nonempty and open. define $U:=U^{\prime} \cap \phi^{\leftarrow}[O]$ and $V:=V^{\prime} \cap \psi \leftarrow[O]$. Then as is easily seen,
(i) $O \subseteq \phi\left[U^{\prime}\right] \cap \psi\left[V^{\prime}\right] \subseteq \eta[W]$, so η is semi-open;
(ii) $\varnothing \neq U \times V \cap R_{\phi \psi} \subseteq W$ and $\phi[U]=\psi[V]=O$.
which proves a).
b) Let W be nonempty and open in $R_{\phi \psi}$ and let U and V be as in a). Semi-openness of κ implies $\kappa[U]^{\circ} \neq \varnothing$ and as $\phi[U]=\psi[V]$ it follows that $\kappa[U]^{\circ} \times V \cap R_{\theta \psi} \neq \varnothing$; hence $\kappa \times i d_{Y}$ is semi-open.

In the following remark we collect some situations in which η is semi-open and that are useful for our purposes. So consider the next diagram:

2.2. DIAGRAM.

with \mathfrak{X} and \mathscr{Z} minimal and \mathscr{Y} not necessarily minimal.
2.3. REMARK. Consider diagram 2.2.. In each of the following cases $\eta: R_{\phi \psi} \rightarrow Z$ is semi-open (and, by minimality of \mathscr{X}, also $\kappa \times i d_{Y}: R_{\phi \psi} \rightarrow R_{\theta \psi}$ is semi-open $)$.
a) ϕ and ψ satisfy gBc ;
b) ψ is open;
c) ϕ is open and Y has a dense subset of almost periodic points;
d) ϕ is open, ψ is a RIM extension and Y has a dense subset of supprim points.

PROOF.

a, b and c are obvious from 1.7. (and 2.1.).
d) As ψ is open in the supprim points, there is a dense subset of Y in which ψ is open, hence ψ is semi-open.
2.4. THEOREM. Consider diagram 2.2. and let ϕ and ψ satisfy one of the conditions in 2.3.. If for every nonempty (basic) open set $U \times V \cap R_{\phi \psi}$ there is an open set $\tilde{U}=E_{\phi}[\tilde{U}]$ in X such that $\varnothing \neq \tilde{U} \times V \cap R_{\phi \psi} \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)}$ then $\phi-\psi$ iff $\theta-\psi$.

PROOF. As $\kappa \times i d_{Y}\left[R_{\phi \psi}\right]=R_{\theta \psi}, \phi-\psi$ implies $\theta \perp \psi$.
Conversely, suppose $\theta \dot{-\psi}$. Let $U \times V \cap R_{\phi \psi}$ be a nonempty (basic) open set in $R_{\phi \psi}$ and let \tilde{U} be as in the assumption. Clearly, as $\kappa \leftarrow \kappa[\tilde{U}]=\tilde{U}, \quad \kappa[\tilde{U}]$ is open in X / E_{ϕ} and $\kappa[\tilde{U}] \times V \cap R_{\theta \psi} \neq \varnothing$. So, by ergodicity of $R_{\theta \psi}, \quad T\left(\kappa[\tilde{U}] \times V \cap R_{\theta \psi}\right)$ is dense in $R_{\theta \psi}$. As $\kappa \times i d_{Y}$ is semi-open, $\left(\kappa \times i d_{Y}\right)^{\leftarrow}\left[T\left(\kappa[\tilde{U}] \times V \cap R_{\theta \psi}\right)\right]$ is dense in $R_{\phi \psi}$. Hence, as

$$
\left(\kappa \times i d_{Y}\right)^{\leftarrow}\left[T\left(\kappa[\tilde{U}] \times V \cap R_{\theta \psi}\right)\right]=T\left(\tilde{U} \times V \cap R_{\phi \psi}\right) \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)}
$$

it follows that $R_{\phi \psi}=\overline{T\left(U \times V \cap R_{\phi \psi}\right)}$. Consequently, $R_{\phi \psi}$ is ergodic.
Now we shall look for situations in which the assumptions of 2.4 . are satisfied. For that we need the following lemmas.
2.5. LEMMA. Consider diagram 2.2. and suppose that one of the conditions in 2.3. is satisfied. If every nonempty (basic) open set $U^{\prime} \times V^{\prime} \cap R_{\phi \psi} \quad$ contains a point $\quad(x, y)$ such that $E_{\phi}[x] \times\{y\} \subseteq \overline{T\left(U^{\prime} \times V^{\prime} \cap R_{\phi \psi}\right)}$ then the assumption in 2.4. is satisfied.

PROOF. We shall show that for a nonempty (basic) open set $U \times V \cap R_{\phi \psi}$ with $\phi[U]=\psi[V]$ the set $\tilde{U}=E_{\phi}[\tilde{U}]:=\kappa^{\leftarrow}\left[\kappa[U]^{\circ}\right]$ is such that

$$
\tilde{U} \times V \cap R_{\phi \psi} \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)} .
$$

As one of the conditions in 2.3. is satisfied, the lemma follows.
Let U and V be open in X and Y such that $\phi[U]=\psi[V]$, define $\tilde{U}:=\kappa \leftarrow\left[\kappa[U]^{\circ}\right]$ and remark that $\tilde{U} \times V \cap R_{\phi \psi} \neq \varnothing$. Note that it is sufficient to show that for an arbitrary nonempty (basic) open subset $U^{\prime} \times V^{\prime} \cap R_{\phi \psi} \subseteq \tilde{U} \times V \cap R_{\phi \psi}$ we have $U^{\prime} \times V^{\prime} \cap T\left(U \times V \cap R_{\phi \psi}\right) \neq \varnothing$, as follows: By assumption, there is a point $(x, y) \in U^{\prime} \times V^{\prime} \cap R_{\phi \psi}$ such that

$$
E_{\phi}[x] \times\{y\} \subseteq \overline{T\left(U^{\prime} \times V^{\prime} \cap R_{\phi \psi}\right)}
$$

As $U^{\prime} \subseteq \tilde{U}=\kappa^{\leftarrow}\left[\kappa[U]^{\circ}\right]$ there is an $x^{\prime} \in U$ such that $x \in \kappa^{\leftarrow} \kappa\left(x^{\prime}\right)=E_{\phi}\left[x^{\prime}\right]$, so $x^{\prime} \in E_{\phi}[x]$. But then

$$
\left(x^{\prime}, y\right) \in U \times V \cap E_{\phi}[x] \times\{y\} \subseteq U \times V \cap \overline{T\left(U^{\prime} \times V^{\prime} \cap R_{\phi \psi}\right)}
$$

so $U \times V \cap T\left(U^{\prime} \times V^{\prime} \cap R_{\phi \psi}\right) \neq \varnothing$ and $U^{\prime} \times V^{\prime} \cap T\left(U \times V \cap R_{\phi \psi}\right) \neq \varnothing$.
2.6. LEMMA. Consider diagram 2.2.. Suppose ψ is a RIM extension, Y has a dense subset of supprim points and ϕ and ψ satisfy one of the conditions in 2.3.. Then every nonempty (basic) open set $U \times V \cap R_{\phi \psi}$ contains a point (x, y) such that $E_{\phi}[x] \times\{y\} \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)}$.

PROOF. By 2.3. and 2.1.a, we may assume that $\phi[U]=\psi[V]$. As the supprim points are dense in Y, there is a section λ for ϕ and a $y \in V \cap \operatorname{supp} \lambda_{\psi(y)}$. Let $x \in U$ be such that $\phi(x)=\psi(y)$. Then, by 1.2.,

$$
E_{\phi}[x] \times\{y\} \subseteq E_{\phi}[x] \times\left(V \cap \operatorname{supp} \lambda_{\psi(y)}\right) \subseteq \overline{T\left(\{x\} \times V \cap R_{\phi \psi}\right)} \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)} .
$$

2.7. LEMMA. Consider diagram 2.2.. Suppose ϕ is a RIC extension and let (x, y) be an almost periodic point. If $U \times V \cap R_{\phi \psi}$ is a basic open neighbourhood of (x, y) in $R_{\phi \psi}$, then $E_{\phi}[x] \times\{y\} \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)}$.
PROOF. Let $v \in J$ be such that $v(x, y)=(x, y)$. By 1.10., there is an open set $W=W(v)$ in T such that $W y \subseteq V$. Define $\boldsymbol{U}:=[U, W] \cap v \phi \leftarrow \phi(x)$. Then \mathcal{U} is an $\mathfrak{F}(\mathcal{X}, v)$ neighbourhood of x in $v \phi^{\leftarrow} \phi(x)$. Let $x^{\prime} \in \mathcal{U}$, then $x^{\prime} \in t^{-1} U$ for some $t \in W$, so

$$
\left(x^{\prime}, y\right) \in t^{-1}\left(U \times t y \cap R_{\phi \psi}\right) \subseteq t^{-1}\left(U \times W y \cap R_{\phi \psi}\right) \subseteq T\left(U \times V \cap R_{\phi \psi}\right)
$$

Consequently, $u \times\{y\} \subseteq T\left(U \times V \cap R_{\phi \psi}\right)$ and so, by 1.16.a,

$$
E_{\phi}[x] \times\{y\} \subseteq v \circ(u \times\{y\}) \subseteq \overline{T\left(U \times V \cap R_{\phi \psi}\right)}
$$

2.8. THEOREM. Consider diagram 2.2.. In each of the following cases we have $\phi \doteq \psi$ iff $\boldsymbol{\theta} \doteq \psi$:
a) ϕ is a RIC extension, ϕ and ψ satisfy gBc (or equivalently, Y has a dense subset of almost periodic points);
b) ψ is a RIM extension, Y has a dense subset of supprim points and one of the conditions in 2.3. is satisfied.

PROOF.
a) Follows from 2.7., 2.5. and 2.4..
b) Follows from 2.6., 2.5. and 2.4..
2.9. In order to prove 2.11., the Bc version of 2.8. (thus generalizing [V 77] 2.6.3.), we consider a commutative "double" diagram similar to the one constructed by VEECH in [V 77], as follows:

Here $H:=\mathscr{S}\left(\mathscr{X}, x_{0}\right)$ and $K:=\mathscr{S}\left(\mathscr{L}, z_{0}\right)$ are the Ellis groups of \mathscr{X} and \mathscr{Z} with respect to
$x_{0}=u x_{0}$ and $z_{0}=u z_{0}, \phi^{\prime}: \mathfrak{U}(H) \rightarrow \mathfrak{A}(K)$ is the RIC extension defined by $p \circ H \mapsto p \circ K, \sigma$ and η are the maximally proximal extensions of \mathscr{X} and \mathscr{Z} (1.13.). Then the $\operatorname{ttg} y^{\prime}$ is a subttg of $\mathcal{y} \times \mathfrak{A}(K)$ defined by

$$
Y^{\prime}=\left\{(y, p \circ K) \mid y \in p \circ u \psi \leftarrow\left(z_{0}\right)\right\}
$$

and the maps $\psi^{\prime}: \mathscr{Y}^{\prime} \rightarrow \mathfrak{U}(K)$ and $\tau: \mathscr{Y}^{\prime} \rightarrow \mathcal{Y}$ are just the projections.
The following facts are easily verified:
(i) Y^{\prime} is T-invariant and closed in $Y \times \mathfrak{A}(K)$;
(ii) Y^{\prime} has a dense subset of almost periodic points;
(iii) $\tau: \mathscr{Y}^{\prime} \rightarrow \mathscr{Y}$ is proximal and τ is a surjection iff Y has a dense subset of almost periodic points.

