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Disjointness and quasifactors in topological dynamics

by

J.C.S.F, van der Woude

ABSTRACT

We present some results about the disjointnessrelations between factors,
extensions and quasifactors of minimal topological transformationgroups
(ttg's) with arbitrary phase group and compact Hausdorff phase space. Also
we characterize some families of minimal ttg's whose members are disjoint
from a certain collection of minimal ttg's. For instance we prove, that if
the phase group is strongly amenable then the minimal ttg's, which are dis-

joint from every PI-ttg, are just the weakly mixing ones.
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§0. INTRODUCTION

Several authors ([41,[51,[73,[9]1,[10] and [16]) used quasifactors in
the structure theory of minimal topological transformation groups (from now
on the term topological transformation group(s) will be abbreviated by
ttg('s)). In this paper we shall make an extensive use of the properties of
quasifactors in the determination of disjointness classes.

The first section will be devoted to some basic statements about quasi-
factors and extensions in relation to disjointness. It contains a result im-
portant for the rest of this paper(l.5). It states, that given a distal ex-
tension ¢: X —> Y, every quasifactor of X which is disjoint from Y is distal.
In section 2 we characterize -in terms of quasifactors the collection Kt of
all minimal ttg's that are disjoint from every member of a certain family K
of minimal ttg's. For nice families K this gives us relatively smooth des-
criptions for Kt (2.9, 2.10, 2.12, 2.13, 5.4). Section 3 provides a genera-
lization of [11], 4.5, where KEYNES states, that for abelian phase groups
two minimal ttg's are disjoint whenever & = uM (3.4). In section 4 we
characterize (without countability assumptions) the incontractible weakly
mixing minimal ttg's as the incontractible minimal ttg's without distal fac-
tor; this result is extended in the fifth section to the minimal ttg's dis-
joint from every PI-ttg. The last section deals with common factor problems,
and results in the observation, that for arbitrary phase groups and minimal
ttg's X and Y, such that one of them is regular and one of them is in pHt
(D is the family of minimal distal ttg's), the disjointness of X and Y is

equivalent to having no nontrivial common factor.

We will now introduce some basic notions and notations. For a more
comprehensive treatment we refer to [4], [16] and with more notational re-
semblance [9]. Under a ttg we shall understand here an action of T on X,
with T an arbitrary topological group and X a compact Hausdorff space. The
action of T on X is a continuous mapping (t,x) — tx : T x X — X such
that (ts)x = t(sx) and ex = x for all s,t € T and x ¢ X (e is the unity of T).
Mostly we shall consider T to be understood and denote the ttg by its phase
space only. A homomorphism of ttg's ¢: X —> Y is a continuous map which

commutes with the action of T on X and Y i.e. ¢(tx) = td(x) for all t € T



and x € X. If ¢ is a homomorfism onto we shall call ¢ an extension and also
we shall call X an extension of Y if there is an extension ¢: X —> Y.

Let (T,M) be the universal minimal ttg for T ([3j), i.e. M is minimal
and an extension of every minimal ttg with phase group T. Then M is isomor-
phic to a maximal left ideal in its enveloping semigroup E(M), it is a semi-
group itself and accordingly it acts on every minimal ttg (T,X). Denote the
collection of idempotents in M by J, then M = U {vM | v € J} and every vM is
a subgroup in M, while {vM | v € J} is a partition of M. For u ¢ J we can

define a nice compact T,-topology on uM, the so-called t-topology. In uM we

consider the stabilizerlfor (T,X) with respect to the point Xg» chosen such
that ux, = X, :(%(X,XO) = {a e w | ax, = xo}. It is called the Ellisgroup

of (T,X,xo) and it plays an important role in the structure theory of minimal
ttg's ([7],[9]) The Ellisgroups are t-closed subgroups of uM and moreover
every t-closed subgroup of uM can be obtained as an Ellisgroup.

Every ttg (T,X) induces a hypertransformation group (T,ZX) where L
={AcX | A= A # ¢} (for an explicit treatment of possible topologies on
2% see [13]. We will use the Vietoris topology on 2X). Since X is compact
Hausdorff, 2X is compact Hausdorff and the action of T on X defined by
(t,A) > tA = {ta I a € A} is continuous ({12]). Every homomorphism
¢: X — Y induces a homomorphism ¢*: X oY defined by ¢*(A) = ¢[A]. If
¢ is open there are also homomorphisms ¢+*: Y ——A-ZX defined by ¢+*(y) =
= ¢+(y) and ¢+**: ZY — ZX by ¢+**(B) = ¢+[B], clearly ¢+* and ¢#** are
embeddings. There exist two "actions" of E(M) on 2X, namely one defined by
pA := {pa | a € A} and one defined by p o A := 1lim t, A ({t } a net in E(M)
converging to p) for p € E(M) and A ¢ 2 ; see [9]. Always pA € p o A but in
general the inclusion is strict. If X is a minimal ttg, then a quasifactor
of X is a minimal subttg of 2X. It can be shown that every quasifactor has
the form QF(A,X) = {p o A ! p € M} for some A € 2X, QF (A,X) is non-trivial
iff A # X iff X ¢ QF(A,X); obviously X is a non—trivial quasifactor of it-
self iff X is non-trivial (X = QF({x},X)).

