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Disjointness and classes of minimal transformation groups 

by 

Jaap van der Woude 

ABSTRACT 

We present disjointness relations between families of minimal topolog­

ical transformation groups with a fixed arbitrary phase group T. 
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0. INTRODUCTION 

In the study of the structure of minimal topological transformation 

groups (ttg's for short) the concept 0£ disjointness is a kind of external 

device. However, in dealing with this concept we need to know a lot about 
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the internal structure of the ttg's under consideration. So in the Sections 

1 and 3 of this paper emphasis is on the internal structure, and they don't 

bring many new facts. Section 1 is devoted to quasi-factors, disjointness, 

and repeats known facts which, except for Theorem 1.5, can be found in [l] 

and [10]. In Section 2 we prove that a minimal ttg is disjoint from every 

minimal weakly mixing ttg iff it has no nontrivial weakly mixing quasi­

factors. Section 3 gives a treatment of towers of extensions which is a 

modification of [7],[8] and [9], but is similar to [4]. In Theorem 3.8 we 

show that a distal extension is the inverse limit of almost periodic exten­

sions iff it is a PI extension. In the last section we establish disjointness 

of several classes and illustrate this with a table. 

We assume basic knowledge about topological dynamics as can be found in 

[2] and [5], such as the notions of minimality, distality, proximality and 

almost periodicity, both for ttg's and homomorphisms of ttg's (continuous 

equivariant maps between the phase spaces). Often a homomorphism~: X • Y 

of minimal ttg's (as well as X itself) will be called an extension (of Y). 

The phase group Twill be fixed and we put no restrictions on T. The phase 

spaces always are assumed to be compact T2 • The action of Ton X will be 

written as a left product. 

Let M be the universal minimal ttg for T. Then Mis isomorphic to 

every minimal left ideal in the eveloping semigroup E(M) of M. Being a 

semigroup itself, M acts accordingly on every minimal ttg X, and 

X = {px p EM} for arbitrary x EX. Denote the collection of idempotents 

in M by J. Then uM = {up Ip EM} is a subgroup of M for every u E J and 

{vM Iv E J} is a partition of M. Let u E J be a fixed idempotent and put 

G = uM. Then uM can be provided with a nice compact T1 topology, the 

.-topology, such that the left and right translations and the inverse are 

.-homeomorphisms of uM. For every minimal ttg with u-invariant base point 

x0 we may consider the stabilizer of X with respect to x0 in G: 
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~(x,x0) = {a E GI ax0 = x0}. Then ~(x,x0) is a -r-closed subgroup of G, 
the so called Ellis group of X with respect to x0 • Moreover, every -r-closed 

subgroup F of G is an Ellis group of some minimal ttg. These Ellis groups 

are of great importance in the structure theory of minimal ttg's. Another 

strong device is the notion of a quasi-factor. Every ttg (T,X) induces a 

hypertransformation group (T,2x), where 2X denotes the compact T2 space of 

all nonvacuous closed subsets of X. The action of Ton 2X is defined by 

(t,A) J--+ {ta I a EA} for every t ET and A E 2x, and it.is cont:i,.nuous 

(cf. [6]). Every homomorphism 4>: X • Y induces a homomorphism 4>*: 2X + 2Y, 

defined by 4>*(A) = 4>[A] for every A E 2x, and if 4> is surjective, also 
. +* y X +* + y 

a homomorphism 4> : 2 • 2 , defined by 4> (A) = 4> [A] for every A E 2 • If 

+*I 4> is open and surjective, it is easy to see that 4> Y is a topological 

embedding. 
X X 

There are two possible actions of Mon 2 , for p EM and A E 2 may 

stand for {pa I a EA}, or for pA in the orbit closure of A in 2X; and, 

in general, both sets are different. To avoid this ambivalenqe, we shall 

denote the last version by p 0 A and it can be proved that p 0 A = {y EX I 

there is a net {t.} +pin T and there are a. EA with {t,a.} + y}. 
l. l. l. l. 

A quasi-factor of Xis defined as a minimal sub-ttg of 2X and it is 

easy to see that every quasi-factor~ of X has the form~= QF(A,X) = 

{p 0 A Ip EM} for some almost periodic A E 2x. If Xis minimal, then 

X ~ QF(x,X) for every x EX. 