As σ and τ are proximal and ϕ and ϕ^{\prime} are Bc extensions, it follows from 1.14. (remark between parenthesis) that ξ is proximal.

We shall need the following lemma about lifting of ergodicity.
2.10. Lemma. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a surjective proximal homomorphism of ttgs and let \mathfrak{X} have a dense subset of almost periodic points. Then \mathcal{X} is ergodic iff \mathcal{Y} is ergodic.

PROOF. Clearly, if \mathscr{X} is ergodic then \mathscr{O} is ergodic.
Conversely, suppose that \mathscr{y} is ergodic. Let $A \subseteq X \quad$ with $A=\overline{T A}$ and $A^{\circ} \neq \varnothing$ and let $B:=\overline{X \backslash A}$. Then $B=\overline{T B}$ and $X=A \cup B$.
As $\phi[A] \cup \phi[B]=\phi[X]=Y, \phi[A]$ or $\phi[B]$ must have a nonempty interior in Y, and so, by ergodicity of $\mathscr{Y}, \phi[A]=Y$ or $\phi[B]=Y$.
Suppose that $\phi[A]=Y$. Let $x \in X$ be an almost periodic point. Then for some $a \in A$, $\phi(a)=\phi(x)$. As ϕ is proximal, a and x are proximal and by almost periodicity of x we have that $x \in \overline{T a} \subseteq \overline{T A}=A$. Consequently, every almost periodic point in \mathcal{X} is in A, so $X=A$.
Suppose that $\phi[B]=Y$ then, similarly, it follows that $X=B$; which contradicts the assumption of $A^{\circ} \neq \varnothing$.
Hence $X=A$ and \mathfrak{X} is ergodic.
2.11. THEOREM. Consider diagram 2.2. with ϕ a Bc extension and ϕ and ψ satisfying gBc. Then $\phi-\psi$ iff $\theta \doteq \psi$.

PROOF. Construct the diagram in 2.9. and suppose that $\theta \doteq \psi$. As θ^{\prime} is a RIC extension (1.13.) and as \emptyset^{\prime} has a dense subset of almost periodic points, $R_{\theta^{\prime} \psi^{\prime}}$ has a dense subset of almost periodic points (1.9.). By 2.10., it follows from the proximality $\xi \times \tau$ that $R_{\theta^{\prime} \psi}$ is ergodic, so $\theta^{\prime}-\psi^{\prime}$. As ϕ^{\prime} is a RIC extension (1.13.) and as \mathscr{Y}^{\prime} has a dense subset of almost periodic points, ϕ^{\prime} and ψ^{\prime} satisfy gBc (1.9.). By 2.8.a, $\phi^{\prime}-\psi^{\prime}$. Since $\sigma \times \tau\left[R_{\phi^{\prime} \psi}\right]=R_{\phi \psi}$, it follows that $\phi-\psi$.

A homomorphism of $\operatorname{tgg} \phi: \mathfrak{X} \rightarrow \mathcal{Z}$ is called n-weakly mixing iff R_{ϕ}^{n} is ergodic.
If ϕ is 2-weakly mixing then ϕ is just called weakly mixing.
If ϕ is n-weakly mixing for every $n \in \mathbb{N}$, then ϕ is called totally weakly mixing.
2.12. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Z}$ be a homomorphism of minimal ttgs with $E_{\phi}=R_{\phi}$.
a) If ϕ is $n-\mathrm{Bc}$ then ϕ is n-weakly mixing. In particular, if ϕ is $n-\mathrm{Bc}$ for every $n \in \$$ (e.g. ϕ is a RIC extension) then ϕ is totally weakly mixing.
b) If ϕ is an open RIM extension then ϕ is totally weakly mixing.

PROOF. Consider diagram 2.2. and note that $E_{\phi}=R_{\phi}$ implies that θ is an isomorphism. So, under the conditions in 2.8. and 2.11., we have $\phi-\psi$ iff \mathcal{Y} is ergodic. We shall prove the statements by induction.
a) First note that $R_{\phi}^{2}=R_{\phi}$ is ergodic (apply 2.11. to ϕ and ϕ). Assume R_{ϕ}^{m} is ergodic for certain m with $2 \leqslant m<n$. Then define $\psi: R_{\phi}^{m} \rightarrow Z$ as a restriction of ϕ^{m}. By 2.11. and the observation that $R_{\theta \psi} \cong R_{\phi}^{m}$, it follows that $R_{\phi \psi}$ is ergodic. So, as $R_{\phi}^{m+1} \cong R_{\phi \psi}, R_{\phi}^{m+1}$ is ergodic.
b) As \mathfrak{X} is minimal, the supprim points are dense in X, so R_{ϕ} is ergodic (apply 2.8.b to ϕ and ϕ). Define $\psi: R_{\phi}^{m} \rightarrow Z$ as a restriction of ϕ^{m}. Then λ^{m} is a section for $\psi(\lambda$ a section for ϕ). As ϕ is open, one sees readily that ψ is open and that the supprim points are dense in R_{ϕ}^{m}. Suppose R_{ϕ}^{m} is ergodic, then application of 2.8.b to ϕ and ψ shows ergodicity of R_{ϕ}^{m+1}.
2.13. We shall now turn to a generalization of [P72] 6.11. and [M 78] 1.9.. Consider the next diagram of homomorphisms of minimal ttgs:

We are interested in the question whether or not $\theta_{\mathfrak{X}} \doteq \theta_{\mathscr{Y}}$ implies $\phi \perp \psi$ (the other way around is obviously true).
First we shall show that $\theta_{\mathcal{X}} \perp \theta_{\mathscr{O}}$ iff $\theta_{\mathfrak{X}} \perp \theta_{\mathscr{Y}}$.
2.14. LEMMA. Let $\phi: \mathscr{X} \rightarrow \mathcal{Y}$ be a surjective homomorphism of ttgs. Let $X^{\prime} \subseteq X$ be a closed invariant subset of X such that
(i) $\phi\left[X^{\prime}\right]=Y$,
(ii) $\left.\phi\right|_{X^{\prime}}: X^{\prime} \rightarrow Y$ is open.

If \mathcal{X} is ergodic then $X=Q_{\phi}\left[X^{\prime}\right]$.
PROOF. Let $x \in X$ and let $x^{\prime} \in X^{\prime}$ be such that $\phi\left(x^{\prime}\right)=\phi(x)$. As \mathcal{X} is ergodic it follows that $x^{\prime} \in \overline{T \alpha(x)}$ for every $\alpha \in \mathcal{Q}_{X}$; so for every $\alpha \in \mathcal{Q}_{X}$ we have $\alpha\left(x^{\prime}\right) \cap T \alpha(x) \neq \varnothing$. For $\alpha \in \mathcal{Q}_{X}$ let $x_{\alpha} \in \alpha(x)$ and $t_{\alpha} \in T$ be such that $t_{\alpha} x_{\alpha} \in \alpha\left(x^{\prime}\right)$. Then $x_{\alpha} \rightarrow x$ and $t_{\alpha} x_{\alpha} \rightarrow x^{\prime}$; so $t_{\alpha} \phi\left(x_{\alpha}\right) \rightarrow \phi\left(x^{\prime}\right)$. As $\left.\phi\right|_{X^{\prime}}$ is open, there are $x_{\alpha}^{\prime} \in X^{\prime}$ with $\phi\left(x_{\alpha}^{\prime}\right)=\phi\left(x_{\alpha}\right)$ such that $t_{\alpha} x_{\alpha}^{\prime} \rightarrow x^{\prime}$. Let for a suitable subnet $z=\lim x_{\alpha}^{\prime}$. Then $z \in X^{\prime}$ and $(x, z) \in Q_{\phi}$. Hence $x \in Q_{\phi}[z]$ and so $X \subseteq Q_{\phi}\left[X^{\prime}\right]$.
2.15. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be an almost periodic extension with \mathfrak{X} ergodic and \mathscr{Y} minimal. Then \mathcal{X} is minimal.

Proof. Let X^{\prime} be a minimal subset of X. As $\left.\phi\right|_{X^{\prime}}$ is almost periodic, $\left.\phi\right|_{X^{\prime}}$ is open. From 2.14. it follows that $X=Q_{\phi}\left[X^{\prime}\right]$. As ϕ is almost periodic, $Q_{\phi}=\Delta_{X}$, so $X=X^{\prime}$.
2.16. As θ_{x} and $\theta_{\mathscr{A}}$ are almost periodic extensions, $\theta_{X X} \times \theta_{Q_{y}}: \Re_{\theta_{x}, \theta_{y}} \rightarrow \mathcal{Z}$ is almost periodic too. By minimality of \mathscr{Z} and 2.15 ., it follows that $\theta_{\mathfrak{X}} \perp \theta_{\mathscr{Q}}$ implies $\theta_{\mathscr{X}} \perp \theta_{\mathscr{Y}}$. The other way around is trivial. Note that with little extra effort ([AW 81]) one can prove the following

THEOREM. Let ϕ and ψ be HPI extensions of minimal ttgs such that ϕ and ψ satisfy gBc , then $\phi \doteq \psi$ iff $\phi \perp \psi$. In particular this holds for distal maps ϕ and ψ.
2.17. THEOREM. Consider the diagram in 2.13.. In each of the following cases we have $\phi \perp \psi$ iff $\theta_{\mathcal{X}} \doteq \theta_{\mathrm{ag}}$ iff $\theta_{x} \perp \theta_{9}$.
a) ϕ is a Bc extension and ϕ and ψ satisfy gBc ;
b) ϕ is a RIM extension and ϕ and ψ satisfy gBc ;
c) ϕ is a RIM extension and ϕ or ψ is open.

Proof. Consider diagram 2.13.. As almost periodic extensions of minimal ttgs are open RIM extensions, it follows from 2.8.b that $\theta_{X X}-\psi$ iff $\theta_{X X} \doteq \theta_{\mathscr{O}}$ iff $\phi \perp \theta_{\mathcal{O}}$.
a) Assume $\theta_{X} \perp \theta_{\mathrm{O}}$. Then, by the above, $\theta_{\mathfrak{X}} \perp \psi$. Hence, by $2.11 ., \phi \perp \psi$.
b) and c) Assume $\theta_{X} \perp \theta_{\text {g }}$. Then, by the above, $\theta_{09} \perp \phi$. As ϕ and ψ satisfy one of the conditions in 2.3., it follows that $\psi-\phi$ (apply 2.8.b with ϕ and ψ interchanged).
2.18. COROLLARy. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Z}$ be a homomorphism of minimal ttgs with $E_{\phi}=R_{\phi}$. If ϕ is a RIC extension or an open RIM extension then ϕ is weakly disjoint from every homomorphism $\psi: \mathscr{Y} \rightarrow \mathbb{Z}$ of minimal ttgs.

PROOF. As $E_{\phi}=R_{\phi}$ implies θ to be an isomorphism, this follows immediately from 2.8.a or 2.17.c. \square

3. A VARIATION ON REGIONAL PROXIMALITY

In studying the equicontinuous structure of a ttg, the notion of the regionally proximal relation is fundamental. It expresses how far the ttg is from being equicontinuous ((uniform) almost periodic). For a deeper understanding of the bad behavior of certain points that keep the ttg from being equicontinuous, we need a more detailed knowledge of how the regionally proximal relation is produced and why transitivity occurs in the standard cases in which it does.
Let us recall that the regional proximal relation Q_{X} is the set of points in $X \times X$, such that there exist nets $\left(x_{i}, y_{i}\right) \rightarrow(x, y)$ in $X \times X$ and $\left\{t_{i}\right\}_{i}$ in T such that $t_{i}\left(x_{i}, y_{i}\right) \rightarrow(z, z)$ for some $z \in X$. Here all that is required is the existence of such a net $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$ without regarding the way
it approaches (x, y). Thus there might be "few" such nets for one pair in Q_{X} and "many" for an other pair, which results in a difference in dynamical behavior of the pairs. It is difficult to define the notion of "few" or "many". Eventhough, intuitively, the abundance of nets (x_{i}, y_{i}) approaching (x, y) in a regionally proximal way should be clear to the reader; which, roughly speaking, means that in every direction there is such a net.