Finally recall that two minimal ttg's X and Y are called dZsjoint
(XLY) if X x Y is minimal. For a family K of minimal ttg's we denote by
k' the collection of minimal ttg's, which are disjoint from every member of

K, and k't means (K'L)'L



§1. QUASIFACTORS AND EXTENSIONS

For a homomorfism ¢: X —> Y of minimal ttg's (hence ¢ is an extension)
we define 2l¢ by 2i¢ = {A ¢ 2X l ¢[A] = Y}. Then 2l¢ is a closed and invari-

ant subset of ZX. The easy proof of the following lemma will be omitted.

1.1, LEMMA. Let ¢: X — Y be a homomorphism of minimal ttg's. Then

a. 2f ¢ is an open map then every quasifactor of Y is a quasifactor of X;

b. ¢"[QF(A,X)] = QF (o[AT,Y);

c. for every quasifactor % of X holds ¢>*[X] 18 trivial 1ff X c 219 iff
02+ g,

1.2. REMARK. If a ttg X contains a nonempty proper subset Z, which is in-
variant under M (i.e. for every point in Z, Z contains a minimal subset of

its orbitclosure) then X is not minimal. As a consequence we have

1.3. THEOREM. Let ¢: X —> Y be a homomorphism of minimal ttg's. Then
a. ¥ 1y X for every nontrivial quasifactor ¥ of Y;
b. X i Y for every nontrivial quasifactor X of X with X n 2t - @ .

PROOF .

a. Since ¥ is a nontrivial quasifactor of Y, there exist B ¢ ¥ and X, € X
with ¢(x0) ¢ B. So the non-empty subset A = {(x,A) ¢ X x ¥ l d(x) e A}
of X x ¥ is a proper subset. Let (x,A) € A then ¢(px) = pp(x) € pA S po A
for all p € M so p(x,A) = (px,p°A) is in A and A is invariant under M.
By 1.2 X x ¥-is not minimal, thus X y ¥.

b. Define a subset A of X x Y by A = {(A,y) e X x Y | v € ¢[AJ}. Then A # ¢
and because there exist B ¢ X and Yo € Y with Yo € ¢[B1, A is a proper
subset of X x Y. Also A is invariant under M; indeed, if x € ¢[A] and

p € M then px € p¢lA] c p o ¢[A] = ¢[poAl. (¢* is a homomorphism!) []

The following are easy consequences of 1.3: a ttg is never disjoint from
its non-trivial quasifactors and if ¢ is a highly proximal extension, then
X 1 Y for every non-trivial quasifactor X of X (See the beginning of §2
for the definition of highly proximal extensions and 2.1).

For our next result we need a definition: Let ¢: X — Y be a homo-

morfism of minimal ttg's. Call a quasifactor X of X ¢-sectional whenever



¢[A] = Y and ¢[A®] = Y for every A e X. In particular X c 21?,

1.4. THEOREM. Let ¢: X — Y be an open homomorphism of minimal ttg's. Then

X 1y Y for every non-trivial quasifactor X of X that is not ¢-sectional.

PROOF. Let X be a quasifactor of X. For the case that X n 2l¢ = ( see 1.3.b.

Let X ¢ 2L¢ be non-trivial and not ¢-sectional. Define the subset A of X x Y
+ .

by A = {(A,y) ¢ Xx Y | ¢ (y) c A}, then A is a nonempty proper subset of

X x Y. Indeed, there are B ¢ X and Yy € Y with ¢[B] = Y and Y, ¢ ¢[B®] hence

¢ (yo) c B, moreover for x € A ¢ X we have ¢ (6(x)) ¢ A. F1na11y Ais in-

variant under M, because if (A,y) € A then ¢ (py) =p © ¢ (y)(¢ is a homo-

morphism, since ¢ is open) so ¢+(py) cp o Aand p(A,y) = (peA,py) € A for

all p € M. Application of 1.2.on X x Y and A concludes the proof. [J

For the main theorem of this section we have to recall the following
fact. Let ¢: X — Y be a homomorphism of minimal ttg's and fix u € J, choose
Xy € X with ux, = X, and put Yo = ¢(x0). Let F be the Ellisgroup of Y rela-
tive Yo then ¢ is distal iff ¢+(py0) = prO for every p ¢ M. In particular

prO =7p o Fxo. (e.g.[9]1, I. 4.1.)

1.5. THEOREM. Let ¢: X — Y be a distal homomorphism of minimal ttg's. Then

every non-trivial quasifactor of X that is disjoint from Y is distal.

PROOF. Every distal homomorphism is open, so by 1.4 we may restrict our at-
tention to ¢—sectional quasifactors X of X. So let X be a quasifactor of X

and X 1 Y, and fix x. € X, Vg € Y and F ¢ uM as above. Since X is ¢-sectional

0
we have for every B ¢ X and p e M

1.6. B n pFXO #0 and B® n pr0 # 0.
Now X = QF(A,X) for an A ¢ X with X, € A=1uo A, for X = QF(B,X) for some
B € 2X so by 1.6 there is an f ¢ F with fxO € uoBand A = f—] o B e X

satisfies the requirement. Since X x Y is minimal we may write X x Y =
= {(pOA,pyO) | p e M} and (A,yo) is a u-invariant element of X x Y.
Define y: X x Y X by (pOA,pyO) +— (peA) n ¢ (pyo) Clearly ¢ is:

well defined and equivariant (commutes with the actions on X x Y and 2 )

3



We claim that ¢ is continuous too, and so § is a homomorphism of minimal
ttg's. First observe that (pecA) n ¢+(py0) = (p°A) n prO = p(AanO) =
=p o (AanO). For let x € (pOA) n ¢ (pyo) (peA) n prO say x = pfxo € poA

for some f ¢ F. Since fx_. e up (pOA) < up -l (peA) = u o A= A it follows

that x € p(AanO). As itois clear that p(AanO)_E p o (AanO) < (peA) n
(pOFxo) = (peA) n prO this proves our observation. It follows that

YIX x Y] = {p o (AanO) | p e M} = QF(AﬂFxo,X). Let a: M —> X x Y be de-
fined by a(p) = (pOA,pyO) and y: M —> QF(AanO,X) by y(p) =p o (AanO).
Then o and y are quotient maps and ¢ © o = vy, so § is continuous, which
proves our claim.

