\qquad
stichting
mathematisch
centrum

AFDELING ZUIVERE WISKUNDE
ZN 99/80 DECEMBER
(DEPARTMENT OF PURE MATHEMATICS)
J.C.S.P. VAN DER WOUDE

WEAKLY MIXING REMARKS

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.0.).

[^0]
Weakly mixing remarks

by

Jaap van der Woude

ABSTRACT

We study homomorphisms of minimal transformation groups that admit relatively invariant measures, especially with respect to the equicontinuous structure relation and weak disjointness. In particular we prove that for an open RTM extension the equicontinuous structure relation equals the regionally proximal relation.

KEY WORDS \& PHRASES: Minimal transformation group, ergodicity, Relatively Invariant Measure, equicontinuous stmucture relation

1. INTRODUCTION

Although we assume basic knowledge about topological dynamics as can be found in $\left[G_{1}\right],[B]$ we will review some basic definitions. A topological transformation group (ttg) is a tripel ($\mathrm{T}, \mathrm{X}, \pi$), where T is a topological group, X a compact T_{2} space and $\pi: T \times X \rightarrow X$ is a continuous map such that $\pi(e, x)=x$ and $\pi(s, \pi(t, x))=\pi(s t, x)$ for all $x \in X, t, s \in T$. We will fix the group and drop the action symbol. A subset $A \subseteq X$ is called invariant if $\mathrm{TA}=\mathrm{A}$ and X is called minimal (ergodic) if the only nonempty closed invariant subset of X (with non-empty interior) is X itself.

A continuous surjection $\phi: X \rightarrow Y$ between two ttg's is called a homomorphism of $\operatorname{ttg}^{\prime} s$, or an extension if $\phi(\mathrm{tx})=\mathrm{t} \phi(\mathrm{x})$ for all $\mathrm{t} \in \mathrm{T}, \mathrm{x} \in \mathrm{X}$. Any homomorphism induces a closed invariant equivalence relation $R_{\phi}=$ $=\left\{\left(x_{1}, x_{2}\right) \in X \times X \mid \phi\left(x_{1}\right)=\phi\left(x_{2}\right)\right\}$ on X.

Let U_{X} denote the unique uniform structure on X, then we define $P_{\phi}=\cap\left\{T \alpha \cap R_{\phi} \mid \alpha \in \mathcal{X}\right\}, Q_{\phi}=\cap\left\{\bar{T} \alpha \cap \mathrm{R}_{\phi} \mid \alpha \in U_{X}\right\}$ the proximal and regionally proximal relation of ϕ; and E_{ϕ} the equicontinuous structure relation of ϕ is defined to be the smallest closed invariant equivalence relation that contains Q_{ϕ}. One of the major problems in topological dynamics is to determine $E_{\phi} . \operatorname{VEECH}\left[V_{2}\right]$, showed that $E_{\phi}=Q_{\phi}$ if the almost periodic points (points with minimal orbitclosure) are dense in R_{ϕ}. McMAHON [M] and McMAHON and $W U\left[M W^{\prime} 80\right]$ proved related results with totally different methods. We shall use those methods to prove that $E_{\phi}=Q_{\phi}$ in case ϕ is an open RIM extension. We call $\phi: X \rightarrow Y$ a RIM extension if there exists a homomorphism $\lambda: Y \rightarrow M(X)$ (into) such that $\hat{\phi} \circ \lambda: Y \rightarrow M(X) \rightarrow M(Y)$ equals id Y_{Y}, where $M(X)$ is the set of Borel probability measures with the weak star topology and $\hat{\phi}: M(X) \rightarrow M(Y)$ is the map induced by ϕ (for more details see $\left[G_{2}\right]$).

We will also be concerned with the question: when are two homomorphisms $\phi: X \rightarrow Y$ and $\psi: Z \rightarrow Y$ of minimal $t \mathrm{tg}^{\prime} \mathrm{s}$ weakly disjoint, i.e. when is $\mathrm{R}_{\phi \psi}=\{(\mathrm{x}, \mathrm{z}) \in \mathrm{X} \times \mathrm{Z} \mid \phi(\mathrm{x})=\psi(\mathrm{z})\}$ an ergodic ttg。(Notation: $\phi-\psi$). We call ϕ 'weakly mixing if $\phi-\phi$ and a minimal ttg X is weakly mixing if $\phi: X \rightarrow 1$ is weakly mixing.

An interesting result is: if $\phi: X \rightarrow Y$ is a RIM extension of metric minimal ttg's without non-trivial almost periodic factors, then ϕ is weak$1 y$ disjoint from every open extension of minimal $t \operatorname{tg}^{\prime} \mathrm{s}$ that values in Y.

2. ERGODIC POINTS

Let $\phi: X \rightarrow Y$ be a homomorphism of minimal ttg's and $n \in \mathbb{N}, \mathrm{n} \geq 2$. We call $\mathrm{x} \in \mathrm{X}$ a $\phi-\mathrm{n}$-Zocal ergodic point if for every open subset $\mathrm{W} \subseteq \mathrm{X}$ there exists a set U open in $\phi^{+} \phi(x)$ such that $U \supseteq E_{\phi}[x]$ and for open (in $\phi^{+} \phi(x)$) sets V_{1}, \ldots, V_{n} in U we have that $T\left(V_{1} \times \ldots \times V_{n}\right) \cap \Pi_{n} W \neq \emptyset$. If U can be chosen to be $\phi^{\star} \phi(x)$, we call $x \phi-n$-ergodic and clearly every $x^{\prime} \epsilon \phi^{\dagger} \phi(x)$ is $\phi-n-$ ergodic iff x is. If x is ϕ - n-(loca1) ergodic for all $n \in \mathbb{N}, n \geq 2$, we call $\mathrm{x} \phi$-(local) ergodic.