Now with the above discussion in mind, the meaning of the following notion is clear.
First a rough description. Let x and y be elements of the $\operatorname{tg} x$. we say that (x, y) is a sharply regionally proximal pair iff for every net $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$ tending to (x, y) there is a net $\left\{\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right\}_{i}$ which is suitably close to the original net but which has the property that there are $t_{i} \in T$ such that $t_{i}\left(x_{i}^{\prime}, y_{i}^{\prime}\right) \rightarrow(z, z)$ for some $z \in X$. Therefore, the net $\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$ provides a direction and $\left\{\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right\}_{i}$ is the one that makes the pair (x, y) regionally proximal and that follows the direction if it is suitably close. Clearly, this notion has a relativized version, that is defined for a homomorphism $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ of ttgs. Now, the rigourous definition follows.
Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs. We say that $\left(x_{1}, x_{2}\right) \in R_{\phi}$ is a sharply regionally proximal pair iff given some net $\left\{\left(x_{1}^{i}, x_{2}^{i}\right)\right\}_{i}$ in R_{ϕ} converging to $\left(x_{1}, x_{2}\right)$ and given neighbourhoods U^{i} of $\left(x_{1}^{i}, x_{2}^{i}\right)$ in R_{ϕ}, there exist (after passing to suitable subnets) t_{i} in T and $\left(\bar{x}_{1}^{i}, \bar{x}_{2}^{i}\right) \in U^{i}$ such that $t_{i}\left(\bar{x}_{1}^{i}, \bar{x}_{2}^{i}\right) \rightarrow(z, z)$ for some $z \in X$.
Denote the collection of sharply regionally proximal pairs for ϕ by $Q_{\phi}^{\#}$.
The following remark is another way to formulate the notion of sharp regional proximality. The proof is straightforward, thus omitted.
3.1. REMARK. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs. Then

$$
Q_{\phi}^{\#}=\bigcap\left\{\operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) \mid \alpha \in \mathscr{Q}_{X}\right\} .
$$

3.2. EXAMPLES. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs.
a) $P_{\phi} \subseteq Q_{\phi}^{\#} \subseteq Q_{\phi}$; so if ϕ is proximal, $R_{\phi}=P_{\phi}=Q_{\phi}^{\#}=Q_{\phi}=E_{\phi}$.
b) If ϕ is weakly mixing then $R_{\phi}=Q_{\phi}^{\#}=Q_{\phi}=E_{\phi}$.
c) If ϕ is almost periodic then $\Delta_{X}=E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}=P_{\phi}$.

The following example shows that there are minimal ttgs for which $Q \neq Q^{\#}$. Moreover, it shows that if ϕ and ψ are homomorphisms of minimal ttgs with $Q_{\phi}=Q_{\phi}^{\#}$ and $Q_{\psi}=Q_{\psi}^{\#}$ then $Q_{\psi \circ \phi}$ and $Q_{\psi_{\circ} \phi}^{\#}$ may be different from each other.
3.3. EXAMPLE. Let \mathscr{Y} be the fourfold covering of the minimal proximal rotation. Then $Q_{\text {解 }}^{\#} \neq Q_{\text {Q }} \neq E_{\text {Q }}$.

PROOF. Let T be the free group on two generators. Let X be the circle, define $a: X \rightarrow X$ by $a(x)=x+\alpha$ (α irrational) and define $b: X \rightarrow X$ by $b(x)=x^{2}$. Then a and b are homeomorphisms of X, and \mathcal{X} is a minimal proximal ttg for $T(a, b)$, the minimal proximal rotation. Let Y be the circle and define the map $c: Y \rightarrow Y$ by $c(y):=y+1 / 4 \alpha$ and $d: Y \rightarrow Y$ by $d(y):=1 / 4 k+4(y-1 / 4 k)^{2} \quad$ whenever $\quad k \leqslant 4 y<k+1 \quad(k \in\{0,1,2,3\})$. Define the ttg $\mathcal{Y}:=<T(c, d), Y>$ and let $\phi: \mathscr{Y} \rightarrow \mathcal{X}$ be defined as $\phi(y)=4 y(\bmod 1)$. Then $\mathscr{Y}($ or better $\phi)$ is the fourfold covering of \mathscr{X}.
Note that $P_{\mathscr{X}}=Q_{\mathscr{X}}^{\#}=Q_{\mathscr{X}}=E_{\mathscr{X}}=X \times X$; and that ϕ is almost periodic, so that
$P_{\phi}=Q_{\phi}^{\#}=Q_{\phi}=E_{\phi}=\Delta_{Y}$.
Obviously, \mathscr{Y} does not admit nontrivial almost periodic factors, in other words $E_{\mathscr{Y}}=Y \times Y$. As c preserves distances, it is not difficult to see that $\left(y, y^{\prime}\right) \in Q_{\mathscr{g}}$ iff the distance (mod 1) between y and y^{\prime} is smaller then or equal to $1 / 4$. So $Q_{\mathscr{9}} \neq E_{9}$.
If the distance between y and y^{\prime} equals $1 / 4$, then we can approach $\left(y, y^{\prime}\right)$ with pairs with a distance greater then $1 / 4$ (from the outside), which shows that $\left(y, y^{\prime}\right) \notin Q_{\mathscr{G}}^{\#}$. So $Q_{\mathscr{Y}} \neq Q_{\mathscr{G}}^{\#}$.

An indication of the power of sharp regional proximality is given in the following theorem, which hints at regional proximality of second order as will be discussed in section 4.
3.4. THEOREM. Let $\phi: \mathscr{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs.
a) Let $\left(x_{1}, x_{2}\right) \in R_{\phi}$. If $\overline{T\left(x_{1}, x_{2}\right)} \cap Q_{\phi}^{\#} \neq \varnothing$ then we have $\left(x_{1}, x_{2}\right) \in Q_{\phi}^{\#}$, and so $\overline{T\left(x_{1}, x_{2}\right)} \subseteq \overline{Q_{\phi}^{\#}} \subseteq Q_{\phi}$.
In particular, if $Q_{\phi}=Q_{\phi}^{\#}$ then Q_{ϕ} contains the orbit closures that have a nonempty intersection with Q_{ϕ}.
b) Let $\left(x_{1}, x_{2}\right) \in Q_{\phi}^{\#}$ and let $\left\{\left(x_{1}^{i}, x_{2}^{i}\right)\right\}_{i}$ be a net in R_{ϕ} converging to $\left(x_{1}, x_{2}\right)$. Choose $\left\{t_{i}\right\}_{i}$ in T and (for a suitable subnet) let $\left(z_{1}, z_{2}\right)=\lim t_{i}\left(x_{1}^{i}, x_{2}^{i}\right)$. Then $\left(z_{1}, z_{2}\right) \in Q_{\phi}$.
c) If $J . Q_{\phi}^{\#} \subseteq Q_{\phi}^{\#} \quad$ (e.g. $Q_{\phi}^{\#}$ is closed, in particular if $Q_{\phi}=Q_{\phi}^{\#}$) then $Q_{\phi}^{\#} \circ P_{\phi}=P_{\phi} \circ Q_{\phi}^{\#}=Q_{\phi}^{\#}$.

PROOF.
a) If $\overline{T\left(x_{1}, x_{2}\right)} \cap Q_{\phi}^{\#} \neq \varnothing$ then $\overline{T\left(x_{1}, x_{2}\right)} \cap \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) \neq \varnothing$ for every $\alpha \in \mathcal{Q}_{X}$, and so $T\left(x_{1}, x_{2}\right) \cap \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) \neq \varnothing$. But then it follows that $\left(x_{1}, x_{2}\right) \in \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$ for every $\alpha \in \mathcal{U}_{X}$ and, consequently, $\left(x_{1}, x_{2}\right) \in Q_{\phi}^{\#}$.
b) Let $\quad \alpha \in \mathcal{Q}_{X}$. As $\quad\left(x_{1}, x_{2}\right) \in \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$, there is an $i(\alpha)$ such that $\left(x_{1}^{i}, x_{2}^{i}\right) \in \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$ for every $i \geqslant i(\alpha)$. But then, also, $t_{i}\left(x_{1}^{i}, x_{2}^{i}\right) \in \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$ for every $i \geqslant i(\alpha)$ and so

$$
\left(z_{1}, z_{2}\right)=\lim t_{i}\left(x_{1}^{i}, x_{2}^{i}\right) \in \overline{T \alpha \cap R_{\phi}}
$$

As α was arbitrary it follows that

$$
\left(z_{1}, z_{2}\right) \in \bigcap\left\{\overline{T \alpha \cap R_{\phi}} \mid \alpha \in \mathcal{Q}_{X}\right\}=Q_{\phi}
$$

c) Let $\left(x_{1}, x_{2}\right) \in P_{\phi}$ and $\left(x_{2}, x_{3}\right) \in Q_{\phi}^{\#}$. Let I be a minimal left ideal in S_{T} such that $p x_{1}=p x_{2}$ for every $p \in I$ and let $v \in J_{x_{3}}(I)$. Then

$$
v\left(x_{1}, x_{3}\right)=\left(v x_{1}, x_{3}\right)=\left(v x_{2}, x_{3}\right)=v\left(x_{2}, x_{3}\right) \in J . Q_{\phi}^{\#} \subseteq Q_{\phi}^{\#}
$$

By a , it follows that $\left(x_{1}, x_{3}\right) \in Q_{\phi}^{\#}$. Hence $Q_{\phi}^{\#} \circ P_{\phi} \subseteq Q_{\phi}^{\#}$. Clearly, $Q_{\phi}^{\#} \subseteq Q_{\phi}^{\#} \circ P_{\phi}$, so $Q_{\phi}^{\#} \circ P_{\phi}=Q_{\phi}^{\#}$. In a similar way it follows that $P_{\phi} \circ Q_{\phi}^{\#}=Q_{\phi}^{\#}$.