Now define $: QF(Aan ,X) — Y by $((p0A)onx Since

o) = PYp-
(poA) n pr = (qeA) n qFx implies pr n qFx # @ and so PYy = y» it
follows that ¢ is well deflned In addltlon ¢ is equivariant and by a similar
argument as for the continuity of v, ¢ is continuous and so $ is a homo-
morphism of minimal ttg's. Next we show that $ is not injective. To this
end, use 1.6 in order to choose p € M and f ¢ F with pfxo ¢ p o A. There

exists a q €e Mwith q o A # p o A and pfx, € q o A so (poA) n prO #

0
(qOA)tmpro.As (qOA,pyO) € XX Y we can find an r € M with (qu,pyO) =

=71 o (A,yo) = (rOA,ryO) and consequently (qoA) n prO = (roA) n rFxo. It
follows that prO

(roA) n rFxO = (qoA) n pro.

n rFxO # ¢ and so PYy = T¥qs whereas (poA) n prO #

Finally we show that $ is distal, or equivalently, $+(pyo) = pF(AanO)
for every p € M. If f ¢ F then ¢(pf(Aan )) = g((pfOA)onxo) = Py, SO
pF(AanO) [= ¢ (pyo). Conversely consider q ¢ M with qy, = ¢(q(Aan )) = PYy-
Then prO jqux and up q € F. Now choose v ¢ J with vp = p then vq = pf
for £ =up q € F, and vq(AanO) = pf(AnFXO). Since q(AanO) c qFx0 = prO =
= vax0 [= va0 we know that vq(Aann) = q(Aann), so q(Aann) = pf(Aann) <
< pF(AanO),‘therefore $+(py0)lg pF(AanO) and ¢ is distal.

If we consider the following commutative diagram

X<y v _OF (AnFx, %)




with wz(pOA,pyO) = PY, for p € M, we may conclude from lemma II.3 of [11],
that X has a non-trivial distal factor, say W. In fact W is obtained as a
quasifactor of QF(AnFXO,X) as follows:

Define w#: X ZQF(AnFXO’X) by w#(pOA) = {(p°A) n rFxO | reMand r o A =
= p o A}, Then w# is a homomorphism and W is defined as w#(X). But w# is in-
jective; for let p o A # q o A, x € (peA) \ (geA) and r € M with x € rFx

then (pecA) n rFX # (qoA) n rFx Since {mFx | me M} is a partltlon of X
we may conclude that (peA) n rFx ¢ w#(qOA) and so ¥ (poA) # w (qoA).

The compactness of X and W now gives X = W and consequently, X is distal. [J

We do not have to hope for an analogue of 1.3a where we compare quasi-
factors X of X with Y, The following example shows that if ¢: X — Y is
distal, then a ¢—sectional quasifactor X of X can be disjoint from Y. Let S
be the unit circle and define the transformation group (R, S ) by (t,e 1p)

— 1(w+pt)m Choose o irrational, then (R ,I) = (R,S Xsa) 13 a minimal

torus action, and it is equicontinuous. Let ¢: T — Si be the projection
in the first coordinate; ¢ is a homomorphism of minimal ttg's and clearly

¢ is distal. Define A = A= {(eiw,l) I 0 <y < 27} it is easy to see that
QF(A,IT) is a ¢—sectional quasifactor of ' and that it is isomorphic with
(R’Sa)' Since (R ,IT') is minimal it follows that (]R,S]) L (]R’Soz) and so -
(IR,S]) L (R,QF(A,TT )). Observe that the obvious fact that QF(A,T ) is

distal is in accordance with 1.5.
§2., QUASIFACTORS AND DISJOINTNESS CLASSES

In [2] the authors gave a fruitful generalization of almost one-to-
one extensions, the so called highly proximal extensions (h.p. extension for
short). We shall first summarize a few aspects of it, that are useful for
our purpose: the characterization of disjointness classes in terms of quasi-
factors.

Let ¢: X —> Y be a homomorphism of minimal ttg's; ¢ will be called
highly proximal (h.p.) if for some y € Y there is a net {tn} in T, such that
the net {tn¢+(y)} tends to a singleton in the hyperspace topology. For the

proofs of the following lemmas we refer to [2].



2.1. LEMMA. For a homomorphism ¢: X — Y of minimal ttg's the following
are equivalent:

a. ¢ 28 an h.p. extension.

b. Every non empty open subset of X contains a fiber ¢+(y) for some y e Y.
c. 21¢ = {X}.

d. If ye Y, x € ¢+(y) and p € M then p o ¢+(Y) = {px}.

The collection of all minimal ttg's can be partitioned in h.p. equi-
valence classes; two minimal ttg's are called h.p. equivalent if they have
a common extension via h.p. extensions. Every equivalence class contains a
unique maximal element: the maximal h.p. extension of each of the members
of the equivalence class. Such a minimal ttg will be called maximal highly

proximal. 1f y: M — X is an extension, then for every x, ¢ X,

0
x* = QF(Y+(xO),M) is the maximal highly proximal extension of all members

of the equivalence class of X (X* is independent of the choice of x, € X).