Quasi-factors are very useful in problems concerning disjointness of 

minimal ttg's. Two minimal ttg's are called disjoint, if their product ttg 

is again minimal. If K is a collection of minimal ttg's, we denote by KL 
the collection of all minimal ttg's, which are disjoint from every member 

of K. For instance, VL (p1-) is the collection of all minimal ttg's disjoint 

from every distal (proximal) ttg or, equivalently, disjoint from the univer­

sal disjoint (proximal) ttg D (P) for T. 
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1. PREREQUISITES 

In this section we shall be concerned with some basic properties of 

disjointness, quasi-factors and extensions. Most results are stated without 

proof, since the proofs can be found in [1] and [10]. In the sequel 

$: X • Y denotes a homomorphism of minimal ttg's. 

1.1. THEOREM. 
0 * 1 For every quasi-factor~ of X, $ [*J is a quasi-factor of Y, and 

* $[*]is trivial iff $[A]= Y for some A E ~-

o * 2 If~ is a quasi-factor of X with$[*] nontrivial, then~ J. Y. 
0 

3 If .y is a nontrivial quasi-factor of Y, then X J. .Y. 
0 

4 If $ is open, then every quasi-factor of Y is a quasi-factor of x. 
0 

5 If $ is open, then * J. y for every nontrivial quasi-factor* of x, 
such that there is an A E * with $[X\A] fa Y. 

1.2. THEOREM. Let$ be distal. Then every nontrivial quasi-factor~ of X 

with XL Y is distal. 

1.3. COROLLARY. Let$ be distal and XE VL. Then X J. Y for every nontrivial 

quasi-factor* of X. 

In order to prove a similar statement with$ proximal, we need the 

following theorem of VEECH ([9], remark on p.814). But first we need a 

definition. Let x 0 = ux0 EX and F = ~(Y,$(x0)). Then$ is called a RIC 
+ 

extension if$ (p$(x0)) = p°Fx0 for all p EM. 

1.4. THEOREM. Let$ be a RIC extension and let$: Z • Y be a homomorphism 

of minimal ttg's. Then R$$ = {(x,z) E xxz I $(x) = $(z)} has a dense set of 

almost periodic points. 

1.5. THEOREM. Let$ be proximal and XE p1-_ Then X J. Y for every nontrivial 

quasi-factor X of X. 

PROOF. Suppose that XL Y for some nontrivial quasi-factor X of X. Since 

Xx Y is minimal and 1 XX$: Xxx • Xxy is proximal, it follows that Xx X has 

a unique minimal subset. But$: X +{*}is a RIC extension ([5],X.1.3), so 
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1. 4 implies that X. x X has a dense subset of almost periodic points. Since 
0 

Xx X is minimal and X. is nontrivial, this violates 1.1. 3 • D 

An important type of extension related to disjointness is the highly 

proximal extension ([1]). A homomorphism¢: X-+ Y of minimal ttg's is cal­

led highly proximal (h.p. for short), if¢ satisfies one of the following 

four equivalent properties: 
+ 

a For some y E Y there is a net {t} in T, such that the net {t cp (y)} 
n n n n 

d . l . 2X tens to a sing eton in 
+ 

b Every nonempty open subset of X contains a fiber cp (y) for some y E Y. 

c ¢[A]-/ Y for every closed Ac X with A-/ X. 
+ + 

d If y E Y, x E ¢ (y) and p EM, then p 0 ¢ (y) = {px}. 

Define two minimal ttg's to be h.p. equivalent, if they have a common 

h.p. extension. Then there is a partition of the collection of minimal 

ttg's in h.p,. equivalence classes. This partition is compatible with the 

notion of disjointness. That means, if (x 1 ~ x2 )h.p. and (Y 1 '":' Y2)h.p.' 

then x1 ~ Y1 iff x2 ~ Y2 ([1] Thm.1.2). Every equivalence class has a unique 

maximal element: the maximally highly proximal extension of each of its 

* + members. If y: M • Xis an extension and x EX, then X = QF(u 0 y (x) ,M) is 

the maximal h.p. extension of each member in the equivalence class of X, 

* * and X is independent of the choice of x EX. We shall call such a ttg X 

maximally highly proximal. 