Before we can use some results of the preceeding section in order to understand the equality $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$, we need the following lemma.
3.5. LEMMA. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs and let $\kappa: \mathfrak{X} \rightarrow \mathfrak{X} / E_{\phi}$ be the quotient map and $\theta: \mathfrak{X} / E_{\phi} \rightarrow \mathscr{Y}$ the maximal almost periodic factor of ϕ. Denote the collection of nonempty open sets in X / E_{ϕ} by 0 . Then

$$
E_{\phi}=\bigcap\left\{T\left(\kappa^{\leftarrow}[U] \times \kappa \leftarrow[U] \cap R_{\phi}\right) \mid U \in \theta\right\}=\bigcap\left\{\overline{T\left(\kappa^{\leftarrow}[U] \times \kappa \leftarrow[U] \cap R_{\phi}\right)} \mid U \in \theta\right\}
$$

PROOF. Let $U \in \theta$ and $\left(x_{1}, x_{2}\right) \in E_{\phi}$. Then for some $t \in T$ we have $t \kappa\left(x_{1}\right)=t \kappa\left(x_{2}\right) \in U$ and so

$$
\left(x_{1}, x_{2}\right) \in \kappa^{\leftarrow}\left[t^{-1} U\right] \times \kappa^{\leftarrow}\left[t^{-1} U\right] \cap R_{\phi} \subseteq T\left(\kappa^{\leftarrow}[U] \times \kappa^{\leftarrow}[U] \cap R_{\phi}\right)
$$

Hence

$$
E_{\phi} \subseteq \bigcap\left\{T\left(\kappa \leftarrow[U] \times \kappa^{\leftarrow}[U] \cap R_{\phi}\right) \mid U \in \mathcal{O}\right\} \subseteq \bigcap\left\{\overline{T\left(\kappa^{\leftarrow}[U] \times \kappa^{\leftarrow}[U] \cap R_{\phi}\right)} \mid u \in \theta\right\}
$$

On the other hand,

$$
\begin{gathered}
\kappa \times \kappa\left[\bigcap\left\{\overline{T\left(\kappa \leftarrow[U] \times \kappa \leftarrow[U] \cap R_{\phi}\right)} \mid U \in \mathcal{O}\right\}\right] \subseteq \bigcap\left\{\overline{T\left(\kappa \times \kappa\left(\kappa \leftarrow[U] \times \kappa \leftarrow[U] \cap R_{\phi}\right)\right.} \mid U \in \mathcal{O}\right\} \subseteq \\
\subseteq \bigcap\left\{\overline{T\left(U \times U \cap R_{\phi}\right)} \mid U \in \mathcal{O}\right\}=Q_{\theta}=\Delta_{X / E_{\phi}}
\end{gathered}
$$

So

$$
\cap\left\{\overline{T\left(\kappa \leftarrow[U] \times \kappa \leftarrow[U] \cap R_{\phi}\right)} \mid U \in 0\right\} \subseteq(\kappa \times \kappa)^{\leftarrow}\left[\Delta_{X / E_{\phi}}\right]=E_{\phi}
$$

3.6. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs and let $\kappa: \mathfrak{X} \rightarrow \mathfrak{X} / E_{\phi}$ be the quotient map and $\theta: \mathfrak{X} / E_{\phi} \rightarrow \mathcal{Y}$ the maximal almost periodic factor of ϕ. Then the following statements are equivalent:
a) $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$;
b) for every $\alpha \in \mathcal{Q}_{X}$ there is a nonempty open set V in X such that $V=E_{\phi}[V]$ and $V \times V \cap R_{\phi} \subseteq \overline{T \alpha \cap R_{\phi}} ;$
c) for every open set U in X there is a nonempty open set V in X such that $V=E_{\phi}[V]$ and $V \times V \cap R_{\phi} \subseteq \overline{T\left(U \times U \cap R_{\phi}\right)}$.

PROOF.
$\mathrm{b} \Rightarrow \mathrm{c}$ As \mathscr{X} is minimal, $T(U \times U)$ is an open set containing the diagonal for every open U in X. Hence $\alpha:=T(U \times U) \in \mathscr{Q}_{X}$.
$\mathrm{c} \Rightarrow \mathrm{b}$ For every $\alpha \in \mathcal{Q}_{X} \quad$ there is a $\beta \in \mathcal{Q}_{X} \quad$ with $\beta=\beta^{-1} \quad$ and $\quad \beta^{2} \subseteq \alpha$. Then $\beta(x) \times \beta(x) \cap R_{\phi} \subseteq \alpha \cap R_{\phi}$ for every $x \in X$ and so there is a nonempty open U in X with $T\left(U \times U \cap R_{\phi}\right) \subseteq T \alpha \cap R_{\phi}$.
$\mathrm{b} \Rightarrow \mathrm{a}$ Let $\alpha \in \mathscr{Q}_{X}$. By assumption, there is a nonempty open set V in X with $V=E_{\phi}[V]=\kappa \leftarrow \kappa[V]$ and $V \times V \cap R_{\phi} \subseteq \overline{T \alpha \cap R_{\phi}}$. As $\kappa[V]$ is open in X / E_{ϕ} it follows from 1.5. that

$$
E_{\phi} \subseteq T\left(\kappa \leftarrow \kappa[V] \times \kappa \leftarrow \kappa[V] \cap R_{\phi}\right)=T\left(V \times V \cap R_{\phi}\right) .
$$

So $\quad E_{\phi} \subseteq T\left(V \times V \cap R_{\phi}\right) \subseteq T . \overline{T \alpha \cap R_{\phi}}=\overline{T \alpha \cap R_{\phi}}$ and as $T\left(V \times V \cap R_{\phi}\right)$ is an open set in R_{ϕ}, $E_{\phi} \subseteq \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$. As $\alpha \in \mathscr{Q}_{X}$ was arbitrary, it follows that $E_{\phi} \subseteq Q_{\phi}^{\#} \subseteq Q_{\phi} \subseteq E_{\phi}$.
$\mathrm{a} \Rightarrow \mathrm{b}$ Let \mathscr{V} be the collection of nonempty open sets V in X with $V=E_{\phi}[V]$. Suppose there is an $\alpha \in \mathscr{U}_{X}$ with

$$
V \times V \cap R_{\phi} \cap\left(X \times X \backslash \overline{T \alpha \cap R_{\phi}}\right) \neq \varnothing
$$

for every $V \in \mathscr{V}$.

Define

$$
\mathscr{H}(V)=\overline{T\left(V \times V \cap R_{\phi}\right)} \backslash \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right),
$$

then $\mathscr{H}(V)$ is closed and nonempty for every $V \in \mathscr{V}$. As \mathbb{V} is closed under finite intersections and invariant under T, it follows that $\{\mathscr{H}(V) \mid V \in \mathscr{V}\}$ has the finite intersection property. Hence

$$
H:=\bigcap\{\mathcal{H}(V) \mid V \in \mathscr{V}\} \neq \varnothing
$$

By 1.5., $H \subseteq E_{\phi}$ and by construction $H \cap Q_{\phi}^{\#}=\varnothing$, which contradicts assumption a.
3.7. THEOREM. If $\phi: \mathscr{X} \rightarrow \mathscr{Y}$ is an open RIM extension or a Bc extension then $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$.

PROOF. First we shall show that $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$ if ϕ and ϕ satisfy the conditions in lemma 2.5.. As follows:
Let U be a nonempty open set in X. By 2.5., there is a nonempty open set \tilde{U} with $\tilde{U}=E_{\phi}[\tilde{U}]$ such that $U=\kappa^{\leftarrow}\left[\kappa[U]^{\circ}\right]$ (for $\phi[U]=\phi[U]$) and

$$
\varnothing \neq \tilde{U} \times U \cap R_{\phi} \subseteq \overline{T\left(U \times U \cap R_{\phi}\right)} .
$$

Again by 2.5. and by the facts that $\phi[\tilde{U}]=\phi[\tilde{U} \cap U]$ and $\tilde{U}=\kappa \leftarrow\left[\kappa[\tilde{U} \cap U]^{\circ}\right]$ it follows that

$$
\varnothing \neq \tilde{U} \times \tilde{U} \cap R_{\phi} \subseteq \overline{T\left(\tilde{U} \times U \cap R_{\phi}\right)}
$$

Hence $\tilde{U} \times \tilde{U} \cap R_{\phi} \subseteq \overline{T\left(U \times U \cap R_{\phi}\right)}$ and the theorem follows from 3.6..
By 2.6., we know already that an open RIM extension "satisfies" the conditions in lemma 2.5., which proves the theorem for the open RIM case.
Suppose that ϕ is a Bc extension. Let $U_{1} \times U_{2} \cap R_{\phi}$ be a nonempty (basic) open set in R_{ϕ} and let $\left(x_{1}, x_{2}\right) \in U_{1} \times U_{2} \cap R_{\phi}$ be an almost periodic point; say $\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}\right)$ for some $u \in J$. We shall show that

$$
E_{\phi}\left[x_{1}\right] \times\left\{x_{2}\right\} \subseteq \overline{T\left(U_{1} \times U_{2} \cap R_{\phi}\right)}
$$

Let V be an open set in T with $V=V(u)$ and $V x_{2} \subseteq U_{2}$ (1.10.). Define $\mathcal{U}:=\left[U_{1}, V\right] \cap u \phi \leftarrow \phi\left(x_{1}\right)$, then u is an $\mathfrak{F}(\mathcal{X}, u)$-neighbourhood of x_{1} in $u \phi^{\leftarrow} \phi\left(x_{1}\right)$. Consider an arbitrary $\quad x^{\prime} \in U$; say $\quad x^{\prime}=t^{-1} z \quad$ for some $\quad t \in V \quad$ and $\quad z \in U_{1}$. Then $\left(x^{\prime}, x_{2}\right)=t^{-1}\left(z, t x_{2}\right) \in T\left(U_{1} \times U_{2}\right)$, so $\left(x^{\prime}, x_{2}\right) \in T\left(U_{1} \times U_{2} \cap R_{\phi}\right)$. Hence

$$
u \times\left\{x_{2}\right\} \subseteq T\left(U_{1} \times U_{2} \cap R_{\phi}\right)
$$

By 1.16.b, $E_{\phi}\left[x_{1}\right] \subseteq J_{x_{2}} \circ \mathcal{U}$, so

$$
E_{\phi}\left[x_{1}\right] \times\left\{x_{2}\right\} \subseteq J_{x_{2}} \circ \mathcal{U} \times\left\{x_{2}\right\}=J_{x_{2}} \circ\left(u \times\left\{x_{2}\right\}\right) \subseteq \overline{T\left(U_{1} \times U_{2} \cap R_{\phi}\right)} .
$$

Therefore ϕ and ϕ satisfy the conditions in lemma 2.5.. This proves the Bc case.
3.8. The truth of 3.7. is the consequence of certain incompressibilities. As those incompressibilities are preserved under factors, it is natural to ask whether the property $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$ is preserved under factors too. To that end we consider the following diagram of homomorphisms of minimal ttgs:

3.9. THEOREM. Consider the diagram in 3.8.. If ψ is open then $Q_{\phi}=Q_{\phi}^{\#}$ implies $Q_{\theta}=Q_{\theta}^{\#}$.