0
Similar to [5], prop.8.3 we have:

2.2. LEMMA., The following are equivalent for a minimal ttg X.
a. X s maximal highly proximal (i.e. X = X).
b. X Zs an open image of M.

c. Every homomorphism ¢: Y —> X of minimal ttg's is open.
The relation between h.p. extensions and disjointness is given by

2.3. LEMMA. Let X ,X,

then X, LY iff X, LY

and Y,,Y, be two h.p. equivalent pairs of minimal ttg's

9" In particular X L Y 2ff X* 1y,

2.4, THEOREM. Let X and Y be minimal ttg's.
a. If Y ©s a factor of X, then Y 45 a factor of X",

b. X iy Y 2ff Y has a non-trivial quasifactor, which is a factor of X",

PROOF. a is Theorem I.1(iii) of [2], and the "only if" in b is lemma II.4 of

[2]. The "if-part" of b is a simple corollary of 1.3 and 2.3. [

Finally we recall corollary II.1 of [2]: Let X,Xl and Y be minimal

ttg's.



2.5, If X] is a proximal extension of X (an extension via a proximal homo-

morphism) and X, has a distal factor Y, then Y is a factor of X.

1

Let K be a family of minimal ttg's; we denote by [KJ] the smallest col-
lection L of minimal ttg's with:
(i) KgcL;
(ii) X e L and ¢: Y —> X an h.p. extension then Y € L;

(iii) X e L and ¢: X —> Y a homomorphism then Y ¢ L.

The following lemma characterizes [K].

2.6, LEMMA.
a. [K] = {z | z Zs a factor of Y* for some Y € K}
b. [K'1 = K* and [K] c k',

PROOF.

a. Clearly {Z | Z is a factor of Y* for some Y ¢ K} is closed under factors
and contains K. Let ¢: Y —> Z be a homomorphism for some Y € K and let
Y: Z' — Z be an h.p. extension for a minimal Z'. From 2.4.a we know
that Z* is a factor of Y*. Since Z' and Z are h.p. equivalent, Z' is a
factor of Z*, hence of Y. Now {Z | Z is a factor of Y  for some Y e K}
satisfies (i), (ii) and (iii), and clearly it is minimal under these con-
ditions.

b. Follows from 2.3 and the obvious .fact that if X 1L Y then every factor of

X is disjoint from Y.

EXAMPLES.
(i) Let D be the collection of minimal distal ttg's and D the universal
minimal distal ttg (the phase group is fixed and understood) then
[D] = [{D}] = {Z | Z is a factor of D"},
(ii) Let P be the collection of minimal proximal ttg's and P the universal
[{P}]
(iii) Let F be a t-closed subgroup of G = uM. Then QF (ueF,M) is the universal

minimal proximal ttg then P = [P]

minimal proximal extension of minimal ttg's with Ellisgroup F ([9], IX.
3.3.(2)). Now [{QF (ueF,1)}1 = M(F) = {Y l Y is minimal andgﬁY,yo)_a F
for some y, = uy, € Y}.



To prove this we need the following definition and fact ([9],X.1.1).
Let ¢: X ;—é‘Y be a homomorphism of minimal ttg's, that respects the base
points X, = ux, € X and Vo = Wy € Y and let F =CJ(Y’YO)' ¢ is called a RIC-
extension if for every p € M: ¢ (pyo) =p o FXO' Every RIC-extension is an
open map. Since QF (ueF,M) is an image of M under a RIC-extension it follows
from 2.2 that QF (ucF,M) is maximal highly proximal. Since for every t—-closed
subgroup F' o F, QF(uoF',M) is an image of QF (uoF,M) (under a RIC-extension
defined by p ©c F +—— p o F') and every minimal Y with Ellisgroup F' is an
image of QF (ueF'M) (under a proximal extension) it follows that
[{QF (ueF,)}] = M(F). Remark that QF (uoG,M) = P and M(G) = P.

Also observe that if QF (ueG,M) # {x} then for every t—closed subgroup
K of G holds QF (ucK,M) ¢ M(F), for QF (ucK,M) and QF (uoF,M) have QF (uoG,M)

as a non—-trivial common factor.

2.7. THEOREM. Let K be a family of minimal ttg's. For a minimal ttg X the
following are equivalent:

a. X e Kl;

b. X e [KI%;

c. X ¢ [K] for every non-trivial quasifactor X of X.

PROOF. ¢ = b Assume the existence of a Z ¢ [K] with X V Z then (2.4.b) X

has a non-trivial quasifactor X which is a factor of z* and consequently
X e [K]J. b= a Since K ¢ [K] we know [K]llg 'S
for some non-trivial quasifactor X of X. Then there is a Y € K such that X

is a factor of Y*, so X V Y (2.4.b) and X * Kt. il

. a = c Suppose that X ¢ [K]

Denote the family of almost periodic minimal ttg's with AP.

2.8. LEMMA.
a. X € D Zff every non-trivial quasifactor of X is distal.

b. X € AP ZIff every non-trivial quasifactor of X is almost periodic.

PROOF .

a. Theorem 1.5 with Y trivial.

b. By [12], X ¢ AP iff 2X is almost periodic (and X minimal). In addition,
if 2% is almost periodic then every non-trivial quasifactor of X is al-

most periodic, and this in turn implies X ¢ AP. [J
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2.9. THEOREM. Let K be D or AP and let K be the universal minimal K-ttg.
Then for minimal X the following are equivalent:
1
E.XEK;
_b_.XJ_K;
c. X admits no non-trivial factors in K ;

d. X admits no non—trivial quasifactors in [KI.

