stichting
mathematisch centrum
AFDELING ZUIVERE WISKUNDE
ZN 89/79
APRIL
(DEPARTMENT OF PURE MATHEMATICS)
J.C.S.P. VAN DER WOUDE
HYPERTRANSFORMATION GROUPS AND RECURSIVENESS:
SOME REMARKS ON AN ARTICLE OF S.C. KOO

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.0).

Hypertransformation groups and recursiveness: some remarks on an article of S.C. Koo
by

Jaap van der woude

ABSTRACT

We present here a study about hypertransformation groups ($\mathrm{T}, 2^{\mathrm{X}}$), induced by a topological transformation group (T, X). In particular this note is concerned with recursive properties, following the article of s.C. KOO on this subject. However, we skip his requirement of all phase spaces being compact T_{2} and so we obtain generalization of his results.

KEYWORDS \& PHRASES: Hyperspace, recursivity, almost periodicity.

0. INTRODUCTION

In [4] KOO studies recursive properties in hypertransformation groups, induced by topological transformation groups with compact T_{2} phase space. In doing so, he uses the uniform structure on 2^{X}, induced by the uniformity on X . This paper is a collection of thoughts after [4], and the intention is twofold. First, we shall give simpler proofs of some of his results, using as much as possible the less complicated Vietoris topology on 2^{X}, instead of its uniformity. Second, we skip the requirement of all phase spaces being compact T_{2}.

The first section is a brief summary of useful aspects of hyper spaces. The second section is concerned with the orbit closure relation and the space of orbit closures as a subspace of 2^{X}. In the third section we introduce hypertransformation groups and give a generalization of [4], Theorem 1.1 , showing the elegancy of the Vietoris topology on 2^{X}. Sections 4 and 5 are concerned with recursiveness and in majority they provide generalizations and two-fold proofs.

For a more detailed study of hyperspaces we refer to [5]. The results of the Theorems $2.3,2.5$ and 4.4 (b) seem to be essentially new.

CONVENTION: ALL TOPOLOGICAL SPACES UNDER CONSIDERATION ARE ASSUMED TO BE T T_{1} (except for quotient spaces and the underlying topological spaces of the acting groups).

1. HYPERSPACES

For a topological space X define

$$
\begin{aligned}
C(X) & =\{A \subseteq X \mid A \neq \phi \text { and } A \text { compact }\}, \\
2^{X} & =\{A \subseteq x \mid A \neq \phi \text { and } A \text { is closed }\}
\end{aligned}
$$

Observe that $\{x\} \in \mathcal{C}(x)$, and $\{x\} \in 2^{X}$ for all $x \in X$ and $\mathcal{C}(x) \subseteq 2^{X}$ if x is Hausdorff. We may topologize $\mathcal{C}(X)$ and 2^{X} by the Vietoris topology as follows. For $A=C(X)$ or $A=2^{X}$ and open subsets U_{1}, \ldots, U_{n} of X, set

$$
\left\langle U_{1}, \ldots, U_{n}>=\left\{E \in A \mid E \subseteq \sum_{i=1}^{n} U_{i} \text { and } E \cap U_{i} \neq \phi \quad \text { for } i \in\{1, \ldots, n\}\right\}\right. \text {. }
$$

Then the basis for the Vietoris topology on A is formed by the collection

$$
\left\{\left\langle U_{1}, \ldots, U_{m}\right\rangle \subseteq A \mid m \in \mathbb{N} \text { and } U_{i} \text { open in } X \text { for } i \in\{1, \ldots, m\}\right\}
$$

Let (X, U) be a uniform space. Then U induces a uniform structure U^{*} on 2^{X}. Define for all $\alpha \in U$ and $E \in 2^{X}$

$$
\alpha(E)=U\{\alpha(x) \mid x \in E\}=\{y \in x \mid \exists x \in E \wedge(x, y) \in \alpha\}
$$

and

$$
\alpha^{*}=\left\{(A, B) \in 2^{X} \times 2^{X} \mid A \subseteq \alpha(B) \wedge B \subseteq \alpha(A)\right\}
$$

Then the collection $\left\{\alpha^{*} \mid \alpha \in U\right\}$ constitutes a basis for the uniform structure U^{*} on 2^{X}. We shall write 2_{u}^{X} or 2_{f}^{X} if we consider 2^{X} with the uniform topology or the Vietoris topology, respectively. Since the topologies coincide on $\mathcal{C}(x)$, there is no need to distinguish between $C(x)_{u}$ and $C(x){ }_{f}$. If X is compact Hausdorff, then $2^{X}=C(X)$ and $2_{u}^{X}=2_{f}^{X}$. For proofs of the following facts we refer to [5].

THEOREM 1.1.
a. $2_{\mathrm{f}}^{\mathrm{X}}$ and $2_{\mathrm{u}}^{\mathrm{X}}$ are T_{1};
b. X is T_{3} iff 2_{f}^{X} is T_{2};
c. X is $\mathrm{T}_{3 \frac{1}{2}}$ iff $\mathrm{C}(\mathrm{X})$ is $\mathrm{T}_{3 \frac{1}{2}}$;
d. X is compact iff $\mathrm{Z}_{\mathrm{f}}^{\mathrm{X}}$ is compact
e. X is compact T_{2} iff 2^{X} is compact T_{2}.

Let X and Y be topological spaces and $f: X \rightarrow Y$ a surjective map. If f is closed, define $f^{*}: 2^{X} \rightarrow 2^{Y}$ by $f^{*}(E)=f[E]$ for all $E \in 2^{X}$. If f is continuous, we may define $f^{* *}: Y \rightarrow 2^{X}$ by $f^{* *}(y)=f^{\star}(y)$ for all $y \in Y$ and $\mathrm{f}^{\leftarrow * *}: 2^{\mathrm{Y}} \rightarrow 2^{X}$ by $\mathrm{f}^{\leftarrow * *}(\mathrm{D})=\mathrm{f}^{\leftarrow}[\mathrm{D}]$ for all $\mathrm{D} \in 2^{Y}$. Then:

THEOREM 1.2.