Obviously every ϕ-n-ergodic point is ϕ-n-local ergodic and if $E_{\phi}=R_{\phi}$ the converse is true.

If $\phi: X \rightarrow 1$ we skip the prefix ϕ in the above definitions. Note that if x is $\phi-\mathrm{n}$-(local) ergodic then tx is for all $\mathrm{t} \in \mathrm{T}$.

1. PROPOSITION. Let $\phi: X \rightarrow Y$ be a homomorphism of minimal ttg's. If $\mathrm{x} \in \mathrm{X}$ is ϕ-2-local ergodic then $\mathrm{Q}_{\phi}[\mathrm{x}]=\mathrm{E}_{\phi}[\mathrm{x}]$. If $\mathrm{X} \in \mathrm{X}$ is ϕ-2-ergodic then $\mathrm{Q}_{\phi}[\mathrm{x}]=\mathrm{R}_{\phi}[\mathrm{x}]=\phi^{\star} \phi(\mathrm{x})$.

PRoof. Choose $\left(x, x^{\prime}\right) \in R_{\phi}\left(E_{\phi}\right)$ and $\alpha \in U_{X}$. Choose $\beta \in U_{X}$ with $\beta=\beta^{-1}$ and $\beta \circ \beta \subseteq \alpha$ then $T(\beta(x) \times \beta(x)) \subseteq T \alpha$. Choose U for $W=\beta(x)$ as in the definition. For every neighbourhood $V \times V^{\prime}$ of (x, x^{\prime}) in $\phi^{\leftarrow} \phi(x) \times \phi^{+} \phi(x)$ (in $U \times U$) we have $V \times V^{\prime} \cap T(\beta(x) \times \beta(x)) \neq \emptyset$, so $\left(x, x^{\prime}\right) \in \overline{T \alpha \cap \phi^{*} \phi(x) \times \phi^{*} \phi(x)} \subseteq \overline{T \alpha \cap R_{\phi}}$, i.e. $\left(x, x^{\prime}\right) \in Q_{\phi}$.
2. COROLLARY. Let $\phi: X \rightarrow Y$ be a homomorphism of minimal ttg's. If there is a ϕ-2-ergodic point $\mathrm{x} \in \mathrm{X}$ then $\mathrm{E}_{\phi}=\mathrm{R}_{\phi}$.

PROOF. Since every x^{\prime} in $\phi(x)$ is a $\phi-2$-ergodic point it follows that $\phi^{+} \phi(x) \times \phi^{\leftarrow} \phi(x)=\phi^{\leftarrow} \phi(x) \times \phi^{\leftarrow} \phi(x) \cap Q_{\phi} \subseteq E_{\phi}$. But then $\theta: X / E_{\phi} \rightarrow Y$ is almost one to one and almost periodic so θ is a homeomorphism and $X / E_{\phi} \cong Y$, $E_{\phi}=R_{\phi}$.

For the following we need to remember that $\phi: X \rightarrow Y$ is open iff for all $y \in Y, x \in \phi^{+}(y)$ and for any net $y_{i} \rightarrow y$ we can choose $x_{i} \in \phi^{+}\left(y_{i}\right)$ with $x_{i} \rightarrow x$.
3. PROPOSITION. Let $\phi: X \rightarrow Y$ be a homomorphism of minimal ttg's such that $K: X \rightarrow X / E_{\phi}$ is open. Suppose there exists a $\mathrm{y} \in \mathrm{Y}$ such that x is $\phi-2$-Zocal ergodic for all $\mathrm{x} \in \phi^{\star}(\mathrm{y})$. Then $\mathrm{E}_{\phi}=\mathrm{Q}_{\phi}$.

PROOF. Since x is $\phi-2$-local ergodic for every $x \in \phi^{\dagger}(y)$ it follows from Prop. 1 that $Q_{\phi} \cap \phi^{\star}(y) \times \phi^{\star}(y)=E_{\phi} \cap \phi^{\star}(y) \times \phi^{\star}(y)$. Let $z=\kappa(x) \in X / E_{\phi^{\prime}}$ Choose $\left(x_{1}, x_{2}\right) \in E_{\phi}$ and let $z_{0}=\kappa\left(x_{1}\right)=k\left(x_{2}\right)$. Choose a net $\left\{t_{i}\right\}$ in T with $t_{i} z_{i} z_{0}$. Since κ is open we can choose x_{1}^{i} and x_{2}^{i} in $\kappa^{*}(z)$ such that $t_{i}\left(x_{1}^{i}, x \frac{i}{2}\right) \rightarrow\left(x_{1}, x_{2}\right)$. Now $\left(x_{1}^{i}, x_{2}^{i}\right) \in E_{\phi} \cap \phi^{\leftarrow}(y) \times \phi^{\leftarrow}(y) \subseteq Q_{\phi}$ and so $\left(x_{1}, x_{2}\right) \in \overline{T Q}_{\phi}=Q_{\phi}$.
4. COROLLARY. Let $\phi: X \rightarrow Y$ be an open homomorphism of minimal ttg's. If there is an $\mathrm{x} \in \mathrm{X}$ that is ϕ-2-ergodic then $\mathrm{Q}_{\phi}=\mathrm{R}_{\phi}$.

PROOF. By Cor. $2 E_{\phi}=R_{\phi}$ so, with notation as in $\underline{3} k=\phi$ is open. Since x^{\prime} is ϕ-2-ergodic for all $x^{\prime} \in \phi^{\star} \phi(x)$ it follows from Prop. 3 that $\mathrm{Q}_{\phi}=\mathrm{E}_{\phi}=\mathrm{R}_{\phi}$.
5. COROLLARY. Let X be minimal, then $\mathrm{Q}_{\mathrm{X}}=\mathrm{X} \times \mathrm{X}$ iff there exists a 2-ergodic point $\left(\mathrm{Q}_{\mathrm{X}}=\mathrm{Q}_{\phi}\right.$ with $\left.\phi: \mathrm{X} \rightarrow 1\right)$.

