
stichting 

mathematisch 

centrum 

AFDELING ZUIVERE WISKUNDE 
(DEPARTMENT OF PURE MATHEMATICS) 

J.C.S.P. VANDERWOUDE 

WEAKLY MIXING REMARKS 

~ 
MC 

ZN 99/80 DECEMBER 

kruislaan 413 1098 SJ amsterdam 

i:;;,BL!QTHEEK ri,/1.i? 1H,ii,\TF,C: i C:.'.\iT:":.;,.l 
A,v,;:, 1 i:b.,,'J,,l 



Plvi,nted. at .the Mathe.mati.c.a.l CentJr.e, 413 Klc.u.l6.laa.n, Am6.tetc.dam. 

The Mathe.matlc.a.l CentJr.e, fiounded -the 11-,th ofi Feb.lUI.CVC.y 1946, .l6 a. non
p!W fili w,t,U:,u,tio n ai.mlng at .the plWmo:tlo n o 6 pUJte. mathe.mati.c& a.nd m 
a.pplic.a.ti.on6. 1,t .l6 1.ipon60ll.ed by .the Ne.theJri.a.nc:16 GoveJLnment .thlWugh .the 
Ne.theJli..a.nc:16 01tga.nlzati.o n 6 oil. -the Adva.nc.e.ment o 6 PUil.fl Ru e.cvr.c.h ( Z. W. 0. ) • 

1980 Mathematics subject classification: 54H20 



Weakly mixing remarks 

by 

Jaap van der Woude 

ABSTRACT 

We study homomorphisms of minimal transformation groups that admit 

relatively invariant measures, especially with respect to the equicontinuous 

structure relation and weak disjointness. In particular we prove that for 

an open RIM extension the equicontinuous structure relation equals the 

regionally proximal relation. 

KEY WORDS & PHRASES: Minimal transfo'1>mation group, ergodicity, Relatively 

Invariant Measure, equiaontinuous structure relation 





I • INTRODUCTION 

Although we assume basic knowledge about topological dynamics as can 

be found in [G 1J, [BJ we will review some basic definitioµs. A topoZogicaZ 

transfoPmation group (ttg) is a tripel (T,X,n), where Tis a topological 

group, X a compact T2 space and n: T x X +Xis a continuous map such that 

n(e,x) = x and tr(s,n(t,x)) = n(st,x) for all x EX, t,s ET. We will fix 

the group and drop the action symbol. A subset A EX is called invariant if 

TA= A and Xis called minimaZ (ergodic) if the only nonempty closed in

variant subset of X (with non-empty interior) is X itself. 

A continuous surjection $: X + Y between two ttg's is called a homo

morphism of ttg's, or an extension if $(tx) = t$(x) for all t ET, x EX. 

Any homomorphism induces a closed invariant equivalence relation R~ = 

= {(x1,x2) EX x X I ~(x1) = $(x2)} on X. 

Let UX denote the unique uniform structure on X, then we define 

P $ = n {Ta n R~ I a E ~, Q~ = n {Ta n R~ I a E U~ the proximaZ and region

aZZy proximaZ reZation of~; and E$ the equicontinuous structure reZation 

of$ is defined to be the smallest closed invariant equivalence relation 

that contains Q~- One of the major problems in topological dynamics is to 

determine E$. VEECH [V2], showed that E~ = Q$ if the almost periodic points 

(points with minimal orbitclosure) are dense in R~. McMAHON [M] and McMAHON 

and WU [MW'8O] proved related results with totally different methods. We 

shall use those methods to prove that E$ = Q~ in case~ is an open RIM ex

tension. We call~: X +Ya RIM extension if there exists a homomorphism 

A: Y + M(X) (into) such that i 0 A: Y + M(X) + M(Y) equals irly, where M(X) 

is the set of Borel probability measures with the weak star topology and 

i: M(X) + M(Y) is the map induced by~ (for more details see [G2J). 