1.6. THEOREM. 
0 

1 Y is maximally highly proximal iff every¢: X • Y is open. 

2° If Y is a factor of X then y* is a factor of x*. 
0 * * 3 X ~ Y iff X ~ Y. 
0 * 4 XL Y iff Y has a nontrivial quasi-factor which is a factor of X . 

In the study of disjointness classes the following closure operator 

on collections of minimal ttg's is natural, since disjointness is preserved 

under h.p. extensions and factors. Define for a collection K of minimal 

ttg's the closure [K] of K to be 

[KJ = {z l * z is a factor of Y for some YE K}. 



Clearly, this defines a closure operator and [K]i =Ki= [Ki]. 

1.7. THEOREM. Let K be a collection of minimal ttg's. Then XE Ki iff 

Xi [K] for every nontrivial quasi-factor X of X. 

1.8. EXAMPLES. 
0 

1 Let D (P) be the universal minimal distal (proximal) ttg for T. Then 

[VJ =· [ {D} J = {z z is a factor of * D} and 

[PJ [{P}] {z * = P} = P. = = z is a factor of p 

0 
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2 Let F be a ,-closed subgroup of G. Define M(F > = {Y I Y is a minimal and 

q<Y,yo) 2 F for some Yo E y}. Then M(F) = [M(F) J = [{QF (uoF ,M) }]. 

Remark that M(G) = P. 

2. WEAK MIXING AND DISJOINTNESS 

First we recall some definitions. 

A ttg Xis called ergodic if X does not contain proper closed. invariant 

subsets with nonempty interior. Two ttg's X and Y are called weakly dis­

joint (X .:. Y) if Xx Y is ergodic, and X is weakly mixing if X .:. X (for 

instance, every proximal minimal ttg is weakly mixing ([5],II.2.2)) • . 
Define L-: {X I Xis minimal and X.:. Y for every YE L} for a collection L 
of minimal ttg's. A homomorphism cjl: X + Y is called weakly mixing if 

Rep = { (x1 ,x2) I cp (x1) = cp (x2)} S Xx Y is ergodic. Denote by WM the collec­

tion of weakly mixing minimal ttg's. Let X' and Y' be factors of X and Y, 

respectively, and let X.:. Y. Since ergodicity is preserved under factors, 

it follows that X'.:. Y'. In particular, WM is closed under factors. 

2.1. THEOREM. Let X and Y be minimal and let c/J: X' + X and$: Y' + Y be 

h.p. extensions. Then X • Y iff X' .:. Y'. 

PROOF. Assume that X' x Y' is not ergodic. Then there exists a closed in­

variant subset A of X' x Y' with nonempty interior and A f X' xy' • Also 

B = X' xy' \A is a closed invariant subset of X' x Y' with nonempty interior 

and Bf X'XY'. Obviously, xxy = c/JX$[A] U c/JX$[B]. Choose open subsets U and 
0 

V of X' and Y' with uxv s A. Since cp and$ are h.p., there are x EX and 
+ + + 0 

y E Y such that cp (x) SU and$ (y) S V, so (c/JX$) (x,y) S uxv SA. 
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Consequently, (x,y) t ~x$[B]. Similarly, also ~x$[A] ~ xxY. Since ~x$[A] 

and ~x$[B] are closed and invariant, it follows from the ergodicity of Xx Y 

that they have empty interiors; contradiction! D 

2.2. COROLLARY. 

a [K]L =[KL]= K-. 

b [WMJ = WM. 
c XE WM1 iff X has no weakly mixing quasi-factors. 

PROOF. In view of 2.1, a and bare obvious; c follows from Theorem 1.7 

and b. 0 

The following theorem of ELLIS [3] shows the hostility between the 

properties weak mixing and distal. 

2.3. THEOREM. A distal and ergodic ttg is minimal. 

2.4. THEOREM. Let YE V~ and let~= X • Y be a weakly mixing homomorphism 
~ 

of minimal ttg's. Then XE V. 

PROOF. Suppose that X t ~- Then there exists a homomorphism~= X • Z 

with Z nontrivial and distal. Since R~ is ergodic, it follows that 

$X$(R~) ~ zxz is ergodic and distal, hence by 3.3 minimal. Since ~X ~ R~ 

and so $X$(R~) ~ ~z' it follows that $X$(R~) = ~z and also R~ ~ R$ = 
+ . 

($x$) [~z]. But then z = X/R$ is a factor of Y = X/R~, but z is distal and 

YE V~; contradiction. D 

~ 
2.5. COROLLARY. WM~ V . 