a. $f^{*}: 2_{f}^{X} \rightarrow 2_{f}^{Y}$ is continuous (topological) iff f is continuous (topological);
b. $f^{*}: 2_{u}^{X} \rightarrow 2{ }_{u}^{\mathrm{Y}}$ is uniform continuous (topological) iff f is uniform continuous (topological):
c. $\mathrm{f}^{\leftarrow * *}: 2_{\mathrm{f}}^{\mathrm{Y}} \rightarrow 2_{\mathrm{f}}^{\mathrm{X}}$ is continuous iff $\mathrm{f}^{\leftarrow *}: \mathrm{Y} \rightarrow 2_{\mathrm{f}}^{\mathrm{X}}$ is continuous iff f is open and closed.
2. THE SPACE OF ORBIT CLOSURES AND $2_{\mathrm{f}}^{\mathrm{X}}$

A topological transformation group (ttg for short) is a triple ($\mathrm{T}, \mathrm{x}, \pi$), with T a topological group, X a topological space and π : $T \times X \rightarrow X$ a continuous map, such that
a. $\pi(e, x)=x$ for all $x \in x$, and
b. $\pi(s, \pi(t, x))=\pi(s t, x)$ for all $s, t \in T, x \in X$.

We shall write $\pi^{t}(x)=\pi(t, x)=\pi_{x}(t)$; then $\pi^{t}: x \rightarrow x$ is a homeomorphism for every $t \in \mathbb{T}$. Denote the orbit $\{\pi(t, x) \mid t \in \mathbb{T}\}$ of x in x by $\Gamma(x)$, let $C(x)=\Gamma(x)$ be the orbit closure of x in x and define $f: x \rightarrow 2^{X}$ by $x \mapsto C(x)$. Then, in general, f fails to be continuous. However, f is always lower semi-continuous (that is, $\{x \in X \mid f(x) \cap U \neq \phi\}$ is open for every open U in X). Remember that for a $\operatorname{ttg}(T, X, \pi)$ a subset $A \subseteq X$ is called minimal, if A is nonempty, closed, invariant and A does not admit a proper subset with those properties.

THEOREM 2.1. Let (T, X, π) be a ttg and let $f: X \rightarrow 2_{f}^{X}$ be continuous. Then every orbit closure is minimal. (In particular: x is pointwise almost periodic, if x is compact and f is continuous.)

PROOF. Let $x \in X$ and suppose $C(x)$ is not minimal. Then there is a $y \in C(x)$ with $C(y) \neq C(x)$. Since 2^{X} is T_{1} (Theorem 1.1(a)), there is a nbhd V of $C(y)$ in 2_{f}^{X}, such that $C(x) \notin V$. The continuity of f gives us a nbhd V_{y} of y in X, with $f\left[V_{y}\right] \subseteq V$. Now $y \in C(x)$, so $V_{y} \cap \Gamma(x) \neq \phi$, say $\pi(s, x) \in V_{y}$. Then $C(x)=C(\pi(x, s))=f(\pi(s, x)) \in f\left[V_{y} \subseteq \subseteq\right.$, a contradiction.

If every orbit closure in X is minimal, we may define an equivalence relation C on x by $x C y \Leftrightarrow x \in C(y)$. Denote the quotient space x / C, endowed with the quotient topology, by $(X / C)_{q}$ and define $(X / C)_{f}$ as the collection $\{C(x) \mid x \in X\} \subseteq 2_{f}^{X}$ with the relative topology. Remark that if $(X / C)_{q}$ exists, then it is (set-theoretic) isomorphic to ($\mathrm{X} / \mathrm{C})_{\mathrm{f}}$.

LEMMA 2.2. The quotient topology on X / C is weaker than the Vietoris topology.
PROOF. Let $q: X \rightarrow(X / C)_{q}$ be the quotient map, and let $U \subseteq(X / C)_{q}$ be open. Then $q^{+}[U]=\{y \in X \mid C(y) \in U\}$ is open in X, so $\left\langle q^{+}[U]>\right.$ is open in 2_{f}^{X}.

Moreover, $\mathrm{U}=\left\langle\mathrm{q}^{\dagger}[\mathrm{U}]\right\rangle \mathrm{n}(\mathrm{X} / \mathrm{C})$; for if $\mathrm{q}(\mathrm{y})=\mathrm{C}(\mathrm{y}) \in \mathrm{U}$, then $\mathrm{C}(\mathrm{y}) \subseteq \mathrm{q}^{+}[\mathrm{U}]$ and $C(y) \in\left\langle q^{\leftarrow}[U]\right\rangle$, so $U \subseteq\left\langle q^{\leftarrow}[U]\right\rangle \cap x / C$. Conversely, if $q(z)=\dot{C}(z) \epsilon$ $\epsilon\left\langle q^{\leftarrow}[U]\right\rangle$, then $C(z) \in q^{\leftarrow}[U]$, so $z \in q^{\leftarrow}[U]$ and $q(z) \in U$. Hence $\left\langle q{ }^{\leftarrow}[U]\right\rangle \cap$ $\cap(X / C) \subseteq U . \square$

THEOREM 2.3. Let (T, X, π) be a ttg and let $f: X \rightarrow 2^{X}$ be continuous $(x \nrightarrow C(x))$. Then $(\mathrm{X} / \mathrm{C})_{\mathrm{q}} \simeq(\mathrm{X} / \mathrm{C})_{\mathrm{f}}$.
$\xrightarrow{\text { PROOF. Observe that }(X / C)}{ }_{q}$ exists (see Theorem 2.1). Let i: $(X / C){ }_{q} \rightarrow(X / C)_{f}$ be the set-theoretic isomorphism and let $f^{\prime}: X \rightarrow(X / C)_{f}$ be the corestriction of f to $(x / C) f$. Then f^{\prime} is continuous and $f^{\prime}=i^{\circ} q$. Since q is a quotient map, it follows

that i is continuous. In view of Lemma 2.2 this proves our theorem.

COROLLARY, 2.4. For a ttg ($\mathrm{T}, \mathrm{X}, \mathrm{T}$) the following statements are equivalent:

1. $f: X \rightarrow 2^{X}$ is continuous;
2. C is an equivalence relation and $(X / C){ }_{\mathrm{q}} \subseteq 2_{\mathrm{f}}^{\mathrm{X}}$.

THEOREM 2.5. Let (T, X, π) be a ttg with compact phase space. Then f is continuous, if $(\mathrm{X} / \mathrm{C}) \mathrm{q}$ is T_{2}.