PROOF. The equivalence of a, b and d is just 2.7, and a = ¢ is trivial.
c = a Suppose X ¢ Kk then X i/ Y for some Y € K. According to 2.4.b there
exists a non—trivial quasifactor ¥ of Y, which is a factor of X*. Since

¥ ¢ KcD (2.8) and using (2.5) ¥ turns out to be a non-trivial K-factor of
X. O

2.10. COROLLARY. Let K be D or AP, and let X be a minimal ttg. Then

X e K 1ff every non-trivial quasifactor of X has a non-trivial K-factor.

Ll

2.11. COROLLARY. D™ = AP™ and consequently Dt = APh.

PROOF. Since AP ¢ D it is obvious that Aptt [= DM, Let X ¢ Dll, then every

non-trivial quasifactor X of X has a non-trivial distal factor. Since in
[6] ELLIS proved (without countability assumptions), that every non-trivial

minimal point-distal ttg (and, consequently, every non—trivial element of

D) admits a non—-trivial AP-factor. From this and 2.10 it is clear that

ptt o APt 5o DM o= APM ana Dt = oL - AP - APt

Remark that every non-trivial minimal distal ttg has also a non-trivial
AP-quasifactor. For let {x} # X € D and let Y be a non-trivial AP-factor of

X, then Y is an open image of X and so Y is a quasifactor of X.

2.12. THEOREM. Let F be a t-closed subgroup of G = uM, and let X be minimal.
The following statements are equivalent:

a. X e M(F)*;

b. X 1 QF(ueF,M);

c. X has no non—trivial quasifactor, which is a factor of QF (ueF,M);

d. u o Fx = X for all x € X.

If F is a t-closed normal subgroup of G we may replace d by:

d'. There s an x € X with u o Fx = X.
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PROOF. The equivalence of a, b and c is trivial from 2.7 and the foregoing

example (iii). ¢ @ d For arbitrary x e X, QF (ucFx,X) is a quasifactor of X.
But also QF (ueFx,X) is a factor of NF(ucF,M) by way 6f the homomorphism de-
fined by p o F +—— p o Fx. Our assumption forces QF(?OFx,X) to be trivial,
it then follows that u o Fx = X. d = ¢ Suppose that X is a quasifactor of X
and a factor of QF(uoF,M). So we may assume that X = QF(D,X) for some

D e 2X with u o D = D and that the homomorphism from QF (uoF,M) onto

QF(D,X) is given by p o F+——>p o D, Since q e p o F iff q o F =p o F, we
know that (poF) o D= u{gqe D! qepoF}=p oD, so for every p ¢ M:

p o FD c (peF) o D =p o D. Choose x ¢ D; then p o Fx c p o D and p o Fx =
= p o (uoFx) = p o X = X. Therefore X ¢ D and QF(D,X) is trivial.

Now let F be a t-closed normal subgroup of G. Since d trivially implies d'
we only have to check d' = c as follows: Let x, ¢ X be such that

0

u o Fxo = X. F is normal, so for all o ¢ G F = a-lFa E_a—l o Fo, hence

o o F S_aa— o Fo = u o Fa. With notation as in the proof of d ® c, we choose

x € D, say x = pxy. Then p = va for some v € J and o ¢ G ([9], I.2.4). Since
o o Fxo cu e Faxo =q o FvaxO =ucFxcuoFDanda-co Fxo =q o (uOFXO) f
=qa o X =X it follows that QF(D,X) is trivial. O

Recall the definition of a RIC extension in example (iii). We define
a minimal ttg to be Zncontractible if the trivial homomorphism ¢: X —> {x}
is a RIC-extension or equivalently X is incontractible iff u o Gx = X for

some X € X.

2.13. COROLLARY.
a. For a minimal ttg X, the following are equivalent:
(i) X e PS5
(i1) X <Zs Zncontractible;
(iii) X has no non—trivial proximal quasifactor,
b. Let X be minimal, then X e ptt 1ff every non-trivial quasifactor of X

has a non-trivial proximal quasifactor.

PROOF. Put F = G in 2.12 and remember that G is a t-closed normal subgroup
of G.
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§3. EXTENSIONS, D AND P*

3.1. THEOREM.
a. If X € ' and ¢: X —> Y Zs distal then xt =y,
b. If ¢: X —> Y is distal then Dt nxt =0t a vh,

PROOF.

a. Clearly Xl c Yl, conversely let Z be minimal and Z 1 Y, and suppose that

Z 1y X. Then by 2.4.b there exists a non-trivial quasifactor X of X, which
is a factor of Z*. Since X € ot it follows that X is not distal (2.9),
hence 1.5 implies that X iy Y. So Y has a non-trivial quasifactor ¥,

which is a factor of X' . Then by 2.4.a ¥ is a factor of Z*, so by 2.4.b

Y yz, which contradicts the assumption.

Let Z e D' n Y' and suppose Z 1/ X. Then X has a non-trivial quasifactor

|o*

X, which is a factor of z*. From Z L Y we conclude that Z* L Y and so
X L Y. By 1.5 X must be distal, but as a factor of an element of D' this

is impossible.
3.2. COROLLARY. (Theorem II.l of [2]) Dt s closed under distal extensions.