The following characterization of the incontractible, weakly mixing 

minimal ttg's is an easy consequence of ([9], 2.1.6) and can be found in 

([10],4.3). So we state it here without proof. 

2.6. THEOREM. p1- n WM= p1- n ~-



3. TOWERING INFERNO 

A fruitful approach in determining the structure of minimal ttg's is 

the concept of a tower, i.e., a succession of extensions. We shall define 

certain collections of minimal ttg's which are in a sense built up by 

specific types of towers, following [4], but somewhat different from [7] 

and [9]. 

Let v be an ordinal and let$: X + Y be a homomorphism of minimal 

ttg' s. A tower of height v for $ is defined to be a system { (W ,w ) I a.:;;; v} 
a. a. 

of minimal ttg's with u-invariant base points, such that 
0 

1 WO= Y and WV= X; 
0 

2 for every a.< v, (Wa.,wa.) is a factor of (Wa.+l'wa.+l) under a homomorphism 

,1-, with .+. (w ) 
"'a. "'a. a.+1 

3° if a. is a limit ordinal, then (Wa.,wa.) = V{ cw8 ,w8) I B < a.}; 

4° $ is the inverse limit of{$ I a.< v, a. non limit ordinal}. a. 
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Here V{(w8,w8) I B < a.} denotes the minimal orbit closure of ($8 (wB+l))B<a. 

in TI{w8 I B < a.}. 

The homomorphism$: X + Y of minimal ttg's will be called a strictly-I 

(strictly-PI) (strictly-HP!) (strictly-PD) (strictly-HPD) extension, if a 

tower for$ exists such that every$ is almost periodic (proximal or almost a. 
periodic) (highly proximal or almost periodic) (proximal or distal) (highly 

proximal or distal). Let B be one of the symbols I, PI, HPI, PD or HPD. 

homomorphism$: X + Y of minimal ttg's will be called a B extension if 

there exist a minimal ttg z and homomorphisms w: z + Y and 9: z + X such 

that $ 0 9 =wand w is a strictly-B extension. A minimal ttg Xis called 

(strictly-)B, if$: X +{*}is a (strictly-)B extension. 

3.1. Denote by B the collection of minimal B ttg's. Then the following rela­

tions hold: 

a V = I (ELLIS [3]), 

b I .s HPI .s HPV E. PV I 

C HPI .s PI E. PO I 

d HPI = HPV and PI = PV for metric minimal ttg' s, or if T is locally 

compact and a-compact. 
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Note, that our definitions of PI- and HPI ttg's coincide with those 

in [1],[4] and [5] (see [5], corollary X.4.3 and [1] corollary III.1). The 

definitions of PD ttg and PD extension in [7] and [8] and those of I-, PI­

and HPI extension in [9] are just our definitions with prefix strictly. 

3.2. REMARK. If Bis one of the classes PI, PD, HPI or HPV, then [BJ= B. 
For let X be a B ttg, then there exists a strictly-B ttg Z, which has X as 

a factor. Obviously, every factor of Xis a factor of z and so a B ttg. 

* * Let X' be an h.p. extension of X. Then X' is a factor of X • Since X is a 

* * factor of Z and Z is a strictly-B ttg, it follows that X' as a factor 

* of Z is a B-ttg too. 

Let F be a T-closed subgroup of G. Then H(F) is defined to be the 

smallest T-closed normal subgroup of F, such that F/H(F) is a compact T2 

topological group ([5],IX.1.9). Set H1 (F) := H (F), Ha.+l (F) := H (Ha. (F)) 

for every ordinal a. and for a limit ordinal a., Ha. ( F) : = nrn 8 ( F) I 8 < a.} • 

Define F to be the limit of {M (F)} • 
m Cl. Cl. 

For the sequel we have to recall the next two lemmas: 

3.3. ~ ([5],IX.2.1(4)). Let~= X • Y be a distal homomorphism of 

minimal ttg's, and let Hand F be the ~-compatible Ellis groups of X and 

Y, respectively (i.e., the Ellis groups with respect to u-invariant base 

points x0 and ~(x0)J. Then~ is almost periodic iff H(F) ~ H. 

3.4. LEMMA ([5],X.2.1). Let~= X • Y be a RIC extension of minimal ttg's, 

and let Hand F be the ~-compatible Ellis groups of X and Y, respectively. 