PROOF. The "if" part is just Cor.4. Choose U and V open in X and $\left(x_{1}, x_{2}\right) \in U \times V$, then $\left(x_{1}, x_{2}\right) \in Q_{X}$ so $U \times V \cap T \alpha \neq \emptyset$ for any $\alpha \in U_{X}$. Clear$1 y$ for any $W \subseteq X$ open, there is an $\alpha \in U_{X}$ with $\alpha \subseteq T(W \times W)$ and so $T \alpha \subseteq T(W \times W)$.

Let $\phi: X \rightarrow Y$ be a homomorphism of $\operatorname{ttg}^{\prime} s$ and $n \in \mathbb{N}, n \geq 2$. A point $x_{0} \in X$ is called a P_{ϕ}^{n} point if $\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\phi \phi\left(x_{0}\right)\right)^{n} \mid \overline{T\left(x_{1}, \ldots, x_{n}\right.}\right) n$ $\left.\cap \Delta_{x}^{n} \neq \emptyset\right\}$ is dense in $\left(\phi^{\star} \phi\left(x_{0}\right)\right)^{n}$. Clearly, if ϕ is proximal then every x is a P_{ϕ}^{n} point for all $\mathrm{n} \in \mathbb{N}, \mathrm{n} \geq 2$ 。
7. PROPOSITION. Let $\phi: X \rightarrow Y$ be a homomorphism of $\operatorname{ttg}^{\prime} s$ and $n \in \mathbb{N}, \mathrm{n} \geq 2$. a. If X is minimal, then every $\mathrm{P}_{\phi}^{\mathrm{n}}$-point is a ϕ-n-ergodic point.
b If x_{0} has a countable neighbourhood base $W_{x_{0}}$ for some $\mathrm{x}_{0} \in \mathrm{X}$, then every ϕ-n-ergodic point is a $\mathrm{P}_{\phi}^{\mathrm{n}}$-point.
In particular if X is metric and minimal, then the ϕ-n-ergodic points are just the $\mathrm{P}_{\phi}^{\mathrm{n}}$-points.

PROOF. a Let $x \in X$ be a P_{ϕ}^{n} point. Choose $W \subseteq X$ open and U_{1}, \ldots, U_{n} open in $\phi^{\leftarrow} \phi(x)$. Then, since X is minimal, $\Delta_{X}^{n} \subseteq T(W \times \ldots \times W)$ (n-times). Since $U_{1} \times \ldots \times U_{n}$ is open in $\left(\phi^{\dagger} \phi(x)\right)^{n}$ there is a $\left(x_{1}, \ldots, x_{n}\right) \in U_{1} \times \ldots \times U_{n}$ with $\left.\Delta_{X}^{n} \cap \overline{T\left(x_{1}, \ldots, x_{n}\right.}\right) \neq \emptyset$. So $\left.\Delta_{X}^{n} \subseteq \overline{T\left(U_{1} \times \ldots \times U_{n}\right.}\right)$ and $\overline{T\left(U_{1} \times \ldots \times U_{n}\right)} \cap T(W \times \ldots \times W) \neq \emptyset$. But then $U_{1} \times \ldots \times U_{n} \cap T(W \times \ldots \times W) \neq \emptyset$ and x is $\phi-n$-ergodic.
b Let $\mathrm{x} \in \mathrm{X}$ be ϕ-n-ergodic, and choose $0 \subseteq\left(\phi^{\star} \phi(\mathrm{x})\right)^{\mathrm{n}}$ open in $\left(\phi^{\star} \phi(\mathrm{x})\right)^{\mathrm{n}}$. Let V_{1}, \ldots, V_{n} be open in $\phi^{\leftarrow} \phi(x)$ such that $V_{1} \times \ldots \times V_{n} \subseteq 0$ and let $W_{X_{0}}=$ $=\left\{W_{\alpha} \mid \alpha \in \mathbb{N}\right\}$.
For $\alpha \in \mathbb{N}$ define t_{α} and $V_{1}^{\alpha}, \ldots, \nabla_{n}^{\alpha}$ inductively as follows: let $t_{1} \in T$ be such that $t_{1}\left(V_{1} \times \ldots \times V_{n}\right) \cap W_{1} \times \ldots \times W_{1} \neq \emptyset$ and let $V_{i}^{\prime}:=V_{i}$. Let t_{α} and V_{i}^{α} be defined such that $t_{\alpha}\left(V_{1}^{\alpha} \times \ldots \times V_{n}^{\alpha}\right) \cap W_{\alpha} \times \ldots \times W_{\alpha} \neq \emptyset$. Then choose $V_{i}^{\alpha+1} \neq \emptyset$ such that $V_{i}^{\alpha+1} \subseteq \overline{V_{i}^{\alpha+1}} \subseteq V_{i}^{\alpha} \cap t_{\alpha}^{-1} W_{\alpha}^{n}$ and let $t_{\alpha+1}^{\alpha} \in T$ be such that $t_{\alpha+1}\left(V_{1}^{\alpha+1} \times \ldots \times V_{n}^{\alpha+1}\right) \cap W_{\alpha+1}^{1} \times \ldots \times W_{\alpha+1}^{\alpha} \neq \emptyset$.
Choose $x_{i} \in \cap\left\{V_{i}^{\alpha} \mid \alpha \in \mathbb{N}\right\} \subseteq V_{i} \cap\left\{t_{\alpha}^{-1} W_{\alpha} \mid \alpha \in \mathbb{N}\right\}$ for all $i=1, \ldots, n$ then $\left(x_{1}, \ldots, x_{n}\right) \in 0$ and $t_{\alpha}\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{0}, \ldots, x_{0}\right)$, i.e. x is a P_{ϕ}^{n} point.