PROOF. Let ¢: X —> Y be distal, with Y € D" then D" n Y' = D", By 3.1.b
1

pt =0t nx < Xt and X ¢ D™, O

We will now obtain the same kind of result with distal replaced by
proximal (3.5) thus generalizing a result of SHAPIRO ([15],2.4) by way of
a generalization of [11], 4.5. First remember that for a (not necessarily
minimal) ttg X, x € X is called an almost periodic point if its orbit clo-

sure 1s minimal.

3.3. LEMMA. Let X and Y be minimal with Ellisgroups H respectively F in
fi=uM. Then X L Y 2ff HF = G and X x Y contains a dense subset of almost

periodic points.

PROOF. Recall that x, € X and Yo € Y with ux, = x., and uyy =Yg and that

0 0
H and F are the Ellisgroups of X and Y relative x

0

0
X L Y, then X x Y is minimal and every element of X x Y is almost periodic.

respectively Yo Assume
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In particular X x Y is the orbit closure of (xo,yo) = u(XO,yO). Choose
Y € G; then there exists a p € M with p(xo,yo) = (xo,yyo), SO PXy = X and
PYy = YYq- Since up ¢ H and up_ly e F it follows that y = uy = up.up vy € HF,
and G c HF.

Now suppose HF = G and X x Y has a dense subset of almost periodic
points. We prove that all almost periodic points are in the orbit closure
of (xo,yo), which is a minimal ttg since u(xo,yo) = (xo,yo) ([41,3.7). The
minimality of X x Y is then obvious. Let (X,y) = (pXO,qyO) be almest peri-

odic. Then there is a v € J with VPX, = PX and vay, = 4y,- Choose a,8 € G
HF

with vp = va and vq = vB. Then (x,y) = VB(B_]ax ), and as B_lu e G

0°70

we may choose h ¢ H and f ¢ F with B la = fh. Now (x,y) = vB(fth,yO) =
-1 .

= vB(fxo,yO) = va(xO,f yo) = va(xO,yo) and (x,y) is an element of the

orbit closure of (xo,yo). d

There are several situations where X x Y has a dense set of almost
periodic points, for instance if X x Y is a distal extension of a minimal
set. Another situation is the basis of the following theorem, with notations

as above.
3.4, THEOREM. If X € P' and Y is minimal then X L Y <ff HF = G.

PROOF. We only have to prove, that the incontractiblity of X implies, that
X x Y has a dense set of almost periodic points. This follows immediately

from the remark on page 814 of [16]. []

We define a topological group T to be strongly amenable if there does
not exist any non-trivial minimal proximal ttg with phase group T, or equi-
valently, if every non-trivial minimal ttg on T is incontractible ([9],II.3).
For instance if T is abelian of nilpotent then T is strongly amenable. From
3.4 it is obﬁious, that for strongly amenable groups the disjointness of X

and Y is equivalent with HF = G. (For T abelian see [11]1,4.5).

3.5. THEOREM.
a. If X e Pt and ¢: X —> Y is proximal then xt = vt
b. If ¢: X —> Y s proximal then Ptnxt =Pt oyt



14

PROOF .

a. Assume Z 1 Y and Z minimal. Then ¢ x ]Z: X xZ—>Y x Z is proximal.
Since Y x Z is minimal it follows from [9], II.1 that X X Z contains a
unique minimal sub-ttg. By the proof of 3.4 X x Z has a dense set of al-
most periodic points and so X x Z is minimal and X L Z.

Suppose Z € PY and Z 1 Y. Let the Ellisgroups of X,Y and Z in G be re-
spectively H,F and K. By 3.4 KF = G and [9], I.4.1(2) implies that H = F

o

for a suitable choice of x, = ux, € X and Yo = u¥q € Y. But then it fol-

0 0

lows, that KH = G and Z 1 X.
3.6. COROLLARY. P'* s closed under proximal extensions.

PROOF. Similar to 3.2. [
§4. DISJOINTNESS AND WEAK MIXING

In [14] PETERSEN characterizes the weakly mixing minimal ttg's with
abelian phase group as the minimal ttg's which admit no non-trivial almost
periodic factor. We shall generalize this result slightly: see 4.3 below.
Recall that a ttg X is ergodic if X is the only closed invariant subset of .
X with non-empty interior, and that X is weakly mixing if X x X is ergodic.
We denote the collection of weakly mixing minimal ttg's with WM.

We need the following two results:
4.1, THEOREM. (ELLIS [61,1.9). Every distal and ergodic ttg is minimal.

4.2. THEOREM. Let X ¢ P~ n D' and let Y be ergodic having a dense set of
almost periodic points; then X x Y Zs ergodic. In particular this applies to

the case that Y 18 minimal.

PROOF. This is a reformulation of [16], 2.1.6, using the fact that
D' = APY, 2.9 and 2.13.(a). O

4,3. THEOREM. WM < D" and P* n D" = P n WM.
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PROOF. Let X ¢ WM and let Z be a distal factor of X. Then Z x Z is distal
and ergodic (for X x X is ergodic and ergodicity is preserved under factors).
So Z x Z is minimal by 4.1, hence Z is trivial and X e D* by 2.9. Now let
Xe P on DL, then by 4.2 X x X is ergodic, so X ¢ WM, and since Pt on WM <

c Pt oDt < WM it follows that Ptapt =P nuM. O

4.4, COROLLARY. Let T be strongly amenable; then (M = pt = AP,

We conclude this section with an observation about distal extensions of

weakly mixing minimal ttg's but first:

4.5. LEMMA.

L. . .
a. 0 is closed under proximal extensions.

b. pt 18 closed under distal extensions.