We will also be concerned with the question: when are two homomorphisms 

~: X + Y and~: Z + Y of minimal ttg's weakZy disjoint, i.e. when is 

R~~ = {(x,z) EX x Z I $(x) = ~(z)} an ergodic ttg. (Notation:~.:..~). We 

call~ weakZy mixing if$.:..~ and a minimal ttg Xis weakZy mixing if 

¢: X + I is weakly mixing. 

An interesting result is: if$: X + Y is a RIM extension of metric 

minimal ttg's without non-trivial almost periodic factors, then~ is weak

ly disjoint from every open extension of minimal ttg's that values in Y. 
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2. ERGODIC POINTS 

Let $: X + Y be a homomorphism of minimal ttg' s and n E JN, n ~ 2. We 

call x EX a $-n-Zocai ergodic point if for every open subset W s X there 

exists a set U open in $+$(x) such that U 2 E$[x] and for open (in $+$(x)) 

sets v
1

, ••• ,V in U we have that T(v
1
x ••• xv) n TT WI~- If U can be chosen n n n 

to be $+$(x), w~ call x $-n-ergodic and clearly every x' E $+$(x) is $-n-

ergodic iff x is. If x is $-n-(local) ergodic for all n E JN, n ~ 2, we call 

x $-(ZocaZ) ergodic. 

Obviously every $-n-ergodic point is $-n-local ergodic and if E$ = R$ 

the converse is true. 

If$: X + I we skip the prefix$ in the above definitions. 

Note that if xis $-n-(local) ergodic then tx is for all t ET. 

I. PROPOSITION. Let$: X + Y be a 'homomorphism of minimal ttg's. 

If x EX is $-2-ZocaZ ergodic then Q$[x] = E$[x]. 

If x EX is $-2-ergodic then Q$[x] = R$[x] = $+$(x). 

-1 
PROOF. Choose (x,x') ER$ (E$) and a E UX. Choose 8 E UX with 8 = 8 and 

8°8 s a then T(B(x) x B(x)) s Ta. Choose U for W = B(x) as in the definition. 

For every neighbourhood V x V' o,f (x,x') in $+$(x) x $+$(x) (in UxU) we have 

V x V' n T(B(x) x B(x)) #~,so (x,x') E Tan$ $(x) x $ $(x) s Tan R$, 

i.e. (x,x') E Q$. □ 

2. COROLLARY. Let $: X + Y be a 'homomorphism of minimal ttg 1 s. If there is 

a $-2-ergodic point x EX then E$ = R$. 

PROOF. Since every x' irt $1$(x) is a $-2-ergodic point it follows that 
+ + + + 

$ $(x) x $ $(x) = $ $(x) x $ $(x) n Q$ s E$. But then e: X/E$ + Y is al-

most one to one and almost periodic so e is a homeomorphism and X/E$ ~ Y, 

E$ = R$. □ 

For the following we need to remember that$: X + Y is open iff for 

all y E Y, X E $+(y) and for any net y. + y we can choose x. E $+(y.) with 
l. l. l. 

x. ➔ x. 
l. 

,, 



:,3. PROPOSITION. Let <j>: X + Y be a homomorphism of minimal ttg's such that 

K: X + X/E<I> is open. Suppose there exists a y E Y such that xis <j>-2-local 

ergodic for all x E <f>+(y). Then E<I> = Q<I>. 

PROOF. Since xis <j>-2-local ergodic for every x E <f>+(y) it follows from 
+ + 

Prop • .!_ that Q<I> n <f> (y) x <f> (y) 
+ + 

= E<I> n <f> (y) x <f> (y). Let z = K(x) E X/E<I> 
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Choose (x1,x2) ~ E<I> and let z
0 

= K(x1) = K(x2). Choose a net {t.} in T with 
• • l. 

Since K is 

+ (xl,x2). 

TQ</> = Q</>. 

l. l. • +( ) open w: c~n choose x 1 and x2 1.n K z such that 
l. l. + + 

Now (x1,x2) E E<I> n <f> (y) x <f> (y) s Q~ ~nd so 

4. COROLLARY. Let <I>: X + Y be an open homomorphism of minimal ttg 's. If 

there is an x EX that is <j>-2-ergodia then Q<I> = R<I>. 