Using an idea of McMAHON we will prove the existence of $\phi-n-1 o c a l$ ergodic points under certain conditions. For that we need the following theorem.
8. THEOREM. Let $\phi: X \rightarrow Y$ be a RIM extension of minimal ttg's with section $\lambda(: Y \rightarrow M(X))$ and $\operatorname{let} \mathrm{X}_{0} \in \mathrm{X}$.
a Let U be open in $\phi^{\leftarrow} \phi\left(\mathrm{x}_{0}\right)$ and $\mathrm{F} \subseteq \phi^{\leftarrow} \phi\left(\mathrm{x}_{0}\right)$. Then

$$
\mathrm{E}_{\phi}[F] \times\left(\mathrm{U} \cap \operatorname{supp} \lambda_{\phi\left(\mathrm{X}_{0}\right)}\right) \subseteq T(F \times U)
$$

b Let $\mathrm{n} \in \mathbb{N}, \mathrm{n} \geq 2, \mathrm{U}_{\mathrm{i}}$ open in supp $\lambda_{\phi\left(\mathrm{x}_{0}\right)}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$ such that $\mathrm{E}_{\phi}\left[\mathrm{U}_{\mathrm{i}}\right]$ is open in $\phi{ }^{\leftarrow} \phi\left(\mathrm{x}_{0}\right)$ for $\mathrm{i}=2, \ldots, \mathrm{n}$. Then $\mathrm{E}_{\phi}\left[\mathrm{U}_{1}\right] \times\left(\mathrm{E}_{\phi}\left[\mathrm{U}_{2}\right] \cap \operatorname{supp} \lambda_{\phi\left(\mathrm{x}_{0}\right)}\right) \times \ldots \times\left(\mathrm{E}_{\phi}\left[\mathrm{U}_{\mathrm{n}}\right] \cap \operatorname{supp} \lambda_{\phi\left(\mathrm{x}_{0}\right)}\right) \subseteq$
$\subseteq \frac{\mathrm{T}\left(\mathrm{U}_{1} \times \ldots \times \mathrm{U}_{\mathrm{n}}\right)}{}$.

PROOF. a This is a special case of [M] 1.4 .
b This is a special case of [MW' 80] 1.1.
9. PROPOSITION. Let $\phi: \mathrm{X} \rightarrow \mathrm{Y}$ be a RIM extension of minimal ttg's with section λ. Let $\mathrm{k}: \mathrm{X} \rightarrow \mathrm{X} / \mathrm{E}_{\phi}$ and $\mathrm{x} \in \mathrm{X}$. If x has a neighbourhood V in $\phi^{+} \phi(\mathrm{x})$ with $\mathrm{E}_{\phi}[\mathrm{V}] \subseteq \operatorname{supp} \lambda_{\phi(\mathrm{x})}$ and $\mathrm{k}^{\prime}=\left.\kappa\right|_{\phi}{ }_{\phi}{ }_{\phi(\mathrm{x})}: \phi^{\leftarrow} \phi(\mathrm{x}) \rightarrow \kappa\left[\phi^{\leftarrow} \phi(\mathrm{x})\right]$ is open in a dense subset of V then x is ϕ-local ergodic.

PROOF. Choose $W \subseteq X$ open. Then $K[W]^{\circ} \neq \emptyset$ (X is minimal!), so there is a neighbourhood V^{*}. of $k(x)$ and a $t \in T$ with $t V^{*} \subseteq k[W]^{\circ}$. Define $U:=K^{*} V^{*} \cap V$, and choose $n \in \mathbb{N}, \mathrm{n} \geq 2$. Choose V_{1}, \ldots, V_{n} open in U. Since the points of openness of k^{\prime} are dense in V and so in U we can find $V_{i}^{\prime} \subseteq V_{i}$ such that $\mathrm{E}_{\phi}\left[\mathrm{V}_{\mathrm{i}}^{\prime}\right]$ is open in $\phi^{\leftarrow} \phi(\mathrm{x})$. Obviously $\mathrm{E}_{\phi}\left[\mathrm{V}_{\mathrm{i}}^{\prime}\right] \subseteq \mathrm{E}_{\phi}\left[\mathrm{V}_{\mathrm{i}}\right] \subseteq \mathrm{E}_{\phi}[\mathrm{U}] \subseteq \mathrm{E}_{\phi}[\mathrm{V}] \subseteq \operatorname{supp} \lambda_{\phi}(\mathrm{x})$. Then by $8 \underline{b}$ we have that

$$
E_{\phi}\left[V_{1}^{\prime}\right] \times \ldots \times E_{\phi}\left[V_{n}^{\prime}\right] \subseteq \overline{T\left(V_{1}^{\prime} \times \ldots \times V_{n}^{\prime}\right)} \subseteq \overline{T\left(V_{1} \times \ldots \times V_{n}\right)} .
$$

Since $t E_{\phi}\left[V_{i}^{\prime}\right]=E_{\phi}\left[t V_{i}^{\prime}\right]=\kappa^{*} \kappa\left[t V_{i}^{\prime}\right]$ and $k\left[t V_{i}^{!}\right] \subseteq t V^{*} \subseteq \kappa[W]^{\circ}$ we have that $W \cap \mathrm{tE}_{\phi}\left[\mathrm{V}_{\mathrm{i}}\right] \neq \emptyset$ and so

$$
\emptyset \neq \mathrm{W} \times \ldots \times \mathrm{W} \cap \mathrm{~T}\left(\mathrm{E}_{\phi}\left[\mathrm{V}_{1}^{\prime}\right] \times \ldots \times \mathrm{E}_{\phi}\left[\mathrm{V}_{\mathrm{n}}^{\prime}\right]\right) \subseteq \mathrm{W} \times \ldots \times \mathrm{W} \cap \overline{T\left(V_{1} \times \ldots \times V_{n}\right)}
$$

but then $W \times \ldots \times W \cap T\left(V_{1} \times \ldots \times V_{n}\right) \neq \emptyset$.
10. PROPOSITION. If X is minimal and has an invariant measure μ then every $\mathrm{x} \in \mathrm{X}$ is local ergodic. In particular $\mathrm{Q}_{\mathrm{X}}=\mathrm{E}_{\mathrm{X}}$.