PROOF. Choose $x \in X$ and let $\left\langle U_{1}, \ldots, U_{n}>\right.$ be a basis open nbhd of $f(x)$ in 2_{f}^{X} i.e., $C(x) \subseteq \underbrace{}_{i} \underline{U}_{1}^{n} U_{i}=U$ and $C(x) \cap U_{i} \neq \phi$ for all $i \in\{1, \ldots, n\}$ (U_{i} open in X).

First we show that
a. there exists a nbhd O_{x} of x in X, such that $f(z) \subseteq U$ for every $z \in O_{x}$. Let $Y \notin U$; then $C(x) \neq C(y)$ and there are open nbhds V_{X}^{Y} and V_{y} of $C(x)$ and $C(y)$ in $(x / C){ }_{q}$ with $v_{x}^{y} \cap v_{y}=\phi$. Then $O_{y}=q^{\leftarrow}\left[v_{y}\right]$ and $o_{x}^{y}=q^{\leftarrow}\left[v_{x}^{y}\right]$ are disjoint open nbhds of y and x in x and both are the union of orbit closures. Since $\left\{O_{y} \mid y \notin U\right\}$ is an open covering of X / U and X / U_{m} is compact, there are an $m \in \mathbb{N}$ and $y_{1} \ldots, y_{m}$ in X / U, such that $X / U \subseteq{ }_{i} \underline{U}_{1} O_{Y_{i}}=0$. Now $O_{x}={ }_{i=1}^{m} O_{x}^{Y_{i}}$ is an open nbhd of x in x with $O_{x} \cap O=\phi$ and O_{x} is the union of orbit closures. For every $z \in O_{x}$ we clearly have $f(z) \subseteq O_{x} \subseteq U$.

Next we show that
b. there exists a nohd V_{x} of x in X, such that for every $z \in V_{x}$ and every
$i \in\{1, \ldots, n\}, f(z) \cap U_{i} \neq \phi$. For every $i \in\{1, \ldots, n\} U_{i}$ is open and $C(x) \cap U_{i} \neq \phi$, so there exists a t_{i} in T with $\pi\left(t_{i}, x\right) \in U_{i}$. Now $\pi^{t_{i}^{-1}}\left[U_{i}\right]$ is an open nbhd of x and for every $z \in \pi^{t_{i}^{-1}}\left[U_{i}\right]$ we have $C(z) \cap U_{i} \neq \phi$. Define $V_{x}={ }_{i=1}^{n} \pi^{t}{ }^{-1}\left[U_{i}\right]$. Then V_{x} is an open nohd of x in x, such that $f(z) \cap U_{i} \neq$ $\neq \phi$ for all $z \in V_{x}$.

Furthermore,
c. Define $W_{X}=\sigma_{X} \cap V_{X}$. Then $f(z) \cap U_{i} \neq \phi$ and $f(z) \subseteq U$, so
$f(z) \in\left\langle U_{1}, \ldots, U_{n}\right\rangle$ for every $z \in W_{x}$, and f is continuous.
COROLLARY 2.6. Let (T, X, π) be a ttg with compact T_{2} phase space. The following statements are equivalent:

1. $\mathrm{f}: \mathrm{X} \rightarrow 2^{\mathrm{X}}$ is continuous;
2. C is an equivalence relation and $(X / C)_{q} \subseteq 2^{X}\left(=2_{f}^{X}=2_{u}^{X}\right)$;
3. C is an equivalence relation and $(X / C)_{q}$ is T_{2}.

The following provides an example of a situation in which f is continuous. Remember that in a ttg (T, X, π) with a uniform phase space a point $x \in X$ is called equicontinuous whenever, for every $\alpha \in U$ (uniformity on x), there exists a $\beta \in U$, such that $\pi(t, y) \in \alpha(\pi(t, x))$ for every $y \in \beta(x)$ and every $t \in T$.

EXAMPLE 2.7. Let (T, x, π) be a $t t g$, with compact T_{2} phase space and let $x \in X$ be an equicontinuous point. Then f is continuous in x.

PROOF. Remark that $2^{X}=2_{f}^{X}=2_{u}^{X}$. Let U be the unique uniform structure on X and let $\alpha \in U$ be closed and symmetric. Then $\alpha^{*}(f(x))$ is a nbhd of $f(x)$ in 2^{X}. We have to prove that there exists a $\beta \in U$, such that $f(\beta(x)) \subseteq$ $\subseteq \alpha^{*}(f(x))$ or, equivalently, that $C(y) \subseteq \alpha(C(x))$ and $C(x) \subseteq \alpha(C(y))$ for every $y \in \beta(x)$. Since x is equicontinuous, there exists a $\beta \in U_{\text {, }}$ such that for every $y \in \beta(x)$ and $t \in T$ we have $\pi(t, y) \in \alpha(\pi(t, x))$, so $\pi(t, x) \epsilon$ $\epsilon \alpha^{-1}(\pi(t, y))=\alpha(\pi(t, y))$. Now $\{\pi(t, y) \mid t \in T\} \subseteq U\{\alpha(\pi(t, x)) \mid t \in T\}=$ $\alpha(\Gamma(x)) \subseteq \alpha(C(x))$ and also $\Gamma(x) \subseteq \alpha(C(y))$. Since α is closed, it follows that $C(y) \subseteq \alpha(C(x))$ and $C(x) \subseteq \alpha(C(y))$ for all $y \in \beta(x)$

COROLLARY 2.8. If X is equicontinuous, then f is continuous and ($\mathrm{X} / \mathrm{C})_{\mathrm{q}}$ is T_{2}.

3. HYPERTRANSFORMATION GROUPS

Every ttg (T, X, π) induces a $\operatorname{ttg}\left(T_{d}, 2_{f}^{X}, \tilde{\pi}\right)$ and in case X is a uniform space, also a $\operatorname{ttg}\left(T_{d}, 2_{u}^{X}, \tilde{\pi}\right)$, where T_{d} stands for the topological group T with the discrete topology. The action $\tilde{\pi}: T_{d} \times 2^{X} \rightarrow 2^{X}$ is defined by $\tilde{\pi}(t, A)=\pi^{t}[A]$. Since every π^{t} is a homeomorphism, it follows that every $\tilde{\pi}^{t}=\pi^{t *}$ is a homeomorphism and it is easy to verify that $\tilde{\pi}^{e}=i_{2} \mathrm{X}$ and $\tilde{\pi}^{s} \circ \tilde{\pi}^{t}=\tilde{\pi}^{s t}$.