PROOF. By Car.~ E<I> = R<I> so, with notation as in l K = <f> is open. Since x' 

is <j>-2-ergodic for all x' E <f>+<f>(x) it follows from Prop.l that 

□ 

□ 

5. COROLLARY. Let X be minimal, then QX =Xx X iff there exists a 2-ergo

dic point (Qx = Q<I> with <f>: x + I). 

PROOF. The "if" part is just Car.~. Choose U and V open in X and 

(x1,x2) EU x V, then (x1,x2) E QX so~ x V n Ta# 0 for any a E UX. Clear

ly for any W s X open, there is an a E UX with as T(WxW) and so Ta s T(WxW). 

Let <j>: X + Y be a homomorphism of ttg's and n E ]N, n ~ 2. A point 

x
0 

EX is called a P:-point if {(x
1

, ••• ,xn) E (<f>+<f>(x
0
))n I T(x

1
, ••• ,xn) n 

n A:#~} is dense in (<f>+<f>(x0))n. Clearly, if <f> is proximal then every x 

is a P: point for all n E ]N , n ~ 2. 

□ 

7. PROPOSITION. Let </>: X + Y be a homomorphism of ttg 1 s and n E ]N , n ~ 2. 

a. If Xis minimal, then every P:-point is a <j>-n-ergodia point. 

b If x0 ha.s a countable neighbourhood :base Wx
0 

f0r some x
0 

E X, then every 

<j>-n-ergodia point is a P:-point. 

In particular if Xis metric and minimal, then the <j>-n-ergodia points are 

just phe P:-points. 



PROOF. a Let x EX be a P:-point. Choose W s X open and u1, ••• ,Un open in 

$+$(x). Then, since Xis minimal, A~ s T(W x ... x W) (n-times). Since 

u
1 

x ... x Un is open in ($+$(x))n there is a (x
1

, ••• ,xn) E u
1 

x ..• x Un with 
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A~ n T(x
1

, ••• ,xn) 'f (a. So A; s T(U 1x ..• xUn) and T(U
1
x ..• xUn) n T(Wx ..• xW) 'f (a. 

But then u
1 

x ... x Un n T(Wx ... xW) 'f ~ and xis $-n-ergodic. 

b Let x EX be $-n-ergodic, and choose Os ($+$(x))n open in ($+$(x))n. Let 
+ 

v
1

, ••• ,vn be open in$ $(x) such that v
1 

x ..• x Vn s O and let Wx0 = 

= {W la E E}. 
a 

For a EE define t and va
1

, ••• ,Va inductively as follows: let t
1 

ET be 
a n · 

such that t 1(v 1x ... xVn) n w1 x •.. x w1 :f, (a and let Vi :=vi.Let ta and V~ 

be defined such that t (V~x ..• xVa) n W x ... x W 'f ~- Then choose V~+l :r ~ 
a+l ::a+T a _1n a a 1. 

such that V. c V. c V~ n t W and let t 1 ET be such that 
1. - 1. - 1. a a a+ a+l a+l 

ta+l(v1 x ... xVn ) n Wa+l x .•. x Wa+l 'f ~. 
Choose x. En {V~la E lN} c V. n {t-1 W la E JN} for all i = 1, ••• ,n then 

1. 1. - 1. a a 
(x1, ••• ,xn) E O and ta(x1, ••• ,xn)-+ (x0 , ... ,x0 ), i.e. xis a P: point. D 

Using an idea of McMAHON we will prove the existence of $-n-local er

godic points under certain conditions. For that we need the following 

theorem. 