PROOF. Note that $X=\operatorname{supp} \mu\left(=\operatorname{supp} \lambda_{1}=\phi^{+} \phi(x)\right.$ with $\left.\phi: X \rightarrow 1\right)$. Since in the proof of Prop. 9 the openness of κ^{\prime} in some points was only used to make sure that any V open in U contained a V^{\prime} with $E_{\phi}\left[V^{\prime}\right]$ open in $\phi^{+} \phi(x)$, it is enough to prove that any open V in X contains an open V^{\prime} in X with $E_{\phi}\left[V^{r}\right]$ open. The proposition follows then as in 9.
Let $\kappa: X \rightarrow X / E E_{X}$ and let $V^{\prime}:=\kappa^{*}\left(\kappa[V]^{0}\right) \cap V$. Then $E_{\phi}\left[V^{\prime}\right]=\kappa^{*} \kappa\left[V^{\prime}\right]=$ $=\kappa^{*}\left(\kappa[V]^{\circ}\right)$ is open and non empty. From Prop. 1 it follows that $Q_{X}[x]=$ $=E_{X}[x]$ for all $x \in X$ and so $Q_{X}=E_{X}$ (which is a special case of $[M] 1.5$).
11. COROLLARY. a If $\phi: X \rightarrow Y$ is a RIM extension of metric minimal ttg's then there is a residual subset of ϕ-local ergodic points.
b If $\phi: \mathrm{X} \rightarrow \mathrm{Y}$ is a RIM extension of minimal ttg's with $\mathrm{R}_{\phi}=\mathrm{E}_{\phi}$ then every
$\mathrm{x} \in \mathrm{X}$ with $\operatorname{supp} \lambda_{\phi(\mathrm{x})}=\phi^{\leftarrow} \phi(\mathrm{x})$ is ϕ-ergodic.
PROOF. a Let $K: X \rightarrow X / E_{\phi}$. Since X is metric and minimal, there is a residual set $X_{1} \subseteq X$ in each point of which κ is open and, by $\left[G_{2}\right] 3.3$, there is a residual set $X_{2} \subseteq X$ with $\operatorname{supp} \lambda_{\phi(x)}=\phi_{\phi}{ }^{4}(x)$ for all $x \in X_{2}$. Let $X_{0}=X_{1} \cap X_{2}$ then X_{0} is residual. By $\left[V_{1}\right]$ prop. 3.1 there is a residual subset Y_{0} of Y such , that $X_{0} \cap \phi^{\leftarrow}(y)$ is residual in $\phi^{\star}(y)$ for all y $\in Y_{0}$. Choose $x \in \phi^{\star}\left[Y_{0}\right]$, then k is open in a dense subset of $\phi^{\star} \phi(x)$ and so k^{\prime} is open in a dense subset of $\phi^{\leftarrow} \phi(x)$, also $\operatorname{supp} \lambda_{\phi(x)}=\phi^{\leftarrow} \phi(x)$. So from Prop. 9 it follows that x is ϕ-local ergodic. Clearly, $\phi^{[}\left[Y_{0}\right]$ is residual in X. b In this case $k=\phi$. If $\operatorname{supp} \lambda_{\phi(x)}=\phi^{+} \phi(x)$ then $\kappa=\phi$ is open in x and so κ^{\prime} is open in all $x^{\prime} \in \phi^{\star} \phi(x)\left(=\phi^{\circ} \phi\left(x^{\prime}\right)\right)$. From Prop. 9 and the observation that $E_{\phi}[x]=\phi^{\leftarrow} \phi(x)$ it follows that x is ϕ-ergodic.

The following theorem as well as its proof is a generalization of $\left[G_{1}\right]$ II.2.1.
12. THEOREM. Let $\phi: \mathrm{X} \rightarrow \mathrm{Y}$ and $\psi: \mathrm{Z} \rightarrow \mathrm{Y}$ be homomorphisms of minimal ttg's with ψ open. If for every $\mathrm{n} \in \mathbb{N}, \mathrm{n} \geq 2$ there exists a ϕ - n -ergodic point $x \in X$, then $\phi-\psi\left(\right.$ i.e. $R_{\phi \psi}=\{(x, z) \in X \times Z \mid \phi(x)=\psi(z)\}$ is ergodic.