THEOREM 3.1. Let ($\mathrm{T}, \mathrm{X}, \pi$) be a ttg with arbitrary phase group T . Then ($\mathrm{T}, \mathrm{C}(\mathrm{X}), \tilde{\pi})$ is a ttg.

PROOF. Since $C(X) \subseteq 2^{X}$ is invariant in ($\left.T_{d}, 2^{x}, \tilde{\pi}\right)$, we only have to check the continuity of $\tilde{\pi}: T \times C(X) \rightarrow C(X)$. Choose $(t, A) \in T \times C(X)$ and let $\left\langle U_{1}, \ldots, U_{n}>\right.$ be a basis open nbhd of $\tilde{\pi}(t, A)=\pi^{t}[A]$. Then $\pi^{t}[A] \subseteq{ }_{i} \underline{U}_{1} U_{i}$ and $\pi^{t}[A] \cap U_{i} \neq \phi$ for all $i \epsilon\{1, \ldots, n\}$. Since π is continuous and A is compact, there are open nbhds V_{t}^{0} of t in T and O_{A} of A in X, such that $\pi\left[v_{t}^{0} \times O_{A}\right] \subseteq \underbrace{n}_{i=1} U_{i}$. Fix $x_{i} \in A$ with $\pi\left(t, x_{i}\right) \in U_{i}$ for $i=1, \ldots, n$. Then by the continuity of π there are open nbhds v_{t}^{i} of t in T and $W_{x_{i}}$ of x_{i} in x, such that $\pi\left[v_{t}^{i} \times W_{X_{i}}\right] \subseteq U_{i}$ and $W_{x_{i}} \subseteq O_{A}$. Now $V_{t}:={ }_{i=1}^{n} V_{t}^{i}$ is an open nbhd of t in $T,\left\langle O_{A}, W_{x_{1}}, \ldots, W_{x_{n}}\right\rangle$ is an open nbhd of A in $C(X)$ and $\pi\left[v_{t} \times<O_{A}, W_{x_{1}}, \ldots, W_{x_{n}}>\right] \subseteq\left\langle U_{1}, \ldots, U_{n}\right\rangle$. For let ${ }_{n} \in v_{t}$ and $E \in\left\langle O_{A}, W_{x_{1}}, \ldots, W_{x_{n}}\right\rangle$, then $E \subseteq O_{A^{\prime}}$ so $\tilde{\pi}(s, E) \subseteq \pi\left[v_{t}^{0} O_{A}\right] \subseteq$ $\subseteq{ }_{i=1}^{n} U_{i}$. Also $E \cap W_{x_{i}}^{A} \neq \phi$ for all $i \epsilon\{1, \ldots, n\}$. Choose $e_{i} \in E \cap W_{x_{i}}$; then $\pi\left(s, e_{i}\right) \in \tilde{\pi}(s, E) \cap U_{i}$.

This proves the continuity of $\tilde{\pi}$.
COROLLARY 3.2 [KOO]. Let ($\mathrm{T}, \mathrm{X}, \pi$) be a ttg with arbitrary phase group T and compact phase space X. Then $\left(T, 2^{X}, \tilde{\pi}\right)\left(=\left(T, 2_{u}^{X}, \tilde{\pi}\right)=\left(T, 2_{f}^{X}, \tilde{\pi}\right)\right)$ is a ttg.

In the sequel we assume the existence of ($T, 2_{f}^{X}, \tilde{\pi}$) or ($\left.T, 2_{u}^{X}, \tilde{\pi}\right)$ as soon as we discuss them. Also we shall skip the action-symbol and write the action as a left multiplication of elements (subsets) of x by elements of $T: t x:=\pi(t, x), t A:=\tilde{\pi}(t, A)$ 。
4. RECURSIVENESS IN X AND $2^{\text {X }}$

The following definitions are taken from [3]. Let T be a topological group and let H be a fixed collection of subsets of T, the so called admissible sets.

Let (T, X) be a ttg. A point $x \in X$ is recursive, if for every nbhd U of x in X there exists an admissible set H with $H x \subseteq U ; x \in X$ is locally recursive, if for every nbhd U of x in X there exist an $H \in H$ and an open nbhd V of x in X with $H V \subseteq U$.

X is called pointwise (locally) recursive, if every $\mathrm{x} \in \mathrm{X}$ is (locally) recursive.

Let (X, U) be a uniform space; then X is called uniformly recursive, if for every $\alpha \in U$ there exists an $H \in H$, such that $H x \subseteq \alpha(x)$ for every $x \in X$.

If we choose H to be the collection of all right-syndetic subjects of T, then this special form of recursiveness is called almost periodicity.

In the following we find generalizations of [4] Theorems 2.3, 2.1, 2.2 in $4.2,4.3$ and $4.4(\mathrm{a})$, respectively. Theorem $4.4(\mathrm{~b})$ seems new.

REMARK 4.1.
a. If $\mathrm{x} \in \mathrm{X}$ is locally recursive, then x is recursive;
b. if X is uniformly recursive, then X is pointwise locally recursive.

THEOREM 4.2. Let (T, X) be a $t t g$ and (X, U) a uniform space, such that ($T, 2_{u}^{X}$) is a ttg. Then $2_{\mathrm{u}}^{\mathrm{X}}$ is uniformly recursive iff X is uniformly recursive.

PROOF. [4] Theorem 2.3, since the compactness of X has not been used in the proof.

THEOREM 4. 3.
a. Let X be T_{3}. If $2_{\mathrm{E}}^{\mathrm{X}}$ is pointwise recursive, then X is pointwise locally recursive;
b. let (X, U) be a locally compact uniform space. If $\mathrm{Z}_{\mathrm{u}}^{\mathrm{X}}$ is pointwise recursive, then X is pointwise locally recursive.

PROOF. Choose $x \in X$ and let U_{x} be an open nbhd of x in X. Then there exists an open nbhd V_{x} of x in x with $x \in V_{x} \subseteq \bar{V}_{x} \subseteq U_{x}$. Then $\bar{V}_{x} \in 2^{X}$ and $\left\langle U_{x}>\right.$ is
an open nbhd of \bar{V}_{X} in 2_{f}^{X}. Since \bar{V}_{x} is a recursive point in 2_{f}^{X}, there exists an $H \in H$ with $H \bar{V}_{x} \subseteq\left\langle U_{x}\right\rangle$. So $H V_{x} \subseteq U_{x}$, and x is locally recursive in X.