In particular, if ψ is open then $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$ implies $E_{\theta}=Q_{\theta}=Q_{\theta}^{\#}$.
PROOF. If ψ is open then $\psi \times\left.\psi\right|_{R_{\phi}}: R_{\phi} \rightarrow R_{\theta}$ is an open homomorphism of tgg. For $\psi \times \psi: X \times X \rightarrow Z \times Z$ is open and $R_{\phi}=(\psi \times \psi)^{\leftarrow}\left[R_{\theta}\right]$. Let $\alpha \in \mathscr{U}_{Z}$; then there is a $\beta \in \mathcal{U}_{X}$ such that $\psi \times \psi[\beta] \subseteq \alpha$, hence

$$
\overline{T . \psi \times \psi\left[\beta \cap R_{\phi}\right]} \subseteq \overline{T \alpha \cap R_{\theta}} .
$$

Since $Q_{\theta}=\psi \times \psi\left[Q_{\phi}\right]$ ([MW 80] 3.2.), we have, assuming that $!R Q f=Q_{\phi}^{\#}$

$$
Q_{\theta}=\psi \times \psi\left[Q_{\phi}^{\#}\right] \subseteq \psi \times \psi\left[\operatorname{int}_{R_{\phi}}\left(\overline{T \beta \cap R_{\phi}}\right)\right] .
$$

As $\psi \times\left.\psi\right|_{R_{\phi}}$ is open

$$
Q_{\theta} \subseteq \operatorname{int}_{R_{\theta}}\left(\psi \times \psi\left[\overline{T \beta \cap R_{\phi}}\right]\right)=\operatorname{int}_{R_{\theta}}\left(\overline{T \psi \times \psi\left[\beta \cap R_{\phi}\right]}\right) .
$$

Hence it follows that

$$
Q_{\theta} \subseteq \operatorname{int}_{R_{\theta}}\left(\overline{T \psi \times \psi\left[\beta \cap R_{\phi}\right]} \subseteq \operatorname{int}_{R_{\theta}}\left(\overline{T \alpha \cap R_{\theta}}\right) .\right.
$$

As $\alpha \in \mathcal{Q}_{z}$ was arbitrary, it follows that $Q_{\theta} \subseteq Q_{\theta}^{\#}$; so $Q_{\theta}=Q_{\theta}^{\#}$.
(In particular, if $E_{\phi}=Q_{\phi}$ then, by [MW 80] 3.2., 3.3., it follows that $E_{\theta}=Q_{\theta}$.)
3.10. THEOREM. Consider the diagram in 3.8.. If $Q_{\phi}=(\psi \times \psi)^{\leftarrow}\left[Q_{\theta}\right]$ then $Q_{\phi}=Q_{\phi}^{\#}$ implies $Q_{\theta}=Q_{\theta}^{\#}$.
proof. Let $\beta \in \mathscr{Q}_{Z}$ and let $\alpha \in \mathscr{Q}_{X}$ be such that $\psi \times \psi[\alpha] \subseteq \beta$. Then

$$
\psi \times \psi\left[\overline{T \alpha \cap R_{\phi}} \subseteq \overline{T \psi \times \psi[\alpha] \cap R_{\theta}} \subseteq \overline{T \beta \cap R_{\theta}} .\right.
$$

Suppose $Q_{\phi}=Q_{\phi}^{\#}$ then

$$
Q_{\phi} \subseteq \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)=R_{\phi} \backslash \mathrm{cl}_{R_{\phi}}\left(R_{\phi} \backslash\left(\overline{T \alpha \cap R_{\phi}}\right)\right) .
$$

As $Q_{\phi}=(\psi \times \psi)^{\leftarrow} Q_{\theta}=(\psi \times \psi)^{\leftarrow}(\psi \times \psi)\left[Q_{\phi}\right]$ it follows that

$$
\begin{aligned}
Q_{\theta} & =\psi \times \psi\left[Q_{\phi}\right] \subseteq \psi \times \psi\left[R_{\phi}\right] \backslash \psi \times \psi\left[\mathrm{cl}_{R_{\phi}}\left(R_{\phi} \backslash\left(\overline{T \alpha \cap R_{\phi}}\right)\right)\right] \subseteq R_{\theta} \backslash \mathrm{cl}_{R_{\theta}}\left(R_{\theta} \backslash \psi \times \psi\left[\overline{T \alpha \cap R_{\phi}}\right]=\right. \\
& =\operatorname{int}_{R_{\theta}}\left(\psi \times \psi\left[\overline{T \alpha \cap R_{\phi}}\right) \subseteq \operatorname{int}_{R_{\theta}}\left(\overline{T \psi \times \psi[\alpha] \cap R_{\theta}}\right) \subseteq \operatorname{int}_{R_{\theta}}\left(\overline{T \beta \cap R_{\theta}}\right) .\right.
\end{aligned}
$$

As β was arbitrary this shows that $Q_{\theta} \subseteq Q_{\theta}^{\#}$.
3.11. REMARK. Consider the diagram in 3.8.. If $E_{\phi}=Q_{\phi}$ and if $R_{\psi} \subseteq Q_{\phi}$ then $Q_{\phi}=(\psi \times \psi) \leftarrow\left[Q_{\theta}\right]$.

PROOF. Note that $\psi \times \psi\left[Q_{\phi}\right]=Q_{\theta}$, hence $Q_{\phi} \subseteq(\psi \times \psi) \leftarrow\left[Q_{\theta}\right]$. Let $\left(x_{1}, x_{2}\right) \in(\psi \times \psi) \leftarrow\left[Q_{\theta}\right]$. Then there is a $\left(z_{1}, z_{2}\right) \in Q_{\phi}$ such that $\psi \times \psi\left(z_{1}, z_{2}\right)=\psi \times \psi\left(x_{1}, x_{2}\right)$. But then $\left(x_{1}, z_{1}\right) \in R_{\psi}$ and also $\left(x_{2}, z_{2}\right) \in R_{\psi}$. Hence

$$
\left(x_{1}, x_{2}\right) \in R_{\psi} \circ Q_{\phi} \circ R_{\psi} \subseteq Q_{\phi}^{3}
$$

and so $\left(x_{1}, x_{2}\right) \in E_{\phi}=Q_{\phi}$.
By now we are able to prove that the equality $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$ is preserved under factors.
3.12. THEOREM. Consider the diagram in 3.8.. If $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$ then $E_{\theta}=Q_{\theta}=Q_{\theta}^{\#}$.

PROOF. Note that $E_{\phi}=Q_{\phi}$ implies that $E_{\theta}=Q_{\theta}$.
Now consider the following diagram of homomorphisms of minimal ttgs.

Let $\kappa: \mathscr{X} \rightarrow \mathcal{X} / Q_{\phi}$ and $\lambda: \mathscr{Z} \rightarrow \mathscr{Z} / Q_{\theta}$ be the quotient maps. Since $\psi \times \psi\left[Q_{\phi}\right]=Q_{\theta}$ there exists a unique homomorphism $\mu: \mathcal{X} / Q_{\phi} \rightarrow \mathcal{Y} / Q_{\theta}$ such that $\lambda \circ \psi=\mu \circ \kappa$. As $\alpha=\beta \circ \mu, \mu$ is almost periodic. Let $x \in u X, z:=\psi(x)$ and note that $(\kappa(x), z) \in R_{\mu \lambda}$. Define $W:=\overline{T(\kappa(x), z)}$, then W is a minimal subset of $R_{\mu \lambda}$ (for $J_{x} \subseteq J_{\kappa(x)} \cap J_{z}$) and W projects onto X / Q_{ϕ} and Z by π_{1} and π_{2} respectively. It is an elementary exercise to show that π_{2} is an almost periodic map (μ is almost periodic!), so π_{2} is open. Define $\chi: \mathscr{W} \rightarrow \mathscr{Y}$ by $\chi=\alpha \circ \pi_{1}$ and let $\xi: \mathscr{X} \rightarrow \mathcal{W}$ be defined by $\xi(x)=(\kappa(x), z)$. Then $\phi=\chi \circ \xi$. As, clearly, $R_{\xi} \subseteq R_{\kappa}=Q_{\phi}$ it follows from 3.11. that $Q_{\phi}=(\xi \times \xi) \leftarrow\left[Q_{\chi}\right]$. Hence by 3.10., we know that $Q_{\chi}=Q_{\chi}^{\#}$. As $\chi=\theta \circ \pi_{2}$ and π_{2} is open it follows from 3.9. that $Q_{\theta}=Q_{\theta}^{\#}$, which proves the theorem.

In 3.7. we have seen that $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$ in the case of open RIM extensions and of Bc extensions. Is the equality of those three relations a coincidence? We shall see that it is not; at least, we shall see that in several situations the equality of Q_{ϕ} and $Q_{\phi}^{\#}$ implies $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$. Whether or not transitivity of Q_{ϕ} implies $Q_{\phi}=Q_{\phi}^{\#}$ is unknown.

First we introduce some notation:
Let $\phi: \mathfrak{X} \rightarrow \mathscr{Y}$ be a homomorphism of minimal ttgs. Let $\left(x_{1}, x_{2}\right) \in R_{\phi}$ and $p \in S_{T}$. Then define

$$
p \star\left(x_{1}, x_{2}\right):=\bigcap\left\{p \circ V \mid V \text { is a neighbourhood of }\left(x_{1}, x_{2}\right) \text { in } R_{\phi}\right\} .
$$

Clearly, $p \star\left(x_{1}, x_{2}\right)=\bigcap\left\{p \circ\left(U_{1} \times U_{2} \cap R_{\phi}\right) \mid U_{i} \in \mathscr{V}_{x_{i}}\right\}$ (we denote the neighbourhood system of x in X by \mathbb{V}_{x}).

Note that there is some ambiguity in the notation as we do not specify the map. As we use it only in the situation of one specific homomorphism ϕ and never with respect to $X \times X$, no serious problem will arise.
3.13. THEOREM. Let $\phi: \mathscr{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs (not necessarily minimal) and let $\left(x_{1}, x_{2}\right) \in R_{\phi}$. Then $\left(x_{1}, x_{2}\right) \in Q_{\phi} \quad$ iff there is a minimal left ideal I in S_{T} with $p \star\left(x_{1}, x_{2}\right) \cap \Delta_{X} \neq \varnothing$ for every $p \in I$.
PROOF. Let $\left(x_{1}, x_{2}\right) \in Q_{\phi}$. Then there are nets $\left\{\left(x_{1}^{i}, x_{2}^{i}\right)\right\}_{i}$ and $\left\{t_{i}\right\}_{i}$ in R_{ϕ} and T such that $\left(x_{1}^{i}, x_{2}^{i}\right) \rightarrow\left(x_{1}, x_{2}\right)$ and $t_{i}\left(x_{1}^{i}, x_{2}^{i}\right) \rightarrow(x, x)$ for some $x \in X$. Without loss of generality we may assume that the net $\left\{t_{i}\right\}_{i}$ converges to some $p \in S_{T}$. Let V be a neighbourhood of $\left(x_{1}, x_{2}\right)$ in R_{ϕ}. Then there is an i_{0} such that $\left(x_{1}^{i}, x_{2}^{i}\right) \in V$ for every $i \geqslant i_{0}$. Hence

$$
(x, x)=\lim \left\{t_{i}\left(x_{1}^{i}, x_{2}^{i}\right) \mid i \geqslant i_{0}\right\} \in \lim t_{i} \bar{V}=p \circ V .
$$

As V was arbitrary, $(x, x) \in p \star\left(x_{1}, x_{2}\right)$ and so $p_{\star}\left(x_{1}, x_{2}\right) \cap \Delta_{X} \neq \varnothing$.
Conversely, suppose that for some $p \in S_{T}$ we have $p \star\left(x_{1}, x_{2}\right) \cap \Delta_{X} \neq \varnothing$, say $(x, x) \in p \star\left(x_{1}, x_{2}\right)$. For $\quad \alpha \in \mathcal{Q}_{X}, \quad p \circ\left(\alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}\right) \in 2^{R_{\phi}} \quad$ and $\quad<\left(\alpha \cap R_{\phi}\right)^{\circ}, R_{\phi}>\quad$ is a neighbourhood of $p \circ\left(\alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}\right)$ in $2^{R_{\phi}}$. Let $\left\{t_{i}\right\}_{i}$ be a net in T with $t_{i} \rightarrow p$ in S_{T}. Then

$$
t_{i}\left(\overline{\alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}}\right) \rightarrow p \circ\left(\alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}\right) \text { in } 2^{R_{\phi}} .
$$

So there is an i_{α} such that

$$
t_{i_{\alpha}}\left(\overline{\alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}}\right) \cap\left(\alpha \cap R_{\phi}\right)^{\circ} \neq \varnothing .
$$