Then there exist a minimal ttg Z, with Ellis group H(F)H, and homomor­

phisms$: X • z and 6: z • Y, such that 6 is almost periodic and 6°$ = ~-

3.5. PROPOSITION. Let K be a .-closed subgroup of G. Then the canonical map 

n: QF(uoH(K),M) • QF(u°K,M) is a strictly-PI extension, and so 

~= QF(uoK ,M) • QF(uoK,M) is strictly-PI. 
m 

PROOF. Since n is a RIC extension we may find a minimal ttg z with Ellis 

group H(K)·H(K) = H(K) and homomorphisms$ and 6 with 6 almost periodic 

and n = 60$. Since$: QF(u0H(K) ,M) • z is proximal, it follows that n is 

strictly-PI. 
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3.6. THEOREM. Let cf>: X • Y be a homomorphism of minimal ttg's and let H 

and F be the Ellis groups of X and Y, respectively. Then cf> is a PI extension 

iff F .s H. 
00 

PROOF. "4= 11 Let K: QF(u°F,M) • Y be the canonical proximal homomorphism. 

Since$: QF(uoF ,M) • QF(u°F,M) is strictly PI, so is Ko$. But F c H, so X 
00 00 -

is a factor of QF(u°F ,M) and cf> is a PI extension. (Note that 
00 

uoF .J4 uoF A cf>(x ) and uoF ,_. u 0 H ..._ x0 .) 
00 0 00 

11 _. 11 • We only have to prove that for a strictly-PI extensicn cf>: X • Y we 

have F .s H. Let cf> be strictly-PI; 
00 

for cf> we have, by 3.3, q(wa.+l'wa.+l) 

then for every (Wa.+l'wa.+l) in the tower 

~ H(q(wa.,wa.)). Now it follows easily 

that H = (Jl (w ,w > ::, F = Ol(w0 ,w0) • d V V - 00 -J 00 
D 

3.7. COROLLARY. 
0 

1 PI= M(G) = [{·QF(uoG ,M)}J. 
00 00 

2° Let X be minimal with Ellis group H. Then XE PI~ iff u 0 G x = X for 
00 

some x EX ([10],2.12.d'). 

Note that for -r-closed subgroups K and L of G with K ,S L, we have that 

H(K) c H(U n K c H(U and so K c L • Now it follows that, with notation 
- - CX>- (X) 

as in 3.6, cf> is a PI extension iff F00 

then cf> is a PI extension. 

= H • Also it is clear that, if XE PI, 
00 

Whether or not every distal homomorphism cf>: X • Y of minimal ttg's 

without countability assumptions is strictly-I is still an open question 

for nontrivial Y. The following theorem gives a necessary and sufficient 

condition for a distal homomorphism to be strictly-I. First note that if 

cf> is a homomorphism of minimal ttg' s with cf> = $ 0 0, then cf> is distal iff 

$ and e are distal. 

3.8. THEOREM. Let cf>: X • Y be a distal homomorphism of minimal ttg's. 

Then the following are equivalent: 
0 

1 cf> is a PI extension; 
0 

2 cf> is an HPI extension; 
0 

3 cf> is a strictly-I extension. 

PROOF. The .implications 3° =0- 2° _. 1° are obvious. 
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1° => 3°. Let Hand F be the Ellis groups of X and Y, respectively. Set 

z0 := Y and w0 :=$.Then $0 : x + z 0 is distal and so RIC. By 3.4 we may 

find a minimal ttg z 1 with Ellis group H(F)H and homomorphisms w1 and e 1 

with e 1 almost periodic, such that w0 = e 1°w 1 • Since w0 is distal, so is 

$ 1 and we may repeat the procedure for $ 1: X + z 1 • We then find a minimal 

ttg z 2 with Ellis group H(H(F)•H)•H = H2 (F)H ([5],X.4.1) and homomorphisms 

W2= X + z2, 82: z2 + zl with 82 almost periodic, so Wo = 81°82°$2. Trans­

finite induction gives us a minimal ttg Z00 and homomorphisms $00 : X + z00 

and 800 = e 1°e 2° ••• : Z00 + z0 , such that the Ellis group of Z00 equals 

F00H =Hand$= $0 = 800°$00 • Since $00 is distal and proximal $00 = idx and 

$ = 800 , which is strictly-I. 0 

3.9. COROLLARY. If XE PI and~: X + Y is distal, then~ is strictly-I. 

In case~= X + Y is distal but not PI, the last step in the proof of 

3.8 fails, but we can say something about it. For that purpose we need the 

following theorem, which is in fact a special case of [9], 2.6.3. 