PROOF. Choose $W=\overline{T W} \subseteq R_{\phi \psi}$ with int $_{R_{\phi \psi}} W \neq \emptyset$. Since ψ is open and X minimal we may choose open sets U and V in X and Z such that $U \times V \cap R_{\phi \psi} \subseteq W^{\circ}$ and for every $v \in V$ there is a $u \in U$ with $(u, v) \in R_{\phi \psi}$.
Since Z is minimal there are t_{1}, \ldots, t_{m} in T with $Z=U_{i=1}^{m} t_{i} V$. Choose $(\bar{x}, \bar{z}) \in R_{\phi \psi}$ and a neighbourhood 0 of (\bar{x}, \bar{z}) in $R_{\phi \psi}$. Since ψ is open there are open neighbourhoods $O_{\bar{x}}$ and $O_{\bar{z}}$ of \bar{x} and \bar{z} in X and Z such that $O_{\overline{\mathbf{x}}} \times O_{\bar{z}} \cap R_{\phi \psi} \subseteq 0$ and for every $o_{1} \in O_{\overline{\bar{x}}}$ there is an $o_{2} \in O_{\bar{z}}$ with $\left(\mathrm{o}_{1}, \mathrm{o}_{2}\right) \in \mathrm{R}_{\phi \psi}$.
Choose a ϕ-m-ergodic point $x \in 0_{\bar{x}}$ [Note that x is ϕ-n-ergodic for all n with $2 \leq n \leq m]$, and choose $z \in O_{\bar{z}}$ with $\phi(x)=\psi(z)$. Let $y:=\phi(x)=\psi(z)$ and $U_{x}:=O_{\bar{X}}, V_{z}:=0_{\bar{z}}$. Without loss of generality choose $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq$ $\subseteq\left\{t_{1}, \ldots, t_{m}\right\}$ such that $\psi^{\leftarrow}(y) \subseteq U_{i=1}^{n} t_{i} V$ and $t_{i} V \cap \psi^{\star}(y) \neq \emptyset$ for $i=1, \ldots, n$. Then $L:=t_{1} U \times \ldots \times t_{n} U \cap\left(\phi^{\leftarrow}(y)\right)^{n}$ is open in $\left(\phi^{\leftarrow}(y)\right)^{n}$ and non-empty, for choose $z_{i} \in V \cap t_{i}^{-1} \psi^{{ }^{n}}(y)$ and $x_{i} \in U$ such that $\phi\left(x_{i}\right)=\psi\left(z_{i}\right)$ then $\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right) \in L$. Since U_{x} is open in X and x is ϕ-n-ergodic it follows
that there exists a $t \in T$ with

$$
t\left(t_{1} U \times \ldots \times t_{n} U \cap\left(\phi^{\leftarrow}(y)\right)^{n}\right) \cap \prod_{\mathrm{n}} U_{x} \neq \emptyset
$$

Choose $\bar{x}_{i} \in U$ with $t t_{i} \bar{x}_{i} \in U_{x} \cap \phi^{+}(t y)$ for $i=1, \ldots, n$.
Choose $z^{\prime} \in V_{z}$ such that $\phi\left(t t_{i} \bar{x}_{i}\right)=\psi\left(z^{\prime}\right)=t y$, then $t^{-1} z^{\prime} \in t_{i_{0}} V \cap \psi^{\star}(y)$
for some $t_{i_{0}} \in\left\{t_{1}, \ldots, t_{n}\right\}$. But now

$$
\left(t t_{i_{0}} \bar{x}_{i_{0}}, z^{\prime}\right) \in \mathrm{tt}_{i_{0}}(\mathrm{U} \times \mathrm{V}) \cap \mathrm{R}_{\phi \psi} \cap \mathrm{U}_{\mathrm{x}} \times \mathrm{V}_{\mathrm{z}} \subseteq \mathrm{TW}{ }^{\circ} \cap 0 \neq \emptyset
$$

Since 0 was an arbitrary neighbourhood of (\bar{x}, \bar{z}) in $R_{\phi \psi}$ it follows that $(\bar{x}, \bar{z}) \in \overline{\mathrm{TW}}=\mathrm{W}$ and so $\mathrm{R}_{\phi \psi}=\mathrm{W}$; i.e. $\mathrm{R}_{\phi \psi}$ is ergodic.
13. COROLLARY. Let $\phi: X \rightarrow Y$ be an open RIM extension of minimal ttg's with section λ. Suppose there is an $\mathrm{x} \in \mathrm{X}$ with $\phi^{\leftarrow} \phi(\mathrm{x})=\operatorname{supp} \lambda_{\phi(\mathrm{x})}(e . g \cdot \mathrm{X}$ is metric). Equivalent are
$\left.\begin{array}{ll}\frac{\mathrm{a}}{} \quad \mathrm{Q}_{\phi}=\mathrm{R}_{\phi} \\ \underline{\mathrm{b}} \quad \mathrm{E}_{\phi}=\mathrm{R}_{\phi}\end{array}\right\} \quad$ (cf.[MW'80] Prop.2.2)
c ϕ is weakly mixing
d $\phi \div \psi$ for every open homomorphism $\psi: Z \rightarrow Y$ of minimal $t t{ }^{\prime}$'s.
PROOF. $d \Rightarrow c \Rightarrow a \Rightarrow b$ is obvious

$$
\mathrm{b} \Rightarrow \mathrm{~d} \text { follows from } 11 \text { and } 12 \text { and }[\mathrm{M}] 2.2 \ldots
$$

14. COROLLARY. If X is minimal and has an invariant measure, then X is weakly mixing iff X is weakly disjoint from every minimal ttg (iff $\mathrm{E}_{\mathrm{X}}=\mathrm{Q}_{\mathrm{X}}=$ $=\mathrm{X} \times \mathrm{X}$) 。
15. COROLLARY. Let $\phi: X \rightarrow Y$ and $\psi: Z \rightarrow Y$ be homomorphisms of minimal ttg's with ψ open.
a If ϕ is a RIM extension with $\mathrm{E}_{\phi}=\mathrm{R}_{\phi}$ and X metric then $\phi-\psi$.
b If ϕ is proximal then $\phi \div \psi$.
In particular any open proximal map is weakly mixing.
16. $E_{\phi}=Q_{\phi}$ AND "JOE's CONJECTURE"