PROOF.

a. Let ¢: X —> Y be a proximal homomorphism of minimal ttg's and Y € ot
Suppose that X ¢ D then by 2.9 X has a non-trivial distal factor Z. By
2.5 Z is a factor of Y, which contradicts Y ¢ Dt.

. Let ¢: X —> Y be a distal homomorphism of minimal ttg's and Y ¢ Pt

|o

Choose Z € P and suppose X I/ Z, then there is a non-trivial quasifactor
X of X, which is a factor of z¥. If X 1/ Y, then there is a non-trivial
quasifactor ¥ of Y, which is a factor of X*, hence of z*. This contra-
dicts Z 1 Y, so X L Y. Then X is distal by 1.5 so z* has a distal factor,

but this is impossible since z" e P = pt. O

4.6. COROLLARY. Let Y € P* n WM. Then every minimal distal extension of Y

without distal factor is weakly mixing.

PROOF. Let ¢: X —> Y be distal and X ¢ D-. Since Y ¢ P* it follows from
4.5.b that X e P*, so X ¢ P- n D' = P* n WM. O

§5. DISJOINTNESS AND (H)PI
Let ¢: X —> Y be a homomorphism of minimal ttg's, ¢ is called strict-

ly-PI or X is called a strictly-PI extension of Y if there exist an ordinal

v and for every ordinal o < v a minimal ttg (W&,wa) with u-invariant base
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point v, such that

1. Wb =Y and Wv = X;

2. for every a < v (Wa,wa) is a factor of (Wa ) under a homomorphism

+1°Va+1
¢ which is either proximal or almost periodic;
a

3. if a is a limit ordinal then (W&,wa) = \T{(WB,WB) | B < al.

Here V'{(WB,WB) I B < o} denotes the (minimal!) orbit closure of (WB)B<a in
H{WB|B < o}. We shall refer to such a system {(W&’W&)’¢a} as a tower.

The homomorphism ¢: X — Y of minimal ttg's is called PI or X is a PI ex-
tension of Y, if there exist a minimal ttg Z, a strictly-PI homomorphism

Y: Z —> Y and a proximal homomorphism 6: ZV——é-X, such that the next dia-

gram commutes.

Observe, that in [16] a PI extension is what we called a strictly-PI exten-
sion. The reason for our denomination is the following:
A minimal ttg X is called (strictly-)PI if X is a (strictly-)PI extension
of the trivial ttg {*}, and this is equivalent to the definition of a
(strictly)-PI ttg in [7], [9]. In the same way we define (strictly-) HPI
homomorphisms and -ttg's, by replacing proximal by highly proximal in 2. of
the description of the tower. For more details see [7]1, [9], [16] and [2].
We intend to determine PIT and HPIL, where PI and HPI denote the col-
lections of all PI- and all HPI ttg's respectively.
First, define for a t-closed subgroup F of G, H(F) as the smallest T-
closed normal subgroup of F, such that F/H(F) with the quotient topology is
a compact Hausdorff topological group. Let Fm be the t-closed normal sub-

group of F that is the inverse limit of the sequence H(F), H(H(F)),... .

5.1. THEOREM. Let ¢: X — Y be a homomorphism of minimal ttg's. Then ¢
s PL 2ff H 2 F_, where H and F are the Ellisgroups of X and Y respectively.

PROOF. This is a relativized version of X.4.2 of [9]. [




17

From 5.1 it follows immediately that if ¢ = 8 o ¢ is PI then also 6 is
PT.

5.2. LEMMA.
a. PI = [PI] = M(G), and every PI ttg <s a factor of a strictly-PIL ttg.
b. HPI = [HPI], and every HPI ttg <s a factor of a strictly-HPL ttg.

c. X e PIT 2ff u o G x, = X.

d. PI* ¢ P' o D' and HPT' < D',

PROOF.

a. [971, X.4.2.

b. [2], Corollary III.I.

c. Follows from a and 2.12(d").

d. Since G 2 G_ it follows from ¢ and 2.13 a that PII’E PY. In 6] ELLIS
proved that every minimal distal ttg is an inverse limit of almost
‘periodic extensions and so D ¢ HPI c PI, thus pTt < HPT* c p* and
p1t c Ptaot. O

We shall now prove a PI-analogue of 3.1 and 3.5. But first observe that
if K is a collection of minimal ttg's, then k' is closed under inverse

limits, as X x VYa = V(XXYu) for X € K and Ya e K.

5.3. THEOREM.
a. If X ¢ PI' and ¢: X —> Y is strictly-PI then X~ = Y.
b. If ¢: X —> Y is strictly-PI, then PI' o x' = PI* n ¥t

PROOF . .
. .. L . L 1 L
a. Clearly every (wa,wa) in the tower of ¢ is in PI~. Since PI" ¢ P~ n D
and every ¢a is either proximal or almost periodic (hence distal) it fol-
lows from 3.1.a and 3.5.a, that for every a, W; =yt and so xt =yt

b. Follows in a similar way from 3.1.b and 3.5.b. []

5.4. COROLLARY. PI*' is closed under PI1 extensions.

PROOF. Similar to 3.2 it can be shown that PI™' is closed under strictly-PI
extensions. Let ¢: X — Y be a PI extension, then there exist a minimal
ttg Z and a strictly-PI extension y: Z —> Y, such that X is a factor of

Z. Now we may conclude that if Y ¢ PI*! then also Z ¢ PI*' and so X e PItt. O
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5.5. THEOREM.
a. D' = HPI .
b. Pt oot = Prt.