If X is locally compact, we may choose $V_{x_{x}}$ to be compact. Now there exists an $\alpha \in U$, such that $\alpha\left(V_{x}\right) \subseteq U_{x}$. Since 2_{u}^{x} is pointwise recursive, there is an $H \in H$ with $H V_{x} \subseteq \alpha^{*}\left(V_{x}\right)$. Then for every $h \in H$ we have $h V_{x} \subseteq$ $\subseteq \alpha\left(V_{x}\right) \subseteq U_{x}$, so $H V_{x} \subseteq U_{x}$ and x is locally recursive.

THEOREM 4.4. Let T be an abelian group. Then the following statements hold, both for $2_{\mathrm{f}}^{\mathrm{X}}$ and $2_{\mathrm{u}}^{\mathrm{X}}$:
a. $\mathrm{x} \in \mathrm{X}$ is recursive iff every finite subset of $\Gamma(x)$ is recursive in 2^{X};
b. $\mathrm{x} \in \mathrm{X}$ is locally recursive iff every finite subset of $\Gamma(\mathrm{x})$ is locally recursive in 2^{X}.

PROOF. Observe that in both cases the "iff" part is trivial. First we prove the theorem for 2_{u}^{X}. Case a. is Theorem 2.2 of [4].
b. Let $A=\left\{t_{1} x, \ldots, t_{x} n\right\} \subseteq \Gamma(x)$ be a finite subset of $\Gamma(x)$ and let $\alpha^{*}(A)$ be a basis-open nbhd of A in 2_{u}^{X} for some symmetric $\alpha \in U$. Since $\pi^{t_{i}}$ is continuous for $i \in\{1, \ldots, n\}$, there exists a $\beta \in U$ with $t_{i} \beta(x) \subseteq \alpha\left(t_{i} x\right)$ for every $i \in\{1, \ldots, n\}$. Because x is locally recursive, there are $H \in H$ and $\delta \in U$ with $H \delta(x) \subseteq \beta(x)$. By the continuity of every $\pi^{t_{i}^{-1}}$ we can find a symmetric $\gamma \in U$ with $t_{i}^{-1} \gamma\left(t_{i} x\right) \subseteq \delta(x)$ for every $i \in\{1, \ldots, n\}$. We shall prove that $\mathrm{H} \mathrm{\gamma}{ }^{*}(\mathrm{~A}) \subseteq \alpha^{*}(\mathrm{~A})$, so that A is a locally recursive point in $2_{u}{ }^{\mathrm{X}}$.

Let $E \in \gamma^{*}(A)$, so $E \subseteq \gamma(A)$ and $A \subseteq \gamma(E)$. For every e ϵE there is an $i_{e} \in\{1, \ldots, n\}$, such that $e \in \gamma\left(t_{i_{e}} x\right)$ and for every $i \in\{1, \ldots, n\}$ there is an $e_{i} \in E$, such that $t_{i} x \in \gamma\left(e_{i}\right)$ and, by the symmetry of $\gamma, e_{i} \in \gamma\left(t_{i} x\right)$. If $e \in \gamma\left(t_{i} x\right)$, then for every $h \in H$ we have he $\epsilon H \gamma\left(t_{i} x\right) \subseteq H t_{i} \delta(x)=$ $=t_{i} H \delta(x) \subseteq t_{i} \beta(x) \subseteq \alpha\left(t_{i} x\right)$ and also $t_{i} x \in \alpha(h e)$. Now it follows that

$$
h E=U\{\text { he } \mid e \in E\} \subseteq U\left\{\alpha\left(t_{i_{e}}(x)\right) \mid e \in E\right\} \subseteq \alpha(A)
$$

and

$$
A=U\left\{t_{i} x \mid i \in\{1, \ldots, n\}\right\} \subseteq U\left\{\alpha\left(h e_{i}\right) \mid \text { i. } \in\{1, \ldots, n\} \subseteq \subseteq(h E)\right.
$$

so $h E \in \alpha^{*}(A)$. Since $h \in H$ and $E \in \gamma^{*}(A)$ were arbitrary, it follows that $H \gamma^{*}(A) \subseteq \alpha^{*}(A)$.

We now turn to 2_{f}^{X}. Let $A=\left\{t_{1} x, \ldots, t_{m} x\right\} \subseteq \Gamma(x)$ be a finite subset of
$\Gamma(x)$ and let $\left\langle U_{1}, \ldots, U_{n}\right\rangle$ be an open nbhd of A in 2_{f}^{X}. For every $j \in\{1, \ldots, n\}$ choose an element $k_{j} \in\{1, \ldots, m\}$, such that $t_{k_{j}} x \in U_{j}$, and for every $k \in K=\{1, \ldots, m\} \backslash\left\{\left.k_{j}\right|_{n} j=1, \ldots, n\right\}$ choose an $\ell_{k} \in\{1, \ldots, n\}$, such that $t_{k}(x) \in U_{\ell_{k}}$. Then $o={ }_{j=1}^{n} \sum_{k_{j}}^{-1} U_{j} \cap \cap\left\{t_{k}^{-1} U_{\ell_{k}} \mid k \in K\right\}$ is an open nbhd of x in x.
a. Let $x \in X$ be recursive. Then there is an $H \in H$ with $H x \subseteq 0$, so $H x \subseteq t_{k_{j}}^{-1} U_{j}$ for every $j \in\{1, \ldots, n\}$ and $H x \subseteq t_{k}^{-1} U_{l_{k}}$ for every $k \in K$. Since T is abelian, it follows that $H t_{k_{j}} x \subseteq U_{j}$ and $H t_{k} \subseteq U_{\ell_{k}}$ for every $j \in\{1, \ldots, n\}$ and $k \in K$. But then $H A \subseteq\left\langle U_{1}, \ldots, U_{n}\right\rangle$ and A is recursive in 2_{f}^{X}.
b. Let $x \in X$ be locally recursive. Then there are an $H \in H$ and an open nbhd V_{x} of x in x with $H v_{x} \subseteq 0$, so $H v_{x} \subseteq t_{k_{j}}^{-1} U_{j}$ and $H t_{k_{j}} V_{x} \subseteq U_{j}$ for every $j \in\{1, \ldots, n\}$ and $H v_{x} \subseteq t_{k}^{-1} U_{\ell_{k}}$, hence $H t_{k} V_{x} \subseteq U_{\ell_{k}}$ for every $k \in K$. If we enumerate the elements of K as k_{n+1}, \ldots, k_{p}, then we may define $W=\left\langle t_{k_{1}} v_{x}, \ldots, t_{k_{p}} v_{x}\right\rangle$. Then $A \in W$ and we shall prove that $H W \subseteq\left\langle U_{1}, \ldots, U_{n}\right\rangle$, that is, the point $A \in 2_{f}^{X}$ is locally recursive in 2_{f}^{X}.