Hence $\quad t_{i_{\alpha}}\left(\alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}\right) \cap \alpha \cap R_{\phi} \neq \varnothing \quad$ and \quad we can find $\quad t_{\alpha}:=t_{i_{\alpha}} \quad$ in $\quad T \quad$ and $\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right) \in \alpha\left(x_{1}\right) \times \alpha\left(x_{2}\right) \cap R_{\phi}$ such that $t_{\alpha}\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right) \in \alpha \cap R_{\phi}$. Doing this for every $\alpha \in \mathcal{Q}_{X}$, we obtain nets $\left\{t_{\alpha}\right\}_{\alpha \in \mathfrak{q}_{X}}$ in T and $\left\{\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right)\right\}_{\alpha \in \mathfrak{q}_{X}}$ in R_{ϕ} such that

$$
\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right) \rightarrow\left(x_{1}, x_{2}\right) \text { and } t_{\alpha}\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right) \rightarrow(x, x) .
$$

Consequently, $\left(x_{1}, x_{2}\right) \in Q_{\phi}$. What we have proved by now is

$$
\left(x_{1}, x_{2}\right) \in Q_{\phi} \text { iff } p \star\left(x_{1}, x_{2}\right) \cap \Delta_{X} \neq \varnothing \text { for some } p \in S_{T}
$$

hence the "if"-part of the theorem is proved.
Let $\left(x_{1}, x_{2}\right) \in Q_{\phi}$ and define

$$
S:=\left\{p \in S_{T} \mid p_{\star}\left(x_{1}, x_{2}\right) \cap \Delta_{X} \neq \varnothing\right\}
$$

By the above, $S \neq \varnothing$ and, clearly, S is T-invariant. We shall show that S is closed; hence it follows that S contains a minimal left ideal, which proves the theorem.
For each neighbourhood V of $\left(x_{1}, x_{2}\right)$ in R_{ϕ} the mapping $p \mapsto p \circ V$ is continuous, hence the mapping

$$
\Psi: p \mapsto \cap\left\{p \circ V \mid V \text { neighbourhood of }\left(x_{1}, x_{2}\right) \text { in } R_{\phi}\right\}: S_{T} \rightarrow 2^{R_{\phi}}
$$

is upper semi continuous. Since Δ_{X} is closed and as S is the full original under Ψ of the closed subset $\left\{A \in 2^{R_{\phi}} \mid A \cap \Delta_{X} \neq \varnothing\right\}$ of $2^{R_{\phi}}$, it follows that S is closed.

The following remark in fact repeats and extends 3.4.a, b.
3.14. REMARK. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs and let $\left(x_{1}, x_{2}\right) \in R_{\phi}$.
a) If $\left(x_{1}, x_{2}\right) \in Q_{\phi}^{\#}$, then $p \star\left(x_{1}, x_{2}\right) \subseteq Q_{\phi}$ for every $p \in S_{T}$.
b) If $p \star\left(x_{1}, x_{2}\right) \cap Q_{\phi}^{\#} \neq \varnothing$ for some $p \in S_{T}$, then $\left(x_{1}, x_{2}\right) \in Q_{\phi}$.

PROOF.
a) Let $\alpha \in \mathcal{U}_{X}$, then $\left(x_{1}, x_{2}\right) \in \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$. So there are open neighbourhoods $U_{1} \in \mathscr{V}_{x_{1}}$ and $U_{2} \in \mathbb{V}_{x_{2}}$ such that

$$
\left(x_{1}, x_{2}\right) \in U_{1} \times U_{2} \cap R_{\phi} \subseteq \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) .
$$

For every $p \in S_{T}$ it follows that

$$
p \star\left(x_{1}, x_{2}\right) \subseteq p \circ\left(U_{1} \times U_{2} \cap R_{\phi}\right) \subseteq \overline{T . \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right.} \subseteq \overline{T \alpha \cap R_{\phi}}
$$

As α was arbitrary, $p \star\left(x_{1}, x_{2}\right) \subseteq Q_{\phi}$ for every $p \in S_{T}$.
b) Suppose $p \star\left(x_{1}, x_{2}\right) \cap Q_{\phi}^{\#} \neq \varnothing$. Let $\left\{t_{i}\right\}_{i}$ be a net in T with $t_{i} \rightarrow p$ and let $\alpha, \beta \in \mathcal{Q}_{X}$ be such that $\beta \subseteq \alpha$. Then

$$
p \circ\left(\beta\left(x_{1}\right) \times \beta\left(x_{2}\right) \cap R_{\phi}\right) \cap \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) \neq \varnothing
$$

and as $<\operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right), R_{\phi}>$ is an open neighbourhood of the element $p \circ\left(\beta\left(x_{1}\right) \times \beta\left(x_{2}\right) \cap R_{\phi}\right)$ of $2^{R_{\phi}}$, while

$$
t_{i}\left(\overline{\beta\left(x_{1}\right) \times \beta\left(x_{2}\right) \cap R_{\phi}}\right) \rightarrow p \circ\left(\beta\left(x_{1}\right) \times \beta\left(x_{2}\right) \cap R_{\phi}\right)
$$

it follows that, eventually,

$$
t_{i}\left(\overline{\beta\left(x_{1}\right) \times \beta\left(x_{2}\right) \cap R_{\phi}}\right) \cap \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) \neq \varnothing
$$

But then $\beta\left(x_{1}\right) \times \beta\left(x_{2}\right) \cap \overline{T \alpha \cap R_{\phi}} \neq \varnothing$, and as is easily seen $\left(x_{1}, x_{2}\right) \in \overline{T \alpha \cap R_{\phi}}$. Consequently, $\left(x_{1}, x_{2}\right) \in Q_{\phi}$.
3.15. LEMMA. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs and suppose that $Q_{\phi}=Q_{\phi}^{\#}$. Let $(x, y) \in Q_{\phi}$ and $(y, z) \in Q_{\phi}$. If ϕ is open in $x \in X$, then $(x, z) \in Q_{\phi}$.

PROOF. By 3.13., we can find a minimal left ideal I in $S_{T}, p \in I$ and a $z^{\prime} \in X$ such that $\left(z^{\prime}, z^{\prime}\right) \in p \star(y, z)$. Let $\alpha \in \mathcal{Q}_{X}$ and let $U_{x} \subseteq \alpha(x), \quad U_{y} \subseteq \alpha(y)$ and $U_{z} \subseteq \alpha(z)$ be open neighbourhoods of x, y and z in X, such that

$$
U_{x} \times U_{y} \cap R_{\phi} \subseteq \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)
$$

(for U_{z} no further conditions). As ϕ is open in x, we may assume that U_{y} is such that $\phi\left[U_{y}\right] \subseteq \phi\left[U_{x}\right]$. Since

$$
\left(z^{\prime}, z^{\prime}\right) \in p \star(y, z) \subseteq p \circ\left(U_{y} \times U_{z} \cap R_{\phi}\right)
$$

we can find nets $\left\{t_{i}\right\}_{i}$ in T and $\left\{\left(y_{i}, z_{i}\right)\right\}_{i}$ in $U_{y} \times U_{z} \cap R_{\phi}$ such that $p=\lim t_{i}$ and $\left(z^{\prime}, z^{\prime}\right)=\lim t_{i}\left(y_{i}, z_{i}\right)$. Let $x_{i} \in U_{x}$ be such that $\phi\left(x_{i}\right)=\phi\left(y_{i}\right)$. Then, for every i,

$$
\left(x_{i}, y_{i}\right) \in U_{x} \times U_{y} \cap R_{\phi} \text { and }\left(x_{i}, z_{i}\right) \in U_{x} \times U_{z} \cap R_{\phi}
$$

Let $x_{\alpha}^{\prime}:=\lim t_{i} x_{i} \quad$ (after passing to a suitable subnet). Then

$$
\left(x_{\alpha}^{\prime}, z^{\prime}\right)=\lim t_{i}\left(x_{i}, y_{i}\right) \in p \circ\left(U_{x} \times U_{y} \cap R_{\phi}\right) \subseteq p \circ\left(\overline{T \alpha \cap R_{\phi}}\right) \subseteq \overline{T \alpha \cap R_{\phi}}
$$

and

$$
\left(x_{\alpha}^{\prime}, z^{\prime}\right)=\lim t_{i}\left(x_{i}, z_{i}\right) \in p \circ\left(U_{x} \times U_{z} \cap R_{\phi}\right) \subseteq p \circ\left(\alpha(x) \times \alpha(z) \cap R_{\phi}\right) .
$$

So for every $\alpha \in \mathcal{Q}_{X}$ we can define in this way an element $x_{\alpha}^{\prime} \in X$. Let $x^{\prime}=\lim x_{\beta}^{\prime}$ (after passing to a suitable subnet). Then

$$
\left(x^{\prime}, z^{\prime}\right)=\lim \left(x_{\beta}^{\prime}, z^{\prime}\right) \in \overline{T \alpha \cap R_{\phi}} \text { for every } \alpha \in \mathcal{Q}_{X}
$$

hence $\left(x^{\prime}, z^{\prime}\right) \in Q_{\phi}=Q_{\phi}^{\#}$. And

$$
\left(x^{\prime}, z^{\prime}\right)=\lim \left(x_{\beta}^{\prime}, z^{\prime}\right) \in p \circ\left(\alpha(x) \times \alpha(z) \cap R_{\phi}\right) \text { for every } \alpha \in \mathcal{Q}_{X} .
$$

As $p \star(x, z)=\bigcap\left\{p \circ\left(\alpha(x) \times \alpha(z) \cap R_{\phi}\right) \mid \alpha \in \mathcal{U}_{X}\right\}$, it follows that $\left(x^{\prime}, z^{\prime}\right) \in p \star(x, z)$ and so that $p \star(x, z) \cap Q_{\phi}^{\#} \neq \varnothing$. By 3.14.b, it follows that $(x, z) \in Q_{\phi}$.
3.16. THEOREM. Let $\phi: \mathscr{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs, such that ϕ is open in some point $x \in X$. Then $Q_{\phi}=Q_{\phi}^{\#}$ implies $E_{\phi}=Q_{\phi}$.

PROOF. Let $\left(x_{1}, x_{2}\right) \in Q_{\phi}$ and $\left(x_{2}, x_{3}\right) \in Q_{\phi}$ and let $p \in M$ be such that $x=p x_{1}$. Then $\left(x, p x_{2}\right)=p\left(x_{1}, x_{2}\right) \in Q_{\phi}$ and $\left(p x_{2}, p x_{3}\right) \in Q_{\phi} ;$ so, by 3.15., it follows that $\left(x, p x_{3}\right) \in Q_{\phi}$. Let $v \in J_{x_{1}}$, then

$$
\left(x_{1}, v x_{3}\right)=v p^{-1}\left(x, p x_{3}\right) \in Q_{\phi} .
$$

As $\left(v x_{3}, x_{3}\right) \in P_{\phi}$ we have $\left(x_{1}, x_{3}\right) \in P_{\phi} \circ Q_{\phi}$. So, by 3.4.c, $\left(x_{1}, x_{3}\right) \in Q_{\phi}$. Hence $Q_{\phi} \circ Q_{\phi} \subseteq Q_{\phi}$ and Q_{ϕ} is an equivalence relation.

3.17. COROLLARY.

a) If $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ is a RIM extension or if ϕ is a homomorphism of metric minimal ttgs, then $Q_{\phi}=Q_{\phi}^{\#}$ implies $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$.
b) If \mathfrak{X} is a minimal ttg then $Q_{\mathscr{X}}=Q_{\mathfrak{X}}^{\#}$ implies $E_{\mathscr{X}}=Q_{\mathscr{X}}=Q_{\mathfrak{X}}^{\#}$.