3.10. THEOREM. Let~: X + Y be a homomorphism of minimal ttg's, such that 

no nontrivial almost periodic extension of Y between X and Y exists (i.e., 

if$= So$ withe almost periodic, then 8 = idy), and R~ has a dense set 

of almost periodic points. Then~ is weakly mixing. 

3. 11. LEMMA. Let$: X + Y be a RIC extension and let H, F and K be -r:-closed sub­

groups of G with H ~ K ~ F 00H, such that qcx,x0 ) = K and C.,<Y ,$ (x0)) = F 00H. 

Then$ is weakly mixing. In particular, forH = q<M,u) this implies that 

every extension of the universal PI extension of ttg's with Ellis group F 

is weakly mixing. 

PROOF. By 3.4 

homomorphisms 

Since H(F H)K 
00 

we may find a minimal ttg Z with Ellis group H(F H)K, and 
00 

$ and 8 such that 8: z + Y is almost periodic and$= 8°$. 

c F H = H(F )H = H(F H)H c H(F H)K and so F H = H(F H)K, it 
- 00 00 CO - 00 00 00 

follows that e is proximal and consequently 8 = idy. By 1.4 and 3.10 ~ turns 

out _to be weakly mixing. 0 

3.12. COROLLARY. Let~: X + Y be distal and not PI. Then$= 8°$ with 8 a 

strictly-I extension and$ distal and weakly mixing. 
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PROOF. Following the construction in the proof of 3.8, the last step gives 

us ~00 : X • Z00 • The Ellis group of Z00 is F00H, but F00H ~ H since F00 i H. Now 

3.11 applies, knowing that the distal extension~ also is a RIC extension.• m 

Note, that with the same type of construction we may prove that the 

RIC extension$: QF(u 0 H,M) • QF(u°F,M), with Hand FT-closed subgroups of 

G, can be written as$= 8°~, where 8: QF(u°F H,M) • QF(u°F,M) is strictly-
® 

PI and 8: QF(u 0 H,M) • QF(u°F H,M) is weakly mixing. 
m 

4. DISJOINTNESS CLASSES 

We now want to give some relations between collections of minimal 

ttg's, leading to the diagrams on pages 14 and 15. These relations are far 

from complete since we did not investigate towers with occurrences of weak­

ly mixing extensions. Note that every minimal ttg is a factor of a weakly 

mixing extension of the universal PI ttg. For let X be minimal with Ellis 

group H; then Xis a factor of QF(u 0 H ,M) which is, by 3.11, a weakly mix-
® 

ing extension of QF(u 0 G ,M). Dealing with disjointness, the following theo-
m 

rem ([10],3.4) is useful. 

4.1. THEOREM. Let XE p1 and Y minimal. Let Hand F (in G) be Ellis groups 

of X and Y, respectively. Then Xi Y iff HF= G. 

4.2. THEOREM. Let K be a collection of minimal ttg's. 

a If K £ Vi then Ki is closed under distal extensions. 

b If K £ p1 then Ki is closed under proximal extensions. 

C If K £ p1 n vi then Ki is closed under PD extensions. 

i i PROOF. a. Let YE K and let$: X • Y be distal. Suppose that X t K; then 
0 

there exists a Z EK with X t Z. By 1.6.4 there is a nontrivial quasi-

* * factor X of X which is a factor of Z. Since Z i Y, it follows that Xi Y 

1 X K Vi h *"Vi. So z* does not and so, by .2, is distal. But Z E £ , ence z ~ 

admit nontrivial distal factors. A contradiction. 

b. Let YE KL. Let~: X • Y be proximal and let Hand F be the Ellis groups 

of X and Y. Suppose that X t Ki; then there is a Z EK with X t. Z, while 
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Y J. Z. Since Z EK~ r-1-, it follows from 4.1 that HK f G and FK = G, where 

K denotes thE~ Ellis group of Z. However, by the proximali ty of cj> we have 

H = F. 

c. From~ and_£ it is clear that KJ. is closed under strictly-PD extensions. 