8. THEOREM. Let$: X + Y be a RIM extension of minimaZ ttg's with section 

A(:Y + M(X)) and Zet x0 EX. 
+ +' a Let Ube open in$ $(x0) and F s $ $(x0). Then 

b Let n E JN, n ;;:: 2, Ut open in supp A$ (xo) for i = I, ••• ,n suah that 

E$[Ui] is open in $+$(x0) for i = 2, ••• ,n. Then 

E$[u1 J x (E$[u2J n supp A$(xo)) x, •• x (EiUnJ n supp_ A$(xo)) s 
C T (U I X • • • xu ) • 
- n 

PROOF. a This is a special case of [M] 1.4. 

b This is a special case of [MW'8O] I.I. D 
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9. PROPOSITION. Let$: X + Y be a RIM extension of minimal ttg's with sec

tion A. Let K: X + X/E$ and x EX. If x has a neighboUPhood Vin $+$(x) with 

E$[V] s supp A$ (x) and K1 = KI $+$(x): <tHx) + d$+$(x)] is open if', a dense 

subset of V then xis $-local ergodic. 

PROOF. Choose W s X open. Then K[W]
0 

'f (/J (Xis minimal!), so there is a 

neighbourhood v*-of K(x) and at ET with tv* s K[W]
0

• Define U := K+V* n V, 

and choose n E :N , n ;::: 2. Choose V 1, ••• , V n open in U. Since the points of 

openness of K1 are dense in V and so in U we can find V! c V. such that 
1. - 1. 

E$[Vi] is open in $+$(x). Obviously E$[Vi] S E$[Vi] S E$[U] S E$[V] S supp A$(x)" 

Then by 8b we have that 

Since tE$[Vi] = E$[tVi] 

W n tE$[Vi],; (/J and so 

+ * 0 = K K[tV!] and K[tV!] c tV s K[W] we have that 
1. 1. 

D 

10. PROPOSITION. If Xis minimal and has an invariant measureµ then every 

x Ex is local ergodic. In particular QX = EX. 

+ PROOF. Note that X = supp µ (=supp Al = $ $(x) with.$: X + 1). Since in the 

proof of Prop.~ the openness of K' in some points was only used to make 

sure that any V open in U contained a V' with E$[V'] open in $+$(x), it is 

enough to prove that any open Vin X contains an open V' in X with E$[V 1
] 

open. The proposition follows then as in 2_. 
+ 0 + 

Let K: X ➔ X/Ex and let V' := K (K[V]) n v. Then E$[V'] = K K[V'] = 
+ 0 = K (K[V]) is open and non empty. From Prop.I it follows that QX[x] = 

= EX[x] for all x EX and so QX = EX (which is a special case of [M]l.5). D 

11. COROLLARY. !!. If $: X + Y is a RIM extension of metric minimal ttg's 

then there is a residual subset of $-local ergodic points. 

b If $ ~ X + Y is a RIM extension of minimal ttg 's with R $ = E $ then every 
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x EX with supp A$(x) = $+$(x) is $-ergodic. 

PROOF. a Let K: X + X/E$. Since Xis metric and minimal, there is a resi

dual set x1 EX in each po1nt of which K is open and, by [G2J 3.3, there is 

a residual set x2 s X with supp A$(x) = $+$(x) for all x E x2 . Let 

x0 = x1 n x2 then x0 is residual. By [V1] prop.3.1 there is a residual sub

set Y
0 

of Y such.that x
0 

n $+(y) is residual in $+(y) for ally E Y
0

• 

Choose x E $+[Y
0

J, then K is open in a dense subset of $+$(x) and so K1 is 

open in a dense subset of $+$(x), also supp A$(xl- = $+$(x) •. so from Pr<;>p • .2._ 

it follows that xis $-local ergodic. Clearly, $ [Y
0

J is residual in X. 

b In this case K = $. If+supp A$ix) = $+$(x) then K =$is open in x and so 

K' is open in all x' E $ $(x)(=$ $(x')). From Prop.2_ and the observation 

that E$[x] = $+$(x) it follows that xis $-ergodic. D 

The following theorem as well as its proof is a generalization of 

[G
1

] II.2.1. 

12 • THEOREM. Let $ : X + Y and, ip : Z + Y be homomorphisms of minimal ttg 's 

with ip open. If for every n E JN, n ~ 2 there exists a $-n-ergodie point 

x EX, then$~ ip (i.e. R$ljJ = {(x,z) EX x Z I $(x) = ljJ(z)} is ergodic. 