Let $B \in W$, so $B \subseteq \bigcup_{i=1}^{U_{i}} t_{k_{i}} V_{x}$ and $B \cap t_{k_{i}} V_{x} \neq \phi$ for every $i \in\{1, \ldots, p\}$. For every $h \in H$ we have $h B \subseteq U\left\{h t_{k_{i}} V_{x} \mid i \in\{1, \ldots, p\}\right\}$. But $h t_{k_{i}} V_{x} \subseteq$ $\subseteq H t_{k_{i}} V_{x} \subseteq U_{i}$ for $i \in\{1, \ldots, n\}$ and $h t_{k_{i}} V_{x} \subseteq H t_{k_{i}} V_{x} \subseteq U_{\ell_{k_{i}}}$ for every $i \in\{n+1, \ldots, p\}$, so $h B \subseteq{ }_{i}{ }_{i}^{n} U_{i}$. Also $h B \cap h t_{k_{i}} V_{x} \neq \phi$, so $h B \cap U_{i} \neq \phi$ for every $i \in\{1, \ldots, n\}$. It follows that $h B \in\left\langle U_{1}, \ldots, U_{n}\right\rangle$.

LEMMA 4.5. Let x be point transitive, and let $\mathrm{x} \in \mathrm{x}$ be such that $\mathrm{x}=\mathrm{C}(\mathrm{x})$. Then $\left\{E \in 2^{X} \mid E \subseteq \Gamma(x)\right.$ and E is finite $\}$ is a dense subset of 2_{f}^{X}.

PROOF. Let $\left\langle U_{1}, \ldots, U_{n}\right\rangle$ be an open basis set in 2_{f}^{X}. Every U_{i} is open in X and so it contains an element from $\Gamma(x), t_{i} x \in U_{i}$ say. Then $A=\left\{t_{1} x, \ldots, t_{n} x\right\} \in\left\langle U_{1}, \ldots, U_{n}\right\rangle$.

COROLLARY 4.6. Let T be abelian and $\mathrm{x}=\mathrm{C}(\mathrm{x})$ for a (locally) recursive $x \in X$. Then ${\underset{f}{X}}_{X}$ has a dense subset of (locally) recursive points.

5. ALMOST PERIODICITY

We shall apply and refine Section 4 for the special case of almost periodicity, that is recursiveness where the admissible sets are the right-syndetic subsets of T .

We shall call two points x and y in X topologically distal, whenever either $x=y$ or there does not exist a net $\left\{t_{i}\right\}$ in T, such that $\lim t_{i} x=z=\lim t_{i} y$. Equivalently, x and y are topologically distal iff $C(x, y) \cap \Delta_{x}=\phi$ in $X \times X$, where Δ_{x} denotes the diagonal in $X \times X$. For compact T_{2} spaces X with uniformity U this is equivalent to the existence of an $\alpha \in U$, with (tx,ty) $\notin \alpha$ for every $t \in T$, and so x and y are topologically distal iff they are distal. We shall call x topologically distal, if every x and y in x are topologically distal.

The following result generalizes [4] Lemma 4.2. Also compare [4] Lemma 4.1.

THEOREM 5.1. Let X be a T_{3} space (uniform space) and let $\{\mathrm{x}, \mathrm{y}\}$ be an almost periodic point in $2_{\mathrm{f}}^{\mathrm{X}}\left(2_{\mathrm{u}}^{\mathrm{X}}\right)$. Then x and y are topologically distal points in X .

PROOF. a. Let X be T_{3} and assume $x \neq y$. Then there are closed nbhds U and V of x and y in x, with $U \cap V=\phi$, so $(U \times V) \cap \Delta_{x}=\phi$. Since $\{x, y\} \in\left\langle U^{\circ}, V^{\circ}\right\rangle$ and $\{x, y\}$ is almost periodic in 2_{f}^{X}, there exists a right-syndetic subset H of T, such that $H\{x, y\} \subseteq\left\langle U^{\circ}, V^{\circ}\right\rangle$. It follows that $H(x, y) \subseteq U^{0} \times V^{0} U V^{0} \times U^{\circ}$ and so $\overline{H(x, y)} \subseteq U \times V \cup V \times U$ and also $\overline{H(x, y)} \cap \Delta_{x}=\phi$. Let $K \subseteq T$ be compact, such that $K H=T$. Then $K \overline{H(x, y)} \cap \Delta_{x}=\phi$. Since $K \overline{H(x, y)}=\overline{K H(x, y)}=C(x, y)$, this shows that x and y are topologically distal.
b. Let (X, U) be a uniform space and $x \neq Y$. Choose a symmetric $\beta \in U$, such that $\beta(x) \cap \beta(y)=\phi$ and choose a closed index $\omega \in\left[U^{*}\right]$ (the uniform structure on 2_{u}^{X} induced by (U) with $\omega \subseteq \beta^{*}$. Since $\{x, y\}$ is an almost periodic point in 2^{X}, there exists a right-syndetic set $H \subseteq T$ with $H\{x, y\} \subseteq \omega(\{x, y\})$, so $\overline{H\{x, y\}} \subseteq \omega(\{x, y\}) \subseteq \beta^{*}(\{x, y\})$. We shall prove that $\overline{H(x, y)} \cap \Delta_{x}=\phi$, so that, similar to part a, x and y are topologically distal in x.