Since KJ. is closed under factors, the theorem follows. D 

4.3. EXAMPLES. 
0 ...J. , WMJ. , 1JJ.J. and PDJ.J. 1 ~- are closed under distal extensions and so under 

HPD extensions. 

2° VJ., WMJ.J., p-1-l. and PDJ.J. are closed under proximal extensions. 

3° PV.Ll. is closed under PD extensions. 

Let F be a T--closed subgroup of G and let D be the Ellis group (in G) of the 

universal minimal distal ttg D. 

4 ° M(F)J.J. 1 d d . l is c ose un er proxima extensions. 

5° If F ~ D then M(FlJ. is closed under distal extensions, hence under 

PD extensions. 

6° If FD= G then M(F)J. is closed under distal extensions and so under 

HPD extensions. 

4.4. COROLLARY. 

~ HPD ~ n{M(F)J. 

b HPDJ. = HPI_L = IJ. 

T-closed subgroup with FD 

C M(F )J. = M(F)J. if F CD. 
- 00 -

d M(G) = PI c PD c M(F)J.J. for every T-closed subgroup F ~ D. 
- 00 - -

!=.M(Goo) J. -- p;[J. -- PDJ. -- M(F)J. ~ -n.i VJ. f 1 d b F f G , ~ n or every T-c ose su group o 

with G ~ F c D. 
00 

PROOF. a. Note, that VJ. ~ U{M (F) I F ~ G T-closed subgroup with FD = G}. 
0 

([5],II.2.2). The other inclusions follow from 4.3.6 I 2.5 and 

b. Obviously,, HPDJ. ~ HPIJ. ~ IJ. ~ VJ.. From a it follows that VJ. ~ HPDJ.. 

c. By 3.5 QF(u°F ,M) • QF(u°F,M) is a PI extension, so by 4.3.5° 
00 

M(F ) c MfflJ., hence M(F) c M(F ) c MCFlJ. and M(FJ:1- = M(F )J.. 
00 - - 00 - 00 

d. Clear by 3.5. 

e. From d it is clear that M(G )J.J. = 
00 

~ M{F)J.J.. Since G c F 
. 00 



and consequently M(F) ~ M(G00), it follows that M(F)LL = 
wL and so M(F)i = M(G )i = PIL = PVL. • 

00 

4.5. THEOREM. Let K be a collection of minimal ttg's. 
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M(G li = 
00 

aKi vi Ki is closed under distal extensions within . (I.e., let YE and let 

~: X • Y be distal. If XE Vi then XE KL.) 
b KL is closed under proximal extensions within pi_ 
C KL ' 1 d d ' . h' ...J. Vi is c ose un er PD extensions wit in Y n • 

PROOF. a (b). Let~: X • Y be a distal (proximal) extension with XE Vi 
(pi), YE KL and suppose Xi KL. Then there exists, by 1.7, a nontrivial 

quasi-factor X of X with XE [KJ. Now XL Y, which contradicts 1.3 (1.5). 

c. Follows from a and b. D 

4.6. EXAMPLES. 

1° pl.Land WMLL are closed under distal extensions within V\ hence, by 

example 4.3.2°, closed under PD extensions within vi. 
2° Vii and WML are closed under proximal extension within pi; hence, by 

example 4.3.1°, closed under PD extensions within pi_ 

4.7. COROLLARY. 

a vL n PV = piL n PV = WMLL n PV. 
bpi n PV = Vii n PV = WML n PV. 

PROOF. a. From 4.6.1° it follows that Vin PV £ piL, but pii ~ WMLL ~ Vi. 

6 2 O ...J. PV vLL I but vLL _c WML _c ...J. • b. From 4. • it follows that Y n ~ Y • 
4.8. THEOREM. PVL = PTL =pin vi. 

PROOF. Since in the proofs of [10], 5.3 and 5.4 only the distality of 

almost periodic extensions was used, we may replace PI by PV in those 

theorems. D 

4.9. COROLLARY. 

a PVL =pin vL =pin WM= pin WMLL, so PVL C WM and WML C PVLL_ 
b If Tis strongly amenable, we have PVL =vi= WM= WMLL_ 
(Tis called strongly amenable iff the universal proximal minimal ttg for T 

is trivial. } 
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