It is not known whether or not $Q_{\phi}=Q_{\phi}^{\#}$ implies $E_{\phi}=Q_{\phi}$ without further restrictions on ϕ. We shall now give some other conditions on ϕ that are sufficient to deduce $E_{\phi}=Q_{\phi}$ from $Q_{\phi}=Q_{\phi}^{\#}$.
3.18. THEOREM. Consider the diagram in 3.8., and suppose that ψ is proximal. In each of the following two cases we have $Q_{\phi}=Q_{\phi}^{\#}$ implies $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$.
a) $\boldsymbol{\theta}$ is open;
b) $E_{\theta}=Q_{\theta} \circ P_{\theta}$; e.g., θ is a RIM extension.

PROOF. If ψ is proximal, then

$$
(\psi \times \psi)^{\leftarrow}\left[Q_{\theta}\right] \subseteq R_{\psi^{\circ}} Q_{\phi} \circ R_{\psi} \subseteq P_{\phi} \circ Q_{\phi^{\circ}} P_{\phi},
$$

and so, if $Q_{\phi}=Q_{\phi}^{\#}$, it follows from 3.4.c that $(\psi \times \psi) \leftarrow\left[Q_{\theta}\right] \subseteq Q_{\phi}$. Hence, by 3.10., $Q_{\phi}=Q_{\phi}^{\#}$ implies $Q_{\theta}=Q_{\theta}^{\#}$. But then, in both cases a and b , it follows that $E_{\theta}=Q_{\theta}$ (cf. 3.16. and 3.4.c
respectively). As ψ is proximal and as

$$
\psi \times \psi\left[E_{\phi}\right]=E_{\theta}=Q_{\theta}=\psi \times \psi\left[Q_{\phi}\right]
$$

it follows that $E_{\phi} \subseteq P_{\phi} \circ Q_{\phi} \circ P_{\phi}$. But, again by 3.4.c, this gives

$$
E_{\phi} \subseteq P_{\phi} \circ Q_{\phi} \circ P_{\phi}=P_{\phi} \circ Q_{\phi}^{\#} \circ P_{\phi}=Q_{\phi}^{\#}
$$

3.19. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of minimal ttgs and let $\phi=\theta \circ \psi$. Suppose ψ is open, $R_{\psi} \subseteq Q_{\phi}$ and let $E_{\theta}=Q_{\theta} \circ P_{\theta}$. Then $Q_{\phi}=Q_{\phi}^{\#}$ implies $E_{\phi}=Q_{\phi}=Q_{\phi}^{\#}$.
PROOF. As ψ is open, $Q_{\phi}=Q_{\phi}^{\#}$ implies $Q_{\theta}=Q_{\theta}^{\#}$ by 3.9.. Hence, by 3.4.c, it follows that

$$
E_{\theta}=Q_{\theta} \circ P_{\theta}=Q_{\theta}^{\#} \circ P_{\theta}=Q_{\theta}^{\#}=Q_{\theta}
$$

Also, by the openness of ψ we have that $\psi \times \psi: R_{\phi} \rightarrow R_{\theta}$ is an open map. We shall show that $Q_{\phi}=(\psi \times \psi) \leftarrow\left[Q_{\theta}\right]$, hence that Q_{ϕ} is an equivalence relation.
Let $\left(x_{1}, x_{2}\right) \in(\psi \times \psi) \leftarrow\left[Q_{\theta}\right]$; then $\left(z_{1}, z_{2}\right):=\psi \times \psi\left(x_{1}, x_{2}\right) \in Q_{\theta}$. So there are nets $\left\{\left(z_{1}^{i}, z_{2}^{i}\right)\right\}_{i}$ in R_{θ} and $\left\{t_{i}\right\}_{i}$ in T such that $\left(z_{1}^{i}, z_{2}^{i}\right) \rightarrow\left(z_{1}, z_{2}\right)$ and $t_{i}\left(z_{1}^{i}, z_{2}^{i}\right) \rightarrow\left(z_{1}, z_{1}\right)$. As $\left(x_{1}, x_{2}\right) \in(\psi \times \psi)^{\leftarrow}\left(z_{1}, z_{2}\right)$ and as the map $\psi \times \psi: R_{\phi} \rightarrow R_{\theta}$ is open, we can find $\left(x_{1}^{i}, x_{2}^{i}\right)$ in R_{ϕ} such that $\psi \times \psi\left(x_{1}^{i}, x_{2}^{i}\right)=\left(z_{1}^{i}, z_{2}^{i}\right)$ and $\left(x_{1}^{i}, x_{2}^{i}\right) \rightarrow\left(x_{1}, x_{2}\right)$. After passing to a suitable subnet let $\left(\bar{x}_{1}, \bar{x}_{2}\right)=\lim t_{i}\left(x_{1}^{i}, x_{2}^{i}\right)$. Then

$$
\psi\left(\bar{x}_{1}\right)=\lim t_{i} \psi\left(x_{1}^{i}\right)=\lim t_{i} z_{1}^{i}=z_{1}=\lim t_{i} z_{2}^{i}=\lim t_{i} \psi\left(x_{2}^{i}\right)=\psi\left(\bar{x}_{2}\right)
$$

hence $\left(\bar{x}_{1}, \bar{x}_{2}\right) \in R_{\psi}$ and therefore $\left(\bar{x}_{1}, \bar{x}_{2}\right) \in Q_{\phi}=Q_{\phi}^{\#}$. By 3.4.b, it follows that $\left(x_{1}, x_{2}\right) \in Q_{\phi}$. Consequently, $\quad(\psi \times \psi)^{\leftarrow}\left[Q_{\theta}\right] \subseteq Q_{\phi} \quad$ and \quad as, clearly, $\quad Q_{\phi} \subseteq(\psi \times \psi)^{\leftarrow}\left[Q_{\theta}\right], \quad$ it follows that $Q_{\phi}=(\psi \times \psi) \leftarrow\left[Q_{\theta}\right]$.

4. REGIONAL PROXIMALITY OF SECOND ORDER

Let \mathcal{X} be a ttg. It is not difficult to see that a pair $\left(x_{1}, x_{2}\right) \in X \times X$ is regionally proximal if we can find suitable pairs in the neighbourhood of $\left(x_{1}, x_{2}\right)$ such that after suitable T-translations they tend to a proximal pair. If we could find pairs in the neighbourhood of $\left(x_{1}, x_{2}\right)$ that after suitable T translations tend to a regionally proximal pair, we could say that the pair $\left(x_{1}, x_{2}\right)$ is regionally regionally proximal. We call it regionally proximal of second order.

Let \mathfrak{X} be a ttg and let $A \subseteq X$. Then define

$$
D(A, \mathscr{X}):=\bigcup\left\{p \star A \mid p \in S_{T}\right\},
$$

where $p \star A$ is defined as

$$
p \star A:=\bigcap\{p \circ V \mid A \subseteq V \text { and } V \text { open in } X\}
$$

Remark that the * defined in section 3. is in full accordance with this definition, after noting that $p \star a:=p \star\{a\}$.
4.1. REMARK. Let \mathfrak{X} be a ttg and let $A \subseteq X$. Then
a) $D(A, \mathscr{X})$ is T-invariant;
b) $\quad D(A, \mathfrak{X})=D(t A, \mathfrak{X})$ for every $t \in T$;
c) if A is closed then $D(A, \mathfrak{X})=\bigcup\{D(\{a\}, \mathfrak{X}) \mid a \in A\}$;
d) if A is closed then $D(A, X)$ is closed.

PROOF.

a) Let $x \in D(A, \mathcal{X})$ and let $p \in S_{T}$ be such that $x \in p \star A$. Then $x \in p \circ V$ for every open V in X with $A \subseteq V$. Hence $t x \in t p \circ V$ for such V and $t x \in t p \star A \subseteq D(A, \mathcal{X})$.
b) Note that $p \circ V=p t^{-1} \circ t V$ for every $V \subseteq X, p \in S_{T}$ and $t \in T$. As

$$
\{W \mid W \subseteq X \text { open, } t A \subseteq W\}=\{t V \mid V \subseteq X \text { open, } A \subseteq V\}
$$

for every $t \in T$, it follows that $p \star A=p t^{-1} \star t A$.
c) Obviously, $D(\{a\}, \mathfrak{X}) \subseteq D(A, \mathfrak{X})$ for every $a \in A$.

Conversely, let $x \in D(A, \mathcal{X})$ and let $p \in S_{T}$ be such that $x \in p \star A$. Let $\alpha \in \mathcal{O}_{X}$ be an open index. Then there are a_{1}, \ldots, a_{n} in A such that

$$
V_{\alpha}:=\bigcup\left\{\alpha\left(a_{i}\right) \mid i \in\{1, \ldots, n\}\right\}
$$

is an open neighbourhood of A (in X). So $x \in p \circ V_{\alpha}$ and as

$$
p \circ V_{\alpha}=\bigcup\left\{p \circ \alpha\left(a_{i}\right) \mid i \in\{1, \ldots, n\}\right\},
$$

we can find $a_{\alpha} \in\left\{a_{i} \mid i \in\{1, \ldots, n\}\right\}$ such that $x \in p \circ \alpha\left(a_{\alpha}\right)$. In this way we obtain a point a_{α} in A for every open index $\alpha \in \mathcal{U}_{X}$. Let $a:=\lim \left\{a_{\alpha} \mid \alpha \in I\right\}$ for a suitable subnet $I \subseteq \mathscr{U}_{X}$. We shall prove that $x \in p \star\{a\}$.
Let $V \subseteq X$ be open and let $\{a\} \subseteq V$. Then there are β and γ in I such that $\beta(a) \subseteq V$ and $\gamma \circ \gamma \subseteq \beta$. Let $\delta \in I$ with $\delta \subseteq \gamma$ such that $a_{\delta} \in \gamma(a)$. Then

$$
x \in p \circ \delta\left(a_{\delta}\right) \text { and } \delta\left(a_{\delta}\right) \subseteq \gamma\left(a_{\delta}\right) \subseteq \gamma(\gamma(a)) \subseteq \beta(a),
$$

so $\quad x \in p \circ \delta\left(a_{\delta}\right) \subseteq p \circ \beta(a) \subseteq p \circ V$; hence $\quad x \in p \star\{a\}$. As $a \in \bar{A}=A$ it follows that $D(A, \mathcal{X}) \subseteq \bigcup\{D(\{a\}, \mathcal{X}) \mid a \in A\}$.
d) Let $\left\{x_{i}\right\}_{i}$ be a convergent net in $D(A, X)$ and let $x=\lim x_{i}$. By c , we may find nets $\left\{a_{i}\right\}_{i}$ and $\left\{p_{i}\right\}_{i}$ in A and S_{T} such that $x_{i} \in p_{i} \star\left\{a_{i}\right\}$. Let $p=\lim p_{i}$ and $a=\lim a_{i}$ after passing to suitable subnets. We shall prove that $x \in p \star\{a\}$.
Let $V \subseteq X$ be open with $\{a\} \subseteq V$. Then $\left\{a_{i}\right\} \subseteq V$ for all $i \geqslant i(V)$. Hence

$$
x_{i} \in p_{i} \star\left\{a_{i}\right\} \subseteq p_{i} \circ V \text { for all } i \geqslant i(V)
$$

But then it follows that

$$
x=\lim x_{i} \in \lim _{2^{x}}\left(p_{i} \circ V\right)=p \circ V .
$$

As V was arbitrary, it follows that $x \in p \star\{a\}$, hence $x \in D(A, \mathcal{X})$.