Suppose $(z, z) \in \overline{H(x, y)}$, then for every $\alpha \in U$ there is an $h \in H$, with $(h x, h y) \in \alpha(z) \times \alpha(z)$, and so $h\{x, y\} \subseteq \alpha(z)$. For symmetric $\alpha \in U$ it follows,
that $h\{x, y\} \in \alpha^{*}(z)$. Since U has a basis consisting of symmetric indexes, it follows that $\{z\} \in \overline{H\{x, y}\} \in \beta^{*}(\{x, y\})$. But then $\{x, y\} \subseteq \beta(z)$ and $z \in \beta(x) \cap \beta(y)$, which contradicts our assumption about $\beta \in U$.

COROLLARY 5.2. Let X be a T_{3}-space (uniform space). Then X is topologically distal, if $2_{\mathrm{f}}^{\mathrm{X}}\left(2_{\mathrm{u}}^{\mathrm{X}}\right)$ is pointwise almost periodic. If X is compact T_{2}, then X is distal, if 2^{X} is pointwise almost periodic ([4], Corollary 4.2).

LEMMA 5.3. Let X be a topological space (uniform space) and $\mathrm{n} \in \mathbb{N}$. Then $\left\{x_{1}, \ldots, x_{n}\right\}$ is almost periodic in $2_{f}^{X}\left(2_{u}^{X}\right)$, if $\left(x_{1}, \ldots, x_{n}\right)$ is almost periodic in x^{n}.

PROOF: a. Let $\left\langle U_{1}, \ldots, U_{m}\right\rangle$ be an open $n b h d$ of $\left\{x_{1}, \ldots, x_{n}\right\}$. Choose for every $i \in\{1, \ldots, m\}$ an element $j_{i} \in\{1, \ldots, n\}$, such that $x_{j_{i}} \in U_{i}$ and for every $k \in\{1, \ldots, n\} \backslash\left\{j_{i} \mid i \in\{1, \ldots, m\}\right.$ an $i_{k} \in\{1, \ldots, m\}$, with $x_{k} \in U_{i_{k}}$. Define for every $\ell \in\{1, \ldots, n\}$ a nbhd v_{ℓ} of x_{ℓ} as follows:

$$
\begin{aligned}
\text { If } \ell \in\left\{j_{i} \mid i \in\{1, \ldots, m\}\right\} \text { then } v_{\ell} & :=\cap\left\{U_{i} \mid j_{i}=\ell\right\}, \\
& \text { else } v_{\ell}:=U_{i_{\ell}}
\end{aligned}
$$

Now $v_{1} \times \ldots \times v_{n}$ is a nbhd of $\left(x_{1}, \ldots, x_{n}\right)$ in x^{n}, so there exists a rightsyndetic subset H of T, with $H\left(x_{1} \ldots, \ldots x_{n}\right) \subseteq V_{1} \times \ldots \times V_{n}$ and obviously, $H\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\left\langle U_{1}, \ldots, U_{n}\right\rangle$.
b. Straightforward.

THEOREM 5.4. Let X be a compact T_{2} space. Then the following statements are equivalent:
a. X is distal;
b. every doubleton in X is almost periodic in 2^{X};
c. every finite subset of X is almost periodic in 2^{X}.

PROOF. $c \Rightarrow b$ trivial; $b \Rightarrow a$ (Theorem 5.1); $a \Rightarrow c$. Let $E \subseteq x$ be finite, with $|E|=n$. Then X^{n} is distal, so pointwise almost periodic. From Lemma 5.3 it follows that E is almost periodic in 2^{X}.

Note that, if T is abelian, then X is pointwise almost periodic iff every finite subset of $\Gamma(x)$ is almost periodic in 2^{x} for every $x \in x$, so
in particular, if X is minimal, then 2_{f}^{X} has a dense subset of almost periodic points (4.4(a) and 4.6).

THEOREM 5.5 [KOO] ([4] Theorem 4.1). Let X be compact T_{2}. Then the following statements are equivalent:
a. X is uniform almost periodic;
b. 2^{X} is pointwise almost periodic;
c. 2^{X} is uniform almost periodic.

PROOF. $a \Rightarrow c$ (Theorem 4.2); $c \Rightarrow b$ (Remark 4.1). $b \Rightarrow a x$ is distal by Corollary 5.2 and pointwise locally almost periodic by Theorem 4.3, so X is uniform almost periodic by [2], 5.28.

THEOREM 5.6. Let X be a T_{3}-space (uniform space) and let $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ be almost periodic in $2_{f}^{X}\left(2_{u}^{x}\right)$. Then for every $A \in C\left\{x_{1}, \ldots, x_{n}\right\}$ we have $|A|=n$.

PROOF. First observe that, for an arbitrary $t t g(T, Y)$ and for every $Y \in Y$ which is almost periodic and has local basis of closed nbhds, we have that $C(y)$ is minimal. Let $A \in 2^{X}$ be a compact subset of X. It follows from the regularity of X, that A has a local basis of closed nbhds, both in 2_{f}^{X} and in $2_{u}^{X}([5], 4.9 .10)$. So if $A \in 2_{f}^{X}\left(2_{u}^{X}\right)$ is compact and almost periodic, then $C(A)$ is minimal in $2_{f}^{X}\left(2_{u}^{X}\right)$. We show first that $|A| \leq n$ for every $A \in C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$. So let $A \in C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ and suppose $|A|>n$. Choose $n+1$ different points in A, Y_{1}, \ldots, Y_{n} say.
a. Let V_{1}, \ldots, V_{n+1} be pairwise disjoint open nbhds of Y_{1}, \ldots, Y_{n+1}, respectively. Then $A \in\left\langle V_{1}, \ldots, V_{n+1}, X\right\rangle$. However, $\left\langle V_{1}, \ldots, V_{n+1}, X\right\rangle \cap \Gamma\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)=$ $=\phi$, otherwise there would be $t \in T$ and $j \in\{1, \ldots, n\}$, with $t x_{j}$ occurring in two different $V_{i}{ }^{\prime} s$. . It follows that $A \notin C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$, a contradiction. b. Choose a symmetric $\alpha \in U$ such that $\left\{\alpha\left(y_{i}\right) \mid i \in\{1, \ldots, n+1\}\right\}$ is pairwise disjoint. Similar to a we get a contradiction.

In the same way the assumption $|A|<n$ for some $A \in C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ leads to the conclusion that $\left\{x_{1}, \ldots, x_{n}\right\} \notin C(A)$, which contradicts the minimality of $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$.