PROOF. We only have to prove the converse of 5.2.d. Let W € D‘L and let X be

a strictly-HPI ttg. If we apply 3.1.b to the almost periodic steps in the
tower of X and 2.3 to the highly proximal ones, it follows that X L W.
Since 5.2.b it is clear that this implies HPT* = Dh.

Let We D' n P and let X be a strictly-PI ttg. Using 3.1.b for the al-
most periodic steps and 3.5.b for the proximal steps, we see that X 1L W,
therefore P* n D& < PIt. O

.

5.6. COROLLARY.

a. PI* =P nwM =P n D" =P AP = PT o HPTE.

b. If T <s strongly amenable then PIY = wM = D+ = AP' = HPT .

c. If X e Pt then X € WM Zff HG_ = G (H Zs the Ellisgroup of X).

L 1 1

PROOF. a,b are clear ¢ follows from 5.2.a and 3.4. [J]

§6. DISJOINTNESS AND RELATIVE-PRIMENESS

We will now turn to some variations on the theme of whether relative
prime implies disjointness. It is wellknown, that in general this is not
true, so the problem is to search for conditions, which are sufficient for
this implication to hold. As before G = uM, and Ellisgroups are subgroups
of G. Let K*€ denote the complement of k' in the collection of all minimal
ttg's and remember that two minimal ttg's are called relative prime if they

have no non-trivial common factor.

6.1. LEMMA. Let X and Y be minimal with Ellisgroups H and F and let K be the
smallest 1-closed subgroup of G containing H u F. If OF(ueK,M) € D€ then

X and Y are not relative prime by a non-trivial common distal factor.

PROOF. Since QF (uoK,M) ¢ D'€ it has a non-trivial distal factor E: QF (uoK,M)

—> 7. Define ¢: X —> Z by px,. —> ¢(poK) and y: Y —> Z by Py, F— ® (poK) .

0
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It suffices to prove that ¢ and ¢ are well defined, for then they are ob-
viously continuous, equivariant surjections (preserving basepoints). Let
Then up—lq e Hc K, sop o Kand q o K

p and q in M be such that px, = gx

0 0"
are proximal in QF (ucK,M). Since Z is distal it follows that ¢(poK) =

= $(qu) and ¢(pxo) = ¢(qx0). Similarly ¢ is well defined. U

6.2. LEMMA. Fach of the following conditions implies that QF (ueK,M) e D'C.
a. DM M(K)'C # 0.
b. M(G_K) n Pt contains a non-trivial ttg.

PROOF. Let Z € o M(K)lc. By 2.12 there exists a z € Z with u o Kz # Z.

So QF(uOKE,Z) is non-trivial and by 2.10 it has a non—trivial distal factor.
Obviously this implies that-QF (ucK,M) has a non-trivial distal factor and
QF (ueK,M) € D, Let Z M(G_K) n P! be non-trivial. Its Ellisgroup contains
GmK and so it contains Gm. Therefore Z is an incontractible PI ttg (5.2.a)
and has a non-trivial almost periodic factor ([91,X.4.4.). This is also a

factor of QF (uoK,M), hence QF(uoK,M) e pte. O

For the following theorems we need the introduction of regular minimal
ttg's. We call a minimal ttg X regular if its Ellisgroup H is a normal sub-
group of G. In that case for all x ¢ X with ux = x we have(ﬂ(X,x) = H. For

an explicit treatment of regular minimal ttg's we refer to [1].

6.3. THEOREM. Let X and Y be minimal ttg's with X or Y regular and X € ptt,
Then X L Y Zff X and Y are relatively prime.

PROOF. Suppose X or Y is regular, X ¢ ptt and x ?'Y. With notation as in
6.1 it is clear that K = HF = FH is a t-closed subgroup of G ([9], IX.1.10).
As X /Y we have X 1/ QF (uoF,M), since Y is a factor of QF (uoF,M). In the
= o = [e] '
0 u FHX0 u KXO (2.12.4").

If H is normal then uHa—l = H for all o € G. In this case, there exists by

case that F is a normal subgroup X # u o Fx

2.12.4 an X ¢ X with u o Fx # X. Let w ¢ J and o ¢ G be such that X = WOX ) -
Then(ﬁ(X,ui) = aHa_l = H and % #uoFx=uoFux =uo FHx = u o Kx. So

in both cases we can find an x € X, such that X = QF (uoKx,X) is a non-triv-
ial quasifactor of X. Since X y ¥ (1.3) and (X,uOKE)ng it follows that

X e M(K) and X € M(K)*. The proof is finished by applying 6.1 and 6.2.a.

The other way around is trivial. []
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The following consequence of 6.2.b can also be found in [8] in a some-

what weaker version.

6.4. THEOREM. Let X and Y be minimal with Ellisgroups H and F, with X or Y
regular, such that G c HF and every quasifactor of X is incontractible.
Then X 1L Y 2ff X and Y are relatively prime.

PROOF. Let the notation be as before. Similar to the proof of 6.3 we get
a non—-trivial quasifactor X = QF(uOKg,X) of X. Our assumptions guarantee
its incontractibility. Since (X,u0K§) =) Go° it follows that

X e M(GwK) n Pt = M(K) n PL. Now apply 6.1 and 6.2.b.

Observe, that the condition of each quasifactor of X being incontract-

ible is trivially fulfilled if T is strongly amenable.
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