PROOF. Choose W = TW c R with intR~.,. W / ~- Since ljJ is open and X minimal 
- $lJJ o/o/ 0 

we may choose open sets U and Vin X and Z such that U x V n R$ljJ s W and 

for every v EV there is au EU with (u,v) E R$ljJ" 
m 

Since Z is minimal there are t 1, ... ,tm in T with Z = Ui=l tiV. Choose 

(i,;) E R$ljJ and a neighbourhood O of (i,;) in R$ljJ" Since ljJ is open there 

are open neighbourhoods Q_ and Q_ of x and z in X and Z such that 
,X Z 

Ox x Oz n R$ljJ s O and for every o 1 E Ox there is an o2 E Oz with 

(o 1,o2) E R$ljJ" 

Choose a $-in-ergodic point XE Q_ 
X 

[Note that xis $-n-ergodic for all n 

with 2 ~ n ~ m], and choose z E 0- with $(x) = ljJ(z). Let y := $(x) = ljJ(z) z 
and U := 0-, V := o_. Without loss of generality choose {t

1
, ••• ,t} c 

X X Z Z n -
s {t

1
, ••• ,tm} such that ljJ+(y) s U~=I tiV and tiV n ljJ+(y) /~for i = l, ••• ,n. 

Then L := t
1
U x ••• x t Un ($+(y))n is open in ($+(y))n and non-empty, for 

-1 +n 
choose z. EV n t. ljJ (y) and x. EU such that $(x.) = ljJ(z.) then 

1 1 1 1 1 

(t 1x1,~ •• ,tnxn) EL. Since Ux is open in X and xis $-n-ergodic it follows 



that there exists at ET with 

- + Choose x. EU with tt.x. EU n <I> (ty) for i = I, ••• ,n. 
1 1 1 X -1 + 

Choose z' E vz such that <j>(ttixi) = $(z') = ty, then t z' E tiov n $ (y) 

for some ti0 E {t 1, ••• ,tn}. But now 

0 

(tt. x. ,z') E tt. (UxV) n R~,,. n U x V c TW n O I~-
10 1 0 1 0 o/o/ X Z -

Since O was an arbitrary neighbourhood of (x,z) in R<I>$ it follows that 

(x,z) E TW =Wand so R<I>$ = W; i.e. R<I>$ is ergodic. 0 

13. COROLLARY. Let <j>: X + Y be an open RIM extension of minimal ttg's with 

section A. Suppose there is an x EX with <j>+<j>(x) = supp A<j>(x) (e.g. Xis 

metric). Equivalent are 

a Q<I> = R<I> } (cf. [MW'80] Prop.2.2) 
b E<I> = R<I> 
c <I> is weakly mixing 

d <I>..!..$ for every open homomorphism$: Z + Y of minimal ttg's. 

PROOF. d ._. c ._.a._. bis obvious 

b,. d follows from II and 12 and [M]2.2 •• □ 
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14. COROLLARY. If Xis minimal and has an invariant measure, then Xis weak

ly mixing iff Xis weakly disjoint from every minimal ttg (iff EX= QX = 

= X X X). 

15. COROLLARY. Let <j>: X + Y and$: Z + Y be homomoPphisms of minimal ttg's 

with $ open. 

a If <I> is a RIM extension with E<I> = R<I> and X metric then <I> ..!.. $. 

b If <I> is proximal then <I>..:.$. 

In particular any open proximal map is weakly mixing. 
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3. E<j> = Q<j> AND "JOE's CONJECTURE" 

The next theorem gives a partial solution to a question raised by 

J. AUSLANDER. If x
1 

and x
2 

are regionally proximal and if we have a net 

(x! ,x~) ➔ (x
1 
,x

2
), is it possible to find a net (x.1,x~), suitably close to 

1 1 1 1 

the first one, that converges to (x
1
,x

2
) such that for some net {ti} in T 

t.(x!,x~) ➔ A? It is not difficult to see that we can state that ques-
1 1 1 

tion as follows: When do we have that Q<j> = n {intR<j> Tan R<j> I a E UX}. In 

the absolute case McMAHON proved the equality for minimal ttg's with in

variant measure. 