We now want to prove a converse of Lemma 5.3 , which in the case of
compact T_{2} spaces has been done by Koo ([4], Theorem 4.2). Our method is exactly the same, but a weaker condition turned out to be sufficient. Define the map $f: x^{n} \rightarrow 2^{X}$ by $f\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left\{x_{1}, \ldots, x_{n}\right\}$. Then f is easily seen to be equivariant, i.e., $f\left(t\left(x_{1}, \ldots, x_{n}\right)\right)=t f\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ for all $t \in T$. Also, f is continuous with respect to 2_{f}^{X} as well as 2_{u}^{X}. Indeed, let $\left\langle U_{1}, \ldots, U_{m}\right\rangle\left(\alpha^{*}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right.\right.$ for a symmetric $\alpha \in U$) be a nbhd of $\left\{x_{1}, \ldots, x_{n}\right\}$ in $2_{f}^{X}\left(2_{u}^{x}\right)$; then $f\left(V_{1} \times \ldots V_{n}\right) \subseteq\left\langle U_{1} \ldots, U_{m}\right\rangle\left(f\left(\alpha\left(x_{1}\right) \times \ldots x_{\alpha}\left(x_{n}\right)\right) \subseteq\right.$ $\left.\subseteq \alpha^{*}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)\right)$ with $v_{1} \times \ldots x v_{n}$ as in the proof of Lemma 5.3.

We need the following theorem, due to EISENBERG ([1]).

THEOREM 5.7. Let (T, X) and (T, Y) be ttg's with compact T_{2} phase spaces and let Y be minimal and X point transitive. Let $g: X \rightarrow Y$ be a continuous equivariant, locally one-to-one surjection. Then X is minimal.

LEMMA 5.8 ([4] Lemma 4.4). Let x be a T_{2}-space and let $\left(x_{1}, \ldots, x_{n}\right) \in x^{n}$ be such that $x_{i} \neq x_{j}$ for $i \neq j$. Then f is locally one-to-one in (x_{1}, \ldots, x_{n}), i.e., f is one-to-one on some nbhd of ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$).

LEMMA 5.9. Let X be T_{3} (uniform) and let $\left\{\mathrm{x}_{1} \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ be an almost periodic point in $2_{f}^{X}\left(2_{u}^{X}\right)$; then $f^{\prime}=\left.f\right|_{C}\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is a locally one-to-one map from $C\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ onto $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$.

PROOF. Clearly $f\left(\Gamma\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right) \subseteq \Gamma\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$; the continuity of f implies that $f\left(C\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right) \subseteq C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$. So by Theorem 5.6 we have for every $\left(y_{1}, \ldots, y_{n}\right) \in C\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ that $y_{i} \neq y_{j}$ if $i \neq j$; hence f^{\prime} is locally one-to-one by Lemma 5.8. We shall prove that $f\left(C\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right.$) is closed in $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$. Then the minimality of $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ (see the beginning of the proof of Theorem 5.6) implies that f^{\prime} is surjective. Assume the existence of an $A \in C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) \backslash f\left(C\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right)$. It is clear from Theorem 5.6 that $|A|=n, A=\left\{y_{1}, \ldots, Y_{n}\right\}$ say. Then for every permutation σ of $1, \ldots, n$ holds $\left(y_{\sigma(1)} \ldots, y_{\sigma(n)}\right) \notin C\left(\left(x_{1} \ldots, x_{n}\right)\right)$, so we may choose pairwise disjoint open nbhds V_{i}^{σ} of Y_{i} in x, such that $V_{\sigma(1)}^{\sigma} \times \ldots \times V_{\sigma(n)}^{\sigma} n$ $\cap C\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\phi$. Define $V_{i}=\cap\left\{v_{i}^{\sigma} \mid \sigma\right.$ permutation of $\left.1, \ldots, n\right\}$. Then $\left\langle V_{1}, \ldots, V_{n}\right\rangle$ is a nbhd of $\left\{Y_{1}, \ldots, y_{n}\right\}$ in 2_{f}^{X}, with $\left\langle V_{1}, \ldots, V_{n}\right\rangle \cap$ $\cap f\left(C\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right)=\phi$. Now $f\left(C\left(x_{1}, \ldots, x_{n}\right)\right)$ is closed in $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$. In the, case of 2_{u} we choose suitable symmetric $\alpha^{\sigma} \in U$ and similar to the
case of 2_{f}^{X} it follows that $f\left(C\left(\left(x_{1}, \ldots, x_{n}\right)\right)\right)$ is closed in $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$.
The following result is the converse of Lemma 5.3 and it slightly generalizes [4], Theorem 4.2.

THEOREM 5.10. Let x be locally compact T_{2}. Then ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) is an almost periodic point in x^{n}, iff $\left\{x_{1}, \ldots, x_{n}\right\}$ is an almost periodic point in 2_{f}^{X} $\left(2_{\mathrm{u}}^{\mathrm{X}}\right.$) and $\mathrm{C}\left(\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right)$ is compact.

PROOF. $" \Rightarrow$ " x^{n} is locally compact T_{2}, so $C\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is compact and by Lemma 5.3, $\left\{x_{1}, \ldots, x_{n}\right\}$ is almost periodic. $" \Leftarrow "$. By Lemma $5.9, f^{\prime}: C\left(\left(x_{1}, \ldots, x_{n}\right)\right) \rightarrow C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ satisfies the conditions of Theorem 5.7. Since $C\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ is minimal and $C\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is point transitive, it follows from Theorem 5.7 that $C\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ is minimal, so $\left(x_{1}, \ldots, x_{n}\right)$ is an almost periodic point in x^{n}.

REFERENCES
[1] EISENBERG, M. , A theorem on extensions of minimal sets, in: 0. Hájek, A.J. Lohwater \& R.McCann (eds), Global differentiable dynamics, Lecture Notes in Mathematics 235, Springer-Verlag (1971), 61-64.
[2] ELLIS, R., Lectures on topological dynamics, W.A. Benjamin, Inc., New York (1969).
[3] GOTTSCHALK W.H. \& G.A. HEDLUND, Topological dynamics, Amer. Math. Soc. , Col. Publ. 36, Providence (1955).
[4] KOO, S.C. Recursive properties of transformation groups in hyperspaces, Math. Systems Theory 9 (1975), 75-82.
[5] MICHAEL, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.