The next theorem gives a partial solution to a question raised by J. AUSLANDER. If x_{1} and x_{2} are regionally proximal and if we have a net $\left(x_{i}^{1}, x_{i}^{2}\right) \rightarrow\left(x_{1}, x_{2}\right)$, is it possible to find a net $\left(\bar{x}_{i}^{1}, \bar{x}_{i}^{2}\right)$, suitably close to the first one, that converges to $\left(x_{1}, x_{2}\right)$ such that for some net $\left\{t_{i}\right\}$ in T $t_{i}\left(\bar{x}_{i}, \bar{x}_{i}^{2}\right) \rightarrow \Delta$? It is not difficult to see that we can state that question as follows: When do we have that $Q_{\phi}=\cap\left\{i n t_{R_{\phi}} \overline{T \alpha \cap R_{\phi}} \mid \alpha \in U_{X}\right\}$. In the absolute case McMAHON proved the equality for minimal ttg's with invariant measure.
16. LEMMA. Let $\phi: X \rightarrow Y$ be an open RIM extension of minimal ttg's and $W \subseteq X$ open. Then there is an open set $\mathrm{U}=\mathrm{E}_{\phi}[\mathrm{U}]$ in X such that $\mathrm{R}_{\phi} \cap \mathrm{U}_{1} \times \mathrm{U}_{2} \cap$ $\cap \mathrm{T}(\mathrm{W} \times \mathrm{W}) \neq \emptyset$ for $a Z Z \mathrm{U}_{1}$ and U_{2} open in U with $\mathrm{R}_{\phi} \cap \mathrm{U}_{1} \times \mathrm{U}_{2} \neq \emptyset$.

PROOF. Let $\kappa: X \rightarrow X / E_{\phi}$ and define $U:=\kappa^{\leftarrow}\left(\kappa[W]^{\circ}\right)$. Clearly $U=E_{\phi}[U]=\kappa^{\leftarrow} \kappa[U]$ is open in X.
Choose U_{1} and U_{2} open in U with $\phi\left[U_{1}\right] \cap \phi\left[U_{2}\right]=: V^{*} \neq \emptyset$. Since $U_{1} \cap \phi^{\star}\left(V^{*}\right)$ $\neq \emptyset$ and open we can choose $V_{1} \subseteq U_{1} \cap \phi^{*}\left(V^{*}\right)$ open with $E_{\phi}\left[V_{1}\right]$ open in X. Then $\phi\left[\mathrm{V}_{1}\right] \subseteq \phi\left[\mathrm{U}_{2}\right]$ and $\mathrm{U}_{2} \cap \phi^{\star}\left(\phi\left[\mathrm{V}_{1}\right]\right) \neq \emptyset$ and open. Choose $\mathrm{V}_{2} \subseteq \mathrm{U}_{2}{ }^{n}$ $n \phi^{+}\left[\phi\left[V_{1}\right]\right]$ open with $E_{\phi}\left[V_{2}\right]$ open in X and remark that $\phi\left[V_{2}\right] \subseteq \phi\left[V_{1}\right]$. As $W \cap E_{\phi}\left[V_{2}\right](\neq \emptyset)$ is open we can choose $x_{0} \in W \cap E_{\phi}\left[V_{2}\right]$ with $x_{0} \in \operatorname{supp} \lambda_{\phi\left(x_{0}\right)}$, say $y_{0}=\phi\left(x_{0}\right)$.
Clearly $y_{0} \in \phi\left[V_{2}\right] \subseteq \phi\left[V_{1}\right]$ so $\tilde{V}_{i}:=V_{i} \cap \phi^{\leftarrow}\left(y_{0}\right) \neq \phi$ and open in $\phi^{\leftarrow}\left(y_{0}\right)$ and so $E_{\phi}\left[\tilde{V}_{i}\right]=E_{\phi}\left[V_{i} \cap \phi^{\star}\left(y_{0}\right)\right]=E_{\phi}\left[V_{i}\right] \cap \phi^{\kappa}\left(y_{0}\right)$ is open in $\phi^{*}\left(y_{0}\right)$. By Theorem 8 b we have that

$$
\begin{aligned}
& \mathrm{E}_{\phi}\left[\tilde{\mathrm{V}}_{1}\right] \times\left(\mathrm{E}_{\phi}\left[\tilde{\mathrm{V}}_{2}\right] \cap \operatorname{supp} \lambda_{\mathrm{y}_{0}}\right) \subseteq \overline{\mathrm{T}\left(\tilde{\mathrm{~V}}_{1} \times \widetilde{\mathrm{V}}_{2}\right)} \subseteq \\
& \subseteq \overline{\mathrm{T}\left(\mathrm{~V}_{1} \times \mathrm{V}_{2} \cap \phi^{\leftarrow} \mathrm{y}_{0} \times \phi^{\leftarrow} \mathrm{y}_{0}\right)} \subseteq \overline{\mathrm{T}\left(\mathrm{U}_{1} \times \mathrm{U}_{2} \cap \mathrm{R}_{\phi}\right)}
\end{aligned}
$$

But $x_{0} \in E_{\phi}\left[\tilde{V}_{2}\right] \cap \operatorname{supp} \lambda_{y_{0}} \cap W$ and obviously $W \cap E_{\phi}\left[\tilde{V}_{1}\right] \neq \emptyset$ so
$W \times W \cap E_{\phi}\left[\tilde{V}_{1}\right] \times\left(E_{\phi}\left[\tilde{V}_{2}\right] \cap \operatorname{supp} \lambda_{y_{0}}\right) \neq \emptyset$ and $W \times W \cap T\left(U_{1} \times U_{2} \cap R_{\phi}\right) \neq \emptyset$. As $W \times W$ is open we have $W \times W \cap T\left(U_{1} \times U_{2} \cap R_{\phi}\right)=W \times W \cap T\left(U_{1} \times U_{2}\right) \cap R_{\phi} \neq \emptyset$ 。
17. THEOREM. Let $\phi: X \rightarrow Y$ be an open RIM extension of minimal ttg's. Then $\mathrm{E}_{\phi}=\mathrm{Q}_{\phi}=\cap$ int $\left._{\mathrm{R}_{\phi}} \overline{\mathrm{T} \alpha \cap \mathrm{R}_{\phi}} \mid \alpha \in U_{\mathrm{X}}\right\}$.
PROOF. Choose $\alpha \in U_{X}$ and $\beta \in U_{X}$ such that $\beta=\beta^{-1}$ and $\beta \circ \beta \subseteq \alpha$. For $W:=\beta\left(x_{0}\right)$ for some fixed $x_{0} \in X$ we have

$$
\overline{T(W \times W) \cap R_{\phi}} \subseteq \overline{T \alpha \cap R_{\phi}}
$$