16. LEMMA. Let 4>: X ➔ Y be an open RIM extension of minimal ttg's and, W .s X 

open. Then there is an open set U = E<f>[UJ in X such that R<P n u 1 x u2 n 

n T(WxW); QI for aii u 1 and, u2 open in U with R<P n u 1 x u2 ; QI. 

PROOF. Let K: X ➔ X/E<j> and, define U 

is open in X. 

+ 0 + := K (K[W] ). Clearly u = E<j>[U] = K K[U] 

Choose u 1 and u2 open in U with <j>[U 1J n <j>[U2J =: v*; QI. Since u
1 

n <j>+(v*) 

# QI and open we can choose v 1 .s u 1 n <j>+(v*) open with E<j>[v 1J open in X. 
+ Then <j>[V 1J .s <j>[U2] and u2 n <j> (<j>[V 1J) # QI and open. Choose v2 .s u2 n 

n <j>+[<j>[V 1JJ open with E<j>[V2] open in X and remark that <j>[V2] .s <f>[V
1
J. As 

W n E<j>[v2J (# QI) is open we can choose xO E W n E<j>[v2J with xO E supp A<j>(xo)' 

say Yo= <j>(xO). 

Clearly Yo E <j>[V2J .S <j>[V 1] so Vi :=Vin <j>+(yO) # QI and open in <j>+(yO) and 
~ + +( ) • • + ) so E<f>[Vi] = E<f>[Vi n <f> (y0)J = E<f>[Vi] n <f> yO is open in <f> (yO • By Theorem 

8b we have that 

But xO E E<j>[v2J n supp Ayon Wand obviously W n E<j>[V1J # QI so 

w x W n E<j>[v1J x (E<j>[v2J n supp AyO) # QI and W x W n T(U 1xu2nR<f>) :/:QI.As 

W x Wis open we have W x W n T(U1xu2nR<j>) = W x W n T(U1xu2) n R<j> # QI. D 
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17. THEOREM. Let$: X + Y be an open RIM e:x;tension of minimal ttg's. Then 

E$ = Q$ = n {int¾ Tan R$ a E UX}. 

PROOF. Choose a E UX and SE UX such that S 

W := S(xO) for some fixed xO EX we have 

Choose U = E$[U] open in X as in lemma 16. 

-1 = a and B0 B ~a.For 

Choose (x1,x2) EU x Un R$ and open neighbourhoods v1 and v2 of x 1 and x
2 

in u then v1 x v2 n R$ # 0 so by lemma 16 

But then (x1,x2) E T(WxW) n R$ s Tan R$ and so U x Un R$ s Tan R$, even 

U x Un R$ s int¾ Tan R$. Choose (x1,x2) EE$ and t ET with tx1 EU. 

Then (tx1,tx2) E E$[tx1J x E$[tx1J s E$[UJ x E$[U] n R$ = U x Un R$ s 
s intR<j> 'Ta n R$. As intR_$ Ta n _R$ is T invariant we have (x 1 ,x2) E 

intR$ Tan R$ and consequently E$:::. intR$ Tan R$. 

So E$ ~ n {intR$ Ta n R$ I a E UX} s n {Ta n R$ I a E UX} = Q$. □ 

18. REM.ARK. We used the openness of$ t9 conclude that ($[V 1] n $[V2])
0 

# 0 
for open v1 and v2 in X with $[V1J n $[V2] # 0. 
Now suppose$ satisfies B.c, i.e. the almost periodic points are dense in R$. 

Then v1 x v2 n R$ contains an almost periodic point (x1,x2) and 

v1 x v2 n T(x1,x2) in an open subset of the minimal ttg T(x1,x2). So 

$[V 1] x $[V2 J n 6y has a non-empty interior in 6y, or what is the same 
0 

($[V 1J n $[V2J) / 0. 

19. COROLLARY. If $: X + Y is a RIM e:x;tension of minimal ttg 's that satis

fies the Bronstein condition, then 

,. 
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