The proof of the following remark is straightforward and will be omitted
4.2. REMARK. For $\operatorname{ttg} \boldsymbol{X}, x \in X$ and $a \in X$ the following statements are equivalent:
a) $x \in p \star a$ for some $p \in S_{T}$, in other words, $x \in D(\{a\}, \mathfrak{X})$;
b) for every $V_{a} \in \mathbb{V}_{a}$, and every $V_{x} \in \widetilde{V}_{x}$ there is a $t \in T$ such that $t V_{a} \cap V_{x} \neq \varnothing$;
c) there is a net $\left\{a_{i}\right\}_{i}$ in X with $a_{i} \rightarrow a$ and there are t_{i} in T with $x=\lim t_{i} a_{i}$;
d) $a \in q \star x$ for some $q \in S_{T}$, in other words, $a \in D(\{x\}, \mathfrak{X})$.
4.3. EXAMPLES. Let \mathfrak{X} be a ttg and let $\phi: \mathcal{X} \rightarrow \mathscr{Y}$ be a homomorphism of ttgs. Then
a) $D\left(\Delta_{X}, \mathfrak{X} \times \mathfrak{X}\right)=Q_{\mathfrak{X}}$;
b) $D\left(\Delta_{X}, \Re_{\phi}\right)=Q_{\phi}$;
c) $D\left(E_{\phi}, \Re_{\phi}\right)=E_{\phi}$ and so $D\left(Q_{\phi}, \Re_{\phi}\right) \subseteq E_{\phi}$;
d) $D\left(Q_{\phi}^{\#}, \mathscr{R}_{\phi}\right)=Q_{\phi}$, hence $Q_{\phi}=Q_{\phi}^{\#}$ implies $D\left(Q_{\phi}, \mathscr{R}_{\phi}\right)=Q_{\phi}$.

PROOF:
a) Follows immediately from b.
b) Using 4.1.c and 4.2. this follows easily from 3.13..
c) Let $\theta: \mathscr{X} / E_{\phi} \rightarrow \phi[\mathscr{X}]$ be the maximal almost periodic factor of ϕ and let $\kappa: \mathfrak{X} \rightarrow \mathfrak{X} / E_{\phi}$ be the quotient map. Then it is easily seen that

$$
\kappa \times \kappa\left[D\left(E_{\phi}, \Re_{\phi}\right)\right] \subseteq D\left(\Delta_{X / E_{\phi}}, \kappa \times \kappa\left[\Re_{\phi}\right]\right) \subseteq Q_{\theta} .
$$

As θ is an almost periodic extension, $\kappa \times \kappa\left[D\left(E_{\phi}, \Re_{\phi}\right)\right] \subseteq \Delta_{X / E_{\phi}}$; hence $D\left(E_{\phi}, \Re_{\phi}\right) \subseteq E_{\phi}$.
d) Clearly, $Q_{\phi}=D\left(\Delta_{X}, \Re_{\phi}\right) \subseteq D\left(Q_{\phi}^{\#}, \Re_{\phi}\right)$.

Conversely, as $Q_{\phi}^{\#} \subseteq \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right)$ for every $\alpha \in \mathcal{Q}_{X}$, we have

$$
p \star Q_{\phi}^{\#} \subseteq p \circ \operatorname{int}_{R_{\phi}}\left(\overline{T \alpha \cap R_{\phi}}\right) \subseteq p \circ \overline{T \alpha \cap R_{\phi}} \subseteq \overline{T \alpha \cap R_{\phi}}\left(\alpha \in \mathcal{Q}_{X}\right)
$$

So $p \star Q_{\phi}^{\#} \subseteq Q_{\phi}$ and $D\left(Q_{\phi}^{\#}, \mathscr{R}_{\phi}\right) \subseteq Q_{\phi}$.
The next theorem as well as its proof resemble 3.15. and 3.16..
4.4. THEOREM. Let $\phi: \mathfrak{X} \rightarrow \mathcal{Y}$ be a homomorphism of ttgs. If for every $x_{1} \in X$ there is an $x \in X$ with $\overline{T x} \cap \overline{T x_{1}} \neq \varnothing$, such that $\phi(x)$ is an almost periodic point and ϕ is open in x, then $E_{\phi}=Q_{\phi}$ iff $D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi}$.

PROOF. If $E_{\phi}=Q_{\phi}$ then, by 4.3., it follows that $D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi}$.
Conversely, suppose that $D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi}$. Let $\left(x_{1}, x_{2}\right) \in Q_{\phi}$ and $\left(x_{2}, x_{3}\right) \in Q_{\phi}$, and assume ϕ is open in x_{1}. We shall prove that $\left(x_{1}, x_{3}\right) \in Q_{\phi}$.
Let $\left\{\left(x_{2}^{i}, x_{3}^{i}\right)\right\}_{i}$ and $\left\{t_{i}\right\}_{i}$ be nets in R_{ϕ} and T such that

$$
\left(x_{2}^{i}, x_{3}^{i}\right) \rightarrow\left(x_{2}, x_{3}\right) \text { and } t_{i}\left(x_{2}^{i}, x_{3}^{i}\right) \rightarrow(w, w) \text { for some } w \in X .
$$

As $\phi\left(x_{2}^{i}\right) \rightarrow \phi\left(x_{2}\right)=\phi\left(x_{1}\right)$ and as ϕ is open in x_{1}, there are $z_{i} \in \phi \leftarrow \phi\left(x_{2}^{i}\right)$ such that $z_{i} \rightarrow x_{1}$. Define $z=\lim t_{i} z_{i}$ (after passing to a suitable subnet). Then

$$
\left(z_{i}, x_{2}^{i}\right) \rightarrow\left(x_{1}, x_{2}\right) \text { and } t_{i}\left(z_{i}, x_{2}^{i}\right) \rightarrow(z, w) .
$$

As $\left(x_{1}, x_{2}\right) \in Q_{\phi}$ it follows that

$$
(z, w) \in p \star\left(x_{1}, x_{2}\right) \subseteq D\left(\left\{\left(x_{1}, x_{2}\right)\right\}, \mathscr{R}_{\phi}\right) \subseteq D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi},
$$

where $p=\lim t_{i} \in S_{T}$ (after passing to a suitable subnet). As

$$
\left(z_{i}, x_{3}^{i}\right) \rightarrow\left(x_{1}, x_{3}\right) \text { and } t_{i}\left(z_{i}, x_{3}^{i}\right) \rightarrow(z, w),
$$

it follows that

$$
\left(x_{1}, x_{3}\right) \subseteq q_{\star}(z, w) \subseteq D\left(\{(z, w)\}, \Re_{\phi}\right) \subseteq D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi}
$$

where $q=\lim t_{i}{ }^{-1} \in S_{T}$ (after passing to a suitable subnet).
Now assume that ϕ is not open in x_{1}. By assumption, we may find $x \in X$ such that $\overline{T x} \cap \overline{T x_{1}} \neq \varnothing$ and ϕ is open in x, while $\phi(x) \in Y$ is an almost periodic point. For an almost periodic point $z \in \overline{T x} \cap \overline{T x_{1}}$ let I and K be minimal left ideals in S_{T} such that $z=p x$ and $z=q x_{1}$ for some $p \in I$ and some $q \in K$. Let $v \in J_{\phi(x)}(I)$. Then $v x=v p^{-1} q x_{1}$, and

$$
\left(v x, v p^{-1} q x_{2}\right)=v p^{-1} q\left(x_{1}, x_{2}\right) \in Q_{\phi} \text { and }\left(v p^{-1} q x_{2}, v p^{-1} q x_{3}\right) \in Q_{\phi}
$$

As $(x, v x) \in P_{\phi}$, we have $\left(x, v p^{-1} q x_{2}\right) \in Q_{\phi} \circ P_{\phi}$ and it is easily seen that $Q_{\phi} \circ P_{\phi} \subseteq D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi}$. By the above, $\left(x, v p^{-1} q x_{3}\right) \in Q_{\phi}$ and so

$$
\left(v p^{-1} q x_{1}, v p^{-1} q x_{3}\right)=\left(v x, v p^{-1} q x_{3}\right)=v\left(x, v p^{-1} q x_{3}\right) \in Q_{\phi} .
$$

But then

$$
\left(x_{1}, x_{3}\right) \in D\left(\left\{\left(v p^{-1} q x_{1}, v p^{-1} q x_{3}\right)\right\}, \mathscr{R}_{\phi}\right) \subseteq D\left(Q_{\phi}, \mathscr{R}_{\phi}\right)=Q_{\phi}
$$

which shows the transitivity of Q_{ϕ}.
4.5. COROLLARY. Let $\phi: \mathfrak{X} \rightarrow \mathscr{Y}$ be a homomorphism of ttgs.
a) If ϕ is open then $E_{\phi}=Q_{\phi}$ iff $D\left(Q_{\phi}, \Re_{\phi}\right)=Q_{\phi}$. In particular, for every ttg \mathfrak{X} we have $E_{\mathscr{X}}=Q_{\mathfrak{X}}$ iff $D\left(Q_{\mathfrak{X}}, \mathfrak{X} \times \mathfrak{X}\right)=Q_{\mathfrak{X}}$.
b) If \mathfrak{X} is a metric ergodic ttg and if \mathscr{Y} is minimal, then $E_{\phi}=Q_{\phi}$ iff $D\left(Q_{\phi}, \mathscr{R}_{\phi}\right)=Q_{\phi}$.

PROOF.

a) This follows immediately from the first part of the proof of 4.4..
b) If X is metric, there is a residual set of points in which ϕ is open, also there is a residual set of transitive points. As \mathscr{y} is minimal, the assumptions of 4.4. are satisfied.

REFERENCES

[AW 81] AUSLANDER, J. and J. C. S. P. VAN DER WOUDE, Maximally highly proximal generators of minimal flows, Ergod. Th. \& Dynam. Sys. 1, 389-412 (1981).
[B 73] BRONSTEIN, I. U., Stable and equicontinuous extensions of minimal sets, Math. Issled. 8, 3-11 (1973). (Russian)
[B 75/79] BRONSTEIN, I. U., Extensions of minimal transformation groups, Sijthoff \& Noordhoff, Alphen aan den Rijn, 1979. (Russian edition: (1975)
[E 67] ELLIS, R., Group-like extensions of minimal sets, Trans. Amer. Math. Soc. 127, 125-135 (1967).
[E 69] ELLIS, R., Lectures on topological dynamics, Benjamin, New York, 1969.
[E 73] ELLIS, R., The Veech structure theorem, Trans. Amer. Math. Soc. 186, 203-218 (1973).
[EGS 75] ELLIS, R., S. GLASNER and L. SHAPIRO, Proximal isometric (9g-) flows, Advances in Math. 17, 213-260 (1975).
[F 63] FURSTENBERG, H., The structure of distal flows, Amer. J. Math. 85, 477-515 (1963).
[G 75] GLASNER, S., Relatively invariant measures, Pacific J. Math. 58, 393-410 (1975).
[G 76] GLASNER, S., Proximal flows, Lecture Notes in Math. 517, Springer Verlag, New York 1976.
[M 78] MCMAHON, D. C., Relativized weak disjointness and relatively invariant measures, Trans. Amer. Math. Soc. 236, 225-237 (1978).
[MW 80] MCMAHON, D. C. and T. S. WU, Notes on topological dynamics V: equicontinuous structure relations of minimal transformation groups, Bull. Inst. Math. Acad. Sinica 8, 283-294 (1980).
[Mi 51] MICHAEL, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71, 152-182 (1951).
[P 72] PELEG, R., Weak disjointness of transformation groups, Proc. Amer. Math. Soc. 33, 165-170 (1972).
[V 77] VEECH, W. A., Topological dynamics, Bull. Amer. Math. Soc. 83, 775-830 (1977).
[Wo 80] WOUDE, J. C. S. P. VAN DER, Weakly mixing remarks, Rep. ZN 99, Mathematisch Centrum, Amsterdam 1980.