Choose $U=E_{\phi}[\mathrm{U}]$ open in X as in lemma 16 .
Choose $\left(x_{1}, x_{2}\right) \in U \times U \cap R_{\phi}$ and open neighbourhoods V_{1} and V_{2} of x_{1} and x_{2} in U then $V_{1} \times V_{2} \cap R_{\phi} \neq \emptyset$ so by lemma 16

$$
T(W \times W) \cap R_{\phi} \cap V_{1} \times V_{2} \neq \emptyset
$$

But then $\left(x_{1}, x_{2}\right) \in \overline{T(W \times W) \cap R_{\phi}} \subseteq \overline{T \alpha \cap R_{\phi}}$ and so $U \times U \cap R_{\phi} \subseteq T \alpha \cap R_{\phi}$, even $\mathrm{U} \times \mathrm{U} \cap \mathrm{R}_{\phi} \subseteq \mathrm{int}_{\mathrm{R}_{\phi}} \overline{\mathrm{T} \alpha \cap \mathrm{R}_{\phi}}$. Choose $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{E}_{\phi}$ and $\mathrm{t} \in \mathrm{T}$ with $\mathrm{tx}{ }_{1} \in \mathrm{U}$. Then $\left(t x_{1}, t x_{2}\right) \in E_{\phi}\left[t x_{1}\right] \times E_{\phi}\left[t x_{1}\right] \subseteq E_{\phi}[U] \times E_{\phi}[U] \cap R_{\phi}=U \times U \cap R_{\phi} \subseteq$ $\subseteq \operatorname{int}_{R_{\phi}} \frac{10 R_{\phi}}{T \alpha}$ As int $R_{\phi} \frac{\phi}{T \alpha R_{\phi}}$ is T invariant we have $\left(x_{1}, x_{2}\right) \epsilon$ int $_{R_{\phi}}$ T $\alpha \cdot \cap R_{\phi}$ and consequently $E_{\phi} \subseteq$ int $_{R_{\phi}} \overline{T \alpha \cap R_{\phi}}$.
So $\mathrm{E}_{\phi} \subseteq \cap\left\{\mathrm{int}_{\mathrm{R}_{\phi}} \overline{\mathrm{T} \alpha \cap \mathrm{R}_{\phi}} \mid \alpha \in \mathrm{U}_{\mathrm{X}}\right\} \subseteq \cap\left\{\overline{\mathrm{T} \alpha \cap \mathrm{R}_{\phi}} \mid \alpha \in \mathrm{U}_{\mathrm{X}}\right\}=\mathrm{Q}_{\phi}$.
18. REMARK. We used the openness of ϕ to conclude that $\left(\phi\left[V_{1}\right] \cap \phi\left[V_{2}\right]\right)^{\circ} \neq \emptyset$ for open V_{1} and V_{2} in X with $\phi\left[V_{1}\right] \cap \phi\left[V_{2}\right] \neq \emptyset$.
Now suppose ϕ satisfies B.c, i.e. the almost periodic points are dense in R_{ϕ}. Then $V_{1} \times V_{2} \cap R_{\phi}$ contains an almost periodic point $\left(x_{1}, x_{2}\right)$ and $V_{1} \times V_{2} \cap \frac{\phi}{T\left(x_{1}, x_{2}\right)}$ in an open subset of the minimal $\operatorname{tgg} \frac{2}{T\left(x_{1}, x_{2}\right)}$. So $\phi\left[\mathrm{V}_{1}\right] \times \phi\left[\mathrm{V}_{2}\right] \cap \Delta_{\mathrm{Y}}$ has a non-empty interior in Δ_{Y}, or what is the same $\left(\phi\left[\mathrm{V}_{1}\right] \cap \phi\left[\mathrm{V}_{2}\right]\right)^{\circ} \neq \emptyset$ 。
19. COROLLARY. If $\phi: \mathrm{X} \rightarrow \mathrm{Y}$ is a RIM extension of minimal ttg's that satisfies the Bronstein condition, then

$$
\left.\mathrm{E}_{\phi}=\mathrm{Q}_{\phi}=\cap \operatorname{int}_{\mathrm{R}_{\phi}} \overline{\mathrm{T} \alpha \cap \mathrm{R}_{\phi}} \mid \alpha \in U_{\mathrm{X}}\right\}
$$

REFERENCES

[B] BRONSTEEN, I.U., Extensions of minimal transformation groups, Sythoff \& Noordhoff, Alphen aan den Rijn, 1979.
[G1] GLASNER, S., Proximal flows, Lecture Notes in Math. vol. 517, Springer Verlag, Berlin and New York 1976.
$\left[G_{2}\right]$ GLASNER, S., Relatively invariant measures, Pacific J. Math. 58 (1975) 393-410。
[M] McMAHON, D.C., Relativized weak disjointness and relatively invariant measures, Trans. Amer. Math. Soc. 236 (1978), 225-237.
[MW'80] McMAHON, D.C. \& T.S. WU, Homomorphisms of minimal flows and generalizations of weak mixing, preprint, (1980).
$\left[\mathrm{V}_{1}\right]$ VEECH, W.A., Point-distal flows, Amer. J. Math. 92 (1970) 205-242.
$\left[\mathrm{V}_{2}\right]$ VEECH, W.A., Topological dynomics, Bull. Amer. Math. Soc. 83 (1977), 775-830.

[^0]: 1980 Mathematics subject classification: 54 H 20

